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EXTREMES OF A CLASS OF NONHOMOGENEOUS
GAUSSIAN RANDOM FIELDS

BY KRZYSZTOF DȨBICKI1,2,∗, ENKELEJD HASHORVA1,† AND LANPENG JI1,†

University of Wrocław∗ and University of Lausanne†

This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s, t)

for a large class of nonhomogeneous Gaussian random fields X on a bounded
convex set E ⊂ R

2, with variance function that attains its maximum on a seg-
ment on E. These findings extend the classical results for homogeneous Gaus-
sian random fields and Gaussian random fields with unique maximum point
of the variance. Applications of our result include the derivation of the ex-
act tail asymptotics of the Shepp statistics for stationary Gaussian processes,
Brownian bridge and fractional Brownian motion as well as the exact tail
asymptotic expansion for the maximum loss and span of stationary Gaussian
processes.

1. Introduction. Consider the fractional Brownian motion (fBm) incremental
random field

Xα(s, t) = Bα(s + t) − Bα(s), (s, t) ∈ [0,∞)2,

where {Bα(t), t ∈ R} is a standard fBm with Hurst index α/2 ∈ (0,1] which is a
centered self-similar Gaussian process with stationary increments and covariance
function

Cov
(
Bα(t),Bα(s)

) = 1
2

(|t |α + |s|α− | t − s |α)
, s, t ∈ R.

For the case α = 1, both Xα(s, t) and its standardized version X∗
α(s, t) =

Xα(s, t)/tα/2 appear naturally as limit models; see, for example, [8]. In the lit-
erature,

Yα(t) = sup
s∈[0,S]

Xα(s, t)

is referred to as the Shepp statistics of fBm, whereas Y ∗
α (t) = sups∈[0,S] X∗

α(s, t) as
the standardized Shepp statistics. Distributional results for Y ∗

1 are derived in [28];
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see also [27] and Theorem 3.2 in [8]. Other important results for the Shepp statis-
tics of Brownian motion and related quantities are presented in [11, 14, 29]. The
first known result for the extremes of the Shepp statistics of Brownian motion goes
back to [32], which is complemented in [17] for the case of fBm with α ∈ (0,1).
In view of the aforementioned papers for any α ∈ (0,1],

P

(
sup

(s,t)∈[0,1]2
Xα(s, t) > u

)
= Cαu4/α−2�(u)

(
1 + o(1)

)
(1)

holds as u → ∞ with Cα a positive constant and �(·) the survival function of an
N(0,1) random variable. There is no result for the case α ∈ (1,2) in the literature;
we shall cover this gap in Proposition 3.5.

Results for the tail asymptotics of supremum of the standardized Shepp statistics
can be derived using the findings of [7] and [20]; see also [18, 19]. However, this
is not the case for the tail asymptotics of the supremum of the Shepp statistics Yα ;
no theoretical results in the literature can be applied for this case. This is due to the
fact that on [0,1]2 the variance of Xα attains its maximum at an infinite number of
points, that is, its maximal value is attained for any s ∈ [0,1] and t = 1.

In the asymptotic theory of Gaussian random fields, if the random field has
a nonconstant variance function, which attains its maximum at a unique (or fi-
nite) number of points, then under the so-called Piterbarg conditions, the exact
tail asymptotics of supremum of Gaussian random fields with certain (E,α) struc-
tures for the variance and the correlation functions are derived by relying on the
Double–Sum method; see, for example, the standard monograph [24].

The principle aim of this contribution is to extend Piterbarg’s asymptotic theory
for Gaussian random fields to the case where the maximum of the variance function
on a bounded convex set E is attained on finite number of disjoint segments on E.
In particular, we assume that {X(s, t), (s, t) ∈ E}, E = [0, S] × [0, T ], S, T > 0, is
a centered Gaussian random field with variance function σ 2(s, t) = Var(X(s, t))

that satisfies the following assumption.

ASSUMPTION A1. There exists some positive function σ(t) which attains its
unique maximum on [0, T ] at T , and further

σ(s, t) = σ(t) ∀(s, t) ∈ E,
(2)

σ(t) = 1 − b(T − t)β
(
1 + o(1)

)
, t ↑ T

hold for some β,b > 0.

We shall impose the following assumption on the correlation function r(s, t,

s′, t ′) = E(X(s, t)X(s′, t ′)) where X(s, t) = X(s, t)/σ (s, t):
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ASSUMPTION A2. There exist constants a1 > 0, a2 > 0, a3 
= 0 and α1, α2 ∈
(0,2] such that

r
(
s, t, s′, t ′

)
(3)

= 1 − (∣∣a1
(
s − s′)∣∣α1 + ∣∣a2

(
t − t ′

) + a3
(
s − s′)∣∣α2

)(
1 + o(1)

)
holds uniformly with respect to s, s′ ∈ [0, S], as |s − s′| → 0, t, t ′ ↑ T , and further,
there exists some constant δ0 ∈ (0, T ) such that

r
(
s, t, s′, t ′

)
< 1(4)

holds for any s, s′ ∈ [0, S] satisfying s 
= s′, and t, t ′ ∈ [δ0, T ].

Note that in A2 we assume that a3 
= 0, which includes a large class of correla-
tion functions with (E,α) structure dealt with in [24]; the classical case a3 = 0 is
discussed in Remark 2.3.

Our main result, presented in Theorem 2.2 (and stated in higher generality in
Remarks 2.4), derives the exact tail asymptotic behavior of supremum of nonho-
mogeneous Gaussian random fields X satisfying A1 and A2 and a Hölder condi-
tion formulated below in Assumption A3. As an illustration to the derived theory,
we analyze exact asymptotics of the tail distribution of extremes of Shepp statis-
tics, the maximum loss and the span for a large class of Gaussian processes.

Organization of the paper: Our principal findings are presented in Section 2
followed by two sections dedicated to applications and examples. All the proofs
are relegated to Section 5 and the Appendix.

2. Main results. In this section, we are concerned about the asymptotics of

P

(
sup

(s,t)∈E
X(s, t) > u

)
, u → ∞

discussing first the case that E = [0, S] × [0, T ].
The Pickands and Piterbarg lemmas (cf. [24]) are fundamental in the analy-

sis of the tail asymptotic behavior of supremum of nonsmooth centered Gaus-
sian processes and Gaussian random fields. Restricting ourselves to the case that
{X(t), t ≥ 0} is a centered stationary Gaussian process with a.s. continuous sam-
ple paths and correlation function r(t), such that r(t) = 1 − tα(1 + o(1)) as t → 0,
with α ∈ (0,2], and r(t) < 1 for all t > 0, in view of the seminal papers by J.
Pickands III (see [21, 22]), for any T ∈ (0,∞)

P

(
sup

t∈[0,T ]
X(t) > u

)
= HαT u2/α�(u)

(
1 + o(1)

)
, u → ∞.(5)

Here, Hα is the Pickands constant defined by

Hα = lim
T →∞

1

T
Hα[0, T ] ∈ (0,∞)
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with

Hα[0, T ] = E

(
exp

(
sup

t∈[0,T ]
(√

2Bα(t) − tα
)))

.

The derivation of (5) is based on Pickand’s lemma which states that

P

(
sup

t∈[0,u−2/αT ]
X(t) > u

)
=Hα[0, T ]�(u)

(
1 + o(1)

)
, u → ∞.(6)

In [23], Piterbarg rigorously proved Pickand’s theorem and further derived a cru-
cial extension of (6) which we shall refer to as the Piterbarg lemma; it states that

P

(
sup

t∈[0,u−2/αT ]
X(t)

1 + btα
> u

)
=Pb

α[0, T ]�(u)
(
1 + o(1)

)
, u → ∞(7)

holds for any b > 0 with

Pb
α[0, T ] = E

(
exp

(
sup

t∈[0,T ]
(√

2Bα(t) − (1 + b)tα
)))

∈ (0,∞).

The positive constant (referred to as the Piterbarg constant) given by

Pb
α = lim

T →∞Pb
α[0, T ] ∈ (0,∞)

appears naturally when dealing with the extremes of nonstationary Gaussian pro-
cesses or Gaussian random fields; see, for example, [24] and our main result below.
It is known that H1 = 1, H2 = 1/

√
π , and

Pb
1 = 1 + 1

b
, Pb

2 = 1

2

(
1 +

√
1 + 1

b

)
, b > 0(8)

see, for example, [2, 10, 12, 13, 15, 16].
We note in passing that for stationary Gaussian processes [3] and [5] presented

new elegant proofs of (5) without using the Pickands lemma. The following ex-
tension of the Pickands and Piterbarg lemmas plays an important role in our anal-
ysis. Hereafter, we denote by B̃α and Bα two independent fBm’s defined on R

with Hurst index α/2 ∈ (0,1]. Recall that �(·) denotes the survival function of an
N(0,1) random variable; we write below �(·) for the Euler Gamma function.

LEMMA 2.1. Let {η(s, t), (s, t) ∈ [0,∞)2} be a centered homogeneous Gaus-
sian random field with covariance function

rη(s, t) = exp
(−|a1s|α1 − |a2t − a3s|α2

)
, (s, t) ∈ [0,∞)2,

where constants αi ∈ (0,2], i = 1,2, a1 > 0, a2 > 0, a3 ∈ R. Let further b,S,T be
three positive constants. If β ≥ α2 ≥ α1, then for any positive measurable function
g(u),u > 0 satisfying limu→∞ g(u)/u = 1

P

(
sup

(s,t)∈[0,Su−2/α1 ]×[0,T u−2/α2 ]
η(s, t)

1 + btβ
> g(u)

)
(9)

= Hb
Y [S,T ]�(

g(u)
)(

1 + o(1)
)
, u → ∞,
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where

Hd
Y [S,T ] = E

(
exp

(
sup

(s,t)∈[0,S]×[0,T ]
(√

2Y(s, t) − σ 2
Y (s, t) − d(t)

)))
(10)

∈ (0,∞)

with σ 2
Y (s, t) = Var(Y (s, t)) and

Y(s, t) =
{

Y1(s, t) := B̃α1(a1s) + Bα2(a2t − a3s), α1 = α2,

Y2(s, t) := B̃α1(a1s) + Bα2(a2t), α1 < α2,
(11)

d(t) =
{

0, β > α2,

btβ, β = α2,
(s, t) ∈ [0,∞)2.

Using the definition of Y1 and Y2 appearing in (11) we shall determine, for given
ai ’s, αi’s and b,β as above, the following constants (referred to as generalized
Pickands–Piterbarg constants):

Mb
Y,β = lim

T →∞ lim
S→∞

1

S
Hb

Y [S,T ] ∈ (0,∞)

and

M̃b
Y,β = lim

T →∞ lim
S→∞

1

S
E

(
exp

(
sup

(s,t)∈[0,S]×[−T ,T ]
(√

2Y(s, t) − σ 2
Y (s, t) − btβ

)))
∈ (0,∞).

Here, Mb
Y,β and M̃b

Y,β are defined only for β = α2. Note that we suppress ai ’s and

αi’s in the definition of Mb
Y,β and M̃b

Y,β since they appear directly in the definition
of Y .

Additional to A1 and A2 we shall impose the following Hölder condition, which
in the literature is called regularity; see [24].

ASSUMPTION A3. There exist positive constants ρ1, ρ2, γ,Q such that

E
((

X(s, t) − X
(
s′, t ′

))2) ≤ Q
(∣∣t − t ′

∣∣γ + ∣∣s − s′∣∣γ )
holds for all t, t ′ ∈ [ρ1, T ], s, s ′ ∈ [0, S] satisfying |s − s′| < ρ2.

We present next our main result.

THEOREM 2.2. Let {X(s, t), (s, t) ∈ E},E = [0, S] × [0, T ] be a centered
Gaussian random field with a.s. continuous sample paths. Suppose that As-
sumptions A1–A3 are satisfied with the parameters mentioned therein. Then, as
u → ∞,
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(i) if β > max(α1, α2)

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S�(1/β + 1)

2∏
k=1

(akHαk
)b−1/β

(12)
× u2/α2+2/α1−2/β�(u)

(
1 + o(1)

);
(ii) if β = α2 = α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= SMb

Y1,α1
u2/α1�(u)

(
1 + o(1)

);(13)

(iii) if β = α2 > α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1a2P

ba
−α2
2

α2 Hα1u
2/α1�(u)

(
1 + o(1)

);(14)

(iv) if β < α2 = α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S

(
a

α1
1 + |a3|α1

)1/α1Hα1u
2/α1�(u)

(
1 + o(1)

);(15)

(v) if β < α2 and α1 < α2

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1Hα1u

2/α1�(u)
(
1 + o(1)

);(16)

(vi) if β = α1 > α2

P

(
sup

(s,t)∈E
X(s, t) > u

)
= Sa1Pb(|a3|/(a1a2))

α1
α1

Hα2u
2/α2�(u)

(
1 + o(1)

);(17)

(vii) if β < α1 and α2 < α1

P

(
sup

(s,t)∈E
X(s, t) > u

)
= S|a3|Hα2u

2/α2�(u)
(
1 + o(1)

)
.

REMARK 2.3. If a3 = 0, then there are only three scenarios to be considered.
In particular if β > α2, then (12) holds. If β = α2, then (14) holds, whereas if
β < α2, then (16) is valid.

REMARK 2.4. (a) Let E be any bounded convex subset of R2. Assume that
on E the maximum of the standard deviation σ(s, t) is attained only on a segment
L which is inside of E, parallel to s-axis and of length �. Then the claims of
Theorem 2.2 are still valid, by replacing S with � in cases (i)–(vii), �(·) with 2�(·)
in case (i), Mb

Y1,α1
with M̃b

Y1,α1
in cases (ii), Pba

−α2
2

α2 with P̃ba
−α2
2

α2 in case (iii),

and Pb(|a3|/(a1a2))
α1

α1 with P̃b(|a3|/(a1a2))
α1

α1 in case (vi), respectively. Here, P̃b
α , with

b > 0 and α ∈ (0,2] is the Piterbarg constant defined on the real line, that is,

P̃b
α = lim

T →∞E

(
exp

(
sup

t∈[−T ,T ]
(√

2Bα(t) − (1 + b)tα
)))

∈ (0,∞).
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(b) Assume that on E the maximum of the standard deviation σ(s, t) is attained
only on n segments {Li}ni=1 which are inside or on the boundary of E, and parallel
to s-axis. By the convexity of E, we can always find n nonadjacent convex sets
{Ei}ni=1 such that Li ⊂ Ei ⊂ E, i = 1, . . . , n. If further for any i 
= j

sup
(s,t)∈Ei ,(s

′,t ′)∈Ej

r
(
s, t, s′, t ′

)
< 1(18)

holds, then

P

(
sup

(s,t)∈E
X(s, t) > u

)
=

n∑
i=1

P

(
sup

(s,t)∈Ei

X(s, t) > u
)(

1 + o(1)
)

(19)

as u → ∞. Additionally, suppose that on each {Ei}ni=1 the Assumptions A1–A3
are satisfied. Then an explicit expression for (19) can be established by applying
the results in Theorem 2.2 and Remark 2.4(a) above.

(c) Similar results can also be obtained when the segments {Li}ni=1, where the
maximum of σ(s, t) is attained, are nonparallel and disjoint. Specifically, we see
from Remark 2.4(b) that it is sufficient to consider the asymptotics of

P

(
sup

(s,t)∈Ei

X(s, t) > u
)
, u → ∞, i = 1, . . . , n,

respectively. Let (s, t)� be the transpose of (s, t). Then, for any i = 1, . . . , n,
there is a nondegenerate lower triangular (rotation) matrix Ai ∈ R

2×2 such that
the maximum of the variance of X((Ai(s, t)

�)�) on A−1
i Ei = {(s̃, t̃) : (s̃, t̃)� =

A−1
i (s, t)�, (s, t) ∈ Ei} is attained on a line parallel to s-axis or t-axis. Conse-

quently, similar results as in Theorem 2.2 can be obtained if certain Assumptions
as A1–A3 are satisfied by each {X((Ai(s, t)

�)�), (s, t) ∈ A−1
i Ei}.

We conclude this section with an example, which illustrates the existence of all
the cases discussed in Theorem 2.2.

EXAMPLE 2.5. Consider a Gaussian random field defined as

Z(s, t) = 1√
2

(
Y(s + t) − X(s)

)(
1 − b(T − t)β

)
, (s, t) ∈ [0, S] × [0, T ],

where b,β are two positive constants, and X,Y are two independent centered sta-
tionary Gaussian processes with covariance functions rX, rY satisfying as t → 0

rX(t) = 1 − a1t
α1

(
1 + o(1)

)
, rY (t) = 1 − a2t

α2
(
1 + o(1)

)
for some constants ai > 0, αi ∈ (0,2], i = 1,2. Further, assume that

rX(s) < 1,∀s ∈ (0, S] rY (t) < 1 ∀t ∈ (0, S + T ].
It follows that the assumptions of Theorem 2.2 are satisfied by {Z(s, t), (s, t) ∈
[0, S] × [0, T ]}.
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3. Extremes of Shepp statistics. For a given centered Gaussian process
{X(t), t ≥ 0}, we shall define the incremental random field Z by

Z(s, t) = X(s + t) − X(s), (s, t) ∈ [0, S] × [0, T ].(20)

The asymptotic analysis of the supremum of the Shepp statistics

Y(t) = sup
s∈[0,S]

Z(s, t), t ∈ [0, T ]

boils down to the study of the tail asymptotics of the double-supremum
sup(s,t)∈[0,S]×[0,T ] Z(s, t). In this section, we shall consider several important ex-
amples which can be analysed utilising the theory developed in Section 2.

3.1. Stationary Gaussian processes. Consider the Gaussian random field Z as
in (20) where X is a centered stationary Gaussian process with covariance function
rX satisfying the following conditions:

S1: rX(t) attains its minimum on [0, T ] at the unique point t = T ;
S2: there exist positive constants α1, a1, a2 and α2 ∈ (0,2) such that

rX(t) = rX(T ) + a1(T − t)α1
(
1 + o(1)

)
, t → T ,

rX(t) = 1 − a2t
α2

(
1 + o(1)

)
, t → 0;

S3: rX(s) < 1 for any s ∈ (0, S + T ].

PROPOSITION 3.1. Let {Z(s, t), (s, t) ∈ [0, S] × [0, T ]} be an incremental
random field given as in (20) with rX satisfying S1–S3. Suppose that rX is twice
continuously differentiable on [μ,T ] for some μ ∈ (0, T ), |r ′′

X(T )| ∈ (0,∞), and
let bi = ai/ρ

2
T , i = 1,2 with ρT = √

2(1 − rX(T )). Then, as u → ∞,

(i) if α1 > α2

P

(
sup

(s,t)∈[0,S]×[0,T ]
Z(s, t) > u

)

= S�(1/α1 + 1)H2
α2

b
2/α2
2 b

−1/α1
1

(
u

ρT

)4/α2−2/α1

�

(
u

ρT

)(
1 + o(1)

);
(ii) if α1 = α2

P

(
sup

(s,t)∈[0,S]×[0,T ]
Z(s, t) > u

)
= SMb1

Y,α1

(
u

ρT

)2/α2

�

(
u

ρT

)(
1 + o(1)

)
,

where

Y(s, t) := B̃α2

(
b

1/α2
2 s

) + Bα2

(
b

1/α2
2 t − b

1/α2
2 s

)
, (s, t) ∈ [0,∞)2;
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(iii) if α1 < α2

P

(
sup

(s,t)∈[0,S]×[0,T ]
Z(s, t) > u

)
= S(2b2)

1/α2Hα2

(
u

ρT

)2/α2

�

(
u

ρT

)(
1 + o(1)

)
.

We present two important examples that illustrate Proposition 3.1.

EXAMPLE 3.2 (Slepian process). Consider X to be the Slepian process, that
is,

X(t) = B1(t + 1) − B1(t), t ∈ [0,∞),

with B1 the standard Brownian motion. It follows that the assumptions of Propo-
sition 3.1 are satisfied, hence as u → ∞

P

(
sup

(s,t)∈[0,1]×[0,1/2]
Z(s, t) > u

)
= M1

Y,1u
2�(u)

(
1 + o(1)

)
holds with Y(s, t) := B̃1(s) + B1(t − s), (s, t) ∈ (0,∞)2.

EXAMPLE 3.3 (Ornstein–Uhlenbeck process). Consider a centered stationary
Gaussian process X with covariance function r(t) = e−t , t ≥ 0. Then following
Proposition 3.1,

P

(
sup

(s,t)∈[0,1]2
Z(s, t) > u

)
= Mb1

Y,1b1u
2�(

√
b1u)

(
1 + o(1)

)
, u → ∞,

with b1 = e−1/(2(1 − e−1)), b2 = 1/(2(1 − e−1)) and Y(s, t) := B̃1(b2s) +
B1(b2t − b2s), (s, t) ∈ (0,∞)2.

3.2. Brownian bridge. In this section, we analyze

Z(s, t) = X(s + t) − X(s), s, s + t ∈ [0,1],(21)

where X(s) := B1(s) − sB1(1), s ∈ [0,1] is a Brownian bridge (recall B1 is a
standard Brownian motion). Clearly, X is nonstationary and, therefore, we cannot
apply Proposition 3.1 for this case.

PROPOSITION 3.4. If {Z(s, t), (s, t) ∈ [0,1/2]2} is given by (21), then

P

(
sup

(s,t)∈[0,1/2]2
Z(s, t) > u

)
= 25/2√πu3�(2u)

(
1 + o(1)

)
, u → ∞.(22)
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3.3. Fractional Brownian motion. Consider the fBm incremental random field

Z(s, t) = Bα(s + t) − Bα(s), (s, t) ∈ [0, S] × [0,1],(23)

where Bα is the fBm with Hurst index α/2 ∈ (0,1).
The following proposition extends the main result of [17] to the whole range of

α ∈ (0,2).

PROPOSITION 3.5. Let {Z(s, t), (s, t) ∈ [0, S] × [0,1]} be given as in (23).
We have, as u → ∞,

(i) if α ∈ (0,1)

P

(
sup

(s,t)∈[0,S]×[0,1]
Z(s, t) > u

)
= S21−2/αα−1H2

αu4/α−2�(u)
(
1 + o(1)

);(24)

(ii) if α = 1

P

(
sup

(s,t)∈[0,S]×[0,1]
Z(s, t) > u

)
= SM1/2

Y,1u
2�(u)

(
1 + o(1)

)
,(25)

with

Y(s, t) := B̃1
(
2−1s

) + B1
(
2−1(t − s)

)
, (s, t) ∈ [0,∞)2;

(iii) if α ∈ (1,2)

P

(
sup

(s,t)∈[0,S]×[0,1]
Z(s, t) > u

)
= SHαu2/α�(u)

(
1 + o(1)

)
.(26)

4. Extremes of maximum loss and span of Gaussian processes. Let
{ξ(t), t ∈ [0,1]} be a Gaussian process with a.s. continuous sample paths. The
maximum loss of the process ξ is given by

χ1(ξ) = max
0≤s≤t≤1

(
ξ(s) − ξ(t)

)
,

and its span is defined as

χ2(ξ) = max
t∈[0,1] ξ(t) − min

t∈[0,1] ξ(t).

The notion of the maximum loss of certain Gaussian processes (e.g., Brownian
motion and fBm, etc.) plays an important role in finance and insurance modelling;
see, for example, [30], [31] and references therein.

In this section, as an application of Theorem 2.2 and Remark 2.4, we derive
exact tail asymptotics of the maximum loss for both stationary Gaussian process
(in Proposition 4.1) and for Brownian bridge (in Proposition 4.2). The exact tail
asymptotics of the span χ2(ξ) when ξ is a centered stationary Gaussian process
with covariance function that satisfies certain regular conditions is obtained in [26].
The same result should be retrieved, using first a time scaling and then resorting to
Remark 2.4. This observation is confirmed in Proposition 4.1 below.

Hereafter, assume that {ξ(t), t ∈ [0,1]} is a centered stationary Gaussian pro-
cess with covariance function rξ (s) satisfying the following conditions:
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S1′: rξ (t) attains its minimum on [0,1] at unique point tm ∈ (0,1);
S2′: there exist positive constants a1, a2, α1 and α2 ∈ (0,2) such that

rξ (t) = rξ (tm) + a1|t − tm|α1
(
1 + o(1)

)
, t → tm

and

rξ (t) = 1 − a2t
α2

(
1 + o(1)

)
, t → 0;

S3′: rξ (t) < 1 for any t ∈ (0,1].

PROPOSITION 4.1. Let {ξ(t), t ∈ [0,1]} be a centered stationary Gaussian
process with covariance function rξ (t) satisfying S1′–S3′. If rξ (t) is twice continu-
ously differentiable on interval [tm −μ, tm +μ] for some positive small constant μ,
then, as u → ∞,

P
(
χ2(ξ) > u

) = 2P
(
χ1(ξ) > u

)
= 22−4/α2+2/α1(1 − tm)H2

α2
a

2/α2
2

(
1 − rξ (tm)

)2−4/α2+2/α1(27)

× u4/α2−2/α1�

(
u√

2(1 − rξ (tm))

)(
1 + o(1)

)
.

PROPOSITION 4.2. If {X(t), t ∈ [0,1]} is the Brownian bridge given in (21),
then, as u → ∞,

P
(
χ2(X) > u

) = 2P
(
χ1(X) > u

) = 29/2√πu3�(2u)
(
1 + o(1)

)
.(28)

REMARKS 4.3. (a) The claim in (27) is consistent with Theorem 2.1 in [26].
(b) Let Bα be a standard fBm and consider its maximum loss χ1(Bα) and span

χ2(Bα). The variance function of the random field X1(s, t) := Bα(t) − Bα(s) is
given by

σ 2
X1

(s, t) = |t − s|α, (s, t) ∈ [0,1]2

and attains its maximum only at points (0,1) and (1,0). Therefore, Theorem 8.2
in [24] yields that, as u → ∞,

(i) if α ∈ (0,1)

P
(
χ2(Bα) > u

) = 2P
(
χ1(Bα) > u

) = 23−2/αα−2H2
αu4/α−4�(u)

(
1 + o(1)

);
(ii) if α = 1

P
(
χ2(Bα) > u

) = 2P
(
χ1(Bα) > u

) = 8�(u)
(
1 + o(1)

);
(iii) if α ∈ (1,2)

P
(
χ2(Bα) > u

) = 2P
(
χ1(Bα) > u

) = 2�(u)
(
1 + o(1)

)
.
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5. Proofs.

PROOF OF LEMMA 2.1. The claim follows by a direct application of
Lemma A.1 given in the Appendix. �

PROOF OF THEOREM 2.2. As it will be seen at the end of the proof, by sym-
metry, cases (vi) and (vii) follow from the claims of cases (iii) and (v), respectively.
Thus, we shall first focus on the proof of cases (i)–(v). In view of Assumption A1
there exist some θ ∈ (0,1) and ρ0 ≥ ρ1 (ρ1 is as in A3) such that

sup
(s,t)∈[0,S]×[0,ρ0]

σ(s, t) < θ.

For δ(u) = (lnu/u)2/β, u > 0, we may write

P

(
sup

(s,t)∈[0,S]×[T −δ(u),T ]
X(s, t) > u

)
≤ P

(
sup

(s,t)∈[0,S]×[0,T ]
X(s, t) > u

)
≤ P

(
sup

(s,t)∈[0,S]×[T −δ(u),T ]
X(s, t) > u

)
+ π1(u) + π2(u),

where

π1(u) := P

(
sup

(s,t)∈[0,S]×[0,ρ0]
X(s, t) > u

)
,

π2(u) := P

(
sup

(s,t)∈[0,S]×[ρ0,T −δ(u)]
X(s, t) > u

)
.

We shall mainly focus on the analysis of

π(u) := P

(
sup

(s,t)∈[0,S]×[T −δ(u),T ]
X(s, t) > u

)
, u → ∞(29)

and show that for i = 1,2

πi(u) = o
(
π(u)

)
, u → ∞,(30)

which then implies

P

(
sup

(s,t)∈[0,S]×[0,T ]
X(s, t) > u

)
= π(u)

(
1 + o(1)

)
, u → ∞.

The asymptotics of (29) will be investigated for the cases (i)–(v) separately by
using a case-specific approach.

Case (i) β > max(α1, α2): For space saving, we consider only the case that
α1 = α2 =: α; the other cases can be shown with similar arguments. Following the
idea of [25] choose first a constant α0 ∈ (α,β), and denote

�ij = �i × �j , �T
ij = �i × (T − �j )
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with

�i = [
iu−2/α0, (i + 1)u−2/α0

]
, i = 0,1, . . . .

Set further

Ñ1(u) = ⌊
Su2/α0

⌋ + 1, Ñ2(u) = ⌊
(lnu)2/βu2/α0−2/β⌋ + 1,

where �·� stands for the ceiling function. By Bonferroni’s inequality, we have that

Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≥ π(u)(31)

≥
Ñ1(u)−1∑

i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

− �1(u),

with

�1(u) = ∑∑
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

(i,j) 
=(i′,j ′)

P

(
sup

(s,t)∈�T
ij

X(s, t) > u,

sup
(s,t)∈�T

i′j ′
X(s, t) > u

)
.

For any ε ∈ (0,1) and all u large [set b±ε := b(1 ± ε)]

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≤ P

(
sup

(s,t)∈�ij

X(s, T − t)

σ (s, T − t)
> uj−

)
,

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≥ P

(
sup

(s,t)∈�ij

X(s, T − t)

σ (s, T − t)
> uj+

)
,

with

uj− = u
(
1 + b−ε

(
ju−2/α0

)β)
, uj+ = u

(
1 + b+ε

(
(j + 1)u−2/α0

)β)
.

Let {η±ε(s, t), (s, t) ∈ [0,∞)2} with ε as above be centered stationary Gaussian
random fields with covariance functions

rη±ε (s, t) = exp
(−(1 ± ε)α

(|a1s|α + |a2t + a3s|α))
, (s, t) ∈ [0,∞)2,

respectively. By Slepian’s lemma (see, e.g., [6] or [4]) for all u large

P

(
sup

(s,t)∈�ij

X(s, T − t)

σ (s, T − t)
> uj−

)
≤ P

(
sup

(s,t)∈�ij

η+ε(s, T − t) > uj−
)
.
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In view of Theorem 7.2 in [24], as u → ∞,

π(u) ≤
Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

P

(
sup

(s,t)∈�ij

η+ε(s, T − t) > uj−
)

= (1 + ε)2a1a2H2
αu−4/α0

Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

u
4/α
j− �(uj−)

(
1 + o(1)

)

= (1 + ε)2a1a2H2
αSu−2/α0+4/α�(u)

Ñ2(u)∑
j=0

exp
(−b−ε

(
ju2/β−2/α0

)β)
(32)

× (
1 + o(1)

)
= (1 + ε)2a1a2H2

αSu4/α−2/β�(u)

∫ ∞
0

exp
(−b−εx

β)
dx

(
1 + o(1)

)
.

Similarly, we obtain

Ñ1(u)−1∑
i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≥
Ñ1(u)−1∑

i=0

Ñ2(u)−1∑
j=0

P

(
sup

(s,t)∈�ij

η−ε(s, T − t) > uj+
)

(33)

≥ (1 − ε)2a1a2H2
αSu4/α−2/β�(u)

∫ ∞
0

exp
(−b+εx

β)
dx

(
1 + o(1)

)
.

Next, we deal with the double sum part �1(u). Denote the distance of two
nonempty sets A,B ⊂ R

n by

ρ(A,B) = inf
x∈A,y∈B

‖x − y‖,
with ‖ · ‖ the Euclidean distance. We see from (3) that there exists a positive con-
stant ρ3 such that

3
2

(∣∣a1
(
s − s′)∣∣α + ∣∣a2

(
t − t ′

) + a3
(
s − s′)∣∣α)

≥ 1 − r
(
s, t, s′, t ′

)
(34)

≥ 1
2

(∣∣a1
(
s − s′)∣∣α + ∣∣a2

(
t − t ′

) + a3
(
s − s′)∣∣α)

for |s − s′| ≤ 2ρ3, |T − t | ≤ 2ρ3 and |T − t ′| ≤ 2ρ3. It follows further from (4) that
there exists some θ0 ∈ (0,1) such that

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

ρ(�i ,�i′ )>ρ3

sup
(s,t)∈�T

ij

(s′,t ′)∈�T
i′j ′

r
(
s, t, s′, t ′

)
< θ0.
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Next, we divide the double sum part �1(u) as follows:

�1(u) = �1,1(u) + �1,2(u) + �1,3(u), u ≥ 0,

where �1,1(u) is the sum taken on ρ(�i ,�i′) > ρ3, �1,2(u) is the sum taken
on ρ(�T

ij ,�T
i′j ′) = 0 and �1,3(u) is the sum taken on u−2/α0 ≤ ρ(�T

ij ,�T
i′j ′)

and ρ(�i ,�i′) ≤ ρ3. We first give the estimation of �1,1(u). For ξ(s, t, s′, t ′) :=
X(s, t) + X(s′, t ′) we have

E
(
ξ2(

s, t, s′, t ′
)) = 4 − 2

(
1 − r

(
s, t, s′, t ′

))
(35)

implying

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

ρ(�i ,�i′ )>ρ3

sup
(s,t)∈�T

ij

(s′,t ′)∈�T
i′j ′

E
(
ξ2(

s, t, s′, t ′
)) ≤ 4 − 2(1 − θ0) < 4.

Further, we have

P

(
sup

(s,t)∈�T
ij

X(s, t) > u, sup
(s,t)∈�T

i′j ′
X(s, t) > u

)

≤ P

(
sup

(s,t)∈�T
ij

X(s, t) > u, sup
(s,t)∈�T

i′j ′
X(s, t) > u

)

≤ P

(
sup

(s,t)∈�T
ij

(s′,t ′)∈�T
i′j ′

ξ
(
s, t, s′, t ′

)
> 2u

)
.

By Borell–TIS inequality (see [1] or [24]), for u sufficiently large

P

(
sup

(s,t)∈�T
ij

X(s, t) > u, sup
(s,t)∈�T

i′j ′
X(s, t) > u

)
≤ exp

(
− (u − a)2

2 − (1 − θ0)

)
,

where a = E(sup(s,t),(s′t ′)∈[0,S]×[0,T ] ξ(s, t, s′, t ′)) < ∞. Thus

lim sup
u→∞

�1,1(u)

u4/α−2/β�(u)
= 0.(36)

The summand of �1,2(u) is equal to

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

+ P

(
sup

(s,t)∈�T
i′j ′

X(s, t) > u
)

− P

(
sup

(s,t)∈�T
ij∪�T

i′j ′
X(s, t) > u

)
.
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Since ρ(�T
ij ,�T

i′j ′) = 0, we have for (s, t) ∈ �T
ij ∪ �T

i′j ′ and sufficiently large u

u
(
1 + b−ε

(
(j − 1)+u−2/α0

)β) =: ũj− ≤ u

σ(s, t)
≤ ũj+

:= u
(
1 + b+ε

(
(j + 2)u−2/α0

)β)
.

Using again Theorem 7.2 in [24] for the last term, we have

P

(
sup

(s,t)∈�T
ij∪�T

i′j ′
X(s, t) > u

)
≥ 2(1 − ε)2a1a2H2

αu−4/α0 ũ
4/α
j+ �(ũj+)

(
1 + o(1)

)
as u → ∞. Consequently, noting that for any �T

ij there are at most 8 sets of the

form �T
i′j ′ in [0, S] × [T − δ(u), T ] adjacent with it, we conclude that

�1,2(u) ≤ 8
Ñ1(u)∑
i=0

Ñ2(u)∑
j=0

(
2(1 + ε)2a1a2H2

αu−4/α0 ũ
4/α
j− �(ũj−)

− 2(1 − ε)2a1a2H2
αu−4/α0 ũ

4/α
j+ �(ũj+)

)(
1 + o(1)

)
and thus similar arguments as in (32) yield

lim sup
ε→0

lim sup
u→∞

�1,2(u)

u4/α−2/β�(u)
= 0.(37)

Finally, we estimate �1,3(u). Since u−2/α0 ≤ ρ(�T
ij ,�T

i′j ′) and ρ(�i ,�i′) ≤ ρ3, it
follows in view of (34) that

inf
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

ρ(�i ,�i′ )≤ρ3

inf
(s,t)∈�T

ij ,(s
′,t ′)∈�T

i′j ′
u−2/α0≤ρ(�T

ij ,�T
i′j ′ )

(
1 − r

(
s, t, s′, t ′

)) ≥ 1

2
νu−2α/α0

for some positive constant ν, and thus

sup
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

ρ(�i ,�i′ )≤ρ3

sup
(s,t)∈�T

ij ,(s
′,t ′)∈�T

i′j ′
u−2/α0≤ρ(�T

ij ,�T
i′j ′ )

E
(
ξ2(

s, t, s′, t ′
)) ≤ 4 − νu−2α/α0 .

Consequently, using the Piterbarg inequality (cf. Theorem 8.1 in [24] or Theo-
rem 8.1 in [25]) for the summand of �1,3(u) we obtain

P

(
sup

(s,t)∈�T
ij

X(s, t) > u, sup
(s,t)∈�T

i′j ′
X(s, t) > u

)

≤ P

(
sup

(s,t)∈�T
ij

(s′,t ′)∈�T
ij

ξ
(
s, t, s′, t ′

)
> 2u

)

= o

(
exp

(
− 1

16
νu−2((α0−α)/α0)

))
u4/α−2/β�(u),



1000 K. DȨBICKI, E. HASHORVA AND L. JI

which implies that

lim sup
u→∞

�1,3(u)

u4/α−2/β�(u)

≤ lim sup
u→∞

∑∑
0≤i,i′≤Ñ1(u)−1,0≤j,j ′≤Ñ2(u)−1

(i,j) 
=(i′,j ′)

o

(
exp

(
− 1

16
νu−2((α0−α)/α0)

))
(38)

= 0.

Hence, in view of (31)–(33), (36)–(38) and by letting ε → 0 we conclude that

π(u) = a1a2H2
αSu4/α−2/β�(u)

∫ ∞
0

exp
(−bxβ)

dx
(
1 + o(1)

)
, u → ∞.

Case (ii) β = α1 = α2: In order to simplify notation, we set α := α1 = α2. Let
S1, T1 be two positive constants and define

�̂i = [
iS1u

−2/α, (i + 1)S1u
−2/α]

, i = 0, . . . ,N1(u),

�̃i = [
iT1u

−2/α, (i + 1)T1u
−2/α]

, i = 0, . . . ,N2(u),

�ij = �̂i × �̃j , �T

ij = �̂i × (T − �̃j ),

where

N1(u) =
⌊

S

S1
u2/α

⌋
+ 1, N2(u) =

⌊
(lnu)2/β

T1

⌋
+ 1.

Again, Bonferroni’s inequality implies

�2(u) +
N1(u)∑
i=0

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

≥ π(u)(39)

≥
N1(u)−1∑

i=0

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

− �3(u),

where

�2(u) =
N1(u)∑
i=0

N2(u)∑
j=1

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)
,

�3(u) = ∑∑
0≤i<i′≤N1(u)−1

P

(
sup

(s,t)∈�T
i0

X(s, t) > u, sup
(s,t)∈�T

i′0

X(s, t) > u
)
.
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Since our approach is of asymptotic nature, for any fixed 0 ≤ i ≤ N1(u), the local

structures of the variance and correlation of the Gaussian random field X on �T

i0
are the only necessary properties influencing the asymptotics. Therefore,

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

= P

(
sup

(s,t)∈�i0

η(s, t)

1 + btβ
> u

)(
1 + o(1)

)
as u → ∞, where {η(s, t), (s, t) ∈ [0, S] × [0, T ]} is the same as in Lemma 2.1.
Hence, Lemma 2.1 implies

N1(u)∑
i=0

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

= S

S1
u2/αHb

Y1
[S1, T1]�(u)

(
1 + o(1)

)
(40)

as u → ∞. Similarly,

N1(u)−1∑
i=0

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

(41)

= S

S1
u2/αHb

Y1
[S1, T1]�(u)

(
1 + o(1)

)
as u → ∞. Note that, for any c, d ∈R

|c + d|p ≤ |c|p + |d|p, if p ∈ (0,1],
|c + d|p ≤ 2p−1(|c|p + |d|p)

if p ∈ (1,∞).

In view of Slepian’s lemma,

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≤ P

(
sup

(s,t)∈�ij

η(s, t) > u
(
1 + b

(
jT1u

−2/α)β))(
1 + o(1)

)
≤ P

(
sup

(s,t)∈�ij

η̃(s, t) > u
(
1 + b

(
jT1u

−2/α)β))(
1 + o(1)

)
as u → ∞, where {η̃(s, t), (s, t) ∈ [0, S] × [0, T ]} is a centered homogeneous
Gaussian random field with covariance function

rη̃(s, t) = exp
(−|ã1s|α − |ã2t |α)

, (s, t) ∈ [0, S] × [0, T ],
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with ã1 = (aα
1 + 2|a3|α)1/α and ã2 = 21/αa2. It follows further, using Lemma 2.1

that

P

(
sup

(s,t)∈�T
ij

X(s, t) > u
)

≤ P

(
sup

(s,t)∈�ij

η̃(s, t) > u
(
1 + b

(
jT1u

−2/α)β))(
1 + o(1)

)

= H0
Ỹ2

[S1, T1] 1√
2πu

exp
(
−u2(1 + 2b(jT1u

−2/α)β)

2

)(
1 + o(1)

)
= H0

Ỹ2
[S1, T1] exp

(−b(jT1)
β)

�(u)
(
1 + o(1)

)
as u → ∞, where H0

Ỹ2
[S1, T1] is defined in a similar way as H0

Y2
[S1, T1] with

ai, i = 1,2 replaced by ãi , i = 1,2. Consequently, as u → ∞,

�2(u) ≤
∞∑

j=1

S

S1
u2/αH0

Ỹ2
[S1, T1] exp

(−b(jT1)
β)

�(u)
(
1 + o(1)

)
.(42)

From (4), there exists some θ1 ∈ (0,1) such that

sup
1≤i<i′≤N1(u)

ρ(�̂i ,�̂i′ )>ρ3

sup
s∈�̂i ,s

′∈�̂i′
t,t ′∈[0,T ]

r
(
s, t, s′, t ′

)
< θ1,

where ρ3 is the same as in (34). Below we shall re-write �3(u) as

�3(u) = �3,1(u) + �3,2(u) + �3,3(u), u ≥ 0,

where �3,1(u) is the sum taken on ρ(�̂i, �̂i′) > ρ3, �3,2(u) is the sum taken on
i′ = i + 1, and �3,3(u) is the sum taken on i ′ > i + 1 and ρ(�̂i, �̂i′) ≤ ρ3. First,
note that the estimation of �3,1(u) can be derived similarly to that of �1,1(u) in
case (a), and thus for u sufficiently large

�3,1(u) ≤ S2

S2
1

u4/α exp
(
− (u − a)2

2 − (1 − θ1)

)
,(43)

where a is the same as in (36). Next, we consider �3,3(u). In view of (34) and (35),
it follows that for s ∈ �̂i, s

′ ∈ �̂i′, t, t ′ ∈ T − �̃0 and u large enough

2 ≤ E
(
ξ2(

s, t, s′, t ′
)) ≤ 4 − ∣∣a1

(
i ′ − i

)
S1

∣∣αu−2.(44)

Further set ξ(s, t, s′, t ′) = ξ(s, t, s′, t ′)/
√

Var(ξ(s, t, s′, t ′)). Following similar ar-
gument as in the proof of Lemma 6.3 in [24], we obtain that

E
(
ξ
(
s, t, s′, t ′

) − ξ
(
v,w,v′,w′))2

≤ 4
(
E

(
X(s, t) − X(v,w)

)2 +E
(
X

(
s′, t ′

) − X
(
v′,w′))2)

.
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Moreover, from (34) we see that, for u sufficiently large

E
(
X(s, t) − X(v,w)

)2 ≤ 3
(∣∣ã1(s − v)

∣∣α + ∣∣ã2(t − w)
∣∣α)

implying thus

E
(
ξ
(
s, t, s′, t ′

) − ξ
(
v,w,v′,w′))2

(45)
≤ 2

(
1 − rζ

(
s − v, t − w, s′ − v′, t ′ − w′)),

where

rζ
(
s, t, s′, t ′

) = exp
(−7

(|ã1s|α + |ã2t |α + ∣∣ã1s
′∣∣α + ∣∣ã2t

′∣∣α))
is the covariance function of the homogeneous Gaussian random field {ζ(s, t, s′,
t ′), (s, t, s ′, t ′) ∈ (0,∞)4}. Consequently, (44), (45) and Slepian’s lemma imply

P

(
sup

(s,t)∈�T
i0

X(s, t) > u, sup
(s,t)∈�T

i′0

X(s, t) > u
)

≤ P

(
sup

(s,t)∈�T
i0

(s′,t ′)∈�T
i′0

ζ
(
s, t, s′, t ′

)
>

2u√
4 − |a1(i ′ − i)S1|αu−2

)
.

We obtain further from a similar lemma as Lemma 2.1 (cf. Lemma 6.1 in [24]) that

P

(
sup

(s,t)∈�T
i0

(s′,t ′)∈�T
i′0

ζ
(
s, t, s′, t ′

)
>

2u√
4 − |a1(i ′ − i)S1|αu−2

)

= (
H̃0

Ỹ2
[S1, T1])2 1√

2πu
exp

(
− 4u2

2(4 − |a1(i ′ − i)S1|αu−2)

)(
1 + o(1)

)
,

where H̃0
Ỹ2

[S1, T1] is defined in a similar way as H0
Y2

[S1, T1] with a1, a2 replaced

by 71/αã1,71/αã2, respectively. Consequently, for all large u,

�3,3(u) ≤ S

S1

∑
j≥1

(
H̃0

Ỹ2
[S1, T1])2 exp

(
−1

8
|a1jS1|α

)
u2/α�(u)

(
1 + o(1)

)
.(46)

Next, we consider �3,2(u). For any u positive,

P

(
sup

(s,t)∈�T
i0

X(s, t) > u, sup
(s,t)∈�

T
(i+1)0

X(s, t) > u
)

≤ P

(
sup

(s,t)∈�T
i0

X(s, t) > u,

sup
(s,t)∈[(i+1)S1u

−2/α,(i+1)S1u
−2/α+√

S1u
−2/α]×(T −�̃0)

X(s, t) > u
)
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+ P

(
sup

(s,t)∈�T
i0

X(s, t) > u,

sup
(s,t)∈[(i+1)S1u

−2/α+√
S1u

−2/α,(i+2)S1u
−2/α]×(T −�̃0)

X(s, t) > u
)

and further

P

(
sup

(s,t)∈�T
i0

X(s, t) > u, sup
(s,t)∈�

T
(i+1)0

X(s, t) > u
)

≤ H0
Ỹ2

[√S1, T1]�(u)
(
1 + o(1)

)
+ (

H̃0
Ỹ2

[√S1, T1])2 exp
(
−1

8
|a1

√
S1|α

)
�(u)

(
1 + o(1)

)
.

Therefore, for all large u

�3,2(u) ≤ S

S1

(
H0

Ỹ2
[√S1, T1]

(47)

+ (
H̃0

Ỹ2
[√S1, T1])2 exp

(
−1

8
|a1

√
S1|α

))
u2/α�(u)

(
1 + o(1)

)
.

Consequently, from (39)–(43) and (46)–(47), we conclude that for any Si, Ti, i =
1,2

S1
−1Hb

Y1
[S1, T1] +

∞∑
j=1

S1
−1H0

Ỹ2
[S1, T1] exp

(−b(jT1)
β)

≥ lim sup
u→∞

π(u)

Suα/2�(u)
≥ lim inf

u→∞
π(u)

Suα/2�(u)

≥ S−1
2 Hb

Y1
[S2, T2] − S−1

2

(
H̃0

Ỹ2
[S2, T2])2 ∑

j≥1

exp
(
−1

8
|a1jS2|α

)

− S−1
2

(
H0

Ỹ2
[√S2, T2] + (

H̃0
Ỹ2

[√S2, T2])2 exp
(
−1

8
|a1

√
S2|α

))
.

Therefore, by similar arguments as in the proof of Theorem D.2 in [24], we con-
clude that

0 <Mb
Y1,α1

≤ lim sup
u→∞

π(u)

Suα/2�(u)
≤ lim inf

u→∞
π(u)

Suα/2�(u)
≤ Mb

Y1,α1
< ∞

establishing the claim.
Case (iii) β = α2 > α1: Note that Mb

Y2,β
can be given in terms of Piterbarg and

Pickands constants as

Mb
Y2,β

= lim
T →∞ lim

S→∞
1

S
Hb

Y2
[S,T ] = a1a2P

ba
−α2
2

α2 Hα1 .
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The proof for this case can be established using step-by-step the same arguments
as in case (ii).

Case (iv) β < α2 = α1: In order to make use of the notation introduced in
case (ii) we set α := α1 = α2. First, note that δ(u) < T1u

−2/α , which implies

π(u) ≤ P

(
sup

(s,t)∈[0,S]×(T −�̃0)

X(s, t) > u
)

≤
N1(u)∑
i=0

P

(
sup

(s,t)∈�T
i0

X(s, t) > u
)

≤ S

S1
u2/αH0

Y1
[S1, T1]�(u)

(
1 + o(1)

)
as u → ∞. Further, by Assumptions A1 and A2 we have that E((X(s, T ))2) =
1,∀s ∈ [0, S] and

r
(
s, T , s′, T

) = 1 − (
aα

1 + |a3|α)∣∣s − s′∣∣α(
1 + o(1)

)
holds uniformly with respect to s, s′ ∈ [0, S], as |s − s′| → 0. This means that
{X(s,T ), s ∈ [0, S]} is a locally stationary Gaussian process. Therefore, in view
of Theorem 7.1 in [24],

π(u) ≥ P

(
sup

s∈[0,S]
X(s,T ) > u

)
= S

(
aα

1 + |a3|α)1/αHαu2/α�(u)
(
1 + o(1)

)
, u → ∞.

Letting T1 → 0, S1 → ∞, we conclude that

0 < lim
u→∞

π(u)

Su2/α�(u)
= (

aα
1 + |a3|α)1/αHα < ∞.

Case (v) β < α2 and α1 < α2: The claim follows with identical arguments as in
the proof of case (iv).

In order to complete the proof of cases (i)–(v) we only need to show (30), for
which it is sufficient to give the following upper bounds for π1(u) and π2(u). By
Borell–TIS inequality, for u large enough

π1(u) ≤ exp
(
−(u −E(sup(s,t)∈[0,S]×[0,ρ0] X(s, t)))2

2θ2

)
.(48)

Further, by Assumption A3 applying the Piterbarg inequality we obtain, as u → ∞

π2(u) ≤ Qu4/γ−1 exp
(
− u2

2σ 2(T − δ(u))

)
(49)

= Qu4/γ−1 exp
(
−u2

2

)
exp

(−b(lnu)2)(
1 + o(1)

)
,
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where Q is some positive constant not depending on u. Therefore, the proof of
cases (i)–(v) is complete.

Next, we consider cases (vi)–(vii). We introduce a time scaling of the Gaussian
random field {X(s, t), (s, t) ∈ E} by matrix B = (a3

0
a2
a2

)
, that is, let Z(s, t) :=

X((s − t)/a3, t/a2). By this time scaling, we have

P

(
sup

(s,t)∈E
X(s, t) > u

)
= P

(
sup

(s,t)∈K
Z(s, t) > u

)
,(50)

where K is a region on R
2 with vertices at points (0,0), (a2T ,a2T ), (a3S,0)

and (a3S + a2T ,a2T ). The Gaussian random field {Z(s, t), (s, t) ∈ K} has the
following properties:

(P1) The standard deviation function σZ(s, t) of {Z(s, t), (s, t) ∈ K} satisfies

σZ(s, t) = 1 − b

a
β
2

(a2T − t)β
(
1 + o(1)

)
, t ↑ a2T .

(P2) The correlation function rZ(s, t, s′, t ′) of {Z(s, t), (s, t) ∈ K} satisfies

rZ
(
s, t, s′, t ′

) = 1 −
(∣∣s − s′∣∣α2 +

∣∣∣∣a1

a3

(
t − t ′

) − a1

a3

(
s − s′)∣∣∣∣α1)(

1 + o(1)
)

for any (s, t), (s′, t ′) ∈ K such that |s − s ′| → 0 and t, t ′ ↑ a2T , and further there
exists some δ0 ∈ (0, T ) such that

r
(
s, t, s′, t ′

)
< 1

holds for any (s, t), (s′, t ′) ∈ K0 satisfying s 
= s ′. Here, K0 is a region on R
2

with vertices at points (a2δ0, a2δ0), (a2T ,a2T ), (a3S + a2δ0, a2δ0) and (a3S +
a2T ,a2T ).

(P3) There exist positive constants Q, γ, ρ1 and ρ2 such that

E
((

Z(s, t) − Z
(
s′, t ′

))2) ≤ Q
(∣∣s − s′∣∣γ + ∣∣t − t ′

∣∣γ )
holds for any (s, t), (s′, t ′) ∈ K satisfying a2T − t < ρ1, a2T − t ′ < ρ1 and |s −
s′| < ρ2.

Note that in the above proof the most important structural property of the set
E is that the segment L = {(s, t) ∈ E : t = T } is on the boundary of E, which is
also the case for {Z(s, t), (s, t) ∈ K}. Therefore, in view of the above properties of
{Z(s, t), (s, t) ∈ K}, the claims of the cases (vi) and (vii) follow by an application
of the claims of cases (iii) and (v). The proof is complete. �

PROOF OF PROPOSITION 3.1. The variance function of Z is given by

σ 2
Z(s, t) = 2

(
1 − rX(t)

)
and attains its maximum on [0, S] × {T }. Therefore, it is sufficient to consider the
asymptotics of

�(u) := P

(
sup

(s,t)∈[0,S]×[0,T ]
Z∗(s, t) > ũ

)
, u → ∞,
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with

ũ := u

ρT

and Z∗(s, t) := Z(s, t)

ρT

,

where ρT = √
2(1 − rX(T )) > 0. The asymptotics of �(u) follows from Theo-

rem 2.2 by checking the Assumptions A1–A3. The standard deviation function of
Z∗ satisfies

σZ∗(s, t) =
√

2(1 − rX(t))

ρT

= 1 − a1

2(1 − rX(T ))
(T − t)α1

(
1 + o(1)

)
, t → T ,

whereas for its correlation function we have

RZ∗
(
s, t, s′, t ′

) = rX(|s + t − s′ − t ′|) − rX(|s − s′ − t ′|)
2
√

(1 − rX(t))(1 − rX(t ′))
(51)

+ −rX(|s + t − s ′|) + rX(|s − s′|)
2
√

(1 − rX(t))(1 − rX(t ′))
.

Since rX(t) is twice continuously differentiable in [μ,T ] and |r ′′
X(T )| ∈ (0,∞) for

some constant Q1, we have∣∣rX(
t ′

) − rX
(∣∣s − s′ − t ′

∣∣) + rX(t) − rX
(∣∣s + t − s′∣∣)∣∣

≤ Q1
(∣∣t − t ′ + s − s′∣∣2 + ∣∣s − s′∣∣2)(

1 + o(1)
)

as t, t ′ → T , |s − s′| → 0. Consequently, α2 ∈ (0,2) implies

RZ∗
(
s, t, s′, t ′

)
(52)

= 1 − a2

ρ2
T

(∣∣t − t ′ + s − s′∣∣α2 + ∣∣s − s′∣∣α2
)(

1 + o(1)
)

as t, t ′ → T , |s − s′| → 0. Next, for any fixed ε0 > 0, we have from S3 that there
exists some θ0 such that

rX
(∣∣s − s′∣∣) ≤ θ0 < 1

for any s, s′ ∈ [0, S] satisfying |s − s′| > ε0. Further, from S2 we obtain that there
exists some positive constant δ0 such that

2
√(

1 − rX(t)
)(

1 − rX
(
t ′

)) ≥ ρ2
T − 1 − θ0

2
> 0

for any t, t ′ ∈ [δ0, T ]. Hence,

RZ∗
(
s, t, s′, t ′

) ≤ 1 + θ0 − 2rX(T )

ρ2
T − (1 − θ0)/2

< 1(53)



1008 K. DȨBICKI, E. HASHORVA AND L. JI

for any t, t ′ ∈ [δ0, T ], s, s′ ∈ [0, S] satisfying |s − s′| > ε0, and thus both A1 and
A2 are satisfied. It follows that

E
(
Z∗(s, t) − Z∗(

s′, t ′
))2 ≤ 2E

(
Z(s, t) − Z

(
s′, t ′

))2

+ 2

ρ2
T

(
σZ(s, t) − σZ

(
s′, t ′

))2
.

Therefore, the differentiability of rX(t), assumption S2 and (52) imply that there
exist some positive constants ρ1, ρ2,Q3,Q4 such that

E
(
Z∗(s, t) − Z∗(

s′, t ′
))2

≤ Q3
(∣∣t − t ′ + s − s′∣∣α2 + ∣∣s − s′∣∣α2 + ∣∣t − t ′

∣∣2 min(α1,1))
≤ Q4

(∣∣t − t ′
∣∣min(2α1,α2) + ∣∣s − s′∣∣min(2α1,α2)

)
for all s, s′ ∈ [0, S], t, t ′ ∈ [ρ1, T ] satisfying |s − s′| < ρ2, hence the proof is com-
plete. �

PROOFS OF PROPOSITIONS 3.4 AND 3.5. Note first that the standard devia-
tion of the incremental random field Z of the Brownian bridge satisfies

σZ(s, t) = (
t (1 − t)

)1/2 = 1
2 − (

t − 1
2

)2(
1 + o(1)

)
, t → 1

2 .(54)

Furthermore, for its correlation function we have

rZ
(
s, s′, t, t ′

) = 1 − 2
(∣∣t − t ′ + s − s′∣∣ + ∣∣s − s′∣∣)(1 + o(1)

)
(55)

as t, t ′ → 1/2, |s − s ′| → 0.
For the fBm incremental random field Z, we have for its standard deviation

σZ(s, t) = tα/2 = 1 − α

2
(1 − t)

(
1 + o(1)

)
, t → 1.

As shown in [25], the correlation function rZ of Z satisfies

rZ
(
s, s′, t, t ′

) = 1 − 1
2

(∣∣t − t ′ + s − s′∣∣α + ∣∣s − s′∣∣α)(
1 + o(1)

)
as t, t ′ → 1, |s − s ′| → 0. Hence, for both cases A1–A3 are fulfilled, and thus the
claims follow by a direct application of Theorem 2.2. �

PROOFS OF PROPOSITIONS 4.1 AND 4.2. By a linear time change using the
matrix A ∈ R

2×2 given by

A =
(

1 0
−1 1

)
we have for any u > 0

P
(
χ2(ξ) > u

) = P

(
sup

(s,t)∈A[0,1]2

(
ξ(t + s) − ξ(s)

)
> u

)
.
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Here, the set A[0,1]2 = {(s̃, t̃ ) : (s̃, t̃)� = A(s, t)�, (s, t) ∈ [0,1]2} is bounded
and convex. The variance function of the random field {ξ(t + s) − ξ(s), (s, t) ∈
A[0,1]2} is 2(1 − rξ (|t |)) which attains its unique maximum on the set A[0,1]2

on two lines L1 = {(s, t) ∈ A[0,1]2 : t = tm} and L2 = {(s, t) ∈ A[0,1]2 : t = −tm}.
Note that the differentiability of rξ (t) implies α1 ≥ 2 > α2. Therefore, the claim in
(27) follows from Remark 2.4(b); the conditions therein can be established directly
as in the proof of Proposition 3.1 except (18) for i = 1, j = 2, which can also be
confirmed by a similar argument as in (53). Further, since

P
(
χ2(X) > u

) = P

(
sup

(s,t)∈A[0,1]2

(
X(t + s) − X(s)

)
> u

)
in view of (54) and (55) we conclude that the claim in (28) follows immediately
from Remark 2.4(b), and thus the proof is complete. �

APPENDIX

Let D be a compact set in R
2 such that (0,0) ∈ D, and let {ξu(s, t), (s, t) ∈ D},

u > 0 be a family of centered Gaussian random fields with a.s. continuous sample
paths. The next lemma is proved based on the classical approach rooted in the
ideas of [21, 22] (see also [9]), Lemma 1; in particular, it implies the claim of
Lemma 2.1.

LEMMA A.1. Let d(·) be a nonnegative continuous function on [0,∞) and
let g(u),u > 0 be a positive function satisfying limu→∞ g(u)/u = 1. Assume that
the variance function σ 2

ξu
of ξu satisfies the following conditions:

σξu(0,0) = 1 for all large u, lim
u→∞ sup

(s,t)∈D

∣∣u2(
1 − σξu(s, t)

) − d(t)
∣∣ = 0,

and there exist some positive constants G,ν,u0 such that, for all u > u0

u2 Var
(
ξu(s, t) − ξu

(
s′, t ′

)) ≤ G
(∣∣s − s′∣∣ν + ∣∣t − t ′

∣∣ν)
holds uniformly with respect to (s, t), (s′, t ′) ∈ D. If further there exists a cen-
tered Gaussian random field {Y (s, t), (s, t) ∈ (0,∞)2} with a.s. continuous sample
paths and Y(0,0) = 0 such that

lim
u→∞u2 Var

(
ξu(s, t) − ξu

(
s′, t ′

)) = 2 Var
(
Y(s, t) − Y

(
s′, t ′

))
holds for all (s, t), (s′, t ′) ∈ D, then

P

(
sup

(s,t)∈D
ξu(s, t) > g(u)

)
= Hd

Y [D]�(
g(u)

)(
1 + o(1)

)
(56)

as u → ∞, where

Hd
Y [D] = E

(
exp

(
sup

(s,t)∈D

(√
2Y(s, t) − σ 2

Y (s, t) − d(t)
)))

.
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PROOF. For large u, we have

P

(
sup

(s,t)∈D
ξu(s, t) > g(u)

)

= 1√
2πg(u)

exp
(
−(g(u))2

2

)∫ ∞
−∞

ew−w2/(2(g(u))2)(57)

× P

(
sup

(s,t)∈D
ξu(s, t) > g(u)|ξu(0,0) = g(u) − w

g(u)

)
dw.

Let

Rξu

(
s, t, s′, t ′

) = E
(
ξu(s, t)ξu

(
s′, t ′

))
, (s, t),

(
s′, t ′

) ∈ D

be the covariance function of ξu. The conditional random field{
ξu(s, t)|ξu(0,0) = g(u) − w

g(u)
, (s, t) ∈ D

}
has the same distribution as{

ξu(s, t) − Rξu(s, t,0,0)ξu(0,0) + Rξu(s, t,0,0)

(
g(u) − w

g(u)

)
, (s, t) ∈ D

}
.

Thus, the integrand in (57) can be rewritten as

P

(
sup

(s,t)∈D

(
ξu(s, t) − Rξu(s, t,0,0)ξu(0,0)

+ Rξu(s, t,0,0)

(
g(u) − w

g(u)

))
> g(u)

)
= P

(
sup

(s,t)∈D

(
χu(s, t) − (

g(u)
)2(

1 − Rξu(s, t,0,0)
)

+ w
(
1 − Rξu(s, t,0,0)

))
> w

)
,

where

χu(s, t) = g(u)
(
ξu(s, t) − Rξu(s, t,0,0)ξu(0,0)

)
.

Next, the following convergence(
g(u)

)2(
1 − Rξu(s, t,0,0)

) − w
(
1 − Rξu(s, t,0,0)

) → σ 2
Y (s, t) + d(t)

holds as u → ∞, for any w ∈R, uniformly with respect to (s, t) ∈ D. Moreover,

E
((

χu(s, t) − χu

(
s′, t ′

))2)
= (

g(u)
)2(

E
((

ξu(s, t) − ξu

(
s′, t ′

))2) − (
Rξu(s, t,0,0) − Rξu

(
s′, t ′,0,0

))2)
→ 2 Var

(
Y(s, t) − Y

(
s′, t ′

))
, u → ∞
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holds for any (s, t), (s′, t ′) ∈ D. Hence, the claim follows by using the same argu-
ments as in the proof of Lemma 6.1 in [24] or those in the proof of Lemma 1 in [9].
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