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EINSTEIN RELATION FOR RANDOM WALKS IN
RANDOM ENVIRONMENT1

BY XIAOQIN GUO

Technische Universität München

In this article, we consider the speed of the random walks in a (uniformly
elliptic and i.i.d.) random environment (RWRE) under perturbation. We ob-
tain the derivative of the speed of the RWRE w.r.t. the perturbation, under the
assumption that one of the following holds: (i) the environment is balanced
and the perturbation satisfies a Kalikow-type ballisticity condition, (ii) the
environment satisfies Sznitman’s ballisticity condition. This is a generalized
version of the Einstein relation for RWRE.

Our argument is based on a modification of Lebowitz–Rost’s argument
developed in [Stochastic Process. Appl. 54 (1994) 183–196] and a new re-
generation structure for the perturbed balanced environment.

1. Introduction. In the 1905, Einstein ([9], pages 1–18) investigated the
movement of suspended particles in a liquid under the influence of an external
force. He established the following mobility–diffusivity relation:

lim
λ→0

vλ

λ
∼ D,(ER)

where λ is the size of the perturbation, D is the diffusion constant of the equi-
librium state and vλ is the effective speed of the random motion in the perturbed
media. General derivations of this principle assume reversibility.

Recently, there has been much interest in studying the Einstein relation for re-
versible motions in a perturbed random media, where the perturbation is propor-
tional to the original environment; see [1, 10, 14, 17]. However, it is not clear
whether (ER) still holds in nonreversible set-up, for example, random walks in
random environments (RWRE), and several interesting questions are either open
or not discussed: is vλ monotone (in an appropriate sense) and differentiable with
respect to λ? What if the perturbation of the environment is not propositional to
the original one? If the original environment is ballistic, (ER) is not expected to
hold, but what can we say about the derivative of the velocity?

Motivated by these questions, we study the speed of RWRE under general per-
turbations, where the original environment is either balanced or ballistic. In the
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balanced case, when the perturbation is proportional to the original environment,
we obtain the Einstein relation. (This result forms part of the author’s doctoral
thesis [11].) Moreover, we provide a new interpretation of this relation. Namely,
in our context, the Einstein relation is a consequence of the weak convergence of
the invariant measures for the “environment viewed from the point of view of the
particle” process, which holds even for more general perturbations that satisfies a
Kalikow-type condition. In the ballistic case, we can quantify the rate of the weak
convergence. As a corollary, we obtain the derivative of the speed w.r.t. the size of
the perturbation (for both the balanced and the ballistic cases).

We define the model as follows.
An (uniformly elliptic) environment ω :Zd × {e ∈ Z

d : |e| = 1} → [κ,1) is a
function that satisfies ∑

e : |e|=1

ω(x, e) = 1 ∀x ∈ Z
d,

where κ > 0 and | · | is the l2-norm. The random walks in the environment ω start-
ing from x is the Markov chain (Xn)n≥0 with transition probability Pω specified
by

P x
ω(X0 = x) = 1,

P x
ω(Xn+1 = y + e|Xn = y) = ω(y, e).

Following Sabot [18], we consider a perturbed environment

ωλ := ω + λξ, λ ∈ [0, κ/2),

where ξ :Zd × {e ∈ Z
d : |e| = 1} → [−1,1] satisfies∑

e : |e|=1

ξ(x, e) = 0 ∀x.

We denote the local environment at x as ωx := (ω(x, e))e : |e|=1 and write

ζ := (ω, ξ).

We endow the set � of all ζ with a probability measure P such that (ζx)x∈Zd are
independent and identically distributed (i.i.d.).

The measure P x
ωλ for a fixed ω is called the quenched law. The average over all

quenched environments, Px
λ := P ⊗ P x

ωλ , is called the annealed law. Expectations
with respect to P x

ωλ and P
x
λ are denoted by Ex

ωλ and E
x
λ, respectively. We omit the

superscript when x is the origin o := (0, . . . ,0), for example, we write P o
ω as Pω.

We define the local drift of a function f :Zd × {e ∈ Z
d : |e| = 1} →R by

d(f ) := ∑
e : |e|=1

f (o, e)e

and its spatial shift θxf as

θxf (y, e) := f (x + y, e).
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When the original environment ω is deterministic and homogeneous (i.e., ω =
θxω, ∀x), Sabot ([18], Theorem 1) got the following perturbation expansion for
d ≥ 2:

If one of EP [d(ξ)] �= o and d(ω) �= o holds, then, for λ > 0 small enough,
limn→∞ Xn/n := vλ exists Pλ-almost surely, and

vλ = d(ω) + λEP
[
d(ξ)

] + λ2d2 + o
(
λ3−ε) ∀ε > 0.

The constant d2 can be expressed in terms of the Green function.

(Sabot also obtained the expansion for d = 1, with d2 replaced by d2,λ. But in this
case vλ can be explicitly computed, and hence is not as interesting. See remarks
in [18], page 2999.) Note that the condition for the above expansion is essentially
that ωλ is ballistic for all small λ > 0, that is, limn→∞ Xn/n �= 0 is a deterministic
constant, Pλ-a.s.

The purpose of our article is to generate Sabot’s first-order expansion to the
case where the original environment is random. For RWRE in Z

d, d ≥ 2, two no-
table ballisticity conditions are Kalikow’s condition and Sznitman’s (T′) condition,
which are introduced in [13] and [22], respectively. We recall that the (T′) condi-
tion is conjectured to be equivalent to the ballisticity of RWRE, and it implies
Kalikow’s condition. In this paper we are interested in two cases:

(i) The original environment has zero drift (or balanced), and (ω, xi) satisfies
a Kalikow-type condition for small λ > 0: for some 
 ∈ Sd−1,

inf
f ∈F EP

[
d(ξ) · 
∑

e : |e|=1 ω(o, e)f (e)

]/
EP

[
1∑

e : |e|=1 ω(o, e)f (e)

]
> 0,(K)

F denotes the collection of nonzero functions f : {e : |e| = 1} → [0,1].
(ii) The original environment satisfies Sznitman’s ballisticity condition (T′).

Condition (K) guarantees that ωλ has a speed of size ∼ cλ. Note that it is satisfied
for some interesting cases, for example, it holds for a perturbation that is “either
neutral or pointing to the right” (see Remark 9). For the definition of Sznitman’s
(T′) condition, we refer to equation (0.5) in [22].

1.1. Results. Before the statement of our results, let us recall that one of the
main tools in the study of RWRE is the environment viewed from the point of view
of the particle process (ζ̄n)n∈N, which is defined as

ζ̄n = (ω̄n, ξ̄n) := θXnζ, n ∈ N.

Lawler [16] proved that for balanced environment, there exists an ergodic invari-
ant measure for (ζ̄n) which is absolutely continuous with respect to P . For ballistic
environment whose regeneration time has finite moment (e.g., an environment that
satisfies Sznitman’s condition), it is shown in [23], Theorem 3.1, that the law of ζ̄n

converges weakly to an invariant measure. Recently, Berger, Cohen and Rosen-
thal [2] proved that for dimensions d ≥ 4, this measure is ergodic and absolutely
continuous with respect to the original law of the environment.
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We denote by Q (for both the balanced and the ballistic cases) the invariant
measure of (ζ̄n) viewed from the original RWRE, and by Qλ the invariant measure
of (ζ̄n) viewed from the perturbed RWRE.

Our main results are the following.

THEOREM 1. Assume that the original environment is balanced [i.e., d(ω) = o

almost surely] and P satisfies (K), then

Qλ ⇒ Q as λ → 0,

where ⇒ denotes weak convergence.

THEOREM 2. Assume the P-law of ω satisfies Sznitman’s condition (T′).
Then, there exists a linear operator � such that

lim
λ→0

Qλf −Qf

λ
= �f

for all (a.s.) bounded f :� →R which is

σ
(
ωx : |x| < Nf

)
-measurable for some constant Nf ≥ 1.(1)

Here, Qf denotes the expectation of f under Q. Moreover, � can be expressed in
terms of the regeneration times; see (51).

As a corollary of the above theorems, we obtain the following.

COROLLARY 3. If either (i) or (ii) is satisfied, then there is λ0 ∈ [0, κ/2) such
that for λ ∈ (0, λ0), the limit

lim
n→∞

Xn

n
=: vλ

exists Pλ-almost surely and [for the convenience of the notation, we set � ≡ 0
when P satisfies (i)]:

lim
λ→0

vλ − v0

λ
=Q

(
d(ξ)

) + �
(
d(ω)

)
.

Recalling that for random walks in balanced random environment, Lawler [16]
proved that the scaling limit of X·n�/

√
n converges to a Brownian motion with

diffusion matrix

D := (
EQ

[
2ω(o, ei)

]
δij

)
1≤i,j≤d,

the Einstein relation of a balanced random environment is an immediate conse-
quence of Corollary 3.

PROPOSITION 4 (Einstein relation). Assume that P-almost surely, the original
environment is balanced, and

ξ(x, e) = ω(x, e)e · 
 ∀x, e.(2)
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Then Pλ-almost surely, vλ := limn→∞ Xn/n = λEQλ[d(ω)], and

lim
λ→0

vλ

λ
= D
.(3)

The zero-drift case (Theorem 1) is more delicate and makes the main part of the
paper. Its proof consists of proving the following two theorems.

THEOREM 5. Assume that the original environment is balanced. Then, for
P-almost every ζ and any bounded measurable function f :� →R,

lim
λ→0

λ2

t
Eωλ

[�t/λ2�∑
i=0

f (ζ̄i)

]
= Qf ∀t > 0.

THEOREM 6. Assume that the original environment is balanced and P satis-
fies (K). Then for any f that satisfies (1),∣∣∣∣∣Qλf − λ2

t
Eλ

�t/λ2�∑
i=0

f (ζ̄i)

∣∣∣∣∣ ≤ C‖f ‖∞√
t

for all λ ∈ (0,1/Nf ) and t > 0.

Our proof of Theorem 5 is an adaption of the argument of Lebowitz and Rost
[17] (see also [10], Proposition 3.1) to the discrete setting. Namely, using a change
of measure argument, we observe that the Pλ-law of the rescaled process λX·/λ2

converges to a Brownian motion with drift. For the proof of Theorem 6, we want
to follow the strategy of Gantert, Mathieu and Piatnitski [10]. Arguments in [10],
Proposition 5.1, show that if there is a sequence of random times τn ∼ n/λ2 (called
the regeneration times) that divides the random path into i.i.d. parts, then good mo-
ment estimates of the regeneration times yield the Einstein relation. [Note that the
usual definition of regeneration times, i.e., the T (n)’s in Section 6, does not give
the correct scale.] Their definition of the regeneration times, which is a variant
of that in [19], crucially employs a heat kernel estimate [10], Lemma 5.2, for re-
versible diffusions. However, due to the lack of reversibility, we do not have a
heat kernel estimate for RWRE. In this paper, we construct the regeneration times
differently, so that they divide the random path into 1-dependent pieces. More-
over, our regeneration times have good moment bounds, which lead to a proof
of Theorem 6. The key ingredients in our construction are Kuo and Trudinger’s
[15] Harnack inequality for discrete harmonic functions and the “ε-coins” trick
introduced in [7].

The proof of the ballistic case (Theorem 2) uses a modification of Lebowitz and
Rost’s argument and the (usual) regeneration structure for a ballistic RWRE. The
reason that the ballistic case is easier to analyze is that the original environment
already has a regeneration structure, which provides us enough information on
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the rate of the convergence to the stationary measure. [Recall that Sznitman’s (T′)
condition implies that the inter-regeneration time has stretch-exponential moment.]

The structure of the paper is as follows. We will prove Theorem 5 in Section 2.
In Section 3, using Kalikow’s random walks, we obtain estimates that will be use-
ful in deriving the moment bounds of the regenerations. In Section 4, we present
our new construction of the regeneration times and show that they have good mo-
ment bounds. Sections 5 and 6 are devoted to the proofs of Theorems 1 and 2.
With these two theorems, we obtain the derivative of the speed (w.r.t. the size of
the perturbation) in Section 7.

Throughout this paper, we use c,C to denote finite positive constants that de-
pend only on the environment measure P (and implicitly, on the dimension d and
the ellipticity constant κ). They may differ from line to line. We also use ci,Ci

to distinguish different constants that are fixed throughout. Let {e1, . . . , ed} be the
natural basis of Zd .

2. Proof of Theorem 5. We first consider the Radon–Nikodym derivative of
the measure Pωλ with respect to Pω. For s > 0, put

G(s,λ) = G(s,λ; ζ,X·) = log
�s�−1∏
j=0

[
1 + λ

ξ̄j (o,Xj+1 − Xj)

ω̄j (o,Xj+1 − Xj)

]

=: log
�s�−1∏
j=0

[
1 + λa(ζ̄j ,�Xj)

]
,

where �Xi := Xi+1 − Xi and

a(ζ, e) := ξ(o, e)

ω(o, e)
.

Then, for any measurable function F on C([0, s],Rd),

EωλF (Xr : 0 ≤ r ≤ s) = Eω

[
F(Xs : 0 ≤ r ≤ s)eG(s,λ)].

In particular,

EωeG(s,λ) = Eωλ[1] = 1(4)

for any λ ∈ (0,1) and s > 0. Moreover, by Taylor’s expansion,

G(s,λ) =
�s�−1∑
j=0

log
(
1 + λa(ζ̄j ,�Xj)

)

=
�s�−1∑
j=0

[
λa(ζ̄j ,�Xj) − λ2a(ζ̄j ,�Xj)

2

2

]
+ λ3�s�H(5)

= λ

�s�−1∑
j=0

a(ζ̄j ,�Xj) − λ2

2

�s�−1∑
j=0

a(ζ̄j ,�Xj)
2 + λ3�s�H,
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where the random variable H = H(λ, ζ,X·) satisfies 0 ≤ H ≤ (1 + κ−1)/3. Set-
ting

h(ζ ) = ∑
e : |e|=1

ξ(o, e)2/ω(o, e),

we have (
n∑

j=0

[
a(ζ̄j ,�Xj)

2 − h(ζ̄j )
])

n≥0

is a Pω-martingale with bounded increments. Thus, Pω-almost surely,

lim
n→∞

1

n

n∑
j=0

[
a(ζ̄j ,�Xj)

2 − h(ζ̄j )
] = 0.

Further, recall that Q is the ergodic invariant measure for (ζ̄n)n≥0 (under Pω) and
Q≈ P . Hence, by the ergodic theorem, P ⊗ Pω-almost surely,

lim
λ→0

λ2
�t/λ2�−1∑

j=0

a(ζ̄j ,�Xj)
2 = lim

λ→0
λ2

�t/λ2�−1∑
j=0

h(ζ̄j−1) = tEQh(6)

and

lim
λ→0

λ2

t

�t/λ2�∑
i=0

f (ζ̄i) = EQf.(7)

Moreover, observing that Jn := ∑n
j=0 a(ζ̄j ,�Xj) is a Pω-martingale, by (6)

and [8], Theorem 7.7.2, we get an invariance principle:

For P-almost every ζ , the process (λJs/λ2 )s≥0 converges weakly (under Pω) to a
Brownian motion (Ns)s≥0 with diffusion constant EQh.

Hence, by (5), (6), (7) and the invariance principle, for P-almost all ζ ,

λ2

t

�t/λ2�∑
i=0

f (ζ̄i)e
G(t/λ2,λ)(8)

converges weakly to

(EQf ) exp(Nt − tEQh/2).

Next, we will prove that for P-almost every ζ , this convergence is also in
L1(Pω). It suffices to show that the class (eG(t/λ2,λ))λ∈(0,1) is uniformly integrable
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under Pω, P-a.s. Indeed, for any γ > 1, it follows from (5) and the estimate on H

that

γG
(
t/λ2, λ

) ≤ G
(
t/λ2, γ λ

)

+ (γ 2 − γ )λ2

2

�t/λ2�−1∑
j=0

a(ζ̄j ,�Xj) + C
(
1 + γ 3)

λt

< G
(
t/λ2, γ λ

) + Cγ 3(t + 1).

Hence, for γ > 1 and all λ ∈ (0,1),

Eω exp
(
γG

(
t/λ2, λ

)) ≤ eCγ 3(t+1)Eω exp
(
G

(
t/λ2, γ λ

)) by (4)= eCγ 3(t+1),(9)

which implies the uniform integrability of (eG(t/λ2,λ))λ∈(0,1). So the Eω-expecta-
tion of (8) also converges to the expectation of its weak limit (for P-almost ev-
ery ζ ) and

lim
λ→0

Eωλ

[
λ2

t

�t/λ2�∑
i=0

f (ζ̄i)

]
= (EQf )E

[
exp(Nt − tEQh/2)

]
.

The theorem follows by noting that tEQh = EN2
t and that

E
[
exp

(
Nt − EN2

t /2
)] = 1.

3. Kalikow’s auxiliary random walks. In this section, we will recall Ka-
likow’s auxiliary random walks and use it to obtain some estimates that will be
useful later.

For any connected strict subset U of Zd , let

∂U = {
x ∈ Z

d \ U :∃y ∈ U, |y − x| = 1
}
,

TU = inf{n ≥ 0 :Xn ∈ ∂U}.
Define on U ∪ ∂U a Markov chain with transition probability

P̂U (x, x + e) =
⎧⎪⎨
⎪⎩

EPEω[∑TU

n=0 1Xn=xω(x, e)]
EPEω[∑TU

n=0 1Xn=x]
, x ∈ U , |e| = 1,

1, x ∈ ∂U , e = o,

(10)

and set

d̂U (x) := ∑
e

eP̂U (x, x + e).

We say that the Kalikow’s condition relative to 
 ∈ Sd−1 holds if there exists δ > 0
such that

inf
U,x∈U

d̂U (x) · 
 ≥ δ.(11)
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The interest of this Markov chain lies in the fact that P̂U and P have the same exit
distribution from U ([13], Proposition 1):

if P̂U (TU < ∞) = 1, then P̂U (XTU
∈ ·) = P(XTU

∈ ·).

THEOREM 7 ([23], Theorem 2.3). If (11) holds, then there exists a determin-
istic v ∈ R

d such that

lim
n→∞Xn/n = v, P-a.s.

It is also shown in [13], (11), that (11) has the following sufficient condition:

inf
f ∈F EP

[
d(ω) · 
∑

e ω(o, e)f (e)

]/
EP

[
1∑

e ω(o, e)f (e)

]
≥ δ,(12)

where F is the same as in (K).

PROPOSITION 8. Assume (i). Then for some λ0 > 0 and all λ ∈ [0, λ0), there
is a deterministic constant vλ ∈ R

d such that

lim
t→∞

Xt

t
= vλ, Pλ-almost surely.

PROOF. By (K), there exist λ0 > 0 such that for all λ ∈ (0, λ0) and

inf
f ∈F EP

[
d(ξ) · 
∑

e : |e|=1 ωλ(o, e)f (e)

]/
EP

[
1∑

e : |e|=1 ωλ(o, e)f (e)

]
> 0.

Noting that d(ω) = 0, there is ρ > 0 such that the law of ωλ satisfies (12), with δ

replaced by λρ. This implies

inf
U,x∈U

d̂U (x) · 
 ≥ λρ.(13)

The proposition follows. �

REMARK 9. Although (K) looks complicated, it includes some simple cases:

(a) (K) holds when

EP
[(

d(ξ) · 
)
+

]
>

1

ε
EP

[(
d(ξ) · 
)

−
]
.

For instance, (K) is satisfied when the perturbation is “either neutral or pointing to
the right.” See [23], Proposition 2.4.

(b) When ω and ξ are independent, (K) is equivalent to EP [d(ξ)] �= o.
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3.1. Auxiliary estimates. In this subsection, we consider perturbed RWRE that
satisfies (i). Making use of Kalikow’s random walks, we obtain some auxiliary es-
timates that will be useful in getting the regeneration moment bounds in Section 4.

From now on, we assume that (i) holds with


 = e1.

(The same arguments work also for general 
 ∈ Sd−1, but with cumbersome nota-
tions.) Recall that (i) implies (13):

inf
U,x∈U

d̂U (x) · e1 ≥ λρ.

Let

λ1 := 0.5/
⌈
(2λ)−1⌉

so that 0.5/λ1 is an integer and

1

2λ
≤ 1

2λ1
<

1

2λ
+ 1.

For any k ∈ 1
2Z, x ∈ Z

d , set

Hx
k = Hx

n(λ, 
) := {
y ∈ Z

d : (y − x) · e1 = k/λ1
}
,(14)

Tk := inf
{
t ≥ 0 : (Xt − X0) · e1 = k/λ1

}
.(15)

For n ∈ N, we call Hx
n the nth level (with respect to x). Since the random walk is

transient in the e1 direction, Tk’s are finite Pλ-almost surely.

PROPOSITION 10. Let (X′
n) be a simple random walk on Z with

P(X′
i+1 = x + 1|X′

i = x)

P (X′
i+1 = x − 1|X′

i = x)
= q �= 1 ∀x ∈ Z.

Then for any i, j ∈ Z
+ and −j ≤ 0 ≤ i,

P
(
X′ visits −j before visiting i|X′

0 = 0
) = qi − 1

qi+j − 1
.

In particular, when q < 1,

P
(
X′ never visits −j |X′

0 = 0
) = 1 − q−j .

The proof is omitted.

PROPOSITION 11. Assume (i). There exists λ0 ∈ (0,1) such that for λ ∈
(0, λ0) and any n,m ∈ N/2:

(a) e5m/κ−1
e5(m+n)/κ−1

≤ Pλ(T−n < Tm) ≤ emρ/2−1
e(n+m)ρ/2−1

;

(b) e5m/κ−1
e5(m+n)/κ−1

≤ Pωλ(T−n < Tm) ≤ 1−e−5m/κ

1−e−5(m+n)/κ , P-almost surely.
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PROOF. (a) Let U = {z ∈ Z
d :n/λ1 ≤ z · e1 ≤ m/λ1}. With abuse of notation,

we let X̂ be the Markov chain defined at (10), with ω replaced by ωλ (because we
are interested in the perturbed environment). Since [by (13), (10) and λ < κ/2]

1 + ρλ ≤ P̂U (x, x + e1)

P̂U (x, x − e1)
≤ 1 + 4λ

κ
,

we can couple two Markov chains X′,X′′ on Z to X̂ such that for all i ∈ N, x ∈ Z,

P(X′
i+1 = x + 1|X′

i = x)

P (X′
i+1 = x − 1|X′

i = x)
= 1 + ρλ,

P (X′′
i+1 = x + 1|X′′

i = x)

P (X′′
i+1 = x − 1|X′′

i = x)
= 1 + 4λ

κ
,

and

X′
i ≤ X̂i · e1 ≤ X′′

i ∀i ∈ N.

Hence, by Proposition 10, we obtain

(1 + 4λ/κ)m/λ1 − 1

(1 + 4λ/κ)(n+m)/λ1 − 1
≤ P̂U (T−n < Tm) ≤ (1 + ρλ)m/λ1 − 1

(1 + ρλ)(n+m)/λ1 − 1
.

Taking λ small enough, inequality (a) is proved.
(b) Observe that for λ ∈ (0, κ/2), P-almost surely,

1 − 4λ

κ
≤ ωλ(x, e1)

ωλ(x,−e1)
≤ 1 + 4λ

κ
.

Inequality (b) then follows from the same argument as in the proof of (a). �

THEOREM 12. Assume that ω is balanced. Let

T̃n := Tn ∧ T−n.

There exists a constant s > 0 such that for any uniformly elliptic balanced envi-
ronment ω and all λ ∈ (0, κ/2), n ∈N,

Eωλ

[
esλ2T̃n/n]

< C.

The proof, which uses coupling, is given in the Appendix.

PROPOSITION 13. Assume that ω is balanced. There exists a constant C0 such
that for P-almost all (ω, ξ) and λ ∈ (0, κ/2),

Pωλ

(|XT0.5 | < C0/λ
)
> 1/C0.
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PROOF. Let Yn := Xn − λ
∑n−1

i=0 d(θXi ξ). Then (Yn) is a Pωλ -martingale. Re-
call the definition of T̃n in Theorem 12. For any K > 0 and K̃ := K/(4d),

Pωλ

(|XT0.5 | < K/λ
)

≥ 1 − Pωλ

(
max

t≤K̃/λ2
|Xt | ≥ K/λ

)
− Pωλ

(
T̃0.5 > K̃/λ2) − Pωλ(T0.5 > T−0.5).

By Proposition 11(b) and Theorem 12, it suffices to show that

Pωλ

(
max

t≤K̃/λ2
|Xt | ≥ K/λ

)

can be sufficiently small if K is large. Indeed,

Pωλ

(
max

t≤K̃/λ2
|Xt | ≥ K/λ

)
≤ Pωλ

(
max

t≤K̃/λ2
|Yt | ≥ CK/λ

)

≤ Ce−(c(K/λ)2)/(K/λ2) = Ce−cK,

where we used Azuma–Hoeffding inequality in the last inequality. �

LEMMA 14. Assume (i); then Pλ(|XTn − n
λ1

e1| ≥ n
λ1

) ≤ Ce−cn.

PROOF. Observe that

Pλ

(∣∣∣∣XTn − n

λ1
e1

∣∣∣∣ ≥ n

λ1

)
= P̂Un

(∣∣∣∣X̂Tn − n

λ1
e1

∣∣∣∣ ≥ n

λ1

)
,

where Un = {x :x · e1 ≤ n/λ1}. For j ≥ 0, let

Ŷj := X̂j −
j−1∑
i=0

d̂Un(Xi).

Then, for kn := 2n
ρλ2 ,

P̂Un

(∣∣∣∣X̂Tn − n

λ1
e1

∣∣∣∣ ≥ 5n

ρλ1

)

= P̂Un(Tn ≥ kn) + P̂Un

(
max

0≤i≤kn

|X̂i | ≥ 5n

ρλ1

)

≤ P̂Un

(
Ŷkn · e1 +

kn−1∑
i=0

d̂Un(Xi) · e1 ≤ n

λ1

)
(16)

+ P̂Un

(
max

0≤i≤kn

|Ŷi | ≥ 5n

ρλ1
−

∣∣∣∣∣
kn−1∑
i=0

d̂Un(Xi)

∣∣∣∣∣
)

≤ P̂Un

(
Ŷkn · e1 ≤ − n

λ1

)
+ P̂Un

(
max

0≤i≤kn

|Ŷi | ≥ n

ρλ1

)
,
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where in the last inequality we used the fact that

ρλ ≤ d̂Un ≤ 2λ.

The lemma follows by observing that (Ŷj )j≥0 is a martingale with bounded incre-
ments and by applying the Azuma–Hoeffding inequality to (16). �

4. Regenerations. In this section, we will construct a 1-dependent regenera-
tion structure for perturbed RWRE that satisfies (i). Recall that we assume (without
loss of generality) that 
 = e1.

4.1. Harnack inequality and its application. Let a be a nonnegative function
on Z

d ×Z
d such that for any x, a(x, y) > 0 only if x and y are neighbors, that is,

|x − y| = 1, denoted x ∼ y. We also assume that∑
y

a(x, y) = 1 ∀x ∈ Z
d .

Define the linear operator La acting on the set of functions on Z
d by

Laf (x) = ∑
y

a(x, y)
(
f (y) − f (x)

)
.

Set

b(x) = ∑
y

a(x, y)(y − x) and b0 = sup |b|.

We assume that La is uniformly elliptic with constant κ ∈ (0, 1
2d

]. That is,

a(x, y) ≥ κ for any x, y such that x ∼ y.

For r > 0, x ∈ R
d , let Br(x) = {z ∈ Z

d : |z − x| < r}. We also write Br(o) as Br .
The following Harnack estimate is due to Kuo and Trudinger [15], Theorem 3.1.

See also the Appendix of [11] for a detailed proof.

THEOREM 15 (Harnack inequality). Let u be a nonnegative function on BR ,
R > 1. If

Lau = 0

in BR , then for any σ ∈ (0,1) with R(1 − σ) > 1, we have

max
BσR

u ≤ C min
BσR

u,

where C is a positive constant depending on d, κ, σ and b0R.

With the Harnack inequality, we have the following.
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LEMMA 16. Assume (i). There exists a constant c1 ∈ (0,1] such that for λ ∈
(0,1), x ∈ Z

d and P-almost every (ω, ξ),

P x
ωλ(XT1 = ·) ≥ c1P

x+0.5e1/λ1
ωλ (XT0.5 = ·|T0.5 < T−0.5).(17)

PROOF. For any x ∈ Z
d and k ∈ 1

2Z, recall the definition of Hx
k in (14). Fix

w ∈Hx
1 . Then the function

f (z) := P z
ωλ

(
X· visits Hx

1 for the first time at w
)

satisfies

Lωλf (z) = 0

for all z ∈ {y : (y − x) · e1 < 1/λ1}. By Theorem 15 (in this case a = ωλ,R =
0.5/λ1 and b0 ≤ λ), there exists a constant C2 such that for any y, z ∈ Hx

0.5 with
|z − y| ≤ 0.5/λ1,

f (z) ≥ C2f (y).(18)

Hence, for any z ∈ Hx
0.5 such that |z − (x + 0.5e1/λ1)| < C0/λ1 (recall that C0 is

the constant in Proposition 13), we have

f (z) ≥ C
2C0
2 f (x + 0.5e1/λ1).(19)

Therefore,

P x
ωλ(XT1 = w) ≥ ∑

|y−x|<C0/λ

P x
ωλ(XT0.5 = y)P

y

ωλ(XT0.5 = w)

(19)≥ CP x
ωλ

(|XT0.5 − x| < C0/λ1
)
P

x+0.5e1/λ1
ωλ (XT0.5 = w)

≥ c1P
x+0.5e1/λ1
ωλ (XT0.5 = w|T0.5 < T−0.5),

where in the last inequality we used Proposition 13 and [Proposition 11(b)]

P
x+0.5e1/λ1
ωλ (T0.5 < T−0.5) > C. �

4.2. Construction of the regeneration times. In this subsection, we will con-
struct regeneration times that allow the path to backtrack at most distance 1/λ in
direction e1 after each regeneration. The main difficulty is to decouple the parts
before and after a regeneration in such a way that they are “almost independent.”
Our main observation is that (by Lemma 16) the hitting probability P x

ωλ(XT1 = ·)
to the next level dominates [in the sense of (17)] a “good” probability measure

μx
ωλ,1(·) := P

x+0.5e1/λ1
ωλ (XT0.5 = ·|T0.5 < T−0.5),(20)

which is independent of environment to the left of level Hx
0 . Hence, the hitting

probability can be decomposed as

P x
ωλ(XT1 = ·) = βμx

ωλ,1(·) + (1 − β)μx
ωλ,0(·),
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FIG. 1. In this picture, K = 2,Xτ1 = 5/λ1,M1 = 4/λ1.

where (recall that c1 is the constant in Lemma 16)

β := c1/2 and μx
ωλ,0(·) := [

P x
ωλ(XT1 = ·) − βμx

ωλ,1(·)
]
/(1 − β).

Note that by (17), both μx
ωλ,1 and μx

ωλ,0 are probability measures on Hx
1 . This

suggests us to use a coin-tossing trick to decouple the paths and define the regen-
erations, which we explain as follows.

For any O ∈ σ(X1,X2, . . . ,XT1), x ∈ Z
d and i ∈ {0,1}, put

νx
ωλ,i

(O) := ∑
y

[
iμx

ωλ,1(y) + (1 − i)μx
ωλ,0(y)

]
P x

ωλ(O|XT1 = y).(21)

Let (εi)
∞
i=1 ∈ {0,1}N be i.i.d. Bernoulli random variables with law Qβ :

Qβ(εi = 1) = β and Qβ(εi = 0) = 1 − β.

Intuitively, whenever the walker visits a new level Hi , i ≥ 0, we make him flip a
coin εi . If εi = 0 (or 1), he then walks following the law νωλ,0 (or νωλ,1) until he
reaches the (i + 1)th level. The regeneration time τ1 is defined to be the first time
of visiting a new level Hk such that the outcome εk−1 of the previous coin-tossing
is “1” and the path will never backtrack to level Hk−1 in the future. See Figure 1.

We now give the formal definition of the regeneration times.
We sample the sequence ε := (εi)

∞
i=1 according to the product measure Qβ and

fix it. Then we define a new law Pωλ,ε on the paths, by the following steps (see
Figure 2):

FIG. 2. The law P̄ωλ,ε for the walks.
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• Step 1. For x ∈ Z
d , set

P x
ωλ,ε

(X0 = x) = 1.

• Step 2. Suppose the P x
ωλ,ε

-law for paths of length ≤ n is defined. For any path

(xi)
n+1
i=0 with x0 = x, define

P x
ωλ,ε

(Xn+1 = xn+1, . . . ,X0 = x0)

:= P x
ω,ε(XI = xI , . . . ,X0 = x0)ν

xI

ωλ,εJ
(Xn+1−I = xn+1, . . . ,X1 = xI+1),

where

J = max
{
j ≥ 0 :Hx0

j ∩ {xi,0 ≤ i ≤ n} �= ∅
}

is the highest level visited by (xi)
n
i=0 and

I = min
{
0 ≤ i ≤ n :xi ∈ Hx0

J

}
is the hitting time to the J th level.

• Step 3. By induction, the law P x
ωλ,ε

is well defined for paths of all lengths.

Note that a path sampled by P x
ωλ,ε

is not a Markov chain, but the law of X· under

P̄ x
ωλ := Qβ ⊗ P x

ωλ,ε

coincides with P x
ωλ . That is,

P̄ x
ωλ(X· ∈ ·) = P x

ωλ(X· ∈ ·).(22)

We denote by P̄λ := P ⊗ P̄ωλ the law of the triple (ω, ε,X·). Expectations with
respect to P̄ x

ωλ and P̄λ are denoted by Ēx
ωλ and Ēλ, respectively.

Next, for a path (Xn)n≥0 sampled according to P o
ωλ,ε

, we will define the regen-
eration times. See Figure 3 for an illustration.

To be specific, put S0 = 0,M0 = 0, and define inductively

Sk+1 = inf{Tn+1 :n/λ1 ≥ Mk and εn = 1},
Rk+1 = Sk+1 + T−1 ◦ θSk+1,

Mk+1 = XSk+1 · e1 + N ◦ θSk+1/λ1, k ≥ 0.

FIG. 3. The definition of a regeneration time.
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Here, θn denotes the time shift of the path, that is, θnX· = (Xn+i)
∞
i=0, and

N := inf
{
n :n/λ1 > (Xi − X0) · e1 for all i ≤ T−1

}
.(23)

Set

K := inf{k ≥ 1 :Sk < ∞,Rk = ∞},
τ1 := SK and τk+1 = τk + τ1 ◦ θτk

.

We call (τk)k≥1 regeneration times.

4.3. The renewal property of the regenerations. The regeneration times pos-
sess good renewal properties:

1. Set τ0 = 0. For k ≥ 0, define

S̃k+1 := inf{Tn :n/λ ≥ Mk and εn = 1},
τ̃1 := S̃K and set τ̃k+1 := τk + τ̃1 ◦ θτk

.

Namely, τ̃k is the hitting time to the previous level of Xτk
. Conditioning on

Xτ̃k
= x, the law of Xτk

is μx
ωλ,1, which is independent (under the environment

measure P) of σ(ζy :y · e1 ≤ x · e1). Moreover, after time τk , the path will never
visit {y :y · e1 ≤ x · e1}. Therefore, τk+1 − τk is independent of what happened
before τk−1 and the inter-regeneration times form a 1-dependent sequence.

2. Since (Xτ̃k+1 − Xτk
)k≥1 are i.i.d. and (Xτk+1 − Xτ̃k+1) · e1 = 1/λ1, the inter-

regeneration distances ((Xτk+1 − Xτk
) · e1)k≥1 are i.i.d.

3. From the construction, we see that a regeneration occurs after roughly a ge-
ometric number of levels. Thus, we expect (Xτk+1 − Xτk

) · e1 ∼ c/λ and (by The-
orem 12) τk+1 − τk ∼ c/λ2.

The above properties will be verified in Lemma 17, Proposition 18 and Corol-
lary 20.

We introduce the σ -field

Gk := σ
(
τ̃k, (Xi)i≤τ̃k

, (ζy)y·e1≤Xτ̃k
·e1

)
and set

pλ := EP

[∑
y

μωλ,1(y)P
y

ωλ(T−1 = ∞)

]
.(24)

LEMMA 17. For any appropriate measurable sets B1,B2 and any event

B := {
(Xi)i≥0 ∈ B1, (ζy)y·e1>−1/λ1 ∈ B2

}
,

we have for k ≥ 1,

P̄λ(B ◦ θ̄τk
|Gk) = EP

[∑
y

μωλ,1(y)P̄
y

ωλ

(
B ∩ {T−1 = ∞})]/

pλ,
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where θ̄n is the time-shift defined by

B ◦ θ̄n = {
(Xi)i≥n ∈ B1, (ζy)(y−Xn)·e1>−1/λ1 ∈ B2

}
.

PROOF. First, we consider the case k = 1. Let ϑn denote the shift of the
ε-coins, that is, ϑnε· = (εi)i≥n. For any A ∈ G1,

P̄λ(B ◦ θ̄τ1 ∩ A)

= EP⊗Qβ

[ ∑
k≥1,x

Pωλ,ε

(
A ∩ {S̃k < ∞,Rk = ∞,X

S̃k
= x} ∩ B ◦ θ̄Sk

)]

= EP⊗Qβ

[ ∑
k≥1,x,y

Pωλ,ε

(
A ∩ {S̃k < ∞,X

S̃k
= x})νx

ωλ,1(XT1 = x + y)

× P
x+y

ωλ,ϑk+1ε

(
B ∩ {T−1 = ∞})].

Note that in the last equality,

Pωλ,ε

(
A ∩ {S̃k < ∞,X

S̃k
= x})

is σ((εi)i≤k, (ζz)(z−x)·e1≤0)-measurable, whereas

νx
ωλ,1(XT1 = x + y)P

x+y

ωλ,ϑk+1ε

(
B ∩ {T−1 = ∞})

is σ((εi)i≥k+1, (ζz)(z−x)·e1>0)-measurable for y ∈ Hx
1 . Hence they are independent

under P ⊗ Qβ and we have

P̄λ(B ◦ θ̄τ1 ∩ A)

(25)
= ∑

k≥1

P̄λ

(
A ∩ {S̃k < ∞})EP

[∑
y

νωλ,1(XT1 = y)P̄
y

ωλ

(
B ∩ {T−1 = ∞})].

Substituting B with the set of all events, we get

P̄λ(A) = ∑
k≥1

P̄λ

(
A ∩ {S̃k < ∞})EP

[∑
y

μωλ,1(y)P̄
y

ωλ(T−1 = ∞)

]
.(26)

Equalities (25) and (26) yield

P̄λ(B ◦ θ̄τ1 |A) = EP [∑y μωλ,1(y)P̄
y

ωλ(B ∩ {T−1 = ∞})]
EP [∑y μωλ,1(y)P̄

y

ωλ(T−1 = ∞)] .

The lemma is proved for the case k = 1. The general case k > 1 follows by induc-
tion. �

We say that a sequence of random variables (Yi)i∈N is m-dependent (m ∈N) if

σ(Yi;1 ≤ i ≤ n) and σ(Yj ; j > n + m) are independent ∀n ∈ N.
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The law of large numbers and central limit theorem also hold for a stationary
m-dependent sequence with finite means and variances, see [5], Theorem 5.2. The
following proposition is an immediate consequence of Lemma 17.

PROPOSITION 18. Under P̄λ, (Xτn+1 − Xτn)n≥1 and (τn+1 − τn)n≥1 are sta-
tionary 1-dependent sequences. Furthermore, for all n ≥ 1, (Xτn+1 − Xτn, τn+1 −
τn) has law

P̄λ(Xτn+1 − Xτn ∈ ·, τn+1 − τn ∈ ·)

= EP

[∑
y

μωλ,1(y)P̄
y

ωλ(Xτ1 ∈ ·, τ1 ∈ ·, T−1 = ∞)

]/
pλ.

PROOF. For k ≥ 0, let

Fk = σ(τk,X1, . . . ,Xτk
).

Then, for n ≥ 1, Fn−1 ⊂ Gn and

P̄λ(Xτn+1 − Xτn ∈ ·, τn+1 − τn ∈ ·|Fn−1)

= Ēλ

[
P̄λ(Xτn+1 − Xτn ∈ ·, τn+1 − τn ∈ ·|Gn)|Fn−1

]
.

By Lemma 17, the proposition is proved. �

4.4. Moment estimates. We will show that the typical values of e1 · (Xτk+1 −
Xτk

) and τk+1 − τk , (k ≥ 0) are C/(βλ) and C/(βλ2), respectively.

THEOREM 19. Assume (i). There exists a constant c > 0 such that

Ēλ

[
exp(cβλXτ1)

]
< C

for all λ ∈ (0, λ0) and β ∈ (0,1).

PROOF. Our proof contains several steps.

1. For 0 ≤ k ≤ K − 1, set

Lk+1 = inf{n ≥ λ1Mk : εn = 1} − λ1Mk + 1.

Then L1 is the number of coins tossed to get the first “1” and

XS1 · e1 = L1/λ1.(27)

Since (Li)i≥1 depends only on the coins (εi)i≥0, it is easily seen that they are i.i.d.
geometric with parameter β . Hence, for i ≥ 1, s ∈ (0,1),

Ēωλ

[
esβLi

] = βesβ

1 − (1 − β)esβ
≤ 1

1 − s
.(28)

Moreover, for 1 ≤ k ≤ K − 1,

(XSk+1 − XSk
) · e1 = N ◦ θSk

+ Lk+1/λ1.
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2. We will show that

Ēλ

[
exp(sβλ1Xτ1 · e1)

] = ∑
k≥1

Ēλ

[
exp(sβλ1XSk

· e1), Sk < ∞]
pλ.(29)

By the definition of Xτ1 ,

Ēλ

[
exp(sβλ1Xτ1 · e1)

]
= ∑

k≥1,x,y

EP
[
Ēωλ

[
exp(sβλ1XS̃k

· e1 + sβ), S̃k < ∞,X
S̃k

= x
]

× μx
ωλ,1(x + y)P

x+y

ωλ (T−1 = ∞)
]
.

Since

Ēωλ

[
exp(sβλ1XS̃k

· e1 + sβ), S̃k < ∞,X
S̃k

= x
]

is σ(ζz : z · e1 < x · e1)-measurable, and μx
ωλ,1(x + y)P

x+y

ωλ (T−1 = ∞) is σ(ζz : z ·
e1 ≥ x · e1)-measurable, they are independent under P . Therefore,

Ēλ

[
exp(sβλ1Xτ1 · e1)

]
= ∑

k≥1,x,y

Ēλ

[
exp(sβλ1XS̃k

· e1 + sβ), S̃k < ∞,X
S̃k

= x
]

(30)

× EP
[
μx

ωλ,1(x + y)P
x+y

ωλ (T−1 = ∞)
]
.

Equation (29) follows.
3. Next, we will show that for k ≥ 1,

Ēλ

[
exp(sβλ1XSk

· e1), Sk < ∞]
(31)

≤
(

A(s,λ,β)

1 − s

)k−1

Ēλ

[
exp(sβλ1XS1 · e1), S1 < ∞]

,

where

A(s,λ,β) := EP

[∑
y

μωλ,1(y)E
y

ωλ

[
esβN ,T−1 < ∞]]

.

By definition,

Ēλ

[
exp(sβλ1XSk+1 · e1), Sk+1 < ∞]
= Ēλ

[
exp(sβλ1XSk

· e1 + sβN ◦ θSk
+ sβLk+1), Sk < ∞, T−1 ◦ θSk

< ∞]
.

Noting that Lk+1 is independent of σ {Rk,X1, . . . ,XRk
}, we get

Ēλ

[
exp(sβλ1XSk+1 · e1), Sk+1 < ∞]
= Ēλ

[
exp(sβλ1XSk

· e1 + sβN ◦ θSk
), Sk < ∞, T−1 ◦ θSk

< ∞]
(32)

× Ēλ

[
esβLk+1

]
(28)≤ Ēλ

[
exp(sβλ1XSk

· e1 + sβN ◦ θSk
), Sk < ∞, T−1 ◦ θSk

< ∞]
/(1 − s).
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Further, by the same argument as in (30),

Ēλ

[
exp(sβλ1XSk

· e1 + sβN ◦ θSk
), Sk < ∞, T−1 ◦ θSk

< ∞]
= ∑

x,y

Ēλ

[
exp(sβλ1x · e1 + sβ), S̃k < ∞,X

S̃k
= x

]

× EP
[
μx

ωλ,1(x + y)E
x+y

ωλ

[
esβN ,T−1 < ∞]]

= Ēλ

[
exp(sβλ1XSk

· e1), Sk < ∞]
A(s,λ,β).

Combining the above equality and (32), ineqaulity (31) follows by induction.
4. By (29) and (31), we have

Ēλ

[
exp(sβλ1Xτ1 · e1)

] ≤ pλĒλ

[
exp(sβλ1XS1 · e1), S1 < ∞] ∞∑

k=0

(
A(s,λ,β)

1 − s

)k

.

Since pλ ≤ 1, and [by (27) and (28)]

Ēλ

[
exp(sβλ1XS1 · e1), S1 < ∞] = Ēλ

[
esβL1

] ≤ 1

1 − s
,

to prove Theorem 19, we only need that when s > 0 is small enough,

A(s,λ,β) < C < 1.(33)

For any m ∈N,

A(s,λ,β) ≤ esβm
Pλ(T−1 < ∞)

+
∞∑

n=m

esβnEP

[∑
y

μωλ,1(y)P
y

ωλ(N = n,T−1 < ∞)

]
.

Hence [note that Pλ(T−1 < ∞) ≤ e−ρ/2], to prove (33), it suffices to show

EP

[∑
y

μωλ,1(y)P
y

ωλ(N = n,T−1 < ∞)

]
< Ce−cn.(34)

5. Recall the definition of N in (23):

EP

[∑
y

μωλ,1(y)P
y

ωλ(N = n,T−1 < ∞)

]

≤ CEP

[∑
y

Pωλ(XT1 = y)P
y

ωλ(N = n,T−1 < ∞)

]

≤ CEP

[∑
y,z

Pωλ(XT1 = y)P
y

ωλ(XTn−1 = z)P z
ωλ(T−n−1 < T1)

]

= CEP

[∑
z

Pωλ(XTn = z)P z
ωλ(T−n−1 < T1)

]
.
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For k ≥ 0, let zk := (ne1 + ke2)/λ1 and

Ak :=
{
z ∈ H :

k

λ1
≤

∣∣∣∣XTn − n

λ1
e1

∣∣∣∣ <
k + 1

λ1

}
.

Then by the Harnack inequality, for any x ∈ Ak ,

P x
ωλ(T−n−1 < T1) ≤ C2P

zk

ωλ(T−n−1 < T1),

where C2 is the constant in (18). Hence,

EP

[∑
z

Pωλ(XTn = z)P z
ωλ(T−n−1 < T1)

]

≤ Pλ

(∣∣∣∣XTn − n

λ1
e1

∣∣∣∣ ≥ n

λ1

)

+ C2

n−1∑
k=0

EP

[ ∑
z∈Ak

Pωλ(XTn = z)P
zk

ωλ(T−n−1 < T1)

]

Lemma 14≤ Ce−cn + C2EP

[
n−1∑
k=0

P
zk

ωλ(T−n−1 < T1)

]

= Ce−cn + C2nPλ(T−n−1 < T1) ≤ Ce−cn.

Inequality (34) is proved. �

COROLLARY 20. Assume (i). For all n ≥ 0, λ ∈ (0, λ0) and β ∈ (0,1),

Ēλ

[
exp

(
c4βλ(Xτn+1 − Xτn) · e1

)]
< C,(35)

P̄λ

(
βλ2

1(τn+1 − τn) > t
) ≤ Ce−c

√
t ∀t > 0.(36)

Here, c4 > 0 is a constant.

PROOF. 1. First, we consider the case n = 0, τn+1 − τn = τ1. Ineqaulity (35)
is the conclusion of Theorem 19. To prove (36), note that for any m ∈ N,

P̄λ

(
βλ2

1τ1 > t
) ≤ P̄λ(Xτ1 · e1 ≥ m/λ1) + P̄λ

(
βλ2

1Tm > t
)
.(37)

By Theorem 19,

P̄λ(Xτ1 · e1 ≥ m/λ1) ≤ Ce−cβm.

By Proposition 11 and Theorem 12,

P̄λ

(
βλ2

1Tm > t
) ≤ P̄λ(Tm > T−m) + P̄λ

(
βλ2

1T̃m > t
)

≤ Ce−cm + Ce−ct/(βm).
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Coming back to (37), we get

P̄λ

(
βλ2

1τ1 > t
) ≤ Ce−cβm + Ce−ct/(βm) ∀m ∈N.

Ineqaulity (36) (for n = 0) follows by letting m = √t/β�.
2. Next, we will prove (35) for n ≥ 1. By Lemma 17,

Ēλ

[
exp

(
sβλ1(Xτn+1 − Xτn) · e1

)]
= EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1Xτ1 · e1), T−1 = ∞]]/

pλ

≤ EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1Xτ1 · e1)

]]/
pλ.

By the same argument as in (29) and (31), we get

EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1Xτ1 · e1)

]]

= ∑
k≥1

EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1XSk

· e1), Sk < ∞]]
pλ,

and

EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1XSk

· e1), Sk < ∞]]

≤
(

A(s,λ,β)

1 − s

)k−1

EP

[∑
y

μωλ,1(y)Ē
y

ωλ

[
exp(sβλ1XS1 · e1), S1 < ∞]]

(27), (28)≤ A(s,λ,β)k−1

(1 − s)k
∀k ≥ 1.

Therefore,

Ēλ

[
exp

(
sβλ1(Xτn+1 − Xτn) · e1

)] ≤ ∑
k≥1

A(s,λ,β)k−1

(1 − s)k
.

By (34), ineqaulity (35) is proved.
3. Finally, we will prove (36) for n ≥ 1. Similar to (37), for any m ∈ N,

P̄λ

(
βλ2

1(τn+1 − τn) > t
)

(38)
≤ P̄λ

(
(Xτn+1 − Xτn) · e1 ≥ m/λ1

) + P̄λ

(
βλ2

1Tm ◦ θτn > t
)
.

By (35),

P̄λ

(
(Xτn+1 − Xτn) · e1 ≥ m/λ1

) ≤ Ce−cmβ ∀m ∈ N.(39)
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By Lemma 17,

P̄λ

(
βλ2

1Tm ◦ θτn > t
)

= ∑
y

EP
[
μωλ,1(y)P̄

y

ωλ

(
βλ2

1Tm > t,T−1 = ∞)]
/pλ

≤ ∑
y

EP
[
μωλ,1(y)P̄

y

ωλ

(
βλ2

1T̃m > t
)]

/pλ.

Applying Theorem 12 to the above inequality, we have

P̄λ

(
βλ2

1Tm ◦ θτn > t
) ≤ Ce−ct/(mβ)/pλ ∀m ∈N.(40)

Combining (38), (39) and (40) and letting m = √t/β�,

P̄λ

(
βλ2

1(τn+1 − τn) > t
) ≤ Ce−c

√
t /pλ.

It remains to show that

pλ > C > 0 ∀λ ∈ (0, λ).

By (20) and (24),

pλ = EP
[
P

0.5e1/λ1
ωλ (T−0.5 = ∞|T0.5 < T−0.5)

]
= EP

[
Pωλ(T−0.5 = ∞|T0.5 < T−0.5)

]
≥ Pλ(T−0.5 = ∞)

Proposition 11≥ C
(
1 − e−ρ/4)

.

Our proof of (36) is complete. �

By Corollary 20, we conclude that for any p ≥ 1, k ≥ 0, there exists a constant
C(p) < ∞ such that

Ēλ

[(
βλ2

1τ1 ◦ θτk

)p]
< C(p)(41)

and

Ēλ

[
(βλ1Xτ1 ◦ θτk

)p
]
< C(p).(42)

Moreover, by the law of large numbers,

vλ
P̄λ-a.s.= lim

n→∞
Xτn · e1

τn

= Ēλ[Xτ2 − Xτ1]
Ēλ[τ2 − τ1]

.

On the other hand,

Ēλ

[
(Xτ2 − Xτ1) · e1

] ≥ 1/λ1,

vλ · e1 = λEQλ

[
d(ξ)

] · e1 ≤ 2λ.

Hence,

Ēλ[τ2 − τ1] ≥ 1/λ1

2λ
≥ C/λ2.(43)
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5. Proof of Theorem 1. Let αn = αn(β,λ) := Ēλτn. Note that by (41)
and (43),

Cn

λ2 ≤ αn ≤ C′n
λ2 .(44)

LEMMA 21. Assume (i). Let f be a function that satisfies (1). Then for β > 0
and λ ∈ (0,1/Nf ),∣∣∣∣∣EQλf − 1

Ēλτn

Ēλ

[
τn∑

i=0

f (ζ̄i)

]∣∣∣∣∣ ≤ C‖f ‖∞/n for all n ∈ N.

PROOF. The lemma is trivial when n = 1, so we only consider n ≥ 2. Recall
that τ0 = 0. For k ≥ 0, set

Zk = Zk(f ) =
τk+1−1∑
i=τk

f (ζ̄i).

Since Nf ≤ 1
λ

≤ Ēλ[Xτ2 − Xτ1], we see that (Zk)k≥0 is an 1-dependent sequence.
On one hand,

1

Ēλτn

Ēλ

[
τn∑

i=0

f (ζ̄i)

]
= (n − 1)ĒλZ1 + ĒλZ0

(n − 1)Ēλ[τ2 − τ1] + Ēλτ1
.(45)

On the other hand, since the Pλ-law of ζ̄n converges weakly to Qλ, by (22),

Qλf = lim
n→∞ Ēλ

[
1

n

n−1∑
i=0

f (ζ̄i)

]
.

Hence, by the law of large numbers,

Qλf = Ēλ[Z1]
Ēλ[τ2 − τ1]

.(46)

The lemma follows by combining (45), (46) and using the moment bounds (41)
and (43). �

LEMMA 22. Assume (i). Let f be a function that satisfies (1). Then

1

αn

Ēλ

∣∣∣∣∣
τn∑

i=0

f (ζ̄i) −
αn∑
i=0

f (ζ̄i)

∣∣∣∣∣ ≤ C‖f ‖∞√
n

∀n ∈ N, λ ∈ (0,1/Nf ).

PROOF. Noting that the left-hand side is less than

‖f ‖∞
αn

Ēλ|τn − αn| ≤ ‖f ‖∞
αn

√
Var τn,
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by (44), it suffices to show

Var τn ≤ Cn/λ4.(47)

Indeed, by the inequality (a + b)2 ≤ 2(a2 + b2), we have

Var τn = Var

[
n−1∑
k=0

(τk − τk−1)

]

≤ 2

(
Var

[(n−1)/2�∑
k=0

(τ2k+1 − τ2k)

]
+ Var

[n/2�∑
k=1

(τ2k − τ2k−1)

])
.

Since (τ2k+1 − τ2k)k≥0 and (τ2k − τ2k−1)k≥1 are i.i.d. sequences, we conclude that

Var τn ≤ 2
(n−1)/2�∑

k=0

Var[τ2k+1 − τ2k] + 2
n/2�∑
k=1

Var[τ2k − τ2k−1]
(41)≤ Cn/λ4.

This completes the proof of (47). �

PROOF OF THEOREM 6. Since the left-hand side is uniformly bounded (by
2‖f ‖∞) for all t , the case t < λ2α1 ≤ C is trivial. For t ≥ λ2α1, we let n =
n(t, λ) ≥ 1 be the integer that satisfies

αn ≤ t

λ2 < αn+1.

Since∣∣∣∣∣λ
2

t
Ēλ

�t/λ2�∑
i=0

f (ζ̄i) − 1

αn

Ēλ

αn∑
i=0

f (ζ̄i)

∣∣∣∣∣
≤

∣∣∣∣∣λ
2

t
Ēλ

[�t/λ2�∑
i=0

f (ζ̄i) −
αn∑
i=0

f (ζ̄i)

]∣∣∣∣∣ +
∣∣∣∣∣
(

λ2

t
− 1

αn

)
Ēλ

αn∑
i=0

f (ζ̄i)

∣∣∣∣∣
≤ ‖f ‖∞

(
λ2

t
(αn+1 − αn) +

(
1

αn

− 1

αn+1

)
αn

)

(44)≤ C‖f ‖∞/n.

Theorem 6 follows by combining Lemma 21, Lemma 22 and the above inequality.
�

PROOF OF THEOREM 1. Since the space � of the environment is compact
under the product topology, it suffices to show that

lim
λ→0

Qλf = Qf

for all f that satisfies (1). The above equality follows immediately from Theo-
rems 5 and 6. �
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6. Proof of Theorem 2. Let us recall the regeneration structure defined by
Sznitman and Zerner [23]. For a path (Xn)n≥0, we call t > 0 a renewal time2 in
the direction 
 if

Xm · 
 < Xt · 
 < Xn · 

for all m,n such that m < t < n. For ballistic RWRE, the renewal times exist a.s.
and have finite first moments. We let

T (1) < T (2) < · · ·
denote all the renewal times. Then (XT (k+1) − XT (k), T (k + 1) − T (k))k≥1 is an
i.i.d. sequence under P.

LEMMA 23. If the P-law of ω satisfies Sznitman’s (T′) condition, then there
exists a constant λ0 > 0 such that for all λ ∈ [0, λ0):

(a) ωλ satisfies (T′);
(b) Eλ[T (1)2] < C and Eλ[(T (2) − T (1))2] < C.

PROOF. It is shown in [3], Theorem 1.6, that (T′) is equivalent to a polynomial
ballisticity condition (P). Note that (P) only involves checking a strict inequal-
ity for some (finitely many) exit probabilities from a finite box (see [3], Defini-
tion 1.4). Hence, there exists λ0 > 0 such that (P) holds for all ωλ, λ ∈ [0, λ0), with
the same constants in the upper bounds of [3], Definition 3.2. We have proved (a).
Furthermore, by [22], Proposition 3.1 and [3], Theorem 1.6, (P) implies that the
regeneration time has finite moments. Therefore, the second moments of T (1) and
T (2) − T (1) (under Pλ) can be bounded by the same constant [since they are de-
duced from the same (P) condition] for all λ ∈ [0, λ0). (b) is proved. �

THEOREM 24. Assume that ω satisfies Sznitman’s (T′) condition. If f satis-
fies (1), then for any t ≥ 1, n ∈ N and λ ∈ [0, λ0),

Eλ

[(
n∑

i=0

(
f (ζ̄i) −Qλf

))2]
≤ CNf ‖f ‖2∞n.

To prove this theorem, we need two lemmas.

LEMMA 25. Assume that ω satisfies Sznitman’s (T′) condition. If f satis-
fies (1), then for any λ ∈ [0, λ0),

Eλ

[[
T (n)∑
i=0

(
f (ζ̄i) −Qλf

)]2]
≤ CNf ‖f ‖2∞n.

2It is usually called a regeneration time in the RWRE literature. But we use a different name to
distinguish with the regeneration structure defined in Section 4.
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PROOF. For k ≥ 0, let

Zk = Zk(f ) :=
T (k+1)−1∑

i=T (k)

(
f (ζ̄i) −Qλf

)
.

Then (Zk)k≥Nf
is a Nf -dependent and stationary sequence. Moreover, for k ≥ Nf ,

EλZk = 0.

Hence, for n > Nf ,

Eλ

[(
n−1∑

k=Nf

Zk

)2]

=
n∑

k=Nf

Eλ

[
Z2

k

] + 2
n−Nf∑
j=Nf

Nf∑
k=j+1

Eλ[ZjZk]

≤ 3nNf Eλ

[
Z2

Nf

] ≤ CnNf ‖f ‖2∞.

Noting that

Eλ

[(Nf −1∑
k=0

Zk

)2]
≤ ‖f ‖2∞Eλ

[
T (Nf )2] ≤ CNf ‖f ‖2∞,

our proof is complete. �

LEMMA 26. Let αn = α(n,λ) = EλT (n). Assume that ω satisfies Sznitman’s
(T′) condition. If f satisfies (1), then for any λ ∈ [0, λ′

0),

Eλ

[(
T (n)∑
i=0

f (ζ̄i) −
αn∑
i=0

f (ζ̄i)

)2]
≤ C‖f ‖2∞n.

PROOF.

Eλ

[(
T (n)∑
i=0

f (ζ̄i) −
αn∑
i=0

f (ζ̄i)

)2]
≤ ‖f ‖2∞Eλ

[(
T (n) − αn

)2]

≤ ‖f ‖2∞
n−1∑
i=0

Var
[
T (i + 1) − T (i)

]
.

By Lemma 23(b), the lemma follows. �

PROOF OF THEOREM 24. Set

f̃ (ζ ) := f (ζ ) −Qf.
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By Lemmas 25 and 26, for any m ∈ N,

Eλ

[(
αm∑
i=0

f̃ (ζ̄i)

)2]
≤ CNf ‖f ‖2∞m.

For n ≥ 1, we let m = m(s,λ) ≥ 0 be the integer that satisfies

αm ≤ n < αm+1.

Thus,

Eλ

[(
n∑

i=0

f̃ (ζ̄i)

)2]

≤ 2Eλ

[(
αm∑
i=0

f̃ (ζ̄i)

)2]
+ 8‖f ‖2∞(αn+1 − αn) ≤ CNf ‖f ‖2∞n.

�

PROOF OF THEOREM 2. Recall the definitions of G(·, ·) and a(ζ, e) in Sec-
tion 2. Since

(
(An,Bn)

)
n≥1 :=

((
T (n+1)−1∑

i=T (n)

f̃ (ζi),

T (n+1)−1∑
i=T (n)

a(ζi,�Xi)

))
n≥1

is an Nf -dependent (under P) stationary sequence with zero means, by Lemma 23
and the CLT for m-dependent sequences [5], Theorem 5.2, we conclude that as
n → ∞, the P-law of ( 1√

n
A·n�, 1√

n
B·n�) converges weakly to a Brownian motion

in R
2. Moreover, by the same argument as in [21], Theorem 4.1,

(
λ

t/λ2�∑
i=0

f̃ (ζ̄i), λ

t/λ2�∑
i=0

a(ζ̄i ,�Xi)

)
t≥0

(48)

converges weakly (under P, as λ → 0) to a Brownian motion (Ñt ,Nt ) in R
2. On

the other hand, by (9) and Theorem 24,

E

[(
exp

(
G

(
t/λ2, λ

))
λ

t/λ2∑
i=0

f̃ (ζ̄i)

)3/2]

≤ (
E

[
exp

(
6G

(
t/λ2, λ

))])1/4
(
E

[
λ2

(t/λ2∑
i=0

f̃ (ζ̄i)

)2])3/4

(49)

≤ CectNf ‖f ‖3/2∞ .
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Therefore, by the invariance principle (48) and uniform integrability (49),

lim
λ→0

λEλ

[t/λ2∑
i=0

(
f (ζ̄i) −Qf

)] = lim
λ→0

E

[
exp

(
G

(
t/λ2, λ

))
λ

t/λ2∑
i=0

f̃ (ζ̄i)

]

(5)= E
[
Ñt exp

(
Nt − EN2

t /2
)]

(50)

= t Cov(N1, Ñ1) := t�(f ).

Setting Uj = ∑T (j+Nf +1)−1
k=T (j+Nf ) f̃ (ζ̄k) and Vj = ∑T (j+Nf +1)−1

k=T (j+Nf ) a(ζ̄k,�Xk), � also
has the expression

�(f ) = lim
n→∞E

[
T (n)∑
i=0

f̃ (ζ̄i)

T (n)∑
i=0

a(ζ̄i,�Xi)

]/
E

[
T (n)

]
(51)

=
(
E[U1V1] +

Nf∑
i=1

E[U1V1+i + U1+iV1]
)/

E
[
T (2) − T (1)

]
.

Therefore,∣∣∣∣Qλf −Qf

λ
− Cov(N1, Ñ1)

∣∣∣∣
≤ 1

λ
Eλ

∣∣∣∣∣λ
2

t

t/λ2∑
i=0

f (ζ̄i) −Qλf

∣∣∣∣∣ +
∣∣∣∣∣λt Eλ

[t/λ2∑
i=0

(
f (ζ̄i) −Qf

)] − Cov(N1, Ñ1)

∣∣∣∣∣.
Letting first λ → 0 and then t → ∞, we obtain [by Theorem 24 and (50)]

lim
λ→0

Qλf −Qf

λ
= �(f ).(52)

Theorem 2 is proved. �

REMARK 27. 1. By (51), for any f that satisfies (1),∣∣�(f )
∣∣ ≤ CNf ‖f ‖∞.

2. By the same argument as in [4], one can obtain a quenched invariance prin-
ciple for (48).

7. The derivative of the speed and Einstein relation. In this section, we will
apply Theorems 1 and 2 to derive the derivative of the speed.

PROOF OF COROLLARY 3. Note that

vλ = Qλ

[
d
(
ωλ)] = Qλ

[
d(ω)

] + λQλ

[
d(ξ)

]
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and

v0 = Q
[
d(ω)

]
.

Thus,

vλ − v0

λ
=Qλ

[
d(ξ)

] + Qλ[d(ω)] −Q[d(ω)]
λ

.

Therefore, by Theorem 1 [recall that � = 0 in case (i)] and Theorem 2,

lim
λ→0

vλ − v0

λ
= Q

[
d(ξ)

] + �
(
d(ω)

)
.

[Here, we write �(f ) := (�f1, . . . ,�fd) for a function f = (f1, . . . , fd) :� →
R

d .] Corollary 3 is proved. �

PROOF OF PROPOSITION 4. The existence of the speed is proved in Proposi-
tion 8. When ω is balanced and ξ(x, e) = ω(x, e)e ·
, it is straightforward to check
that Q(d(ξ)) = D
. �

REMARK 28. 1. For case (ii), with Corollary 3, we can also write the deriva-
tive of the speed at λ > 0:

dvλ

dλ
= Qλd(ξ) + �λ

(
d
(
ωλ))

,

where �λ is as � in (51), with ω, E and Q replaced by ωλ, Eλ and Qλ, respec-
tively. It is not hard (by considering the Radon–Nikodym derivative) to obtain

lim
λ→0

�λf = �f.

So dvλ/dλ is continuous at λ = 0 and hence also continuous for λ ∈ [0, λ0).
2. For case (i),

dvλ

dλ
= Qλd(ξ) + λ�λ

(
d(ξ)

)
.

�λ can also be expressed in terms of the regeneration times defined in Section 4.
Moreover, using Lebowitz–Rost’s argument and the moment estimates of the re-
generations, it is not hard to obtain |λ�λ(d(ξ))| ≤ C. But it is not clear whether
limλ→0 λ�λ(d(ξ)) = 0, that is, dvλ/dλ is also continuous at λ = 0.

3. By (51), we get

�(Constant) = 0.

Hence when the original environment is deterministic, Corollary 3 agrees with
Sabot’s result [18]. [Note that when ω and ξ are independent, Q(ξ ∈ ·) =
P(ξ ∈ ·).]
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8. Questions.

1. Is the Einstein relation still true for balanced environment without the uniform
ellipticity assumption? (Recall that the quenched invariance principle for ran-
dom walks in i.i.d. balanced random environment is proved for elliptic environ-
ment [12] and “genuinely d-dimensional” environment [4].)

2. In case (i), is dvλ/dλ continuous at λ = 0? Further, is vλ an analytic function
of λ?

3. Does the Einstein relation hold for a random environment with zero-speed but
is not balanced, for example, RWRE with cut points [6]?

4. We expect Theorem 1 to be true for general random environment (with an er-
godic stationary measure for the environment viewed from the particle process)
with general perturbations. But it is not clear how this can be proved.

APPENDIX: PROOF OF THEOREM 12

The idea of our proof is the following. Since the drift ωλ at each point is of size
cλ, the “worst case” is that all the drifts d(θxωλ) point toward the level {z : z · e1 =
0}. Hence, we only need to work on the “worst case” to get the upper bound. To
this end, we couple Xi with a slow chain Yi on Z

+, which is defined by

Y0 = |X0 · e1|,

Yi+1 − Yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if Xi+1 · e1 − Xi · e1 = 0,

1, if Xi+1 · e1 �= Xi · e1 and Yi = 0,

Bi(Xi), if Xi+1 · e1 − Xi · e1 = 1 and Yi �= 0,

−1, if Xi+1 · e1 − Xi · e1 = −1 and Yi �= 0,

where (Bi(x))i∈N,x∈Zd are independent Bernoulli random variables [which are in-
dependent of (Xj ,Yj )0≤j≤i ] such that

P
(
Bi(x) = 1

) = (1 − λ/κ)

2p(x)

and

P
(
Bi(x) = −1

) = 1 − (1 − λ/κ)

2p(x)
,

where3

p(x) := P x
ωλ(X1 · e1 = 1|X1 · e1 �= 0).

3Note that by the uniform ellipticity assumption,

p(x) = ωλ(x, e1)

ωλ(x, e1) + ωλ(x,−e1)
≥ 1 − λ/κ

2
.
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That is, Yi reflects at the origin and moves only when Xi · e1 changes. When |Xi ·
e1| decreases and Yi �= 0, Y· moves left. When |Xi ·e1| increases and Yi �= 0, Y· flips
a coin Bi(Xi) to decide where to move. (Yi)i≥0 has the following good properties:

1. |Xi · e1| − Yi is always a nonnegative even integer. Hence,

T̃n ≤ S̃n,(53)

where

S̃n :=
{
i ≥ 0 :Yi = n

λ1

}
.

Moreover,

P(Yi+1 − Yi = ±1|Xj,Yj ,0 ≤ j ≤ i)
(54)

= 1 ∓ λ/κ

2

(
ωλ(Xi, e1) + ωλ(Xi,−e1)

)
if Yi > 0

and P(Yi+1 − Yi = 1|Xj,Yj ,0 ≤ j ≤ i) = 1 if Yi = 0.
2. (Yi)i≥0 is not a Markov chain. But if we set t0 = 0, ti+1 = inf{n > ti :Xn �=

Xti }, then

Zi := Yti , i ≥ 0

is a nearest-neighbor random walk on Z
+ that satisfies

P(Zi+1 − Zi = ±1|Zj , j ≤ i) = 1 ∓ λ/κ

2
if Zi > 0(55)

and P(Zi+1 − Zi = 1|Zj , j ≤ i) = 1 if Zi = 0.

PROOF OF THEOREM 12. Let Yi,Zi, S̃i, i ≥ 0 be defined as above, by (53), it
suffices to show that for some s > 0,

E
[
esλ2S̃n/n|Y0 = 0

]
< ∞.

By the same argument as in [20], Lemma 1.1, it is enough to show that for any
x ∈ {0,1, . . . , n/λ1},

E[S̃n|Y0 = x] ≤ cn

λ2 .(56)

Putting

Sn := inf{i ≥ 0 :Zi = n/λ1},
we have

S̃n =
Sn−1∑
i=0

ti+1.
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Since for every i ≥ 0, ti+1 is a geometric random variable with success proba-
bility ωλ(Xti , e1) + ωλ(Xti ,−e1) ≥ κ , we can stochastically dominate (ti)i≥0 by
a sequence of i.i.d. Geometric(κ) random variables (Gi)i≥0 that are independent
of Sn. Thus, for any x ∈ {0,1, . . . , n/λ1},

E[S̃n|Y0 = x] ≤ E[Sn/κ|Z0 = x]
≤ E[Sn|Z0 = 0]/κ.

Therefore, to prove (56), we only need to show that

E[Sn|Z0 = 0] ≤ cn

λ2 .(57)

With abuse of notation, we write P(·|Z0 = x) and E[·|Z0 = x] as P x(·) and Ex[·],
respectively.

Set

Hn = inf
{
i > 0 :Zi ∈ {0, n/λ1}}.

Conditioning on the hitting time to the origin, we have

E0[Sn] = 1 + E1[Hn] + P 0(ZHn = 0)E0[Sn].(58)

By (55), Zm − Z0 − mλ/κ is a martingale for 0 ≤ m ≤ Hn. Thus, by the optional
stopping theorem, for any x ∈ {1, . . . , n/λ1},

Ex

[
ZHn − x − λ

κ
Hn

]
= 0.

Hence,

E1[Hn] ≤ κE1[ZHn]/λ.(59)

By (55) and Proposition 10, we get

cλ ≤ P 1(ZHn = n/λ1) ≤ c′λ(60)

and so

E1[ZHn] ≤ cλ · n/λ1 ≤ cn.

This and (59) yield

E1[Hn] ≤ cE1[ZHn]/λ ≤ cn/λ.

It then follows by (58) and (60) that

E0[Sn] = 1 + E1[Hn]
P 0(ZHn = n/λ1)

= 1 + E1[Hn]
P 1(ZHn = n/λ1)

≤ C
n

λ2 .

Inequality (57) is proved. �
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