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THE MEASURABLE KESTEN THEOREM

BY MIKLÓS ABÉRT1, YAIR GLASNER2 AND BÁLINT VIRÁG3

Alfréd Rényi Institute of Mathematics, Ben-Gurion University of the Negev
and University of Toronto

We give an explicit bound on the spectral radius in terms of the densities
of short cycles in finite d-regular graphs. It follows that the a finite d-regular
Ramanujan graph G contains a negligible number of cycles of size less than
c log log |G|.

We prove that infinite d-regular Ramanujan unimodular random graphs
are trees. Through Benjamini–Schramm convergence this leads to the fol-
lowing rigidity result. If most eigenvalues of a d-regular finite graph G fall
in the Alon–Boppana region, then the eigenvalue distribution of G is close to
the spectral measure of the d-regular tree. In particular, G contains few short
cycles.

In contrast, we show that d-regular unimodular random graphs with max-
imal growth are not necessarily trees.

1. Introduction. Let G be a d-regular, finite or infinite connected undirected
graph. Let M be the Markov averaging operator on �2(G). When G is infinite,
we define the spectral radius of G, denoted ρ(G), to be the norm of M . When
G is finite, we want to exclude the trivial eigenvalues, and thus define ρ(G) to
be the second largest element in the set of absolute values of eigenvalues of M .
For an infinite graph G, we have ρ(G) ≥ ρ(Td) = 2

√
d − 1/d where Td denotes

the d-regular tree. For finite graphs, the Alon–Boppana theorem [21] says that
lim infρ(Gn) ≥ ρ(Td) for any infinite sequence (Gn) of finite connected d-regular
graphs with |Gn| → ∞.

We call G a Ramanujan graph, if ρ(G) ≤ ρ(Td). Lubotzky, Philips and Sar-
nak [15], Margulis [17] and Morgenstern [20] have constructed sequences of d-
regular Ramanujan graphs for d = pα +1. Also, Friedman [9] showed that random
d-regular graphs are close to being Ramanujan.

All the Ramanujan graph families above have large girth, that is, the minimal
size of a cycle tends to infinity with the size of the graph. However, the reason for
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that is group theoretic and not spectral, and a priori, Ramanujan graphs could have
many short cycles.

In this paper, we investigate the connection between the densities of short cy-
cles, the spectral radius and the spectral measure for d-regular graphs. We apply
our methods to give explicit estimate these invariants, then we pass to graph limits
and prove limiting results.

1.1. Explicit estimates. A cycle (or k-cycle) in a graph is a walk of length k

that starts and ends at the same vertex. It is called nontrivial if either for some
directed non-loop edge e, the number of times the cycle passes through e differs
from the number of times it passes through the reversal of e, or k = 1 (see Defini-
tion 23). For a finite graph G let γk(G) denote the number of nontrivial k-cycles
in G divided by the number of vertices |G| of G.

THEOREM 1. Let G be a finite d-regular graph with |G| ≥ d7. Then for any
k ≥ 1 we have

ρ(G)

ρ(Td)
≥ 1 + γk(G)

νk

− (3/2) log logd−1 |G| + 6

logd−1 |G| ,

where νk = 2 · 101124k(d − 1)3kk.

Applying this to finite Ramanujan graphs yields that they have few cycles of
length o(log log |G|).

THEOREM 2. Let d ≥ 3 and β = (30 log(d − 1))−1. Then for any d-regular
finite Ramanujan graph G, the proportion of vertices in G whose β log log |G|-
neighborhood is a d-regular tree is at least 1 − c(log |G|)−β .

This answers a question of Lubotzky ([14], Question 10.7.1), who asked for a
clarification on the connection between eigenvalues and girth. Note that until now,
it was not even known whether a finite Ramanujan graph cannot have a positive
density of short cycles.

It is easy to see that infinite Ramanujan graphs can have arbitrarily many short
cycles. In fact, every connected, infinite d-regular graph can be embedded as a sub-
graph of a Ramanujan graph with degree at most d2 (see Corollary 35). However,
it turns out that cycles of bounded size must be sparse in a Ramanujan graph.

THEOREM 3. Let G be an infinite d-regular graph such that every vertex in
G has distance at most R from a k-cycle. Then

ρ(G) ≥ ρ(Td) + d − 2

d(d − 1)2�R+k/2+1� .
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1.2. Graph limits and spectral measure. The spectral measure μTd
of the

Markov operator on Td , also known as the Plancherel measure of Td or the Kesten–
McKay measure, has density

d

2π

√
ρ2(Td) − t2

1 − t2 .

Let (Gn) be a sequence of finite d-regular graphs. We say that (Gn) has essentially
large girth, if for all k the density of nontrivial cycles satisfies

lim
n→∞γk(Gn) = 0.

For a finite graph G, let μG denote the eigenvalue distribution of the Markov
operator on G. Then the following are equivalent (see Proposition 14):

1. (Gn) has essentially large girth;
2. (Gn) converges to Td in Benjamini–Schramm convergence;
3. μGn weakly converges to μTd

.

A sequence (Gn) of finite d-regular graphs is weakly Ramanujan if

lim
n→∞μGn

([−ρ(Td), ρ(Td)
]) = 1,

that is, if most eigenvalues of Gn fall in the minimal possible supporting region.
Note that a weakly Ramanujan sequence is not necessarily an expander sequence.
In fact, the graphs Gn do not even have to be connected.

From (1) 	⇒ (3) and the fact that μTd
is continuous, it follows immediately that

every graph sequence of essentially large girth is weakly Ramanujan (in contrast,
ρ is only lower semicontinuous with respect to Benjamini–Schramm convergence
of graphs). We show that the converse also holds.

THEOREM 4. Let (Gn) be a weakly Ramanujan sequence of finite d-regular
graphs. Then (Gn) has essentially large girth.

Theorem 4 can also be looked at as a rigidity result, as it says that if we force
most of the eigenvalues of the Markov operator of a large finite graph inside the
Alon–Boppana bound, then their distribution will be close to μTd

.
In the proof of Theorem 4, it is the use of Benjamini–Schramm convergence

that allows us to get rid of the bad eigenvalues and clear up the picture. Limit
objects with respect to this convergence are random rooted graphs (G,o) called
unimodular random graphs. We will sometimes drop the root o from the notation.
The notion has been introduced in [2]: for the definition, see Section 2. Unimod-
ular random graphs tend to behave like vertex transitive graphs in many senses.
Theorem 4 now follows from the following.

THEOREM 5. Let (G,o) be a d-regular unimodular random graph that is
infinite and Ramanujan a.s. Then G = Td a.s.
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This is Kesten’s theorem for vertex transitive graphs ([12] and [23]). We give
the following two quantitative versions of Theorem 5. For infinite d-regular uni-
modular random graphs,

E logρ(G) − logρ(Td) ≥

⎧⎪⎪⎨⎪⎪⎩
1

νk

Eγk(G,o),

−1

k
E logκ∗

k (G,o).

(1)

Here, γk(G,o) denotes the number of nontrivial k-cycles starting at o, and νk is
a constant defined in Theorem 1. Note that for a fixed finite graph G the density
γk(G) equals the expected value of γk(G,o) over a uniformly chosen root o of G.

To define κ∗
k (G,o), consider all paths of length k from o to a vertex v. After

attaching a fixed path from v to o, these can be used as generators for a random
walk on the fundamental group of G. Then κ∗

k (G,o) is the geometric average of the
spectral radii of these random walks when v is a chosen randomly as the position
of the infinite nullcycle (defined in Corollary 20) at time k [see (19), (21) for more
details].

Note that if our unimodular random graph G is not a tree, then for k large
enough, with positive probability, the Cayley graph of the subgroup of the funda-
mental group given by above loops as generators has spectral radius less than one.
Thus, the second bound clearly implies Theorem 5.

The first bound in (1) is proved in Section 5 as Theorem 28; the proof uses
results from Sections 3 and 4. It is just the infinite version of Theorem 1. The
advantage of this approach is the linear lower estimate on how the spectral radius
grows compared to the tree: we believe this to be sharp. The major advantage of
the second bound in (1) (proved in Section 6) is that it is sharp in limit as k → ∞;
however, κ∗

k seems to be hard to compute.
Theorem 4 is related to a paper of Serre [24] (see also [19]) that studies asymp-

totic properties of graph sequences. Let dk(G) denote the number of primitive,
cyclically reduced cycles of length k in the graph G. Recall that a cycle is primi-
tive if it is not a proper power of another cycle.

THEOREM 6 (Serre). Let (Gn) be a sequence of finite d-regular graphs, such
that the limit

γ ′
k = lim

n→∞dk(Gn)/|Gn|
exists for every k. Then the measures μG weakly converge. If the series

∞∑
k=1

γ ′
k(d − 1)−k/2

converges, then the sequence of graphs is weakly Ramanujan and the limit-
ing measure is absolutely continuous with respect to the Lebesgue measure on
[−ρ(Td), ρ(Td)].
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Theorem 4 now immediately implies the following.

COROLLARY 7. If the series
∞∑

k=1

γ ′
k(d − 1)−k/2

converges, then γ ′
k = 0 for all k and the limiting measure of μGn equals μTd

.

It is natural to ask whether a version of Theorem 5 holds for growth instead of
spectral radius. In Section 9, we show that the answer is negative.

THEOREM 8. There exists an infinite d-regular unimodular random graph
with the same growth as Td but not equal to Td .

We obtain our example by considering the universal cover of the infinite cluster
in supercritical percolation over Z2.

1.3. The basic method. There is a common method in the proofs of Theo-
rems 1 and 5 which we can summarize as follows.

The central tool of our analysis is a nullcycle. Recall that a cycle is a walk of
finite length that starts and ends at the same vertex.

DEFINITION 9. A nullcycle is a cycle in a graph G so that if we keep deleting
backtrackings (steps that are immediately reversed), we get a cycle of length 0.

This property does not depend on the order of erasing backtrackings. Equiva-
lently, a nullcycle is a cycle whose lift in the universal covering tree of the graph
is also a cycle. In other words, the walk corresponds to a trivial element in the
fundamental group of the graph G. The number of nullcycles in a d-regular graph
starting at a fixed vertex v equals the number of cycles in the d-regular tree at a
fixed vertex.

To bound the spectral radius, we have to count cycles of a given length. In order
to bound the spectral radius away from that of the tree, we need to show that there
are exponentially more cycles than nullcycles. Consider the set of cycles of length
nk starting at a vertex v in a d-regular graph G. We say that w′ is a rewiring of w

if they are at the same place at times that are multiples of k. This definition is used
in Section 6; in Section 4.2 we use a slight variant of this.

Consider the equivalence class [w] of a typical nullcycle w under the rewiring
equivalence relation. The essence of our argument is to show that for a typical w,
the probability that a random element C of [w] is a nullcycle is exponentially
small. Essentially, in every segment [jk, (j + 1)k], if there are short cycles around
in the graph, there is a positive probability that the rewiring C will use them, and
this is likely to stop C from being null-homotopic.
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In order to show that C is null-homotopic with exponentially small probability,
we need to find a linear number of j so that G has short cycles around w(jk).
Fortunately, the random nullcycle w samples the graph G in a homogeneous man-
ner. In particular, if w(0) is a uniformly chosen vertex, then so will be w(j) for
every j . This is an advantage of using random nullcycles over random cycles. For
infinite graphs, the proof of this step uses unimodularity.

A crucial property that we use to get explicit bounds is one that random null-
cycles share with simple random walks. Let G be a d-regular rooted graph and let
W be a uniform random nullcycle of length o(

√|G|), starting at the root. Then the
expected number of visits of W at any vertex of G can be bounded above in terms
of ρ(G) (without referring to the length of the cycle). In particular, for a good ex-
pander graph, the expected number of returns of a random nullcycle is bounded.
We need this property to show that a typical rewiring will not use the same short
cycles over and over again. This is a technically difficult point that we tackle in
Section 4.

Putting all these together, we get that if there are many short cycles, then a typ-
ical nullcycle will get close to short cycles at linearly many different times. Thus,
a random rewiring will be a nullcycle only with exponentially small probability.
In other words, there are exponentially more cycles than nullcycles, which implies
that the spectral radius of G is greater than that of the tree Td .

1.4. Open problems. It is not clear whether the log log |G| is optimal in The-
orem 2. For all the known examples of graphs that are close to being Ramanujan,
the shortest cycles with positive density are actually logarithmic.

PROBLEM 10. Is there a constant c = c(d) > 0 such that for any d-regular
Ramanujan graph sequence (Gn), the probability that the c log |Gn|-neighborhood
of a uniform random vertex in Gn is a tree converges to 1?

A standard ergodicity argument says that for an ergodic unimodular random
graph G, the weak limit of the random walk neighborhood sampling of G gives
back the distribution of G a.s. [6]. This suggests the following possible general-
ization of Theorem 5.

PROBLEM 11. Let G be an infinite d-regular rooted Ramanujan graph and
let k > 0. Let pn denote the probability that the random walk of length n on G

ends on a k-cycle. Is it true that pn converges to 0?

That is, is it true that the random walk neighborhood sampling of G converges
to Td? The answer does not follow from Theorem 5, even when the random walk
sampling converges, as the limit is only a stationary distribution on rooted graphs
and is not necessarily unimodular. It would also be interesting to see whether Theo-
rem 5 holds for stationary random graphs. The recent paper [11] solves Problem 11
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affirmatively in the case when the so-called co-growth of G, the exponent of the
probability of return for a non-backtracking random walk, is less than 1/

√
d − 1.

However, when the co-growth equals 1/
√

d − 1, the graph is still Ramanujan but
the answer seems unclear. We thank Tatiana Smirnova-Nagnibeda for communi-
cating this with us. After the first preprint version of this paper appeared, Lyons
and Peres, [16] generalized our results and in particular gave a positive answer to
Problem 11.

The linear lower estimate in the spectral radius in Theorem 1 seems to be sharp,
but we have not been able to settle this with a suitable family of examples. The
same is true for unimodular random graphs [see the first bound of (1)].

PROBLEM 12. Does there exists C > 0 such that for every r > 0 there exists
an infinite d-regular unimodular random graph G with

ρ(G) ≤ ρ(Td) + Cr

such that the density of loops in G is at least r?

One natural idea would be to use a modified universal cover of a finite d-regular
graph of size n with a loop, where we never open the loop in the cover. It looks
reasonable that this cover (which is a finitely supported random rooted tree with
loops) should have spectral radius around ρ(Td) + C/n.

The paper is organized as follows. Section 2 contains the basic definitions and
we prove some lemmas that will be used throughout the paper. In Sections 3 and 4,
we use properties of cycles in trees to study nullcycles, which are needed for The-
orem 1. In Section 5, we prove Theorem 28, a more general version of Theorems 1
and 5. We also show Theorem 29, a more general version of Theorem 2. Finally,
in this section we also prove Theorem 4.

Section 6 contains a sharp bound on the spectral radius in terms of random
walks on the fundamental group. Section 7 contains the proof of Theorem 3. This
section is independent of the rest.

In Section 8, we give example of Ramanujan graphs with loops, and Section 9
we prove Theorem 8.

Note that one can read Sections 5 and 6 independently, after reading Section 2,
but reading any of these two will give help when reading the other.

An earlier version of this paper contained a generalization of Kesten’s theorem
on groups. As the readership of this result is expected to be different from that of
the current paper (and the current paper is already long), we decided to publish it
in a separate article; see [1].

2. Preliminaries. In this section, we define the notions and state some basic
results used in the paper.

We follow Serre’s notation for a graph, with a modification on how to define
loops. A graph G consists of two sets, a set of vertices denoted by V (G) and a
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set of edges denoted E(G). For every edge e ∈ E(G), there are vertices e− (the
initial vertex) and e+ (the terminal vertex). We allow e− = e+: such edge is called
a loop. For every edge e, there is a reverse edge e ∈ E(G) such that e+ = e− and
e− = e+. For a loop e, we allow e = e; these are called half-loops. The degree of
a vertex v is

degv = ∣∣{e ∈ E(G)|e− = v
}∣∣.

So half-loops contribute 1 to the degree, but loops together with their distinct in-
verse contribute 2. For spectral and random walk questions, each (non-half) loop
can be replaced by two half-loops. So, in this paper, we will assume that all loops
are half-loops.

A graph is d-regular, if all vertices have degree d .
A walk of length n is a sequence of directed edges w = (w1,w2, . . . ,wn) such

that w+
i−1 = w−

i (2 ≤ i ≤ n). The walk is a cycle if w−
1 = w+

n . The vertices of the
walk are defined by w(i − 1) = w−

i and w(n) = w+
n is the end of the walk. The

inverse of a walk w is defined by w−1 = (wn,wn−1, . . . ,w1). A cycle is a nullcycle
if its lift to the universal cover of G stays a cycle. That is the same as saying that if
we keep erasing backtracks from the cycle, we get to the empty walk. For a rooted
graph (G,o), we will denote the set of nullcycles of length n by Nn.

For a graph G and x, y ∈ V (G), let Wn(x, y) denote the set of walks of length n

starting at x and ending at y. A random walk of length n starting at x is a uniform
random walk starting at x. Let pn(x, y) denote the probability that a random walk
of length n started at x ends at y. We call pn(x, x) the n-step return probability.

Let G be a d-regular, connected undirected graph. Let �2(G) be the Hilbert
space of all square summable functions on the vertex set of G. Let us define the
Markov operator M : �2 → �2 as follows:

(Mf )(x) = 1

d

∑
e∈E(G),e−=x

f
(
e+).

When G is infinite, we define the spectral radius of G, denoted ρ(G), to be
the norm of M . When G is finite, we want to exclude the trivial eigenvalues, and
thus define ρ(G) to be the second largest element in the set of absolute values of
eigenvalues of M . Note that when the connected graph G is bipartitie, then −d is
an eigenvalue with multiplicity one; this is not counted in the definition of ρ(G).

In the case when G is infinite and connected, one can express the spectral radius
of G from the return probabilities as follows:

ρ(G) = lim
n→∞p2n(x, x)1/2n,

where x is an arbitrary vertex of G.
The Markov operator M is self-adjoint, so we can consider its spectral measure.

This is a projection valued measure P such that P(O) : l2(G) → l2(G) is a pro-
jection for every Borel set O ⊂ [−1,1]. For every f ∈ l2(G) with ‖f ‖2 = 1, the
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expression

μf (O) = 〈
P(O)f,f

〉
defines a Borel probability measure on [−1,1].

For graph G rooted at o, let the spectral measure of G be

μG,o = μδo,

where δo ∈ l2(G) is the indicator function of o. The best way to visualize this
measure is to look at its moments, that satisfy the following equality:∫

[−1,1]
xk dμG,o = pk(o, o)

for all integers k ≥ 0.

Unimodular random graphs. Heuristically, a unimodular random graph is a
probability distribution on rooted graphs that stays invariant under moving the root
to any direction. However, one has to be careful with this intuition, as direction is
not well-defined and indeed, there exist vertex transitive graphs that we want to
exclude from the definition. We follow [3], Section 5.2, in our definition restricted
to the d-regular case where it is somewhat simpler.

A flagged graph is a graph with a distinguished root and a directed edge starting
at the root. One can invert the flag by moving the root to the other end of the flag
and switching the direction of the flag.

DEFINITION 13. Let G be a probability distribution on rooted d-regular
graphs. Pick a uniform random edge from the root and put a flag on it. This gives
a probability distribution G̃ on flagged d-regular graphs. We say that G is a uni-
modular random graph, if the distribution G̃ stays invariant under inverting the
flag.

That is, if some of the flagged lifts of a given rooted graph are isomorphic,
we count it with multiplicity. Note that vertex transitivity in itself does not imply
unimodularity. A simple example is the so-called grandmother graph. This can be
obtained by taking a 3-regular tree and directing it towards a boundary point, then
connecting every vertex to the ascendant of its ascendant (its grandmother) and
then erasing directions (see Figure 1).

If one does not mind working with edge directed graphs, it is easier to see the
lack of unimodularity in the oriented 3-regular tree itself. There is only one type
of rooted graph here that obviously appears with probability 1. The corresponding
measure on flagged graphs puts the flag on an outgoing edge with probability 1/3,
but after an inversion we see an outgoing edge with probability 2/3. See [2] for
more about unimodularity.
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FIG. 1. The grandmother graph.

Mass transport principle. The most useful property about unimodular random
graphs (that can also be used to define them) is the Mass Transport Principle which
is as follows. Let f be a non-negative real-valued function on triples (G,x, y)

where G is a d-regular rooted graph and x, y ∈ G such that f does not depend on
the location of the root. Then the expectations

E
[∑
y∈G

f (G,o, y)

]
= E

[∑
x∈G

f (G,x, o)

]
,

where o is the root of G. The picture is that if one sets up a paying scheme on the
random graph G that is invariant under moving the root, then the expected payout
of the root equals its expected income.

Benjamini–Schramm convergence. A d-regular graph sequence (Gn) is de-
fined as a sequence of finite d-regular graphs with size tending to infinity. By a
pattern of radius r , we mean a rooted graph where every vertex has distance at
most r from the root. For a finite graph G and a pattern α of radius r , let the
sampling probability p(G,α) be the probability that the r-ball around a uniform
random vertex of G is isomorphic to α. We say that a graph sequence (Gn) is
Benjamini–Schramm convergent, if p(Gn,α) is convergent for every pattern α. It
is easy to see that every graph sequence has a convergent subsequence.

What is a natural limit object of a convergent graph sequence? One can also
take pattern densities of a unimodular random graph G; there p(G,α) denotes the
probability that the r-ball around the root of G is isomorphic to α. We say that a
graph sequence (Gn) converges to G if

lim
n→∞p(Gn,α) = p(G,α) for all patterns α.

Every Benjamini–Schramm convergent graph sequence has a unique limit unimod-
ular random graph (see [3], Section 2.4).

For a finite d-regular graph G let μG denote the eigenvalue distribution of the
Markov operator on G. Note that for a uniform random vertex o we have μG =
EμG,o. For an infinite unimodular random graph G, we can also define μG =
EμG,o.

PROPOSITION 14. Let (Gn) be a sequence of finite d-regular graphs. Then
the following are equivalent:
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(1) (Gn) has essentially large girth;
(2) (Gn) converges to Td in Benjamini–Schramm convergence;
(3) μGn weakly converges to μTd

.

PROOF. The equivalence of (1) and (2) is immediate from the definition of
Benjamini–Schramm convergence.

Assume that (Gn) converges to the unimodular random graph G. We claim that
μGn weakly converges to the expected spectral measure μG = EμG,o. To check
this, we can look at the kth moment∫

xk dμG = E
[
pG

k (o, o)
]
.

Recall that pG
k (o, o) denotes the probability of return of the random walk on G

starting at o. But for any graph G and vertex v of G, the return probability pG
k (v, v)

only depends on the k/2-ball around o. Since there are only finitely many patterns
of a given radius, this implies

E
[
pG

k (o, o)
] = ∑

α is a pattern of radius �k/2�
p(G,α)pα

k (v, v),

where v is the root of α. Now (Gn) converges to G, so

E
[
pG

k (o, o)
] = lim

n→∞
∑

α is a pattern of radius �k/2�
p(Gn,α)pα

k (v, v)

= lim
n→∞ E

[
p

Gn

k (u,u)
]= lim

n→∞

∫
xk dμGn,

where u is a uniform random vertex in Gn. So, μGn weakly converges to μG as
claimed. Hence, (2) implies (3) follows immediately.

Assume that (1) does not hold, that is, (Gn) is a graph sequence that does not
have essentially large girth. Then there exists k, ε > 0 such that the density of
k-cycles in Gn is at least ε for infinitely many of the Gn. This implies that for
these n,∫

xk dμGn = E
[
p

Gn

k (u,u)
]≥ p

Td

k (o, o) + ε

dk
=
∫

xk dμTd
+ ε

dk
,

which implies that μGn does not converge weakly to μTd
. Hence, (3) does not hold.

We proved the required equivalences. �

Fundamental group. Let G be a graph rooted at o. We call two cycle starting at
o homotopic, if one can get one from the other by inserting and erasing backtracks,
that is, walks of type ss where s is an edge of G. Then the set of equivalence
classes forms a group under concatenation, called the fundamental group π1(G).
It is well known that the fundamental group of a graph without half-loops is a free
group [18], Theorem 5.1. Every half-loop adds a cyclic group of order 2 as a free
product. The most important general property of fundamental groups we shall use
in this paper is that if H is a subgraph of G, then the induced homomorphism from
π1(H) to π1(G) is injective.
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FIG. 2. A cycle in the 3-regular tree.

3. Cycles in Td . This section establishes some basic properties of Nn =
Nn(d), the set of n-cycles in Td . Such a cycle α ∈ Nn in the 3-regular tree is
depicted in Figure 2. Given any covering map p : T3 → X to a 3-regular graph X,
the projection of the cycle p(α) is referred to as a nullcycle in the graph X.

3.1. Explicit return probability bounds. We start by estimating the size of Nn.

LEMMA 15 (Return probabilities of SRW on Td ). Let ρ = ρ(Td) = 2
√

d − 1/

d . The n-step return probability rn = d−n|Nn(d)| for simple random walk in Td

for even n > 0 satisfies

2

3

ρn

n3/2 < rn < 10
ρn

n3/2 .

PROOF. Return probabilities are moments of the spectral measure. The spec-
tral measure in Td is supported on [−ρ,ρ] with density given by

d

2π

√
ρ2 − t2

1 − t2 ,

see [25], formula (19.27). So for even n, by symmetry, we may write

rn = d

π

∫ ρ

0
tn

√
ρ2 − t2

1 − t2 dt = d

2π

∫ ρ2

0
s(n−1)/2

√
ρ2 − s

1 − s
ds.
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Then, with

a = ρ−2
∫ ρ2

0
s(n−1)/2

√
ρ2 − s ds =

√
π

2
ρn �(n/2 + 1/2)

�(n/2 + 2)

we have

dρ2

2π
a < rn <

dρ2

2π(1 − ρ2)
a.

A small computation shows that for d ≥ 3 we have

8

3
≤ 4 − 4

d
= dρ2,

dρ2

1 − ρ2 = 4d2 − 4d

(d − 2)2 ≤ 24.

Now for n ≥ 4 we have

κn−3/2 ≤ �(n/2 + 1/2)

�(n/2 + 2)
≤ 23/2n−3/2, κ = 43/2 �(2.5)

�(4)
.

The upper bound also holds for n = 2. (We manually check that the lower bound
of the lemma holds for r2 = 1/d .) To complete the proof, we bound the lower and
upper constants factors

8

3

1

2π

√
π

2
κ = 2

3
, 9.57 ∼ 24

1

2π

√
π

2
23/2 = 12

√
2/π < 10. �

Our next goal is to study the expected number of visits for random cycles in Td .
This will be based on the same question for random walk excursions on Z. Recall
that an excursion of length n on Z is a walk that stays positive except for time 0
and n, when it is zero.

3.2. Visits of cycles.

LEMMA 16 (Counting excursions). Let wn,k be the number of walks of length
n ≥ 1 from 0 to k ≥ 0 in Z. Then

wn,k <
√

2/π
2n

√
n
e−k2/(2n).

Let w+
n,k be the number of such paths that stay positive after time 0. Then for k > 0

we have

w+
n,k <

√
2/π

2nk

n3/2 e−k2/(2n).

PROOF. We may assume that n and k are the same parity. Then

wn,k =
(

n
n + k

2

)
.
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We use the inequality (
n

�n/2�
)

<
√

2/π
2n

√
n
,

which holds since the ratio of the two sides is increasing along even (resp., odd)
n and converges to 1. For n even, we now write(

n
n + k

2

)(
n

n/2

)−1
= ((n − k)/2 + 1) · · · (n/2)

(n/2 + 1) · · · ((n + k)/2)
≤
(

n − k

n

)k/2

≤ e−k2/(2n),

and the odd case follows similarly.
By the Ballot theorem (see Section 2.7.1 in [13]), we have

w+
n,k = k

n
wn,k ≤

√
2/π2n k

n3/2 e−k2/(2n). �

Recall that a simple random walk excursion of length n on Z is a uniform choice
from all excursions of length n. In other words, it is the simple random walk con-
ditioned to stay positive except for time 0 and n, when it is zero. Now we are ready
to bound the expected number of visits for simple random walk excursions on Z.

LEMMA 17 (Visits of SRW excursions on Z). The expected number of visits
vk,n to level k > 0 for the simple random walk excursion of length n on Z satisfies
vk,n ≤ 64k.

PROOF. Let w+
n,k denote the number of walks of length n starting at 0 and

ending at k ≥ 0 that stay positive except perhaps at time 0 and n. If Xm is a random
walk excursion of length n, then

vk,n = E
n−1∑
m=1

1(Xm = k) =
n−1∑
m=1

P(Xm = k)

= 1

w+
n,0

n−1∑
m=1

w+
m,kw

+
n−m,k ≤ 2

w+
n,0

n/2∑
m=1

w+
m,kw

+
n−m,k.

For n = 2, the claim is easy to check. For n ≥ 4, even we have the lower bound us-
ing the Catalan number formula (for general estimates on Catalan numbers see [8])

w+
n,0 = 2wn−2,0

n
≥ 1√

2π

2n

n3/2 ,

where the last inequality holds since the ratio of the two sides is decreasing and
converges to 1. Together with Lemma 16 this gives the bound

vk,n ≤ 2 · 2

π
k2

√
2πn3/2

n/2∑
m=1

e−k2/(2m)

m3/2(n − m)3/2 ≤ 2

π
·2 ·√2π ·23/2k2

n/2∑
m=1

e−k2/(2m)

m3/2 .
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Let am denote the last summand, even for non-integer m. Then for all m ≥ 1 and
δ ∈ [0,1] we have am+δ ≥ 2−3/2am. Thus, we can bound the sum by

23/2
∫ ∞

1

e−k2/(2x)

x3/2 dx < 23/2
∫ ∞

0

e−k2/(2x)

x3/2 dx = 4
√

π

k
. �

A random cycle is a cycle chosen from uniform measure from the set of cycles
with the same starting point.

LEMMA 18 (Visits of cycles in Td). The expected amount of time a random
cycle of even length n in Td spends at distance k > 0 from its starting point is at
most 2 · 104k. For k = 0, it is at most 301.

PROOF. Consider a random cycle of length n in Td from the root o. Let Rj

be the distance of the walk from o at time j . The following is well known; see
Section 2 of [7].

Let 0 = T0 < T1 < · · · < TM = n be the (random) times when Rj is zero. Given
the values of Ti and M , the sections of Rj in between are independent simple ran-
dom walk excursions on Z. In particular, given this information, Lemma 17 implies
that the conditional expectation of the number of visits of Rj to k is bounded above
by 64kM . So, by Lemma 17, it suffices to show that EM is bounded by a constant
independent of n.

Let rn be the probability that the simple random walk on Td visits its starting
point at time n. By the Markov property, we have

EM = 1 +
n/2−1∑
k=1

P(R2k = 0) = 1 + 1

rn

n/2−1∑
k=1

r2krn−2k

≤ 1 + 3

2
· 102

n/2−1∑
k=1

n3/2

(2k)3/2(n − 2k)3/2 ,

where the last inequality follows form Lemma 15. Since the summand is convex
as a function of k, the k term is bounded above by∫ k+1/2

k−1/2

n3/2

(2x)3/2(n − 2x)3/2 dx

and the entire sum is at most∫ n/2−1/2

1/2

n3/2

(2x)3/2(n − 2x)3/2 dx = 2(n − 2)√
(n − 1)n

< 2.

This gives EM < 301. �

Finally, we consider the limiting process of the random cycle starting at o in Td .
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PROPOSITION 19 (The infinite cycle in Td ). Let (Xn
k , k = 0, . . . , n) be the

random cycle of even length n from o to o in Td . Then as n → ∞ the process
(Xn

k , k = 0, . . . , n) converges in distribution to a process (Xk, k ≥ 0) called the in-
finite cycle, a time-homogeneous Markov process with transition probabilities (2).

PROOF. The random cycle of length n is a time-inhomogeneous Markov pro-
cess. Let pn

k (x, y) be denote its transition probabilities from x to y at time k. It
suffices to show that the ratios of pn

k (x, x+)/pn
k (x, x−) converge, (where x+, x−

denotes a child or the parent of x, resp.) as any probability of the form

P
(
Xn

1 = x1, . . . ,X
n
k = xk

)
can be written as an expression containing finitely many of these probabilities.
With pn(x, y) denoting the simple random walk transition probabilities in Td , the
standard path counting argument gives

pn
k (x, x+)

pn
k (x, x−)

= pn−k−1(x+, o)

pn−k−1(x−, o)
.

We now use Theorem 19.30 in [25] which for x fixed and n → ∞ gives

pn(o, x) = (
c + o(1)

)(
1 + d − 2

d
|x|

)
(d − 1)−|x|/2ρ(Td)nn−3/2,

where |x| is the graph distance of x from o, to get

lim
n→∞

pn−k−1(x+, o)

pn−k−1(x−, o)
= 1

d − 1

d + (d − 2)(|x| + 1)

d + (d − 2)(|x| − 1)
=: p∗(x, x+)

p∗(x, x−)
.(2)

So, (Xk, g ≥ 0) is a time-homogeneous Markov process with transition probabili-
ties p∗ [which are determined by (2) since they sum over the neighbors of x to 1].
Clearly, |Xn| is also a time-homogeneous Markov process, which has up/down
transition probability ratio from x ∈ Z+ given by

d + (d − 2)(x + 1)

d + (d − 2)(x − 1)
.

Note that when d = 2 we get the reflected simple random walk, as expected. �

COROLLARY 20 (The infinite nullcycle). Let G be a d-regular graph, and
(X̄n

k , k = 0, . . . , n) be the kth step of a uniformly chosen random nullcycle from a
vertex o to o. Then X̄n

k converges in distribution as n → ∞ to a limiting process
(X̄k, k ≥ 0) called the infinite nullcycle. In particular, the fixed-time distributions
converge.

PROOF. Note that X̄n
k is just the image under the universal cover map from Td

to G of the random cycle in Td . So, the claim follows from Proposition 19. �



MEASURABLE KESTEN THEOREM 1617

4. Properties of nullcycles. This section establishes some important proper-
ties of random nullcycles in graphs. But first we need a simple well-known lemma.

LEMMA 21 (Spectral radius and hitting probabilities). Let G be a connected
d-regular graph and let o be a vertex. Let pn(o,A) denote the probability that a
random walk of length n starting at o ends in the finite vertex set A. Then with the
spectral radius ρ(G) we have

pn(o,A) ≤ √|A|ρ(G)n + 2|A|
|G| .

PROOF. We prove the claim for finite graphs, the infinite case is similar but
simpler. Let m = |G|, the number of vertices of G. Let v0 denote the function on G

that takes value 1/
√

m everywhere. Then v0M = v0. When G is not bipartite, let
l2∗(G) denote the orthogonal subspace of v0 in l2(G). When G is bipartite, let I be
an independent subset of G of size m/2 containing o and let v1 be the function on
G that takes values 1/

√
m on I and −1/

√
m otherwise. Then v1M

n = (−1)nv1.
Let l2∗(G) denote the subspace orthogonal to v0 and v1 in l2(G).

Now ρ(G) equals the norm of M on l2∗(G). Let δA denote the indicator function
of the vertex set A. Let v be a projection of δo onto l2∗(G), and let v∗ = δo − v.
Then ‖v‖ ≤ 1. For G bipartite, we can write v∗ = a(v0 + v1), with a = 1/

√
m. We

have 〈
v∗Mn, δA

〉 = 〈
a(v0 + v1)M

n, δA

〉 = 〈
a
(
v0 + (−1)n

)
v1, δA

〉
.(3)

Since v0 and v1 are orthonormal, writing δA in the orthonormal basis we see
that (3) is bounded above by

a〈v0, δA〉 + a
∣∣〈v1, δA〉∣∣ ≤ 2|A|/m.

Similarly, in the non-bipartite case, 〈v∗Mn, δA〉 = |A|/m. We now have

pn(o,A) = 〈
δoM

n, δA

〉= 〈
v∗Mn, δA

〉+ 〈
vMn, δA

〉
≤ 2|A|/|G| + ‖v‖ · ρ(G)n · ‖δA‖.

Here, ‖δA‖ = √|A|. The claim follows. �

4.1. Visits of nullcycles.

PROPOSITION 22 (Visits of nullcycles). For any infinite d-regular rooted con-
nected graph (G,o) with ρ(G) < 1 the number of visits VA to a finite vertex set A

of a random nullcycle of length n starting at o satisfies

EVA ≤ 2 · 104 |A|
(1 − ρ(G))2 .

This is at most 107|A| if ρ(G) ≤ 19/20. Note that 19/20 > ρ(Td) for d ≥ 3.



1618 M. ABÉRT, Y. GLASNER AND B. VIRÁG

For any finite d-regular graph G, we also have

EVA ≤ 4 · 104|A|
(

1

(1 − ρ(G))2 + 72n2

|G|
)
.

This is at most 2 · 107|A| if ρ(G) ≤ 19/20 and n2 ≤ |G|.

PROOF. Let Xj be a random cycle in the d-regular tree Td started at the root o,
and let X̄j be its projection to the graph G. Then we have

EVA = E
n∑

j=0

1(X̄j ∈ A) =
n∑

j=0

P(X̄j ∈ A).

Condition on |Xj |, the distance from the root, and then sum over all possible op-
tions to get

EVA =
n∑

j=0

n∑
k=0

P
(|Xj | = k

)
P
(
X̄j ∈ A||Xj | = k

)
.

Note that given |Xj | = k, the distribution of Xj is uniform on the k-sphere about
o in the tree. Thus, the distribution on X̄j in the graph G is that of the kth step of
a non-backtracking random walk. So let pk denote the probability that the kth step
of the non-backtracking walk is in A.

Switching the order of summation, we get

EVA =
n∑

k=0

pk

n∑
j=0

P
(|Xj | = k

) ≤ 500p0 +
n∑

k=1

2 · 104kpk,

where the last inequality is based on the fact that the j -sum gives the expected
number of visits to distance k for the random cycle in Td , and the result of
Lemma 18. Note that p0 = 1(o ∈ A). The above can be bounded by Green function
techniques as follows. Define

C(z) =
∞∑

k=0

pkz
k,

the generating function for the proportion of non-backtracking paths that start from
o and end in A. For any z ∈ (0,1], we have

n∑
k=0

kpk ≤ z1−n
∞∑

k=1

kpkz
k−1 = z1−nC′(z).

The right-hand side is a power series with non-negative coefficients, so it always
makes sense but may equal +∞. Rewriting our bound in terms of C, we get

EVA ≤ 2 · 104z1−nC′(z) + 500 · 1(o ∈ A).
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Let G(z) be the analogous generating function for simple random walk. It was
shown in [5] (see formula (2.3) in [22]), that for any d-regular graph we have

C(z) = 1(o ∈ A)

d
+ (d − 1)2 − z2

d(d − 1 + z2)
G
(

dz

d − 1 + z2

)
.

Now with x = dz/(d − 1 + z2) we compute

C′(z) = a0G(x) + a1G′(x),

where

a0 = − 2(d − 1)z

(d + z2 − 1)2 ≤ 0,

a1 = d3 − d2(z2 + 3) + d(z2 + 3) + z4 − 1

(d + z2 − 1)3 ≤ 1,

for our range of parameters d ≥ 2 and z ∈ (0,1]. We now consider two cases.
1. For G infinite with ρ = ρ(G) < 1, we use the case z = 1, noting that the

radius of convergence of G is 1/ρ > 1. Since G and its derivative are non-negative,
we get the upper bound

1

2
10−4EVA ≤ |A| + G′(1) ≤ |A| + Ḡ′(1), Ḡ(z) = |A|

1 − zρ
.

The last inequality uses the fact that the probability that simple random walk at
time k is in A is bounded above by |A|ρk , so we can replace G′(z) by Ḡ′(z).
Finally, we have

|A| + Ḡ′(1) = |A|1 − ρ + ρ2

(1 − ρ)2 ≤ |A|
(1 − ρ)2 .

2. For G finite, we use the case z < 1. Since G and its derivatives are non-
negative, we get the upper bound

C′(z) ≤ G′(x) ≤ Ḡ′(x).

For the last inequality, we use ρ = ρ(G),

Ḡ(x) = |A|
∞∑

k=0

xk(ρk + 2/|G|)= 2

|G|
|A|

1 − x
+ |A|

1 − xρ

and use Lemma 21 to bound the return probabilities. This gives

|A| + Ḡ′(x) = 2|A|
|G|

1

(1 − x)2 + |A|ρ + (1 − ρx)2

(1 − ρx)2 ≤ 2

|G|
|A|

(1 − x)2 + |A|
(1 − ρ)2 .

We now have

1

1 − x
= d − 1 + z2

(d − 1 − z)(1 − z)
≤ d

d − 2

1

1 − z
≤ 3

1 − z
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and set z = 1 − 1/(2n) to get

EVA ≤ 2 · 104z−n(C′(z) + |A|)
≤ 2 · 104(1 − 1/(2n)

)−n|A|
(

2 · 32 · 22n2

|G| + 1

(1 − ρ)2

)
since for n ≥ 1 the (1 − 1/(2n))−n ≤ 2, and the claim follows. �

4.2. Cycles and nullcycles. We now turn to the connection between ordinary
cycles and nullcycles. We recall the definition of nontrivial cycles.

DEFINITION 23. Call a cycle of length k in a graph a nontrivial cycle if either:

• for some directed non-loop edge e, the number of times the cycle passes through
e differs from the number of times it passes through the reversal of e

• or k = 1.

This definition differs slightly from “vanishing in homology”, but is precisely
what we need in our proof (briefly we use Z-homology for k ≥ 2, and Z2-
homology for k = 1). Our goal there is to take a nullcycle and make it non-null-
homotopic. We do this by swapping the direction of nontrivial sub-cycles of length
k ≥ 2. For loops this does not work (they do not have direction), so we have to have
a separate argument for k = 1: we add or erase them.

Cycles not covered by this definition are called trivial. For example, nullcycles
are trivial and simple cycles are nontrivial.

The following theorem is another main ingredient in the proof of Theorem 1.
Let Nn denote the set of nullcycles starting at o in the rooted graph (G,o).

THEOREM 24 (Cycles and nullcycles). Let (G,o) be a d-regular rooted
graph, and let n, k, � > 0.

For a nullcycle w ∈ Nnk let χ(w,a, k) = χ�(w,a, k) denote the indicator func-
tion that the path segment wa, . . . ,wa+k is a nontrivial k-cycle and that the vertex
wa is visited at most � times by w. Let

χw =
n−1∑
j=0

χ(w, jk, k).(4)

Then with c1 = 1/16 and ck = (d − 1)−k/2 (for k ≥ 2) we have∣∣Wnk(o, o)
∣∣ ≥ 1

14

∑
w∈Nnk

exp(ckχw/�),

where Wnk(o, o) is the set of cycles of length nk starting at o.



MEASURABLE KESTEN THEOREM 1621

The quantity χω will be estimated in terms of the parameters γk(G). Heuristi-
cally, if it is large, it means that there are many different places in ω where rewiring
is possible. The point in limiting the number of visits by � is a convenient way to
make sure that if there are many possible rewiring times, then they happen also at
many different locations.

PROOF OF THEOREM 24. Let us denote W = Wnk(o, o), and N = N nk , the
subset of nullcycles. We first break W into equivalence classes, called rewiring
classes. A loop is called single if its vertex has no other loops. Otherwise, we call
it a multiple loop.

When k = 1 we break up the sum on the right of (4) into a sum over single
loops and a sum over multiple loops, counted as χ1w + χ2w = χw . We choose k

(and for k = 1 we choose single or multiple loops), and consider rewiring classes
depending on our choice.

Case k = 1, single loops. Given a path w, let w̄ denote the path in which all
self-loops whose vertex is visited at most � times (not counting consecutive
visits) have been erased. Let w ≡ w′ if w̄ = w̄′. (“Not counting consecutive
visits” means that visits to v that are at consecutive times count as a single
visit.)
Case k = 1, multiple loops. Two paths are equivalent if for all times i the
vertices satisfy wi = w′

i , and w and w′ agree except at times when they traverse
multiple self-loops.
Case k ≥ 2. The paths w and w′ are equivalent if for all 0 ≤ j ≤ n − 1 the
following holds:

• If wjk �= wjk+k then the path segment between these times of w and w′ is
equal.

• If wjk = wjk+k and the path segment between these times of w is trivial,
then it equals the corresponding path segment in w′.

• If wjk = wjk+k and the path segment between these times of w is nontrivial,
then it either equals the corresponding path segment in w or is the time-
reversal of that. We call jk a proper cycle time of w, and the corresponding
path segment a proper cycle of w.

This is illustrated in the example depicted in Figure 3.

For w ∈ W , let [w] denote the equivalence class of w, called rewiring class.
Note that the rewiring defined here is more complex than the one in Section 1.3.
For w ∈ N , let p(w) denote the probability that a uniform random element of [w]
is null-homotopic.

Then we have

|W | = ∑
A is a rewiring class

|A| ≥ ∑
A is a rewiring
class, A∩N �=∅

|A| = ∑
w∈N

|[w]|
|[w] ∩N | = ∑

w∈N
p(w)−1.
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FIG. 3. A nullcycle ω ∈ N30 with two proper cycles of length k = 3. These are opposite to each
other and in particular dependent. Changing the direction in one of them gives raise to a nontrivial
cycle equivalent to ω.

What remains is to show that for all w ∈ N we have

p(w) ≤ 14 exp(−ckχw/�).

We will do this case by case.
Case k = 1, single loops. We call a vertex with a single loop (and its loop)

reclusive for w, if w visits it at most � times (not counting consecutive visits).
Whether a vertex is reclusive or not depends only on [w].

Let τi, i = 1, . . . , κ denote the times when w̄ visits a reclusive vertex, and let
φ be the number of loops erased from w to get w̄. Then an element of [w] is
determined by X1, . . . ,Xκ , the number of loops inserted into w̄ at times τ1, . . . , τκ .
A uniform random element of [w] corresponds to a uniform random choice of the
Xi so that their sum is φ. Let trw denote the function that assigns to every reclusive
loop of [w] the number of times modulo 2 that w passes through it. Then

p(w) ≤ P(trw = 0),

where the right-hand side refers to a random element of [w]. This is exactly the
probability that for each reclusive vertex the sum of the Xi corresponding to that
vertex is even. By Lemma 25, this is at most 14 exp(−min(m,φ/�)/14), where
m is the number of different reclusive vertices visited. Note that m ≥ χ1w/� and
φ ≥ χ1w , so we get the bound 14 exp(−χ1w

14�
).

Case k = 1, multiple loops. We call a vertex important if it has a loop traversed
by w. Further, we call a loop important if its vertex is important (even if not tra-
versed by w). Note that the set of important loops (or vertices) only depends on
the equivalence class of w.
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For a path, let tr denote the function that assigns to each important loop the num-
ber of times modulo 2 that it is traversed. Consider a random element w of [w]. For
each important vertex v with kv loops, let X̄v = (Xv,1, . . . ,Xv,kv ) record the num-
ber of times w visits its loops. Note X̄v are independent as v varies, and each have
a multinomial distribution with probabilities 1/kv for each option; each traversal
is assigned to one of the loops uniformly at random.

Conditioning on the assignment of all traversals except for the last one, we see
that the probability that Xv,1, . . . ,Xv,kv are all even numbers is at most 1/kv ≤
1/2. So, if i is the number of important vertices visited at most � times, then we
have i ≥ χ2w/� and

p(w) ≤ P(trw = 0) ≤ 2−i ≤ 2−χ2w/�.

Case k ≥ 2. For a path, let tr denote the antisymmetric edge function that sums
1 over all forward steps of a path and −1 over all backward steps (here ignoring
self-loops). Note that the trace of a random element w in [w] can be written as

trw = tr w̄ + ∑
proper cycles c of w

Xc tr c,(5)

where the Xc are independent random variables uniform on {−1,1}, and w̄ denotes
w with all its proper cycles removed. We claim that

p(w) ≤ P(trw = 0) ≤ 2−|w|o ,
where |w|o is the maximum size of a subset of linearly independent proper cycles
of w. Indeed, consider such a set C, and complete it to a basis for antisymmetric
edge functions. Fix all values of Xc for c /∈ C. Then for c ∈ C, looking at the a
c-coordinate of equation (5), we see that it can hold only if Xc equals some fixed
value, which has probability 1/2 or 0, independently over the coordinates. The
claim follows.

Our next step is to bound the number of independent cycles. Fix a j0, and we
consider the set J of indices j so that the χ(w, jk, k) = χ(w, j0k, k) = 1, and the
cycles of w at jk and j0k share an edge. For a vertex v, let J (v) denote the number
of j ∈ J so that wjk = v. Since for j ∈ J the vertex wjk is visited at most � times,
we have J (v) ≤ �. If two k-cycles share an edge, then a vertex on one and a vertex
on the other are of distance at most k − 1 from each other. Thus, we have

|J | = ∑
v∈B(wj0k,k−1)

J (v) ≤ �
∣∣B(wj0k, k − 1)

∣∣ ≤ �d(d − 1)k−2,

where B(v, r) is the ball of radius r about v. This means that the dependency
graph of cycles has degree at most d(d − 1)k−2� and size χw and, therefore,
contains an independent set of size χw/(d(d − 1)k−2� + 1). So, we get p(w) ≤
2−χw/(d(d−1)k−2�+1) ≤ e−χw/(2(d−1)k�).

Now we have either χ1w ≥ 7
8χw or χ2w ≥ 1

8χw . In either case, we get

p(w) ≤ 14 exp
(−χw/(16�)

)
.

Together with the k ≥ 2 case, this completes the proof. �
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The following simple probabilistic lemma was used in the proof of Theorem 24.

LEMMA 25. Let X = (X1, . . . ,Xk) be a uniform random variable on the set
of k-tuples of non-negative integers with even sum n ≥ 2.

(a) For any integer k-vector x with k ≥ 2, we have

P(X ≡ x mod 2) ≤
(n/2+k−1

k−1

)
(n+k−1

k−1

) ≤ exp
(
− 1

4/k + 2/n

)
,(6)

with equality at the first location if x = 0.
(b) Consider a partition of {1, . . . , k} into m non-empty parts so that k ≤ m�

for some � ≥ 2. Then with ∧ denoting minimum, we have

P
(∑

i∈p

Xi is even for each part p

)
≤ 14 exp

(
−m ∧ (n/�)

14

)
.

PROOF. (a) (We thank P. Csikváry for this simplification of our previous
proof.) To count the number of k tuples that are equal to x mod 2, we subtract 1
from each odd entry and divide each resulting entry by 2. We get a bijection be-
tween such k-tuples and the number of k-tuples with entry sum (n − o)/2, where
o is the number of odd entries of x. Thus,

P(X ≡ x mod 2) =
((n−o)/2+k−1

k−1

)
(n+k−1

k−1

) ≤
(n/2+k−1

k−1

)
(n+k−1

k−1

) .

This shows the first inequality. For the second, note that the right-hand side equals
n/2 + 1

n + 1

n/2 + 2

n + 2
· · · n/2 + k − 1

n + k − 1
.

Each factor is at most 1 − n/2
n+k−1 , giving a bound of

exp
(
−(k − 1)n/2

n + k − 1

)
≤ exp

(
− 1/2

2/k + 1/n

)
.

The last inequality holds for k ≥ 2.
(b) Let X̄ denote the vector formed by the sums of the entries of X over the

parts of our partition. Let M ⊂ {1, . . . , k} be a subset of indices, one in each part,
and let M ′ be its complement. Let S =∑

i∈M Xi . Then

ES = ∑
i∈M

EXi = m
n

k
≥ n

�
.

We first bound the probability that S is exceptionally small, namely that it is at
most (k ∧ n)/(4�). S has a discrete beta distribution. By a standard construction,
S + m can be realized as the time of the mth black sample when sampling without
replacement from n white and k − 1 black balls. From this, we get

ps = P(S = s) =
(s+m−1

m−1

)((n−s)+(k−m)−1
(k−m)−1

)
(n+k−1

k−1

) .
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We compute the ratio of these probabilities for two consecutive values of s

ps

ps+1
= (s + 1)(k − m + n − s − 1)

(m + s)(n − s)
(7)

≤ s(k − m + n − s)

(m + s)(n − s)
+ k − m + n − s

(m + s)(n − s)
.

Assume that s ≤ s0 = (m/2) ∧ (n/(2�)). We first bound the second term in (7),
which equals

k − m

m + s

1

n − s
+ 1

m + s
≤ �

1

n/2
+ 1

m
≤ 3

m ∧ (n/�)

since n/2 ≤ n − s and k ≤ m�. The first term in (7) is increasing in k so we substi-
tute the smallest possible value k = m� to get the upper bound

1 − m(n − �s)

(n − s)(m + s)
≤ 1 − mn/2

n(m + m/2)
= 2

3
.

Thus, when

3/
(
m ∧ (n/�)

)≤ 1/12(8)

the whole expression in (7) is bounded above by 3/4. Now note that from s = s0
down the probability of S = s decreases by at least a factor of 3/4. So,

P
(
S ≤ (k ∧ n)/4�

) =
s0/2∑
s=0

ps ≤
∞∑

i=s0/2

p(k∧n)/2�

(
3

4

)i

≤ 4
(

3

4

)s0/2

≤ 4 exp
(
−m ∧ (n/�)

14

)
.

Condition on the random variables in X′
M = (Xi, i ∈ M ′). Given this information

the random variable XM = (Xi, i ∈ M) is uniform on the set of k-tuples of non-
negative integers with sum S.

P(X̄ = 0 mod 2) = E
[
P(X̄M = X̄M ′ mod 2|XM ′)

]≤ E
[
P(X̄M = 0 mod 2|XM ′)

]
.

The inequality follows from part (a). The last conditional probability depends only
on the value of S. Using part (a), we can break the expression up with s = s0/2 as

P(S < s) + E
[
E
(
1(Xm = 0 mod 2)1(S ≥ s)|S)]

≤ 4 exp
(
−m ∧ (n/�)

14

)
+ exp

(
− 1

4/k + 2/s

)
≤ 5 exp

(
−m ∧ (n/�)

14

)
.

We increase the prefactor 5 to 14 in order to get a trivial bound when (8) fails. �
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5. Explicit bounds on the spectral radius.

5.1. A preliminary bound on the return probability.

PROPOSITION 26. Let G be a d-regular unimodular random graph and let
k, � > 0. Then with

ck =
{

1/16, for k = 1,

(d − 1)−k/2, for k ≥ 2,

we have

E log |Wnk| ≥ log |Nnk| − 3 + ckn

�

1

|Nnk|
∑

w∈Nnk

Eχ�(w,0, k).

PROOF. By Theorem 24 and the inequality of arithmetic and geometric means,
we have

|Wnk| ≥ e−3
∑

w∈Nnk

exp

(
ck

n−1∑
j=0

χ(w, jk, k)
/

�

)

≥ e−3|Nnk|
( ∏

w∈Nnk

n−1∏
j=0

exp
(
ckχ(w, jk, k)/�

))1/|Nnk |
.

Taking logarithm of both sides gives us

log |Wnk| − log |Nnk| ≥ −3 + ck

�|Nnk|
∑

w∈Nnk

n−1∑
j=0

χ(w, jk, k).

Taking expected value of both sides over the random graph, we get

E log |Wnk| − log |Nnk| ≥ −3 + ck

�|Nnk|
∑

w∈Nnk

n−1∑
j=0

Eχ(w, jk, k).

We will use the mass transport principle to show that the expression∑
w∈Nnk

Eχ(w, jk, k),(9)

does not depend on the position j . Let the mass transport be defined as

f (G,x, y) = ∑
w∈Nnk(x)

1(w(n−j)k = y)χ(w,0, k)

= ∑
w∈Nnk(y)

1(wjk = x)χ(w, jk, k).
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That is, for every null-homotopic path w starting at x, x sends mass χ(w,0, k) to
the (n − j)kth position of w. The second equality follows by rooting the path at y

instead of x. Trivially, the mass transport does not depend on the root of G, so the
mass transport principle gives us∑

y∈V (G)

Ef (G,o, y) = ∑
x∈V (G)

Ef (G,x, o)

that is, the expected mass sent from the root equals the expected mass received by
the root. Plugging in the corresponding equations, we get∑

w∈Nnk(o)

Eχ(w,0, k) = ∑
w∈Nnk(o)

Eχ(w, jk, k)

and we get that the expression (9) does not depend on j . This proves the theorem.
�

LEMMA 27. Let (G,o) be a d-regular rooted graph with ρ(G) ≤ 19/20. Let
γk(G,o) be the number of nontrivial cycles of length k starting at the root o. Let n

satisfy 2k ≤ n ≤ √|G| and let � = 6 · 108(4d − 4)k . Then we have

1

|Nn|
∑

w∈Nn

χ�(w,0, k) ≥ γk(G,o)

30(4d − 4)k
.

PROOF. We may assume γk(G,o) ≥ 1, otherwise the claim is trivial. In this
lemma, G is fixed, so the probabilistic language for nullcycles will not cause con-
fusion. So, let w be a uniform random element of Nn.

The probability that a random cycle of length n in Td traverses a specific path
for its first k steps can be bounded below easily by requiring the path to retrace
its steps in the following k times. If rn is the return probability of simple random
walk in Td , then the total number of paths that do this is given by rn−2kd

n−2k , so
the probability is at least

rn−2kd
n−2k

rndn
≥ 1

15

(
dρ(Td)

)−2k = 1

15
(4d − 4)−k =: p,

and the inequality uses both sides of Lemma 15 (but one side in the special case
n = 2k). So, if G has γk(G,o) cycles of length k at o, then the event A that w

passes through one of them in the first k steps satisfies PA ≥ pγk(G,o). Let Vo

be the number of times the random nullcycle w traverses o. By Proposition 22, we
have

EVo ≤ 2 · 107 = c, E(Vo|A) ≤ EVo

PA
≤ c

pγk(G,o)
.

By Markov’s inequality with � = 2c/p,

P(Vo ≥ �|A) ≤ E(Vo|A)

�
≤ 1

2γk(G,o)
≤ 1

2
.
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This implies (using probabilistic notation for averaging over Nn)

Eχ(w,0, k) = P(A,Vo ≤ �) = P(A) − P(Vo > �|A)P(A)

≥ P(A)

2
≥ pγk(G,o)

2
as claimed. �

5.2. Main bounds on spectral radius. The following theorem implies Theo-
rems 1 and 5.

THEOREM 28 (Main results). Let (G,o) be a d-regular unimodular random
graph and let k ≥ 1. Let γk(G,o) be the number of nontrivial cycles of length k

starting at o. Let

νk = 2 · 101124k(d − 1)3kk.

For G infinite a.s., we have

E logρ(G) ≥ logρ(Td) + 1

νk

Eγk(G,o).(10)

For G infinite and ergodic, we have ρ(G) ≥ ρ(Td)eEγk(G,o)/νk .
Let G be a finite connected d-regular graph with |G| ≥ d7. Then for the root o

chosen uniformly at random we have

ρ(G)

ρ(Td)
≥ 1 + 1

νk

Eγk(G,o) − (3/2) log logd−1 |G| + 6

logd−1 |G| .(11)

In particular, for finite Ramanujan graphs with |G| ≥ d7 we have

Eγk(G,o) ≤ νk

(3/2) log logd−1 |G| + 6

logd−1 |G| .(12)

PROOF. Let nk be even and n ≥ 1. First, assume that G which may be finite
or infinite satisfies P(|G| ≥ (nk)2) = 1. We will use Lemma 27, which requires
ρ(G) ≤ 19/20. We first take care of the other case. For (10) and (11), we need tho
show for every such G we have

logρ(G) ≥ logρ(Td) + γk(G)/νk.

Since γk(G) ≤ dk , this inequality follows from

ρ(G) ≥ 19/20, ρ(Td) ≤ ρ(T3) = 2
√

2/3, γk(G)/νk ≤ 1
2·1011 .

Now assume ρ(G) ≤ 19/20. By Proposition 26 and Lemma 27 for � = 6 ·
108(4d − 4)k , n ≥ 1 with c1 = 1/16x and ck = (d − 1)−k/2 for k ≥ 2 we have

E log |Wnk| ≥ log |Nnk| − 3 + ck

�
n

Eγk(G,o)

30(4d − 4)k
,(13)
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where
ck

30(4d − 4)k�k
≥ 1

νk

.

For the first claim (11), we divide (13) by nk and use the bounded convergence
theorem. The second claim (10) follows from the fact that for G ergodic ρ(G) is
constant.

The bound on Nn of Lemma 15 now shows that

E logpnk(o, o) ≥ nk logρ(Td) − 3

2
log(nk) − 4 + nk

νk

Eγk(G,o).(14)

For G finite and d ≥ 3, we have

|G| ≥ d7 ⇒ ρ(G) ≥ 1/(d − 1)5/6,(15)

which follows from ρ(G)2 + 2/|G| ≥ p2(o, o) ≥ 1/d , a consequence of Lem-
ma 21. Note that a lower bound on |G| is needed for (15) since the complete graph
with loops has |G| = d and ρ(G) = 0.

Assume |G| ≥ d7, and logd−1 |G| ≥ 10k. Set n = 2� 1
2k

logd−1 |G|� so that

ρ(G)nk ≥ (d − 1)−(5/6)nk ≥ (d − 1)−(5/6)(logd−1 |G|+2k) ≥ 1/|G|.
[Here, the power 5/6 from (15) is used to offset the effect of �·�, and thus yield a
cleaner final bound.] By Lemmas 15 and 21, the left-hand side of (14) is at most

log
(
ρ(G)nk + 2/|G|) = nk logρ(G) + log

(
1 + 2

|G|ρ(G)nk

)
≤ nk logρ(G) + log 3.

We use this and divide (14) by nk and get the lower bound

logρ(G) ≥ logρ(Td) + 1

νk

Eγk(G,o)

(16)

− (3/2) log logd−1 |G| + 4 + log 3

logd−1 |G| .

This proves (11) for the case logd−1 |G| ≥ 10k.
The rest of the proof is standard and can be skipped. Its goal is to remove the

restriction logd−1 |G| ≥ 10k. The same argument as above, using the trivial com-
parison with Td for walks of length 2�1

2 logd−1 |G|� gives the (suboptimal) Alon–
Boppana-type bound

logρ(G) ≥ logρ(Td) + (3/2) log logd−1 |G| + 4 + log 3

logd−1 |G|(17)

as long as logd−1 |G| ≥ 10. For d ≥ 4, (15) can be improved to

|G| ≥ d7 ⇒ ρ(G) ≥ 1/(d − 1)3/4,(18)
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and this yields that (17) holds as long as logd−1 |G| ≥ 6. So, both for d = 3 and
d ≥ 4 we get that (17) holds as long as |G| ≥ d7. Equation (17) implies (11) if

γk(G,o)

νk

≤ 2 − log 3

logd−1 |G| .

With the trivial bound γk(G,o) ≤ d(d − 1)k−1, in the case logd−1 |G| ≤ 10k this
is implied by

d(d − 1)k−1

νk

≤ 2 − log 3

10k
,

which holds trivially. �

5.3. Bounds for graphs close to the Ramanujan threshold. The following the-
orem implies Theorem 2.

THEOREM 29 (Short cycles in Ramanujan graphs). Let α > 0, d ≥ 3 and con-
sider finite, connected d-regular graphs G that are close to Ramanujan in the sense
that

ρ(G) ≤ ρ(Td) + 1

(log |G|)α .

Fix β, ε > 0 so that β + ε < α∧1
6 log(d−1)+8 log 2 [for example β = α∧1

16 log(d−1)
]. Then

as |G| → ∞, the proportion of vertices in G whose β log log |G|-neighborhood is
not a d-regular tree is o((log |G|)−ε).

PROOF. Note that if the k = β log log |G| neighborhood of a vertex v is not a
tree, then v is contained in a nontrivial cycle of length 2k, or its k-neighborhood
contains a vertex with a loop. We rule out these two cases separately.

By Theorem 28, (11), we have

Eγk(G,o) ≤ c(d − 1)3k24kk3
(

log log |G|
log |G| + 1

(log |G|)α
)

so if k = 2β log log |G|, then the dominant factor is(
log |G|)−α∧1+4β log(4d−4)

and this is o(log |G|−ε′
) for some ε′ > ε since

β + ε <
α ∧ 1

log((d − 1)324)
.

The inequality also holds uniformly for all smaller k [with a uniform constant in
the o(·) term], and summing over all such we get that the expected number of
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nontrivial cycles at o of length at most 2k is o(log |G|−ε log log |G|) → 0. This
rules out the first option.

For the second option, we use a simple mass transport argument (see the proof
of Theorem 24 for the formal setup). Let each vertex with a loop send mass k to all
elements in its k-neighborhood. Then the expected amount of mass sent is at most
d(d − 1)k−1Eγ1(G). The amount of mass received is the number of vertices with
loops in the k-neighborhood; lets call this N . So, we have

EN ≤ c(d − 1)k
(

log log |G|
log |G| + 1

(log |G|)α
)
.

By the same argument as before, this is o(log |G|−ε) with the above choice of β .
�

5.4. Weakly Ramanujan sequences. We are ready to prove that a d-regular
weakly Ramanujan sequence of finite graphs converges to the d-regular tree.

PROOF OF THEOREM 4. Let (Gn) be a weakly Ramanujan sequence of finite
d-regular graphs. Assume by contradiction, that it does not have essentially large
girth. Then, by passing to a suitable subsequence, there exists c > 0 and L > 0
such that the cycle densities γL(Gn) > c.

By passing to a subsequence, we can also assume that (Gn) is Benjamini–
Schramm convergent. Let G be the limit of (Gn).

We claim that G is infinite a.s. Assume this is not the case, then there exists R >

0 such that G has size R with probability p > 0. This means, that with probability
at least p, the R + 1-ball around the root has the same size as the R-ball. So,
for large enough n, the same holds for all Gn with p/2. That is, at least |Gn|p/2
vertices lie in a connected component of size at most R′, where R′ is the size of the
R-ball in the d-regular tree. This implies that the number of connected components
of Gn is at least |Gn|p/2R′. Hence,

μGn(1) ≥ p

2R′ .

This contradicts the assumption that (Gn) is weakly Ramanujan. So, our claim
holds.

We claim that G is Ramanujan a.s. By the proof of Proposition 14, μGn weakly
converges to the expected spectral measure μG, which yields μG([−ρ(Td),

ρ(Td)]) = 1, and this implies that μG,o([−ρ(Td), ρ(Td)]) = 1 a.s. Since the spec-
tral radius equals the radius of the support of the spectral measure μG,o for any
rooted connected graph G (see [12], Lemma 2.1), this implies that ρ(G) ≤ ρ(Td)

a.s. and our claim holds.
Now using Theorem 5, G = Td a.s., that is, (Gn) converges to Td and so by

Proposition 14, it has essentially large girth, a contradiction. Our theorem holds.
�
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6. Spectral radius and the fundamental group—A sharp bound.

6.1. Relations in deterministic graphs. In this section, we analyze the spec-
tral radius of a fixed rooted d-regular infinite graph using random walks on its
fundamental group.

For a graph G rooted at o ∈ V (G) and an arbitrary finite multiset N of cycles in
G starting at o, we will also use N to denote the corresponding Markov operator
on the fundamental group π1(G,o) (which is a free product of copies of Z and
the group of order 2), where the step distribution is the uniform measure on N .
Let ‖N‖ denote the operator norm. The adjoint of the operator N is the operator
corresponding to the multi-set N−1 = {w−1|w ∈ N}. The multi-set N may not be
closed to taking inverses, so the Markov operator need not be self-adjoint. We will
use the property

‖N‖ =
√∥∥NN−1

∥∥.
Let G be a graph, let vertices x, y ∈ V (G) and k > 0 let W = Wk(x, y) denote

the set of walks of length k in G starting at x and ending at y. Let o ∈ V (G), let u

be a walk from o to x and let v be a walk from y to o. When W is non-empty, let

N = {uwv|w ∈ W } ⊆ π1(G,o)

and let

κk(x, y) = ‖N‖.(19)

Now κk(x, y) does not depend on the choice of o,u and v, because the multi-set

NN−1 = {
uw′w−1u−1|w,w′ ∈ W

}
(defined with multiplicities), so the corresponding Markov operator is the conju-
gate of the operator belonging to WW−1 by the fixed element u.

Note that the norm κk satisfies

κk(x, y)2 = ρ
(
Cay

(
π1(G,x),WW−1)) ∈ [0,1].

Let Nk denote the set of nullcycles of length k starting at o (see Definition 9).
The following lemma relates |Nk|/|Wk(o, o)|, the probability that a random cycle
of length k is a nullcycle to the spectral radius κk . This relation can be established
also with respect to paths connecting two vertices.

LEMMA 30. Let G be a d-regular graph rooted at o and let k > 0. Let x be a
vertex in G, and let w be a path of length |w| from x to o. Then∣∣(Wk(o, x)w

)∩Nk+|w|
∣∣ ≤ ∣∣Wk(o, x)

∣∣κk(o, x) ≤ (
dρ(Td)

)k+|w|
.

In particular, with x = o and w trivial we have

|Nk| ≤
∣∣Wk(o, o)

∣∣κk(o, o) ≤ (
dρ(Td)

)k
.
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PROOF. We have∣∣Wk(o, x)w ∩Nk+|w|
∣∣ = ∣∣Wk(o, x)w

∣∣ |Wk(o, x)w ∩Nk+|w||
|Wk(o, x)w|

and the second factor on the right-hand side equals the one step return probability
of the random walk on π1(G,o) with uniform step distribution on Wk(o, x)w;
hence, it is at most the spectral radius of the corresponding Markov operator. This
proves the left inequality in the lemma.

Now consider∣∣Wk(o, x)w
∣∣n = ∣∣(Wk(o, x)w

)n ∩Nn(k+|w|)
∣∣ |(Wk(o, x)w)n|
|(Wk(o, x)w)n ∩Nn(k+|w|)|

≤ |Nn(k+|w|)| |(Wk(o, x)w)n|
|(Wk(o, x)w)n ∩Nn(k+|w|)| .

The second factor on the right-hand side equals the inverse of the n-step return
probability of the same random walk as above. Taking nth roots and the limit as n

goes to infinity gives us the right-hand side inequality of the lemma. �

THEOREM 31. Let G be a d-regular graph rooted at o and let n, k > 0. Then

∣∣Wnk(o, o)
∣∣ ≥ ∑

w∈Nnk

n−1∏
j=0

κk(wjk,w(j+1)k)
−1 ≥ |Nk|n

(dρ(Td))nk

∣∣Wk(o, o)
∣∣n.

This implies

dρ(G) ≥
( ∑

w∈Nnk

n−1∏
j=0

κk(wjk,w(j+1)k)
−1

)1/nk

.

Moreover, when we take the limit of the right-hand side as k → ∞ (and n changing
arbitrarily) we get equality.

PROOF. Let us denote W = Wnk(o, o) and N =N nk . We say that w′ ∈ W is
a rewiring of w ∈ W if w′

jk = wjk for 0 ≤ j ≤ n − 1.
As an example following the line of proof below, all possible rewirings of a

nullcycle of length 35 = 5 · 7 are shown in Figure 4 below. It should be helpful
to refer to that figure while reading the proof. Rewiring is an equivalence relation,
and for w ∈ W let [w] denote the equivalence class of w. For w ∈ N let p(w)

denote the probability that a uniform random element of [w] is null-homotopic.
Then we have

|W | = ∑
A is a rewiring class

|A| ≥ ∑
A is a rewiring
class, A∩N �=∅

|A| = ∑
w∈N

|[w]|
|[w] ∩N | = ∑

w∈N
p(w)−1.
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FIG. 4. Here, we see how all possible rewirings of a path ω ∈ N35 are obtained upon replacing
segments of length k = 5 by other possible replacements. The essential part of the proof is giving
an estimate to the probability that such a rewiring w′ chosen at random will again be a nullcycle.
Namely that the path w′ represents the trivial element of the fundamental group π1(G,x0).

We claim that for all w ∈ N we have

p(w) ≤
n−1∏
j=0

κk(wjk,w(j+1)k).

To prove this, for 0 ≤ j ≤ n let uj be a path from o to wjk . Assume that u0 and un

are the empty paths. For 0 ≤ j ≤ n − 1, let

Nj = {
ujwu−1

j+1|w ∈ Wk(wjk,w(j+1)k)
}⊆ π1(G,o)

and let vj be a uniform random element of Nj . Let Nj also denote the Markov
operator corresponding to the multi-set Nj . Then ‖Nj‖ = κk(wjk,w(j+1)k) by
definition.

Now the random element v = v0 · · ·vn−1 and the uniform random element of
[w] have the same distribution as elements on the fundamental group. Indeed,
they are related by adding or deleting the nullcycles u−1

j uj . That is, p(w) equals
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the probability that v is null-homotopic. Let e be the characteristic vector of the
identity element in π1(G,o). Using the Cauchy–Schwarz inequality, this gives

p(w) =
〈
e, e

n−1∏
j=0

Nj

〉
≤
〈
e

n−1∏
j=0

Nj, e

n−1∏
j=0

Nj

〉1/2

≤
∥∥∥∥∥
n−1∏
j=0

Nj

∥∥∥∥∥ ≤
n−1∏
j=0

‖Nj‖ =
n−1∏
j=0

κk(wjk,w(j+1)k)

and our claim holds.
Together with our first estimate on |W | this completes the proof of the first

inequality of the theorem. For the second claim, note that restricting the sum to
nullcycles that return to o at every time kj we get the lower bound

∑
w∈Nnk

n−1∏
j=0

κk(wjk,w(j+1)k)
−1 ≥ |Nk|nκk(o, o)−n

≥ |Nk|n
(dρ(Td))nk

∣∣Wk(o, o)
∣∣n.

Here, the last inequality follows from Lemma 30. �

Let G be a d-regular graph rooted at o. We define a new distribution on the
vertices of G as follows. For k,n > 0 where n is even and x ∈ V (G), let p(k,n, x)

denote the probability that a uniform random null-homotopic walk of length n

starting at o is at x at time k. Let

pk(x) = lim
n→∞p(k,n, x),(20)

which, for each k that describes where the first k-segment of a the infinite bride of
large length ends. The fact that this limit exists is a consequence of Corollary 20.

Let

κ∗
k (G,o) = ∏

x∈V (G)

κk(o, x)pk(x)(21)

that is, the geometric mean of the κk(o, x) averaged over the vertices x with respect
to the distribution pk .

LEMMA 32. For any connected d-regular infinite graph G, we have

ρ(G) = ρ(Td) lim
k→∞κ∗

k (G,o)−1/k.

Moreover, the terms κ∗
k (G,o)−1/k are bounded above by a constant depending on

d only.
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PROOF. For any vertex x, Lemma 30 gives the lower bound∣∣Wk(o, x)
∣∣−1∣∣Wk(o, x)

∣∣ ≤ κk(o, x) ≤ ∣∣Wk(o, x)
∣∣−1(

dρ(Td)
)k+|x|

,

where W is the function W for the covering tree and x is a lift of x corresponding
to w in that lemma. Using the simplest lower bounds for the number of paths, we
get

ρ(G)−k
∣∣Wk−|x|(o, o)

∣∣ ≤ κk(o, x) ≤ ∣∣Wk−|x|(o, o)
∣∣−1(

dρ(Td)
)k+|x|

.

Note that p(k, ·) assigns probability qk tending to 1 to vertices x with |x| ≤ k2/3.

ρ(G)−k
∣∣Wk−k2/3(o, o)

∣∣qk ≤ κ∗
k (G,o)

≤ ∣∣Wk−k2/3(o, o)
∣∣−qk

(
ρ(Td)

)(k+k2/3)qkdk+k2/3
.

The second claim follows by taking kth roots; the first follows by letting k → ∞
and noting that the left- and right-hand sides both converge to ρ(Td)/ρ(G). �

6.2. An asymptotically sharp bound.

THEOREM 33. Let G be a d-regular infinite unimodular random graph. Then
for any k > 0, we have

E logρ(G) ≥ logρ(Td) − 1

k
E logκ∗

k (G,o)

and these bounds are sharp in the sense that

E logρ(G) = logρ(Td) − lim
k→∞

1

k
E logκ∗

k (G,o).

PROOF. By Theorem 31 and the inequality of arithmetic and geometric means,
we have

|Wnk| ≥ ∑
w∈Nnk

n−1∏
j=0

κk(wjk,w(j+1)k)
−1

≥ |Nnk|
( ∏

w∈Nnk

n−1∏
j=0

κk(wjk,w(j+1)k)
−1

)1/|Nnk |
.

Taking logarithm of both sides gives us

log |Wnk| − log |Nnk| ≥ −1

|Nnk|
∑

w∈Nnk

n−1∑
j=0

logκk(wjk,w(j+1)k).

Taking expected value of both sides over the random graph, we get

E log |Wnk| − log |Nnk| ≥ −
n−1∑
j=0

1

|Nnk|
∑

w∈Nnk

E logκk(wjk,w(j+1)k).
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We will use the mass transport principle to show that the expression∑
w∈Nnk

E logκk(wjk,w(j+1)k)(22)

does not depend on the position j . Let the mass transport be defined as

f (G,x, y) = ∑
w∈Nnk(x)

1(w(n−j)k = y) logκk(w0,wk)

= ∑
w∈Nnk(y)

1(wjk = x) logκk(wjk,w(j+1)k).

That is, for every null-homotopic path w starting at x, x sends mass logκk(w0,wk)

to the (n − j)kth position of w. The second equality follows by rooting the path at
y instead of x. Trivially, the mass transport does not depend on the root of G, so
the mass transport principle gives us∑

y∈V (G)

Ef (G,o, y) = ∑
x∈V (G)

Ef (G,x, o)

that is, the expected mass sent from the root equals the expected mass received by
the root. Plugging in the corresponding equations, we get∑

w∈Nnk(o)

E logκk(w0,wk) = ∑
w∈Nnk(o)

E logκk(wjk,w(j+1)k)

and we get that the expression (22) does not depend on j .
This gives

E log |Wnk| − log |Nnk|
nk

≥ −1

k|Nnk|
∑

w∈Nnk(o)

E logκk(w0,wk).

The right-hand side now equals

−1

k
E

∑
x∈V (G)

p(k, nk, x) logκk(o, x)

with p defined in (20). For G,k fixed, the right-hand side is an average of a
bounded function logκk(o, x) on the vertices x of G with respect to the distribu-
tion p(k,nk, ·). As n → ∞, this distribution converges to the distribution pk(·) by
Corollary 20, and so does the corresponding average by the bounded convergence
theorem. Since each average is a bounded function of G, applying the bounded
convergence theorem again, now for the expectation over G, we get the limiting
inequality

E logρ(G) − logρ(Td) ≥ −1

k
E

∑
x∈V (G)

p(k, x) logκk(o, x)

= −1

k
E logκ∗

k (G,o).
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This completes the proof of the first claim of the theorem. To prove the second
claim, take expectation of the logarithm of the result of Lemma 32 and use the
bounded convergence theorem. �

7. Graphs with uniformly dense short cycles. In this section, we prove The-
orem 3. This part of the paper is independent of the rest as it does not use any of
the results in the rest and vice versa. Theorem 3 immediately implies that vertex
transitive Ramanujan graphs are trees; the proof for that [23] is to first show that
every vertex transitive graph that is not a tree can be covered by a Cayley graph
that is also not a tree, and then use the original Kesten’s theorem. The proof pre-
sented here is purely combinatorial. It seems tempting to try to prove Theorem 28
using this method, but we did not manage to do so.

PROOF OF THEOREM 3. Let G be an infinite d-regular graph such that every
vertex in G has distance at most R from a k-cycle. For a vertex x ∈ G, let N(x) be
the list of endpoints of edges starting at x. For n ≥ 0, let

g(n) = d + (d − 2)n

d
√

d − 1
n .

Then g(0) = 1 and for n > 0 we have

1

d

(
g(n − 1) + (d − 1)g(n + 1)

) = 2
√

d − 1

d
g(n).

Also, for n ≥ 0 the function is monotonically decreasing, as

1√
d − 1

<
g(n + 1)

g(n)
≤ 2

√
d − 1

d
= g(1)

g(0)
< 1.(23)

This is the spherical function that demonstrates ρ(Td) ≥ 2
√

d − 1/d .
Fix o ∈ G forever. For r ≥ 0, let

Sr = {
x ∈ G|d(o, x) = r

}
and for abbreviation let us denote gr = g(r).

For x ∈ Sr , let

deg+(x) = ∣∣N(x) ∩ Sr+1
∣∣, deg0(x) = ∣∣N(x) ∩ Sr

∣∣ and

deg−(x) = ∣∣N(x) ∩ Sr−1
∣∣.

Let the set of return points be defined as

A = {
x ∈ G|deg−(x) + deg0(x) ≥ 2

}
.

Let k′ = �R + k/2 + 1�. By the assumption of the theorem, the k′-neighborhood
of A equals the whole G.
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Let R > 0 (this will tend to infinity later). Let us define fR : G → R as follows:

fR(x) =
{

g
(
d(o, x)

)
, if d(o, x) ≤ R,

0, otherwise.

Then fR ∈ l2(G) and we have 〈fR,fR〉 =∑R
r=0 |Sr |g2

r .
Let x ∈ G and let r = d(o, x).
If r < R and x /∈ A, then

MfR(x) = 1

d

(
gr−1 + (d − 1)gr+1

) = 2
√

d − 1

d
gr

otherwise

MfR(x) = 1

d

(
deg−(x)gr−1 + deg0(x)gr + deg+(x)gr+1

)
≥ 2

√
d − 1

d
gr + 1

d
(gr − gr+1).

If r = R, then

MfR(x) ≥ 1

d
gR−1 ≥ 1

d
gR.

Using

gr − gr+1 ≥ gr

(
1 − 2

√
d − 1

d

)
= d − 2

√
d − 1

d
gr

this gives us

〈MfR,fR〉 ≥ 2
√

d − 1

d

R−1∑
r=0

|Sr |g2
r

+ d − 2
√

d − 1

d2

R−1∑
r=0

|Sr ∩ A|g2
r + 1

d
|Sr |g2

R

= 2
√

d − 1

d

R∑
r=0

|Sr |g2
r + d − 2

√
d − 1

d2

R−1∑
r=0

|Sr ∩ A|g2
r

− 2
√

d − 1 − 1

d
|SR|g2

R.

For each x ∈ G, let a(x) ∈ A be a closest vertex in A. Then d(x, a(x)) ≤ k′ and so
evenly distributing the weight g2(d(o, a)) on a to all x ∈ G with a(x) = a, we get

R−1∑
r=0

|Sr ∩ A|g2
r = ∑

x∈A, d(o,x)≤R−1

g2(d(o, x)
)

≥ 1

B

∑
x∈G,d(o,x)≤R−(k′+1)

g2(d(o, a(x)
))

,



1640 M. ABÉRT, Y. GLASNER AND B. VIRÁG

where B = d((d − 1)k
′ − 1)/(d − 2) is the size of the k′-ball in Td . On the other

hand, (23) implies

g2(d(o, a(x)))

g2(d(o, x))
>

1

(d − 1)d(x,a(x))
≥ 1

(d − 1)k
′

and so we get

R−1∑
r=0

|Sr ∩ A|g2
r >

1

B(d − 1)k
′

R−(k′+1)∑
r=0

|Sr |g2
r .

Putting together and trivially estimating B , we get

〈MfR,fR〉
〈fR,fR〉 >

(
2
√

d − 1

d
+ d − 2

d(d − 1)2k′

)

− C
∑R

r=R−k′ |Sr |g2
r∑R

r=0 |Sr |g2
r

,

where C is an absolute constant. We get the required estimate if we show that

lim
R→∞

|SR|g2
R∑R

r=0 |Sr |g2
r

= 0.

For r ≥ 0 let sr = |Sr |/(d − 1)r . Then trivially sr ≥ sr+1 and

|Sr |g2
r = 1

d2 sr
(
d + (d − 2)r

)2

thus we get

R∑
r=0

|Sr |g2
r ≥ 1

d2 sR

R∑
r=0

(
d + (d − 2)r

)2
.

This gives us ∑R
r=0 |Sr |g2

r

|SR|g2
R

≥
∑R

r=0(d + (d − 2)r)2

(d + (d − 2)R)2 ,

which tends to infinity with R. The theorem is proved. �

8. Examples of Ramanujan graphs.

8.1. Tolerance of loops in Ramanujan graphs. In this section, we build exam-
ples of finite and infinite Ramanujan graphs with some loops. It turns out that for
infinite trees, there is a tolerance phenomenon; the tree lets us insert some loops
before giving up being Ramanujan.
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Recall that a Cayley graph of a group G together with a finite set of generators
S = S−1 is the graph with vertex set G and edge set {{v, vs}, s ∈ S}. Our first result
shows that every Cayley graph sequence that is Ramanujan gives rise to another
Ramanujan sequence with loops. The first examples for sequences of Ramanujan
graphs with loops were constructed in [10].

THEOREM 34. Let Gn be an expander sequence of finite d-regular Cayley
graphs with |Gn| → ∞. Then there exists Hn with |Hn| → ∞ such that for all n,
Hn contains a loop and Gn covers Hn. In particular, ρ(Hn) ≤ ρ(Gn).

PROOF. Let F be the free group with the alphabet S and let Kn be the normal
subgroup in F such that Gn = Cay(Kn \ F,S). Let s ∈ S and let Fn = 〈Kn, s〉
be the subgroup generated by Kn and s. Let Hn = Sch(Fn \ F,S). Then the map
between coset spaces Kng �→ Fng is a covering map from Gn to Hn, since Fn

contains Kn. Every eigenvector of Hn can be pulled back to be an eigenvector of
Gn, which implies ρ(Hn) ≤ ρ(Gn). Also, Fns = Fn, so Hn contains a loop.

Assume now that when passing to a subsequence, Hn has bounded size. Let N

be the intersection of the Kn. Since F has only finitely many subgroups of a given
index, N〈s〉 has finite index in F . Thus, N \ F has a cyclic subgroup of finite
index; hence, it is amenable. Now a subsequence of the Gn locally converges to an
infinite Cayley graph G and G is a quotient of Cay(N \F,S); hence, it is amenable
as well. But then G has a Følner sequence, which then can be also found in the
finite sequence. This implies that Gn is not an expander family, a contradiction.
So, |Hn| → ∞ as claimed. �

Note that this proof only guarantees one loop in Hn. The known Lubotzky–
Philips–Sarnak construction does not allow us to create two loops by factoring out
with two generators. For infinite graphs, the picture is very different.

8.2. Infinite Ramanujan graphs are abundant. Unlike finite Ramanujan
graphs, which are notoriously difficult to construct, infinite Ramanujan graphs
are abundant. In fact, let G be any graph whose degrees are bounded by m. There
is a unique way of embedding G into an m-regular graph Y := Treem(G) in such
a way that the embedding ι : G → Y induces an isomorphism on fundamental
groups. In fact, the graph Y is constructed by “gluing trees at every vertex” in the
unique possible way that would make the resulting graph m-regular.

Now fix a base vertex o ∈ G ⊂ Y and let WY
n (o, o) [resp., V Y

n (o, o)] be the sets
of n-cycles (resp., non-backtracking cycles) on the graph Y . The asymptotic of
these are governed by the spectral radius ρ(Y ) = 1

m
lim supn→∞ |WY

n (o, o)|1/n and
the co-growth α = α(Y ) = lim supn→∞ |V Y

n (o, o)|1/n. Now Grigorchuk’s famous
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co-growth formula relates these two numbers by the following formula:

ρ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

m − 1

m

(
α√

m − 1
+

√
m − 1

α

)
, if α >

√
m − 1,

2
√

m − 1

m
, otherwise.

This formula is obtained by comparing the radii of convergence of the generat-
ing functions corresponding to these two types of random walks; see [22], equa-
tion (2.3). This equation also plays a central role in our proof of Proposition 22.

COROLLARY 35. Let G be a graph with maximal degree bounded by m.
Then Treem(G) is Ramanujan if and only if m ≥ α2(G) + 1. In particular, if G is
d-regular then Treem(G) is Ramanujan whenever m ≥ d2 − 2d + 2.

PROOF. Clearly, α(G) = α(Y ). The first statement follows, since by definition
the graph Y = Treem(G) is Ramanujan if and only if it falls into the second clause
of the above formula. The second statement follows since α(G) ≤ d − 1 for any
d-regular graph. �

An open question of Itai Benjamini (private communication) asks whether there
exist infinite Ramanujan graphs where all bounded harmonic functions are con-
stant. This calls for different examples.

9. A unimodular random graph of maximal growth. For a rooted graph G,
let Sn denote the vertices at distance n from the root. Let

grG = lim inf
n→∞ |Sn|1/n.

Clearly, for every d-regular graph grG ≤ d −1, and grTd = d −1. The goal of this
section is to prove Theorem 8 from the Introduction, namely to exhibit a d-regular
unimodular random graph G different from Td where grG = grTd = d −1 almost
surely.

For this, we consider site percolation on Z
2, namely a random induced subgraph

where every vertex is present with probability p and absent with probability 1−p,
independently. For p large, the connected component of the origin is infinite with
positive probability. Let C denote the distribution of the universal cover of the
cluster given that it is infinite; this is a tree with degree bounded by 4, but is not
4-regular. It can be made 4-regular by adding loops.

THEOREM 36. The rooted random graph C is a unimodular random graph
satisfying grC = 3 with probability 1.

The following lemma follows from the definition of unimodular random graphs.
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LEMMA 37. The universal cover of a unimodular random graph is a unimod-
ular random graph.

Let C be a connected, induced subgraph of Z
2, and let br be the size of the

largest square fully contained in C whose center is at distance at most r in C from
a fixed vertex. Fix a > 0, and consider the following property of C:

lim inf
r→∞

br

log r
≥ a.(24)

It is clear that this property does not depend on the fixed vertex. Whether the
infinite cluster in supercritical percolation has this property is a tail event, so it
has probability 0 or 1, although we will not use this. We will argue for the lat-
ter.

LEMMA 38. There is a = a(p) so that the supercritical percolation cluster C
satisfies property (24) with probability 1.

PROOF. The fact that the set of open vertices in a percolation cluster with
p > 0 satisfies this property (with distance in Z

2 instead of distance in C) is a
simple exercise using independence and the Borel–Cantelli lemmas.

We now use the two-round exposure technique, namely the following construc-
tion of the set of open vertices of supercritical percolation at parameter p. Take the
union of open vertices in a supercritical percolation with parameter p′ < p, and an
independent site percolation with parameter p′′ where p = p′ + p′′ − p′p′′.

Consider the percolation at p′. Note that its infinite cluster C′ is unique and
dense in Z

2. Dense here means that the root (and so every vertex) has a positive
probability of being contained in this cluster. Moreover, by the standard Antral–
Pisztora result [4], there is a constant η so that the set of vertices C+ in C′ whose
distance in C is at most η times their Z2 distance from the vertex in C closest to 0
is also dense.

Given this dense set of vertices C+, we can use the independent percolation at
p′′ to add squares of size c log r at distance r that are connected to C+. It follows
that the infinite open cluster in the union of the two site percolations has the desired
properties. �

LEMMA 39. Let C be a connected subgraph of Z2 satisfying property (24).
Then the probability that simple random walk exits from C in r steps decays slower
than exponentially in r .

PROOF. Note that the probability that the random walk on Z
2 starting at the

center of a square of volume v in Z
2, stays there for time at least t is bounded

below by qt/v for some q < 1.
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So, the probability that the random walk moves in C on a geodesic to a square
of size c log r at distance r , and there for time r log r , is at least e−c′r . The claim
follows. �

LEMMA 40. Let C be a subgraph of a d-regular graph so that the probability
that the random walk stays in C for n steps decays slower than exponentially in n.
Then the universal cover of C has lower growth d − 1.

PROOF. Let An denote the event that random walk stays in C for n steps. Let
sn be the size of the sphere in the universal cover. Then the probability of the event
Bn that non-backtracking random walk on the base graph stays in C until time n is
given by

P(Bn) = sn

d(d − 1)n−1 .

Note also that running ordinary random walk until time n and deleting the back-
trackings, we get non-backtracking random walk run until a random time Nn ≤ n.
Indeed, erasing the backtrackings just means taking the geodesic from the starting
point to the current vertex in the universal cover tree.

Standard arguments show that Nn/n → 1 − 2/d and the event that Nn/n < α

for α < 1 − 2/d fixed has probability that is exponentially small in n. Thus, we
have

P(An) ≤
n∑

k=0

P(Nn = k)P (Bk) ≤ P(Nn < αn) +
n∑

k=an

P (Nn = k)P (Bαn)

≤ P(Nn < αn) + P(Bαn)

and, therefore,

sn

d(d − 1)n−1 = P(Bn) ≥ P(An/α) − P(Nn/α < n),

where the first probability decays slower than exponentially, and the second expo-
nentially. The claim follows. �

PROOF OF THEOREM 36. The component of the origin in the supercritical
percolation in Z

2 is unimodular, so it must be one even when conditioned to be
infinite. In this case, it satisfies property (24). Then its universal cover is a uni-
modular random graph with lower growth d − 1. �
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