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A HSU–ROBBINS–ERDŐS STRONG LAW
IN FIRST-PASSAGE PERCOLATION
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Large deviations in the context of first-passage percolation was first stud-
ied in the early 1980s by Grimmett and Kesten, and has since been re-
visited in a variety of studies. However, none of these studies provides a
precise relation between the existence of moments of polynomial order and
the decay of probability tails. Such a relation is derived in this paper, and
is used to strengthen the conclusion of the shape theorem. In contrast to
its one-dimensional counterpart—the Hsu–Robbins–Erdős strong law—this
strengthening is obtained without imposing a higher-order moment condition.

1. Introduction. The study of large deviations in first-passage percolation
was pioneered by Grimmett and Kesten [13]. In their work, they investigate the
rate of convergence of travel times toward the so-called time constant, by provid-
ing some necessary and sufficient conditions for exponential decay of the proba-
bility of linear order deviations. Although the rate of convergence toward the time
constant has received considerable attention in the literature, there is no systematic
study of the regime for polynomial decay of the probability tails. This is remark-
able since it is precisely in this regime that strong laws such as the celebrated shape
theorem are obtained. In this paper, we derive a precise characterization of the
regime of polynomial decay in terms of a moment condition. As a consequence,
we improve upon the statement of the shape theorem without strengthening its
hypothesis.

Consider the Zd nearest-neighbor lattice for d ≥ 2, with nonnegative i.i.d. ran-
dom weights assigned to its edges. The random weights induce a random pseudo-
metric on Zd , known as first-passage percolation, in which distance between points
are given by the minimal weight sum among possible paths. An important subad-
ditive nature of these distances, sometimes referred to as travel times, was in the
1960s identified and studied by Hammersley and Welsh [14] and Kingman [18].
A particular fact dating back to these early studies is that, under weak conditions,
travel times grow linearly with respect to Euclidean distance between points, at a
rate depending on the direction, and with sublinear corrections. This asymptotic
rate is referred to as the time constant.
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The work of Grimmett and Kesten on the rate of convergence toward the time
constant was later continued by Kesten himself in [16], and more recently refined
in [7] and [9]. These studies, just like the present study, investigates deviations of
linear order. Other studies have pursued stronger concentration inequalities, de-
scribing deviations of sublinear order, notably Kesten [17], Talagrand [20] and
Benjamini, Kalai and Schramm [5]. Other authors have considered deviations of
linear order for the related concept of so-called chemical distance in Bernoulli per-
colation [4, 12]. A common feature among these studies is that they aim to derive
exponential decay of the probability tails for deviations in coordinate directions,
and generally require exponential decay of the tails of the weights in order to get
there. There is no previous study characterizing the regime of polynomial rate of
decay on the probability tails of linear order deviations. This study attends to this
matter and provides necessary and sufficient conditions for polynomial rate of de-
cay in terms of a moment condition, valid for all directions simultaneously. The
results obtained strengthens earlier strong laws in first-passage percolation, in par-
ticular the shape theorem, due to Richardson [19] and Cox and Durrett [8], which
states the precise conditions under which the set of points in Zd within distance t

from the origin (in the random metric), rescaled by t , converges to a deterministic
compact and convex set.

1.1. The shape theorem. We will throughout this paper assume that d ≥ 2, as
the one-dimensional case coincides with the study of i.i.d. sequences. Let E denote
the set of edges of the Zd lattice, and let τe denote the random weight associated
with the edge e in E . The collection {τe}e∈E of weights, commonly referred to
as passage times, will throughout be assumed to be nonnegative and i.i.d. The
distance, or travel time, T (y, z) between two points y and z of Zd is defined as
the minimal path weight, as induced by the random environment {τe}e∈E , among
paths connecting y and z. That is, given a path �, let T (�) := ∑

e∈� τe and define

T (y, z) := inf
{
T (�) :� is a path connecting y and z

}
.

As mentioned above, travel times grow linearly in comparison with Euclidean or
�1-distance on Zd , denoted below by | · | and ‖ · ‖, respectively. The precise mean-
ing of this informal statement refers to the existence of the limit

μ(z) := lim
n→∞

T (0, nz)

n
in probability,(1)

which we refer to as the time constant, and which may depend on the direction.
Indeed, the growth is only linear in the case that μ(z) > 0, which is known to be the
case if and only if P(τe = 0) < pc(d), where pc(d) denotes the critical probability
for bond percolation on Zd (see [16]).

Existence of the limit in (1) was first obtained with a moment condition in [14],
but indeed exists finitely without any restriction on the passage time distribution
(see [8, 16], and the discussion in Appendix A below). Moreover, the convergence
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in (1) holds almost surely and in L1 if and only if E[Y ] < ∞, where Y denotes the
minimum of 2d random variables distributed as τe, as a consequence of the sub-
additive ergodic theorem [18]. A more comprehensive result, the shape theorem,
provides simultaneous convergence in all directions. A weak form thereof can be
concisely stated as

lim sup
z∈Zd : ‖z‖→∞

P
(∣∣T (0, z) − μ(z)

∣∣ > ε‖z‖) = 0 for every ε > 0.(2)

Also the convergence in (2) holds without restrictions to the passage time distribu-
tion (see Section 2.2). However, under the assumption of a moment condition, it is
possible to obtain an estimate on the rate of decay in (2). This is precisely the aim
of this study, and the content of Theorems 3 and 4 below. Based thereon, we will
derive the following Hsu–Robbins–Erdős type of strong law, which characterizes
the summability of tail probabilities of the above type.

THEOREM 1. For every α > 0, ε > 0 and d ≥ 2,

E
[
Yα]

< ∞ ⇐⇒ ∑
z∈Zd

‖z‖α−dP
(∣∣T (0, z) − μ(z)

∣∣ > ε‖z‖)
< ∞.

Apart from characterizing the summability of probabilities of large deviations
away from the time constant, Theorem 1 has several implications for the shape the-
orem, which we will discuss next. Cox and Durrett’s version of the shape theorem
is a strengthening of (2), and can be stated as follows: if E[Yd ] < ∞, then

lim sup
z∈Zd : ‖z‖→∞

|T (0, z) − μ(z)|
‖z‖ = 0 almost surely.(3)

(A more popular way to phrase the shape theorem is offered below.) It is well
known that E[Yd ] < ∞ is also necessary for the convergence in (3). Let

Zε := {
z ∈ Zd :

∣∣T (0, z) − μ(z)
∣∣ > ε‖z‖}

,

and note that (3) is equivalent to saying that the cardinality of the set Zε , de-
noted by |Zε|, is finite for every ε > 0 with probability one. This statement is by
Theorem 1, under the same assumption of E[Yd ] < ∞, strengthened to say that
E|Zε| < ∞ for every ε > 0.

The shape theorem is commonly presented as a comparison between the random
set

Bt := {
z ∈ Zd :T (0, z) ≤ t

}
and the discrete “ball” B

μ
t := {z ∈ Zd :μ(z) ≤ t}. The growth of the first-passage

process may be divided into two regimes characterized by the time constant: μ ≡ 0,
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and μ(z) > 0 for all z �= 0. In the more interesting regime μ �≡ 0, Cox and Dur-
rett’s shape theorem can be phrased: if E[Yd ] < ∞, then for every ε > 0 the two
inclusions

Bμ
(1−ε)t ⊂ Bt ⊂ Bμ

(1+ε)t(4)

hold for all t large enough, with probability one. A simple inversion argument
shows that this formulation is equivalent to the one in (3).

The time constant μ(·) extends continuously to Rd and inherits the properties of
a semi-norm. In other words, one may interpret (4) as 1

t
Bt being asymptotic to the

unit ball {x ∈ Rd :μ(x) ≤ 1} expressed in this norm, and failure of either inclusion
in (4) indicates a linear order deviation of Bt from this asymptotic shape. Inspired
by Theorem 1, one may wonder whether the size, that is Lebesgue measure, of the
set of times for which (4) fails behaves similarly as the size of Zε . Assume that
μ �≡ 0 and let

Tε := {
t ≥ 0 : either inclusion in (4) fails

}
.

The shape theorem says that E[Yd ] < ∞ is sufficient for the supremum of Tε ,
and hence the Lebesgue measure |Tε| of the set Tε , to be finite almost surely, for
every ε > 0. As it turns out, the same condition is not sufficient to obtain finite
expectation, as our next result shows.

THEOREM 2. Assume that μ �≡ 0, and let α > 0, ε > 0 and d ≥ 2. Then

E
[
Yd+α]

< ∞ ⇐⇒ E
[|Tε|α]

< ∞ ⇐⇒ E
[
(supTε)

α]
< ∞.

The title of the paper refers to Theorem 1, and is motivated by the follow-
ing comparison with its one-dimensional analogue. Let Sn denote the sum of n

i.i.d. random variables with mean m. The strong law of large numbers states that
Sn/n converges almost surely to its mean as n tends to infinity. This is the one-
dimensional analogue of the shape theorem. Equivalently put, the number of n

for which |Sn − nm| > εn is almost surely finite for every ε > 0. This is true if
and only if the mean m is finite. Hsu and Robbins [15] proved that if also second
moments are finite, then

∞∑
n=1

P
(|Sn − nm| > εn

)
< ∞.

Erdős [10, 11] showed that finite second moment is in fact also necessary for
this stronger conclusion to hold. In particular, the stronger conclusion requires
a stronger hypothesis. The analogous strengthening of the shape theorem (Theo-
rem 1) holds without the need of a stronger hypothesis.
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REMARK. A sequence X1,X2, . . . of random variables which for all ε > 0
and some random variable X satisfies

∑∞
n=1 P(|Xn − X| > ε) < ∞ is necessarily

convergent to X almost surely. As introduced by Hsu and Robbins, this stronger
mode of convergence was, “for want of a better name,” by them called complete. In
their language, Theorem 1 implies that E[Yd ] < ∞ is necessary and sufficient not
only for the almost sure, but also for complete convergence in the shape theorem.

REMARK. In the statement of the shape theorem, (4) is often exchanged for
(1 − ε)B̃μ ⊂ 1

t
B̃t ⊂ (1 + ε)B̃μ, where B̃t is the “fattened” set obtained by re-

placing each site in Bt by a unit cube centered around it, and where B̃μ = {x ∈
Rd :μ(x) ≤ 1}. This formulation is equivalent to the one based on (4). In Section 7,
where Theorem 2 is proved, it will be clear why it is more convenient to work with
the discrete sets in (4).

1.2. Large deviation estimates. Grimmett and Kesten were concerned with
large deviation estimates and large deviation principles for travel times in coordi-
nate directions, such as the family {T (0, ne1) − nμ(e1)}n≥1. Their results in [13]
were soon improved upon in [16]. Deviations above and below the time constants
behave quite differently. The first observation in this direction is that the probabil-
ity of large deviations below the time constant decay at an exponential rate without
restrictions to the passage time distribution. This was proved for travel times in co-
ordinate direction in [13], d = 2, and [16], d ≥ 2. A further indication is that the
probability of deviations above the time constant decays superexponentially, sub-
ject to a sufficiently strong moment condition on Y (at least exponential). This
observation was first made by Kesten [16], Theorem 5.9, but more recently refined
by Chow and Zhang [7] and Cranston, Gauthier and Mountford [9].

The main contribution of this study is an estimate on linear order deviations
above the time constant under the assumption that E[Yα] < ∞ for some α > 0,
presented in Theorem 4 below. The proof of this result will make crucial use of the
fact that what determines the rate of decay of the probability tail of the travel time
T (0, z) is the distribution of the weights of the 2d edges reaching out of the origin
and the 2d edges leading in to the point z. This idea is in itself not new. A similar
idea was used by Cox and Durrett to prove existence of the limit in (1) without any
moment condition (see [8] for d = 2, and [16] for higher dimensions). Also Zhang
[21] builds on their work and obtains concentration inequalities based on a moment
condition for the travel time between sets whose size is growing logarithmically in
their distance.

We provide two estimates for deviations of linear order, considering deviations
below and above the time constant separately. The first extends the result of Grim-
mett and Kesten [13, 16] from the coordinate axis to all of Zd .

THEOREM 3. For every ε > 0, there are M = M(ε) and γ = γ (ε) > 0 such
that for every z ∈ Zd and x ≥ ‖z‖

P
(
T (0, z) − μ(z) < −εx

) ≤ Me−γ x.
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A similar exponential rate of decay cannot hold in general for deviations
above the time constant, since P(T (0, z) − μ(z) > εx) is bounded from below
by P(Y > Mx) for any sufficiently large M . One may instead wonder whether
the decay of P(T (0, z) − μ(z) > εx) in fact is determined by the probability tails
of Y . Interestingly, in the regime of polynomial decay on the probability tails, this
is indeed the case.

THEOREM 4. Assume that E[Yα] < ∞ for some α > 0. For every ε > 0 and
q ≥ 1 there exists M = M(α, ε, q) such that for every z ∈ Zd and x ≥ ‖z‖

P
(
T (0, z) − μ(z) > εx

) ≤ MP(Y > x/M) + M

xq
.

The strength in Theorem 3 is that it gives exponential decay without the need
of a moment condition, which is best possible; see [16], Theorem 5.2. Moreover,
the upper bound is independent of the direction. This fact is a consequence of the
equivalence between μ and the usual �p-distances.

The strength in Theorem 4 is that under a minimal moment assumption, it re-
lates the probability tail of T (0, z) − μ(z) directly with that of Y , together with
an additional error term. In the case of polynomial decay of the tails of Y , this
result is essentially sharp. It is not clear whether the polynomially decaying error
term that appears in Theorem 4 could be improved or not. However, in view of
the exponential decay obtained in the case of a moment condition of exponential
order, and the superexponential decay for bounded passage times (see [16], Theo-
rem 5.9, or [7] and [9]), it seems possible that the error in fact may decay at least
exponentially fast. This is the most interesting question left open in this study, to-
gether with the question whether it is possible to remove the moment condition in
Theorem 4 completely.

Theorem 1 is easily derived from Theorem 3 and Theorem 4. The proof of
Theorem 3 will follow the steps of [16], whereas the proof of Theorem 4 will be
derived from first principles, via a regeneration argument similar to that used in [1].
A similar characterization of deviations away from the time constant as the one
presented here has in parallel been derived for first-passage percolation of cone-
like subgraphs of the Zd lattice by the same author in [2], however, detailed proofs
appear only here. Complementary to Theorem 1, we may also obtain necessary and
sufficient conditions for summability of tails in radial directions from Theorems 3
and 4.

COROLLARY 5. For any α > 0, ε > 0 and z ∈ Zd ,

E
[
Yα]

< ∞ ⇐⇒
∞∑

n=1

nα−1P
(∣∣T (0, nz) − nμ(z)

∣∣ > εn
)
< ∞.
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Another consequence of Theorems 3 and 4 is the following characterization of
Lp-convergence, of which a proof may be found in [2].

COROLLARY 6. For every p > 0,

E
[
Yp]

< ∞ ⇐⇒ lim sup
z∈Zd : ‖z‖→∞

E
∣∣∣∣T (0, z) − μ(z)

‖z‖
∣∣∣∣p = 0.

Constants given above and also later on in this paper generally depend on the
dimension d and on the actual passage time distribution. However, this will not
always be stressed in the notation. We would also like to remind the reader that
above and for the rest of this paper we will let | · | denote Euclidean distance, and let
‖ · ‖ denote �1-distance. Although the former notation will also be used to denote
cardinality for discrete sets, and Lebesgue measure for (measurable) subsets of Rd ,
we believe that what is referred to will always be clear form the context. Finally,
we will denote the d coordinate directions by ei for i = 1,2, . . . , d , and recall that
Y denotes the minimum of 2d independent random variables distributed as τe.

We continue this paper with a discussion of some preliminary results and ob-
servations in Section 2. In Section 3, we prove Theorem 3, and in Section 4 we
describe a regenerative approach that in Section 5 will be used to prove Theo-
rem 4. Finally, Theorem 1 is derived in Section 6, and Theorem 2 in the ending
Section 7.

2. Convergence toward the asymptotic shape. Before moving on to the core
of this paper, we will first discuss some preliminary observations and results for
later reference. We will begin with a few properties of the time constant, and their
consequences for the asymptotic shape {x ∈ Rd :μ(x) ≤ 1}. We thereafter describe
Cox, Durrett and Kesten’s approach to convergence without moment condition,
in order to state Kesten’s version of the shape theorem. Kesten’s theorem will be
required in order to prove Theorem 3 without moment condition; a first application
is found in Proposition 7 below.

2.1. The time constant and asymptotic shape. The foremost characteristic of
first-passage percolation is its subadditive property, inherited from its interpreta-
tion as a pseudo-metric on Zd . This property takes the expression

T (x, z) ≤ T (x, y) + T (y, z) for all x, y, z ∈ Zd,

and will be used repeatedly throughout this study. Subadditivity also carries over
in the limit. The time constant μ was defined in (1) on Zd , but extends in fact
continuously to all of Rd . The extension is unique with respect to preservation of
the following properties:

μ(ax) = |a|μ(x) for a ∈ R and x ∈ Rd,

μ(x + y) ≤ μ(x) + μ(y) for x, y ∈ Rd,∣∣μ(x) − μ(y)
∣∣ ≤ μ(e1)‖x − y‖ for x, y ∈ Rd .
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The third of the above properties is easily obtained from the previous two, and
shows that μ : Rd → [0,∞) is Lipschitz continuous.

As mentioned above, there are two regimes separating the behavior of μ. Either
μ ≡ 0, or μ(x) �= 0 for all x �= 0. The separating factor is, as mentioned, whether
P(τe = 0) ≥ pc(d) or not, where pc(d) denotes the critical probability for bond
percolation on Zd . In the latter regime μ satisfies all the properties of a norm
on Rd , and the unit ball {x ∈ Rd :μ(x) ≤ 1} in this norm can be shown to be
compact convex and to have nonempty interior. Consequently, μ is bounded away
from 0 and infinity on any compact set not including the origin. In particular,

0 < inf‖x‖=1
μ(x) ≤ sup

‖x‖=1
μ(x) < ∞.

A careful account for the above statements is found in [16]. (See also Appendix A
below.)

2.2. A shape theorem without moment condition. Cox and Durrett [8] found a
way to prove existence of the limit in (1) without restrictions to the passage time
distribution. Their argument was presented for d = 2, and later extended to higher
dimensions by Kesten [16]. As a consequence, Kesten showed that the moment
condition in the shape theorem can be removed to the cost of a weakening of its
conclusion. Since Kesten’s result will be important in order to derive an estimate
on large deviations below the time constant (Theorem 3), we will recall the result
here. To reproduce the result in a fair amount of detail requires that some nota-
tion is introduced. However, a bit loosely put, Kesten’s result states that if Bt is
replaced by the set Bt containing Bt and each other point in Zd “surrounded”
by Bt , then (4) holds for all large enough t almost surely also without the moment
condition. That is, Bt should be thought of as containing all points from which
there is no infinite self-avoiding path disjoint with Bt .

Given δ > 0, pick t̄ = t̄ (δ) such that P(τe ≤ t̄ ) ≥ 1 − δ. Next, color each vertex
in Zd either black or white depending on whether at least one of the edges adjacent
to it has weight larger than t̄ or not. The moral here is that if δ is small, then an
infinite connected component of white vertices will exist with probability one, and
that travels within this white component are never “slow.” Based on this idea, we go
on and define “shells” of white vertices around each point in Zd . If we make sure
that these shells exist, are not too large, but intersect the infinite white component,
then the shells may be used to “surround” points in Zd .

Without reproducing all the details, Kesten shows that it is possible to define
a set 	z ⊂ Zd consisting of white vertices and which, given that δ = δ(d) > 0 is
sufficiently small, almost surely satisfies the following properties (see Appendix B
below):

(1) 	z is a finite connected subset of Zd ,
(2) every path connecting z to infinity has to intersect 	z,
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(3) there is a point in 	z which is connected to infinity by a path of white
vertices,

(4) either every path between y and z in Zd intersects both 	y and 	z, or
	y ∩ 	z �= ∅.

Moreover, the shells may be chosen so that their diameter, defined as the maximal
�1-distance between a pair of its elements, for some M < ∞ and γ > 0 satisfies

P
(
diam(	z) > n

) ≤ Me−γ n for all n ≥ 1.(5)

The advantage of the construction of shells is that although travel times between
points may be too heavy-tailed to obey a strong law, the travel time between shells
of two points in Zd have finite moments of all orders. That T (	y,	z) is a lower
bound for T (y, z) is a consequence of the fourth property. A complementary upper
bound is obtained by summing the weights of paths connecting y and 	y , 	y

and 	z, and 	z and z, respectively. These paths may not intersect and form a path
between y and z, so in order to obtain an upper bound, we also have to consider the
maximal weight of a path between two points in 	y and 	z, respectively. Since
each shell is white and connected, and the 2d edges adjacent to a white vertex have
weight at most t̄ , we arrive at the following inequality:

0 ≤ T (y, z) − T (	y,	z) ≤ T (y,	y) + T (	z, z) + 2dt̄
(|	y | + |	z|).(6)

Without the need of a moment condition (T (	0,	nz) + 2dt̄ |	nz|)n≥1 is found to
satisfy the conditions of the subadditive ergodic theorem; see [16], Theorem 2.26.
Consequently, the limit of 1

n
T (	0,	nz) as n → ∞ exists almost surely and in L1,

and together with (6), existence of the limit in (1) is obtained.
Let us now move on to state Kesten’s version of the shape theorem. For our

purposes, it will be practical to present the statement on the form of a limit, in
analogy to (3). On this form, Kesten’s theorem [16], Theorem 3.1, simply states
that

lim sup
z∈Zd : ‖z‖→∞

|T (0,	z) − μ(z)|
‖z‖ = 0 almost surely.(7)

The weak version of the shape theorem stated in (2) is now easily obtained from (7)
together with (6). As a comparison, recall that Cox and Durrett’s version of the
shape theorem states that if E[Yd ] < ∞, then (7) holds also if 	z is replaced by z.

2.3. Point-to-shape travel times. In view of the convergence of the set Bt to-
ward a convex compact set described in terms of μ(·), it is reasonable to study
the travel time to points at a large distance with respect to this norm. That is, in-
troduce what could be referred to as point-to-shape travel times as T (0,¬B

μ
n ),

where ¬B
μ
n := Zd \ B

μ
n = {z ∈ Zd :μ(z) > n}. This definition only makes sense

in the case that μ �≡ 0, and in this case a strong law for the point-to-shape travel
times holds without restriction on the passage time distribution.
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PROPOSITION 7. Assume that μ �≡ 0. Then

lim
n→∞

T (0,¬Bμ
n )

n
= 1 almost surely.

PROOF. Let mn denote the least integer for which mnμ(e1) > n. By definition,
we have

T (0,¬B
μ
n )

n
≤ T (0,	mne1) + t̄ |	mne1 |

n
→ 1 almost surely.

So, it is sufficient to show that the event

Aδ =
{

lim inf
n→∞

T (0,¬Bμ
n )

n
≤ 1 − δ

}
has probability 0 to occur for every δ > 0. On the event Aδ there is an increas-
ing sequence (nk)k≥1 of integers for which T (0,¬B

μ
nk ) ≤ (1 − δ/2)nk . For each

such nk , there is a site vk such that μ(vk) > nk , but T (0, vk) ≤ (1 − δ/2)nk . When
nk is large we may further assume that μ(vk) ≤ 2nk . Consequently, we conclude
that for large k

T (0, vk) − μ(vk) ≤ −δnk/2 ≤ −δμ(vk)/4 ≤ −ε‖vk‖,(8)

for some ε > 0. However, T (0,	v) ≤ T (0, v), so the occurrence of (8) for in-
finitely many k is contradicted by (7), almost surely. That is, P(Aδ) = 0 for every
δ > 0, as required. �

3. Large deviations below the time constant. We will follow the approach
of Kesten [16], Theorem 5.2, on our way to a proof of Theorem 3. If μ ≡ 0, then
there is nothing to prove. So, we may assume that μ �≡ 0. Unlike Kesten, we will
work with the point-to-shape travel times introduced above in order to obtain a
bound on deviations in all directions simultaneously, and not only for coordinate
directions. The first and foremost step is this next lemma.

LEMMA 8. Let X
(q)
�,�+m for q = 1,2, . . . denote independent random variables

distributed as T (Bμ
� ,¬Bμ

�+m). There exists C < ∞ such that for every n ≥ m ≥
� ≥ 1 and x > 0 we have

P
(
T

(
0,¬Bμ

n

)
< x

) ≤ ∑
Q+1≥n/(m+C�)

nd−1
(
C

m

�

)d(Q−1)

P

(
Q∑

q=1

X
(q)
�,�+m < x

)
.

PROOF. Pick z ∈ Zd such that μ(z) > n. Let � = �(z) be a self-avoiding path
connecting the origin to z. Choose a subsequence v0, v1, . . . , vQ of the vertices
in � as follows. Set v0 = 0. Given vq , choose vq+1 to be the first vertex in �

succeeding vq such that

μ(vq+1 − vq) > m + 2�.
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When no such vertex exists, stop and set Q = q . To find a lower bound on Q, note
that

n < μ(z) ≤ μ(z − vQ) + μ(vQ) ≤ μ(z − vQ) +
Q−1∑
q=0

μ(vq+1 − vq).

Since μ(vq+1 − vq) ≤ m + 2� + μ(e1) and μ(z − vQ) ≤ m + 2�, we see that Q

must satisfy

n ≤ (Q + 1)
(
m + (

2 + μ(e1)
)
�
)
.(9)

Next, pick r > 0 such that [−r, r]d ⊆ Bμ
1 and tile Zd with copies of (−r�, r�]d

such that each box is centered at a point in Zd , and each point in Zd is contained in
precisely one box. Let 
q denote the box that contains vq , and let wq denote the
center of 
q . Of course, the tiling can be assumed chosen such that w0 = v0 = 0.
Denote by �q the part of the path � that connects vq and vq+1. Note that for q1 �=
q2 the two pieces �q1 and �q2 are edge disjoint. By construction, vq is contained in
the copy of Bμ

� centered at wq , while vq+1 is not contained in the copy of Bμ
�+m

centered at wq (see Figure 1). That is,

μ(vq − wq) ≤ � and μ(vq+1 − wq) > � + m.(10)

Moreover, the points w0,w1, . . . ,wQ−1 have to satisfy

μ(wq+1 − wq) ≤ m + 4� + μ(e1).(11)

Let WQ denote the set of all sequences (w0,w1, . . . ,wQ−1) such that w0 = 0,
each wq is the center of some box 
q , and wq and wq+1 satisfies (11) for each
q = 0,1, . . . ,Q − 2.

Given x > 0, Q ∈ Z+ and w = (w0,w1, . . . ,wQ−1) ∈ WQ, let A(x,w) denote
the event that there exists a path � from the origin to z with edge disjoint segments
�0,�1, . . . ,�Q−1 such that:

(1)
∑Q−1

q=0 T (�q) < x,
(2) the endpoints vq and vq+1 of �q satisfy (10), for each q = 0,1, . . . ,Q − 1.

FIG. 1. The decomposition of a path into segments, where dots represent the vk ’s.
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Since T (�) ≥ ∑Q−1
q=0 T (�q), together with (9), we obtain that{

T (0, z) < x
} ⊆ ⋃

Q+1≥n/(m+b�)

⋃
w∈WQ

A(x,w),(12)

where b = 2+μ(e1). Note that given wq , the passage time of any path between two
vertices v and v′ such that μ(v−wq) ≤ � and μ(v′ −wq) > �+m is stochastically
larger than T (Bμ

� ,¬Bμ
�+m). Hence, via a BK-like inequality (e.g., Theorem 4.8,

or (4.13), in [16]), it is for each w ∈ WQ possible to bound the probability of the
event A(x,w) from above by

P
(
X

(1)
�,�+m + X

(2)
�,�+m + · · · + X

(Q)
�,�+m < x

)
.(13)

It remains to count the number of elements (w0,w1, . . . ,wQ−1) in WQ. Assum-
ing that wq has already been chosen, the number of choices for wq+1 is restricted
by (11). In particular, wq+1 has to be contained in a cube centered at wq and whose
side length is a multiple of (5 + μ(e1))m. This cube is intersected by at most
(Cm/�)d boxes of the form (−r�, r�]d in the tiling of Zd , for some C < ∞. Since
wq+1 is the center of one of these boxes, this is also an upper bound for its number
of choices. Consequently, the total number of choices for w1,w2, . . . ,wQ−1 is at
most (Cm/�)d(Q−1). Together with (12) and (13), we conclude that

P
(
T (0, z) < x

) ≤ ∑
Q+1≥n/(m+C�)

(
C

m

�

)d(Q−1)

P

(
Q∑

q=1

X
(q)
�,�+m < x

)
,

for some C < ∞. The lemma follows observing that the number of z ∈ Zd that
satisfies μ(z) > n and has a neighbor within Bμ

n is of order nd−1. �

LEMMA 9. Assume that μ �≡ 0. For every ε > 0,

lim
m→∞ max

�≤m
P

(
T

(
Bμ

� ,¬Bμ
�+m

)
< m(1 − ε)

) = 0.

PROOF. Let � be a path with endpoints z and y satisfying μ(z) ≤ � and
μ(y) > � + m. Then

T
(
0,¬Bμ

�+m

) ≤ T (0,	z) + t̄ |	z| + T (�),

and we may choose � so that T (�) = T (B
μ
� ,¬B

μ
�+m). It follows that

T
(
0,¬Bμ

�+m

) ≤ max
{
T (0,	z) :μ(z) ≤ �

}
+ t̄ · max

{|	z| :μ(z) ≤ �
} + T

(
B

μ
� ,¬B

μ
�+m

)
.

For every ε > 0, we have P(T (0,¬Bμ
�+m) < (� + m)(1 − ε/4)) < ε for all large

enough m, by Proposition 7. Thus, it suffices to show that for all large m and � ≤ m

also

P
(

max
{
T (0,	z) :μ(z) ≤ �

}
> � + εm

4

)
+ P

(
max

{|	z| :μ(z) ≤ m
}
>

εm

4t̄

)
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is at most ε. The latter of the two probabilities vanishes as m → ∞ as a conse-
quence of the exponential decay of the diameter of a shell in (5). To show that the
former probability is small, we will use (7).

Let N be an integer and note that if max{T (0,	z) :μ(z) ≤ �} > �+ εm/4, then
either max{T (0,	z) :μ(z) ≤ N} > εm/4 or T (0,	z) − μ(z) > � − μ(z) + εm/4
for some z satisfying μ(z) ∈ [N,�]. Since m ≥ � ≥ μ(z), we have � − μ(z) +
εm/4 ≥ εμ(z)/4. We thus obtain the inequality

P
(

max
{
T (0,	z) :μ(z) ≤ �

}
> � + εm

4

)
≤ P

(
max

{
T (0,	z) :μ(z) ≤ N

}
>

εm

4

)
+ P

(
T (0,	z) > (1 + ε/4)μ(z) for some μ(z) ≥ N

)
.

From (7), we know that the right-hand side can be made arbitrarily small by choos-
ing N large and sending m to infinity. �

PROOF OF THEOREM 3. We may assume that μ �≡ 0. We will prove that for
every ε > 0 there exist M = M(ε) and γ = γ (ε) such that for every x ≥ n ≥ 1

P
(
T

(
0,¬Bμ

n

)
< n − εx

) ≤ Me−γ x,

from which Theorem 3 is an easy consequence.

Let X
(1)
�,�+m,X

(2)
�,�+m, . . . ,X

(Q)
�,�+m and C < ∞ be as in Lemma 8, and fix ε ∈

(0,4C). For some integer m, let � = �(m) be the largest integer such that � ≤ mε
4C

.
Markov’s inequality and independence give that for any ξ > 0

P

(
Q∑

q=1

X
(q)
�,�+m < n − εx

)
≤ eξ(n−εx)E

[
e
−ξX

(1)
�,�+m

]Q
.

Writing n − εx = n(1 − ε) − ε(x − n), we obtain for (Q + 1)(m + C�) ≥ n the
upper bound

e−εξ(x−n)eξ(m+C�)[eξ(m+C�)(1−ε)(e−ξm(1−ε/2) + P
(
X

(1)
�,�+m < m(1 − ε/2)

))]Q
.

Since C� − mε/2 ≤ −mε/4 and m + C� ≤ (1 + ε/4)m, the expression within
square brackets is at most

e−ξmε/4 + e(1+ε/4)ξmP
(
X

(1)
�,�+m < m(1 − ε/2)

)
.(14)

According to Lemma 9, we can make (14) arbitrarily small by choosing ξ and m

such that ξm is large and m is as large as necessary. Fix ξ and m such that � ≥ 1
and (14) is not larger than

(2C)−d

(
8C

ε

)−d

≤
(

2C
m

�

)−d

.
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Finally, apply Lemma 8 with these ξ , m and � to obtain

P
(
T

(
0,¬Bμ

n

)
< n − εx

)
≤ e−εξ(x−n)eξ(m+C�)

∑
(Q+1)≥n/(m+C�)

nd−1
(
C

m

�

)d(Q−1)(
2C

m

�

)−dQ

≤ e−εξ(x−n) · eξ(m+C�) · nd−1 · 2−d(n/(m+C�)−1)+1,

which is of the required form. �

4. A regenerative approach. We will in this section explore a regenerative
approach that can be used to study the asymptotics of travel times along cylinders.
This approach was previously studied in more detail in [1]. It will for the sake of
this paper be sufficient to obtain a sequence which is approximately regenerative,
which in turn avoids some additional technicalities. Some additional notation will
be required however.

Given z ∈ Zd and r ≥ 0, let C(z, r) := ⋃
a∈R B(az, r) denote the cylinder in

direction z of radius r , where B(x, r) := {y ∈ Rd : |y − x| ≤ r} denotes the closed
Euclidean ball. The travel time between two points x and y over paths restricted
to the cylinder C(z, r) will be denoted by TC(z,r)(x, y). The regenerative approach
referred to will consist of a comparison between TC(z,r)(0, nz) and the sum of
travel times between randomly chosen “cross-sections” of C(z, r).

Due to symmetry it means no restriction assuming that z ∈ Zd lies in the first
orthant, that is, that the coordinate zi ≥ 0 for each i = 1,2, . . . , d . Let Hn := {z ∈
Zd : z1 + z2 + · · · + zd = n}, r ≥ 0, and pick t̄ ∈ R+ such that P(τe ≤ t̄ ) > 0. The
following notation will be used, and is illustrated in Figure 2 below:

Vn(z, r) := C(z, r) ∩Hn‖z‖,
En(z, r) := {

edges connecting C(z, r) ∩Hn‖z‖−1 with C(z, r) ∩Hn‖z‖
}
,

An(z, r) := {
τe ≤ t̄ for all e ∈ En(z, r)

}
,

ρj (z, r) := min
{
n > ρj−1(z, r) :An(z, r) occurs

}
for j ≥ 1, ρ0 = 0.

When understood from the context, the reference to z and r will be dropped.

FIG. 2. A piece of C(z, r). The thick diagonal lines indicate {Vρj (z, r)}j≥0 and the curly lines
{TC(z,r)(Vρj−1 ,Vρj )}j≥1. In this illustration, we have ν(n) = k + 2.
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Note that {An(z, r)}n≥1 are i.i.d., so the increments {ρj −ρj−1}j≥1 are indepen-
dent geometrically distributed with success probability P(A0(z, r)). Consequently,
{TC(z,r)(Vρj−1,Vρj

)}j≥1 are i.i.d. Introduce the following notation for their means:

μτ (z, r) := E
[
TC(z,r)(Vρ0,Vρ1)

]
,

μρ(z, r) := E[ρ1 − ρ0],
and, for the time constant for travel times restricted to cylinders, let

μC(z,r) := lim
n→∞

E[TC(z,r)(V0,Vn)]
n

.

The existence of the above limit is given by Fekete’s lemma, since that
(−E[TC(z,r)(V0,Vn)])n≥1 is a subadditive sequence. A sufficient condition for the
limit μC(z,r) to be finite will be achieved with Proposition 13 below.

Finally, travel times on C(z, r) and the sequence {TC(z,r)(Vρj−1,Vρj
)}j≥1 will

be compared via optimal stopping. We define for that purpose the stopping time

ν(m) = ν(m, z, r) := min
{
j ≥ 1 :ρj (z, r) > m

}
.

Note that ν(m) − 1 equals the number of n ∈ {1,2, . . . ,m} for which An(z, r)

occurs, which is binomially distributed with success probability P(A0(z, r)) =
μρ(z, r)−1.

REMARK. A geometrical constraint should be noted. For some z ∈ Zd , there
may not be any paths at all between x and y that only passes through points in
C(z, r), when r is small. [In this case set TC(z,r)(x, y) = ∞.] However, it is not
hard to realize that for every k ≥ 1, there is R = R(d, k) such that for every z ∈ Zd

and r ≥ R there are k edge-disjoint paths from V0(z, r) to V1(z, r) of length ‖z‖,
which are all contained in C(z, r). (R = k

√
d is sufficient.)

4.1. Tail and moment comparisons. The next task will be to relate tail prob-
abilities of travel times and moments of TC(z,r)(Vρ0,Vρ1) with the corresponding
quantities for Y . The latter will provide a sufficient condition for μC(z,r) to be finite
and converge to μ(z) as r → ∞. We begin with a well-known tail comparison.

LEMMA 10. For every z ∈ Zd , x ≥ 0 and large enough r ,

P
(
TC(z,r)(0, z) > 9‖z‖x) ≤ 92d‖z‖P(Y > x).

PROOF. Note that there are 2d edge disjoint paths between the origin and e1
of length at most 9. Denote these paths by �1,�2, . . . ,�2d , and assume that �1 is
the longest among them. Clearly,

P
(

min
i=1,2,...,2d

T (�i) > 9x
)

≤ P
(
T (�1) > 9x

)2d ≤ 92dP(τe > x)2d .
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For r large, TC(z,r)(0, z) is dominated by ‖z‖ random variables distributed as
mini=1,2,...,2d T (�i). Consequently,

P
(
TC(z,r)(0, z) > 9‖z‖x) ≤ ‖z‖P

(
min

i=1,2,...,2d
T (�i) > 9x

)
≤ 92d‖z‖P(Y > x),

as required. �

In preparation for the second aim, we have a couple of lemmata of general
character.

LEMMA 11. Let {τi}i≥1 be a collection of nonnegative i.i.d. random variables.
For any α,β > 0 and integers L ≥ K ≥ 1 such that βK ≤ αL, then

E
[(

min
i≤L

τi

)β]
≤ 1 + β

α
E

[(
min
i≤K

τi

)α]L/K
.

PROOF. Recall the formula E[Xα] = α
∫ ∞

0 xα−1P(X > x)dx, valid for non-
negative random variables and α > 0. Note that for any x ≥ 1 Markov’s inequality
gives that

P(τi > x) = P
(
min
i≤K

τi > x
)1/K ≤ E[(mini≤K τi)

α]1/K

xα/K
,

from which one, under the imposed conditions, easily obtains

xβ−1P(τi > x)L ≤ xα−1P
(
min
i≤K

τi > x
)

· E
[(

min
i≤K

τi

)α](L−K)/K
.

Finally, integrating over the intervals [0,1) and [1,∞) separately yields

E
[(

min
i≤L

τi

)β]
≤ 1 + βE

[(
min
i≤K

τi

)α](L−K)/K
∫
x≥1

xα−1P
(
min
i≤K

τi > x
)
dx

= 1 + β

α
E

[(
min
i≤K

τi

)α]1+(L−K)/K
,

as required. �

LEMMA 12. Let {τi,j }i,j≥1 be a collection of nonnegative i.i.d. random vari-
ables. For any α,β > 0 and integers K,N ≥ 1 and L ≥ K satisfying βK ≤ αL,

E
[(

min
i≤L

∑
j≤N

τi,j

)β]
≤ NL+β

(
1 + β

α
E

[(
min
i≤K

τi,j

)α]L/K
)
.
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PROOF. First, since if a sum of N nonnegative numbers is greater than x, then
at least one of the terms has to be greater than x/N , it follows that

P
(

min
i≤L

∑
j≤N

τi,j > x

)
= P

( ∑
j≤N

τi,j > x

)L

≤ NLP(τi,j > x/N)L.

Thus, via the substitution x = Ny, we conclude that

E
[(

min
i≤L

∑
j≤N

τi,j

)β]
≤ βNL

∫ ∞
0

xβ−1P(τi,j > x/N)L dx

= NL+βE
[(

min
i≤L

τi,j

)β]
,

from which the statement follows via Lemma 11. �

PROPOSITION 13. For every β ≥ α > 0 and z ∈ Zd , there is a finite con-
stant R1 = R1(α,β, d) such that for r ≥ R1 and some finite constant M1 =
M1(α,β, d, z, r),

E
[
TC(z,r)(Vρ0,Vρ1)

β] ≤ M1
(
1 + E

[
Yα])β/α+1

.

PROOF. If P(τe > t̄) = 0, then ρ1 = 1 and the statement is a consequence of
Lemma 12. Assume instead the contrary, in which case a bit more care is needed
before appealing to Lemma 12.

Let η = {ηe}e∈E denote the family of indicator functions ηe = 1{τe>t̄}. Inde-
pendently of {τe}e∈E , let {τ̃e}e∈E be a collection of independent random variables
distributed as P(τ̃e ∈ ·) = P(τe ∈ ·|τe > t̄), and define {σe}e∈E as

σe :=
{

τe, if ηe = 1,
τ̃e, if ηe = 0.

Note that {σe}e∈E is an i.i.d. family independent of η, but that η determines
{An(z, r)}n≥1, and hence {ρj − ρj−1}j≥1, for every z and r . In particular, {σe}e∈E
and {ρj − ρj−1}j≥1 are independent. Let T ′

C(x, y) denote the passage time be-
tween x and y with respect to {σe}e∈E . By construction τe ≤ σe for every e ∈ E , so
TC(x, y) ≤ T ′

C(x, y).
Fix β ≥ α > 0 and z ∈ Zd . Choose r = r(α,β, d) large so that there are at least

2dβ/α disjoint paths between V0(z, r) and V1(z, r) of length ‖z‖, contained in
C(z, r). Similarly, there are equally many paths between Vρ0(z, r) and Vρ1(z, r) of
length (ρ1 − ρ0)‖z‖. Hence, by Lemma 12

E
[
T ′
C(Vρ0,Vρ1)

β |η]
≤ (

(ρ1 − ρ0)‖z‖)2dβ/α+β+1
(

1 + β

α
E

[(
min
i≤2d

σi

)α]β/α+1/(2d)
)
,
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where σ1, σ2, . . . , σ2d denote independent variables distributed as σe. In addition,

E
[(

min
i≤2d

σi

)α]
= α

∫ ∞
0

xα−1P(τe > x|τe > t̄)2d dx

≤ E
[(

min
i≤2d

τi

)α]
P(τe > t̄)−2d .

Since TC(Vρ0,Vρ1) ≤ T ′
C(Vρ0,Vρ1), and ρ1 − ρ0 is geometrically distributed, the

bound follows easily. �

4.2. Time constant comparison. Proposition 13 gives, in particular, a criterion
for μτ (z, r) and μC(z,r) to be finite.

LEMMA 14. Assume that E[Yα] < ∞ for some α > 0. Then μτ (z, r) is finite
for all z ∈ Zd and r ≥ R1, where R1 is given by Proposition 13 (with β = 1).
Moreover,

μτ (z, r)

μρ(z, r)
≤ μC(z,r) ≤ μτ (z, r)

μρ(z, r)
+ t̄ |En|

μρ(z, r)
.

PROOF. The former assertion is the content of Proposition 13. For the latter,
note that

ν(n)−1∑
j=1

TC(z,r)(Vρj−1,Vρj
) ≤ TC(z,r)(V0,Vn)

≤
ν(n)∑
j=1

TC(z,r)(Vρj−1,Vρj
) + t̄ |En|(ν(n) − 1

)
.

Taking expectations, the right-hand side is via Wald’s lemma turned into

E
[
ν(n)

]
E

[
TC(z,r)(Vρ0,Vρ1)

] + t̄ |En|E[
ν(n) − 1

]
,

which after division by n gives(
1

μρ(z, r)
+ 1

n

)
μτ (z, r) + t̄ |En|

μρ(z, r)
.

Sending n to infinity thus gives the upper bound.
For the lower bound, it suffices to show that E[TC(z,r)(Vρν(n)−1,Vρν(n)

)] is
bounded. This follows from TC(z,r)(Vρν(n)−1,Vρν(n)

) being stochastically dominated
by TC(z,r)(Vρ−1,Vρ1), where ρ−1 = max{n ≤ 0 :An(z, r) occurs}. Now, we have
not proven that TC(z,r)(Vρ−1,Vρ1) has finite mean, but that follows readily from
the proof of Proposition 13. �

Since μC(z,r) is decreasing in r , it seems reasonable that it should converge to
its lower bound μ(z), as r tends to infinity. An indication of this was given already
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in [6] and [16], but proofs of this fact may have appeared only more recently, see,
for example, [1, 3]. These proofs assume finite expectation of Y , and to extend
them to a minimal moment condition requires some care.

PROPOSITION 15. Assume that E[Yα] < ∞ for some α > 0. Then, for every
z ∈ Zd ,

lim
r→∞μC(z,r) = μ(z).

PROOF. Fix z ∈ Zd and, based on Proposition 13, pick s > 0 sufficiently large
for E[TC(z,s)(Vρ0(z,s), Vρ1(z,s))

2] to be finite. To the end of this proof, let Vn =
Vn(z, s), En = En(z, s), ρj = ρj (z, s), ν(n) = ν(n, z, s), and ε(s) = t̄ |E0(z, s)|.
For r ≥ s, let

an(r, s) := E
[
TC(z,r)(Vρ1(z,s), Vρν(n)(z,s))

] + ε(s).

The sequence (an(r, s))n≥1 is subadditive, that is, an+m(r, s) ≤ an(r, s) + am(r, s)

for all n,m ≥ 1, as a consequence of the inequality (note that ρ1 = ρν(0))

E
[
TC(z,r)(Vρ1,Vρν(n+m)

)
] + ε(s) ≤ E

[
TC(z,r)(Vρν(0)

, Vρν(n)
)
]

+ E
[
TC(z,r)(Vρν(n)

, Vρν(n+m)
)
] + 2ε(s).

Recall Fekete’s lemma, which says that for any subadditive sequence the limit
limn→∞ 1

n
an(r, s) exists and equals infn≥1

1
n
an(r, s). This holds for every r ≥ s,

including the case r = ∞ in which the cylinder equals the whole lattice.
Next note the inequality

TC(z,r)

(
V0(z, r),Vn(z, r)

) ≤ TC(z,r)

(
V0(z, s),Vn(z, s)

)
≤ TC(z,r)(V0,Vρ1) + TC(z,r)(Vρ1,Vρν(n)

)

+ TC(z,r)(Vn,Vρν(n)
) + 2ε(s),

which shows that μC(z,r) ≤ limn→∞ 1
n
an(r, s) for every r ≥ s. Consequently,

lim
r→∞μC(z,r) = inf

r≥0
μC(z,r) ≤ inf

r≥s
inf
n≥1

an(r, s)

n
= inf

n≥1
inf
r≥s

an(r, s)

n

= inf
n≥1

lim
r→∞

an(r, s)

n
= lim

n→∞
E[T (Vρ1,Vρν(n)

)]
n

,

where we in the second to last step have used that TC(z,r)(·, ·) is decreasing in r ,
and in the finial step have appealed to the monotone convergence theorem and used
that (an(∞, s))n≥1 is subadditive. It remains to prove that the limit equals μ(z).

We will proceed by showing that 1
n
T (Vρ1,Vρν(n)

) → μ(z) in probability as
n → ∞, and then argue that the limit carries over in the mean due to uniform
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integrability of the family { 1
n
T (Vρ1,Vρν(n)

)}n≥1. We begin proving convergence in
probability. By subadditivity,∣∣T (Vρ1,Vρν(n)

) − T (0, nz)
∣∣ ≤ T (0,Vρν(0)

) + T (nz,Vρν(n)
).

Since the distributions of the dominating two terms are independent of n, the con-
vergence of 1

n
T (Vρ1,Vρν(n)

) in probability to μ(z) follows from the convergence

of 1
n
T (0, nz) in (1).

The condition supn≥1 E[( 1
n
T (Vρ1,Vρν(n)

))α] < ∞, for some α > 1, is sufficient
for uniform integrability. To see that this holds, observe that

T (Vρ1,Vρν(n)
) ≤ TC(z,s)(Vρ1,Vρn+1) ≤

n+1∑
j=2

TC(z,s)(Vρj−1,Vρj
) + nε(s),

where we have used that ν(n) − 1 ≤ n. Thus, by convexity of the function x2, we
find that (

1

n
T (Vρ1,Vρν(n)

)

)2

≤ 2

(
1

n

n+1∑
j=2

TC(z,s)(Vρj−1,Vρj
)2 + ε(s)2

)
.

Since the terms in the sum are i.i.d., we obtain

E
[(

1

n
T (Vρ1,Vρν(n)

)

)2]
≤ 2E

[
TC(z,s)(Vρ0,Vρ1)

2] + 2ε(s)2,

which is finite and independent of n. Thus, { 1
n
T (Vρ1,Vρν(n)

)}n≥1 is uniformly in-
tegrable, and

lim
n→∞

E[T (Vρ1,Vρν(n)
)]

n
= μ(z),

as required. �

5. Large deviations above the time constant. In this section, we estimate
the probability of large deviations above the time constant and prove Theorem 4.
Recall that it suffices to consider z in the first orthant, due to symmetry. The re-
generative approach set up for in the previous section will serve to obtain a first
modest estimate on the tail decay. This first step of the proof is as follows.

LEMMA 16. Assume that E[Yα] < ∞ for some α > 0. There exists R2 =
R2(α, d) such that for every ε > 0, z ∈ Nd and r ≥ R2, there is a finite constant
M2 = M2(α, ε, d, z, r) such that for every n ∈ N and x ≥ n

P
(
TC(z,r)(H0,Hn‖z‖) − nμC(z,r) > εx‖z‖) ≤ M2

x
.



2012 D. AHLBERG

FIG. 3. Dots indicate {jz}j≥0, dashed diagonal lines {Vj (y, r)}j≥0, and thick diagonal lines
{Vρj (y, z)}j≥0. In the illustration we have y = 4z and ν(mn) = ν(mn,y, r) = k + 1.

PROOF. We may without loss of generality assume that α ∈ (0,2]. Let β = 2
and let R1 = R1(α, d) be given as in Proposition 13. In particular, μC(z,r) is finite
for r ≥ R1. Fix r ≥ R1, ε > 0 and choose N ∈ N large enough for 2t̄ |E0(z, r)| ≤
εN‖z‖ to hold. Set y = Nz and let mn = max{m ≥ 0 :mN ≤ n}. To the end of this
proof, let Vn = Vn(y, r), En = En(y, r), ρj = ρj (y, r), ν(n) = ν(n, y, r), μτ =
μτ (y, r), and μρ = μρ(y, r). (For a relation between nz, mny and ρν(mn)y, see
Figure 3.) Recall that ρ0 = 0, so Vρ0(y, r) = V0(z, r). By subadditivity,

TC(z,r)(H0,Hn‖z‖) − nμC(z,r) ≤
ν(mn)∑
j=1

(
TC(z,r)(Vρj−1,Vρj

) − μτ

)
+ TC(z,r)(Vρν(mn)

,Hn‖z‖)

+ (
ν(mn)μτ − nμC(z,r)

) +
ν(mn)∑
j=1

t̄ |E0|.

Label the four terms on the right-hand side as X1,X2,X3,X4. Since that∑
i≤4 Xi > 4εx‖z‖ would imply that Xi > εx‖z‖ for some i = 1,2,3,4, and since

ε > 0 was arbitrary, it suffices to obtain a bound on P(Xi > εx‖z‖) of the desired
form, for each i = 1,2,3,4 separately.

Starting from behind, since ν(mn) ≤ mn + 1 ≤ n/N + 1, it follows that for
n ≥ N , P(ν(mn)t̄ |E0| > εn‖z‖) = 0 by the choice of N . So, the last term satis-
fies a bound on the desired form. Since μC(y,r) = NμC(z,r), the third term is via
Lemma 14 bounded above by

ν(mn)μρμC(y,r) − mnμC(y,r).

Recall that ν(m)−1 counts the number of k ∈ {1,2, . . . ,m} for which Ak(y, r) oc-
curs, and is therefore binomially distributed with success probability
P(An(y, r)) = 1/μρ . For large n, we will have εx‖z‖/2 > μρμC(y,r). Thus, for
large n Chebyshev’s inequality may be applied to give

P
(
ν(mn)μρ − mn > ε

x‖z‖
μC(y,r)

)
≤ 4μ2

C(y,r)

μρ − 1

ε2N‖z‖2x
,

which also meets the requirement.
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For β = 2 and y = Nz, let M1 = M1(α, d, y, r) be given as in Propo-
sition 13. Since mn‖y‖ ≤ n‖z‖ < ρν(mn)‖y‖, then TC(z,r)(Hn‖z‖,Vρν(mn)

) ≤
TC(z,r)(Vmn,Vρν(mn)

), which is distributed as TC(z,r)(Vρ0,Vρ1). Consequently,
Markov’s inequality and Proposition 13 give that

P
(
TC(z,r)(Vρν(mn)

,Hn‖z‖) > εx‖z‖) ≤ M1
(1 + E[Yα])1+1/α

ε‖z‖x ,

for r ≥ R1. Finally, by Wald’s lemma
∑ν(mn)

j=1 (TC(z,r)(Vρj−1,Vρj
) − μτ ) has mean

zero and second moment

E

[(
ν(mn)∑
j=1

(
TC(z,r)(Vρj−1,Vρj

) − μτ

))2]
= Var

(
TC(z,r)(Vρ0,Vρ1)

)
E

[
ν(mn)

]
.

Using Chebyshev’s inequality, Proposition 13 and the identity E[ν(mn)] = 1 +
mnμ

−1
ρ shows that P(

∑ν(mn)
j=1 (TC(z,r)(Vρj−1,Vρj

) − μτ ) > εx‖z‖) is bounded
above by

M1
(1 + E[Yα])1+2/α(μ−1

ρ N−1 + x−1)

ε2‖z‖2x
,

for all r ≥ R1, as required. �

In the second step, we improve upon the above decay by aligning disjoint cylin-
ders.

PROPOSITION 17. Assume that E[Yα] < ∞ for some α > 0. For every ε > 0,
q ≥ 1 and z ∈ Zd there exists M3 = M3(ε,α, q, d, z) such that for all n ∈ N and
x ≥ n

P
(
T (0, nz) − nμ(z) > εx‖z‖) ≤ M3P(Y > x/M3) + M3

xq
.

PROOF. We may assume that z lies in the first orthant due to symmetry. Fix
ε > 0, q ∈ Z+ and choose r ≥ R2 large enough for μC(z,r) − μ(z) ≤ ε‖z‖ to
hold, where R2 = R2(α, d) is as in Lemma 16. Pick v1, v2, . . . , vq ∈ H0 such
that the transposed cylinders vi + C(z, r) are pairwise disjoint, and choose s > r

so that vi + C(z, r) ⊆ C(z, s) for all i = 1,2, . . . , q . For such s, the travel time
TC(z,s)(H0,Hn‖z‖) is clearly dominated by the minimum of q independent random
variables distributed as TC(z,r)(H0,Hn‖z‖). Thus,

P
(
TC(z,s)(H0,Hn‖z‖) − nμC(z,r) > εx‖z‖)

≤ P
(
TC(z,r)(H0,Hn‖z‖) − nμC(z,r) > εx‖z‖)q

,
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which by Lemma 16 is at most M
q
2 /xq . Since μC(z,r) −μ(z) ≤ ε‖z‖ by the choice

of r , we obtain

P
(
TC(z,s)(H0,Hn‖z‖) − nμ(z) > 2εx‖z‖) ≤ M

q
2

xq
.(15)

It remains to connect to the starting and ending points 0 and nz. Subadditivity
gives that

T (0, nz) ≤ ∑
v∈V0(z,s)

(
T (0, v) + T (v + nz,nz)

) + TC(z,s)(H0,Hn‖z‖),

so we may via Lemma 10 find an M ′
3, depending on ε, d and s, such that

P
(
T (0, nz) − nμ(z) > 3εx‖z‖) ≤ M ′

3P
(
Y > x/M ′

3
) + M

q
2

xq
.

Since ε > 0 was arbitrary, the proof is complete. �

Before completing the proof of Theorem 4, we will show that travel times can-
not be too large. This result will help us to loose the dependence on z still present
in Proposition 17.

PROPOSITION 18. Assume that E[Yα] < ∞ for some α > 0. For every q ≥ 1
there is a constant M4 = M4(α, q, d) such that for all z ∈ Zd and x ≥ ‖z‖

P
(
T (0, z) > M4x

) ≤ M4P(Y > x) + 1

xq
.

PROOF. Again, assume that z lies in the first orthant. Let M3 denote the con-
stant figuring in Proposition 17 (for given α and q , and with ε = 1 and z = e1).
The point z can be reached from 0 in d steps by in each step taking zi steps in
direction ei , for i = 1,2, . . . , d . Thus, due to subadditivity and Proposition 17,

P
(
T (0, z) > dM ′

4x
) ≤

d∑
i=1

P
(
T (0, ziei ) > M ′

4x
) ≤ dM3P(Y > x/M3) + dM3

xq

for any M ′
4 ≥ μ(e1) + 1. Hence, M4 = d2M3M

′
4 is sufficient. �

PROOF OF THEOREM 4. Fix ε > 0. To start, we will choose a finite set of
directions so that each z ∈ Zd will be within distance ε‖z‖ of some straight line
intersecting the origin, and continues in one of the chosen directions. The set of
directions can be chosen as {y ∈ Zd :‖y‖ = N}, given that N is large enough.
More precisely, pick N ≥ d/ε and note that any z ∈ Zd satisfying mN ≤ ‖z‖ <

(m + 1)N will be within �1-distance N + dm of some point in {my :‖y‖ = N}. In
particular, for ‖z‖ ≥ N/ε we have

N + dm ≤ ε‖z‖ + d‖z‖/N ≤ 2ε‖z‖.
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Given z ∈ Zd , let mz := max{m ≥ 0 :mN ≤ ‖z‖}. First, note that if ‖z‖ ≤ N/ε,
then

P
(
T (0, z) − μ(z) > εx

) ≤ P
(
T (0, z) > εx

) ≤ 92d(N/ε)P
(
Y > ε2x/(9N)

)
,

by Lemma 10. So, we may proceed assuming that ‖z‖ ≥ N/ε. For any y with
‖y‖ = N , we have

T (0, z) − μ(z) ≤ T (0,mzy) − mzμ(y) + T (mzy, z) + (
mzμ(y) − μ(z)

)
,

and, for at least one of these y (the one closest to z), since μ satisfies the properties
of a norm,

mzμ(y) − μ(z) ≤ μ(mzy − z) ≤ μ(e1)‖mzy − z‖ ≤ 2μ(e1)ε‖z‖.(16)

Moreover, with M4 as in Proposition 18, and x ≥ ‖z‖ ≥ ‖mzy − z‖/(2ε),

P
(
T (mzy, z) > 2M4εx

) ≤ M4P(Y > 2εx) + 1

(2εx)q
.(17)

Since N depends on nothing but ε, there is a constant M3 = M3(ε,α, q, d),
given by Proposition 17, such that for every y satisfying ‖y‖ = N , and x ≥ ‖z‖ ≥
mzN , then

P
(
T (0,mzy) − mzμ(y) > εx

) ≤ M3P
(
Y > x/(M3N)

) + M3N
q

xq
.(18)

Combining (16), (17) and (18), we conclude that also for x ≥ ‖z‖ ≥ N/ε,

P
(
T (0, z) − μ(z) >

(
1 + 2μ(e1) + 2M4

)
εx

) ≤ MP(Y > x/M) + M

xq
,

where M can be taken as the maximum of M4 + M3, 1/(2ε)q , and M3N
q . Since

ε > 0 was arbitrary, this completes the proof. �

6. Proof of the Hsu–Robbins–Erdős strong law. Both Theorem 1 and
Corollary 5 may be thought of as strong laws of the kind introduced by Hsu, Rob-
bins and Erdős. They are easily derived in a similar fashion from the large deviation
estimates presented in Theorems 3 and 4. For that reason, we only present a proof
of the former.

PROOF OF THEOREM 1. Deviations below and above the time constant are
easily handled separately via the identity

P
(∣∣T (0, z) − μ(z)

∣∣ > ε‖z‖) = P
(
T (0, z) − μ(z) < −ε‖z‖)

+ P
(
T (0, z) − μ(z) > ε‖z‖)

.

Summability of the probabilities of deviations below the time constant is imme-
diate from Theorem 3, since P(T (0, z) − μ(z) < −ε‖z‖) decays exponentially in
‖z‖, while the number of sites satisfying ‖z‖ = n grows polynomially in n.
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Consider instead deviations above the time constant. Assume first that E[Yα] <

∞ for some α > 0. According to Theorem 4, with q = α + 1, there is a constant
M = M(α, ε, d) such that∑

z∈Zd

‖z‖α−dP
(
T (0, z) − μ(z) > ε‖z‖)

≤ M
∑
z∈Zd

(
‖z‖α−dP(Y > ‖z‖/M) + 1

‖z‖d+1

)
.

Observe that the number of z ∈ Zd for which ‖z‖ = n is of order nd−1. The above
summation is therefore finite since E[Yα] < ∞ implies that

∞∑
n=1

nα−1P(Y > n/M) +
∞∑

n=1

n−2 < ∞.

For the necessity of E[Yα] being finite, note that T (0, z) is at least as large as
the minimum value among the 2d edges adjacent to z. For all large enough M , we
therefore have∑

z∈Zd

‖z‖α−dP
(
T (0, z) − μ(z) > ε‖z‖) ≥ ∑

z∈Zd

‖z‖α−dP
(
Y > M‖z‖)

≥
∞∑

n=1

nα−1P(Y > Mn),

which is finite only if E[Yα] < ∞. �

7. The sets of points in space and time of linear order deviations. In this
section, we study the set of times t for which the random set of sites reachable
within time t from the origin deviates by as much as a constant factor from the
asymptotic shape. In particular, we will see how Theorem 1 and the estimates on
large deviation above and below the time constants can be used to estimate mo-
ments of |Tε| and prove Theorem 2. This will be done by estimating the contribu-
tion of each site z ∈ Zd to Tε separately.

Let Y(z) denote the minimum of the 2d weights associated with the edges in-
cident to z. Note that Y(y) and Y(z) are independent as soon as y and z are at
�1-distance at least 2. Since T (0, z) is at least as large as Y(z), it is possible to
obtain a sufficient condition for z to be contained in Zε in terms of Y(z). Re-
call that either μ ≡ 0 or μ is bounded away from 0 and infinity on compact
sets not containing the origin. Consequently, μ̄ := sup‖x‖=1 μ(x) is finite. Thus,
Y(z) > (μ̄ + ε)‖z‖ implies that z ∈ Zε , and

|Zε| =
∑
z∈Zd

1{|T (0,z)−μ(z)|>ε‖z‖} ≥ ∑
z∈Zd

1{Y (z)>β‖z‖},(19)

for large enough β = β(ε).
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A similar estimate can be obtained for the Lebesgue measure of Tε as well.
Assume until this end that μ �≡ 0, in which case μ := inf‖x‖=1 μ(x) is strictly
positive. For t ≥ 0, let

At := {
z ∈ Zd :T (0, z) > t and μ(z) ≤ t (1 − ε)

}
,

Bt := {
z ∈ Zd :T (0, z) ≤ t and μ(z) > t(1 + ε)

}
.

Note that At �= ∅ is equivalent to B
μ
(1−ε)t �⊂ Bt . Similarly, Bt �= ∅ if and only if

Bt �⊂ Bμ
(1+ε)t . Thus, Tε = {t ≥ 0 :At ∪ Bt �= ∅}, and the contribution of a site z

is given by the interval of time for which z is contained in either At or Bt . Denote
these intervals by IA(z) and IB(z), respectively, and note that

Tε = ⋃
z∈Zd

IA(z) ∪ IB(z).

Crude but useful upper bounds on the length of IA(z) and IB(z) are given by
T (0, z) and μ(z)/(1 + ε), respectively. More precisely, we have∣∣IA(z)

∣∣ = (
T (0, z) − μ(z)/(1 − ε)

)
1{IA(z) �=∅}

(20)
≤ (

T (0, z) − μ(z)
)
1{T (0,z)−μ(z)>β‖z‖}

and ∣∣IB(z)
∣∣ = (

μ(z)/(1 + ε) − T (0, z)
)
1{IB(z) �=∅}

(21)
≤ μ(z)1{T (0,z)−μ(z)<−β‖z‖},

for any β > 0 not larger than εμ/(1 + ε). Moreover, for β > μ̄/(1 − ε)∣∣IA(z)
∣∣ ≥ (

Y(z) − β‖z‖)
1{Y (z)>β‖z‖}.(22)

A first consequence of these representations for |Zε| and |Tε| is the following
simple observation.

PROPOSITION 19. If E[Yd ] = ∞, then |Zε| and |Tε| are infinite for all ε > 0,
almost surely.

PROOF. Recall that the Y(z)’s are independent for points at �1-distance at
least 2. E[Yd ] = ∞ implies that

∑
‖z‖∈2N P(Y (z) > β‖z‖) = ∞ for every β > 0.

Consequently, Y(z) > β‖z‖ for infinitely many z ∈ Zd via the Borel–Cantelli
lemma, almost surely, so |Zε| is almost surely infinite. The same argument shows
that also Y(z) > β‖z‖+ 1 for infinitely many z ∈ Zd , and hence (assuming μ �≡ 0)
|Tε| is infinite almost surely. �

On the other hand, that E[Yd ] < ∞ is sufficient for the expected cardinality of
Zε to be finite is immediate from Theorem 1. The first hint to why E[Yd+1] < ∞
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is required in order for the expected Lebesgue measure of Tε to be finite is that
although the cardinality of Zε is finite, the furthest point may lie very far from
the origin. For the furthest point to be expected within finite distance, it is neces-
sary that E[Yd+1] < ∞. With a slight abuse of notation, we let supZε denote the
�1-distance to the furthest point in Zε .

PROPOSITION 20. For every α > 0 and ε > 0,

E
[
Yd+α]

< ∞ ⇐⇒ E
[
(supZε)

α]
< ∞.

PROOF. Fix α > 0 and ε > 0. The sufficiency of E[Y d+α] < ∞ is immediate
from Theorem 1, since

E
[
(supZε)

α] ≤ ∑
z∈Zd

‖z‖αP
(∣∣T (0, z) − μ(z)

∣∣ > ε‖z‖)
.

It remains to show that E[Yd+α] < ∞ is also necessary. That E[Yd ] < ∞ is
necessary is a consequence of Proposition 19, so there is no restriction assuming
that E[Yd ] is finite. In order to obtain a lower bound on supZε , we are, in contrast
to the lower bound in (19), looking for the largest integer n such that there exists
z ∈ Zd for which ‖z‖ = n and Y(z) > (μ̄ + ε)‖z‖. Since Y(z)’s are independent
for points at �1-distance at least 2, we restrict focus further to even values of n.

For β > 0, let

ηβ := {
n ∈ 2N :∃z ∈ Zd for which ‖z‖ = n and Y(z) > βn

}
.

For β = β(ε) sufficiently large (β ≥ μ̄ + ε will do), we have the lower bound

E
[
(supZε)

α] ≥ ∑
n∈2N

nαP(supηβ = n)

(23)
= ∑

n∈2N

nαP
(

max‖z‖=n
Y (z) > βn

)
P(supηβ ≤ n),

where the equality follows by independence.
It is well known that the probability of a binomially distributed random variable

being strictly positive is comparable to its mean. Let X be binomially distributed
with parameters n and p. The union bound shows that its mean np is an upper
bound on P(X > 0), but an application of Cauchy–Schwarz’s inequality gives as
well the lower bound E[X]2/E[X2] ≥ np/(1+np), which if np is small compared
to 1, is at least np/2.

Fix β = β(ε) such that (23) holds. Let Xn denote the number of z for which
‖z‖ = n and Y(z) > βn. Since Y(z)’s are independent for different points at the
same �1-distance, Xn is binomial. The number of points at distance n from the
origin are of order nd−1, and (since E[Yd ] < ∞ is assumed) P(Y > βn) decays
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at least as n−d via Markov’s inequality. Consequently, for n large E[Xn] ≤ 1, and
there is δ > 0 such that

P
(

max‖z‖=n
Y (z) > βn

)
≥ E[Xn]/2 ≥ δnd−1P(Y > βn).(24)

We next claim that P(supηβ ≤ n) ≥ 1/2 for large n. Via the lower bound in (23),
we conclude that for some δ > 0 and N < ∞

E
[
(supZε)

α] ≥ δ

2

∑
n∈2N : n≥N

nd+α−1P(Y > βn),

for which E[Yd+α] < ∞ is necessary in order to be finite.
It remains to show that P(supηβ ≤ n) ≥ 1

2 for large enough n. Note that

P(supηβ > n) ≤ ∑
k>n

P
(

max‖z‖=k
Y (z) > βk

)
≤ C

∑
k>n

kd−1P(Y > βk),

for some C < ∞. Since E[Yd ] is assumed finite, the right-hand side is summable,
and becomes arbitrarily small as n increases. This proves the claim. �

What remains is to prove Theorem 2. The proof will be similar to that of Propo-
sition 20, but will require a couple of additional estimates. The difference is a
consequence of the difference in the upper and lower bounds between (19) and
(20)–(22). As such, we will encounter moments of products on the form X ·1{X>a}.
For every α > 0, a ≥ 0 and random variable X, we have the following formula:

E
[
Xα · 1{X>a}

] = aαP(X > a) + α

∫ ∞
a

xα−1P(X > x)dx.(25)

Since it will be used more than once, we separate the following bound on a double
summation as a lemma.

LEMMA 21. For every α ≥ 0 and β ≥ 0, there are c = c(α,β) and C =
C(α,β) such that

c

∞∑
n=1

(n − 1)α+β+1P(X > n) ≤
∞∑

n=1

nα
∫ ∞
n

xβP(X > x)dx

≤ C

∞∑
n=1

(n + 1)α+β+1P(X > n).

PROOF. Split the integration domain into unit intervals and bound the inte-
grand from below and above. The lower and upper bonds follow via the estimate

(m/2)α+1 ≤
m∑

n=1

nα ≤ mα+1.
�
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PROOF OF THEOREM 2. Fix α > 0 and ε > 0. We will prove the implications,
one by one, between the three expressions: (a) E[Yd+α] < ∞; (b) E[(supTε)

α] <

∞; and (c) E[|Tε|α] < ∞, starting with the following:

(a) ⇒ (b) Since supTε = sup{max IA(z)∪ IB(z) : z ∈ Zd}, we obtain in similar-
ity to (20) and (21) the upper bound

E
[
(supTε)

α] ≤ ∑
z∈Zd

E
[(

max IA(z) ∪ IB(z)
)α]

≤ ∑
z∈Zd

E
[
T (0, z)α1{T (0,z)−μ(z)>β‖z‖}

]
+ ∑

z∈Zd

μ(z)αP
(
T (0, z) − μ(z) < −β‖z‖)

,

valid for all sufficiently small β = β(ε) > 0. The latter sum in the right-hand side
is finite as of Theorem 1. The former sum takes via (25) the form∑

z∈Zd

(
μ(z) + β‖z‖)α P

(
T (0, z) − μ(z) > β‖z‖)

+ ∑
z∈Zd

α

∫ ∞
μ(z)+β‖z‖

xα−1 P
(
T (0, z) > x

)
dx.

The former of these two sums is again finite according to Theorem 1. Once the
latter sum is broken up into two, one over n ∈ N and the other over ‖z‖ = n, and
the integral has gone through a chance of variables x �→ x −μ(z), then Theorem 4
can be used to relate the probability tail of T (0, z)−μ(z) with that of Y . Since the
number of points at distance n from the origin is of order nd−1, an upper bound is
given by

αCM

∞∑
n=1

nd−1
∫ ∞
βn

xα−1
(

P(Y > x/M) + 1

xd+α+1

)
dx,

for some finite constants C and M = M(α,β, d). Integrating over the two terms
separately breaks the sum in two, of which the latter is easily seen to be finite. The
former can instead be estimated via Lemma 21. An upper bound on this part is
obtained as

M ′
∞∑

n=1

(n + 1)d+α−1P(Y > βn/M),

for some constant M ′ = M ′(α,β, d), which is finite when E[Yd+α] < ∞.
(b) ⇒ (c) This step is trivial.
(c) ⇒ (a) A lower bound on |Tε| is given by the contribution of a single site z.

However, looking at a particular site is not going to give a bound of the right order.
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Instead we will pick a site randomly, and more precisely, the site furthest from the
origin among those contributing to Tε . In case this site is not unique, then we pick
the one contributing more. The contribution of each site z was in (22) seen to be at
least (Y (z) − β‖z‖)1{Y (z)>β‖z‖}, for every sufficiently large β = β(ε). Similar to
that of (23), we have

E
[|Tε|α] ≥ ∑

n∈2N

E
[(

max‖z‖=n
Y (z) − βn

)α
1{max‖z‖=n Y (z)>βn}

]
P(supηβ ≤ n).

Here, like in the proof of Proposition 20, we sum over even integers for the sake of
independence between the events {supηβ = n} and {supηβ ≤ n}. Combining the
identity (25) and the bound (24) with a change of variables, we arrive at

E
[|Tε|α] ≥ αδ

∑
n∈2N

nd−1P(supηβ ≤ n)

∫ ∞
βn

(x − βn)α−1P
(
Y(z) > x

)
dx.

Again, since P(supηβ ≤ n) ≥ 1/2 for n large enough, we may via the double
summation estimate in Lemma 21 conclude that E[Yd+α] < ∞ is necessary for
E[|Tε|α] to be finite. �

APPENDIX A: CONVERGENCE TOWARD THE TIME CONSTANT

The time constant was in (1) defined for z ∈ Zd as the limit in probability of
1
n
T (0, nz) as n → ∞. Existence of the limit (almost surely and in L1) under the

assumption E[Y ] < ∞ follows from a straightforward application of the subaddi-
tive ergodic theorem [18]. Existence of the limit (in probability) without a moment
condition was later derived in [8, 16]. There is a unique extension of μ to all of Rd

that retains the properties of a semi-norm. For example, we may define μ(x) for
x ∈ Rd via the limit

μ(x) := lim
n→∞

μ(vn)

n
,

where v1, v2, . . . is any sequence in Zd such that vn/n → x as n → ∞.
Existence of this limit is well known and follows from the properties of μ as

a semi-norm on Zd . That these properties are preserved in the limit is similarly
verified. We would here like to emphasize, perhaps, a less-known fact, which is
easily seen to follow the results reported in this paper. Namely, the necessary and
sufficient condition under which μ(x), for x ∈ Rd , appears as the almost sure limit
for some sequence of travel times. We are not aware of such a condition previously
appearing in the literature.

PROPOSITION 22. Fix x ∈ Rd and let v1, v2, . . . be any sequence of points in
Zd such that vn/n → x as n → ∞. Then

lim
n→∞

T (0, vn)

n
= μ(x) in probability.



2022 D. AHLBERG

Moreover, the limit holds almost surely, in L1 and completely if and only if
E[Y ] < ∞.

PROOF. A first observation due to the triangle inequality is that∣∣T (0, vn) − nμ(x)
∣∣ ≤ ∣∣T (0, vn) − μ(vn)

∣∣ + ∣∣μ(vn) − nμ(x)
∣∣.

Let ε > 0. By the properties of μ as a norm, the latter term in the right-hand side is
bounded above by μ(e1)‖vn −nx‖, which is at most εn when n is large. It follows
that

lim sup
n→∞

P
(∣∣T (0, vn) − nμ(x)

∣∣ > 2εn
) ≤ lim sup

n→∞
P

(∣∣T (0, vn) − μ(vn)
∣∣ > εn

)
,

which by (2) has to equal zero. This proves convergence in probability.
Necessity of E[Y ] < ∞ for almost sure and L1-convergence follows as before,

due to the fact that a lower bound on the travel time from the origin to any other
point is bounded from below by the minimum of the 2d weights associated with
the edges adjacent to the origin. To conclude that E[Y ] < ∞ is sufficient for the
convergence to hold almost surely it suffices to note that the sequence (nz)n≥1
in Corollary 5 can be exchanged for any sequence (vn)n≥1 for which ‖vn‖/n is
bounded away from 0 and ∞. In particular, by Theorems 3 and 4 (with α = 1 and
q = 2) there exists M (depending on ε > 0 and the upper bound on ‖vn‖/n) such
that

∞∑
n=1

P
(∣∣T (0, vn) − μ(vn)

∣∣ > εn
) ≤ M

∞∑
n=1

(
P(Y > n/M) + 1

n2

)
,

which is finite since E[Y ] < ∞. This proves almost sure and complete conver-
gence. Finally, L1-convergence is due to Corollary 6, again since ‖vn‖/n is as-
sumed bounded. �

APPENDIX B: KESTEN’S CONSTRUCTION OF SHELLS

For completeness, let us present a precise construction of the shells in Sec-
tion 2.2. The construction will follow closely that of Kesten [16], Section 2.

Given δ > 0, pick t̄ = t̄ (δ) such that P(τe ≤ t̄ ) ≥ 1 − δ. As before, color each
vertex in Zd either black or white; black if at least one of the edges adjacent to
it has weight larger than t̄ , and white otherwise. We shall below introduce a no-
tion of black and white clusters, for which we will need to distinguish paths from
�-paths. A path will refer to a sequence of vertices v0, v1, . . . , vn of the Zd lattice
such that two consecutive points are at �1-distance one. A �-path will similarly re-
fer to a nearest-neighbor sequence of vertices with respect to �∞-distance on Zd .
A path or a �-path will be called black or white if all its points are black or white,
respectively.
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Given A ⊂ Zd , define the black and white clusters of A as

C(A,b) := A ∪ {
z ∈ Zd : z ↔ y by a black �-path,

for some y at �∞-distance 1 from A
}
,

C(A,w) := A ∪ {
z ∈ Zd : z ↔ y by a white path,

for some y at �1-distance 1 from A
}
.

The exterior boundary ∂extC of a set C ⊂ Zd is defined as the set of points z ∈
Zd \ C for which there is a point y ∈ C at �∞-distance 1 from z, and for which
there is a path connecting z to infinity without intersecting C. Next, let Dn(z)

denote the box of side-length 2n + 1 centered at z, and let

n(z) := min
{
n ≥ 0 :

∣∣C(y,w)
∣∣ = ∞ for some y ∈ Dn(z)

}
.

Let Sz := ∂extC(Dn(z)(z), b). By construction, all vertices in Sz are white, and Sz

must contain a white vertex belonging to an infinite white cluster. Kesten continues
with two lemmas.

LEMMA 23 ([16], Lemma 2.23). The exterior boundary of any finite �-connec-
ted set is connected. In particular, if C(Dn(z)(z), b) is finite, then Sz is connected.
Moreover, in that case Sz separates z from infinity in the sense that every path from
z to infinity has to intersect Sz.

LEMMA 24 ([16], Lemma 2.24). If δ > 0 is sufficiently small, then the set
C(Dn(z), b) is almost surely finite for every n ≥ 0. Moreover, there are constants
M < ∞ and γ > 0 such that for every k ≥ 0

P
(
n(z) > k

) ≤ Me−γ k and P
(
diam(Sz) > k

) ≤ Me−γ k.

The first lemma distinguishes an “inside” of Sz, consisting of points separated
from infinity by Sz. Finally, let 	z denote the union of Sz and each point on the
inside of Sz which is white and connected to Sz by a white path.

Since each point in Sz is white, it follows that 	z is all white. That 	z almost
surely satisfies the first three properties stated in Section 2.2 is a consequence of
the above two lemmas. The final property follows from the following lemma. The
lemma is a slight variant of (2.30) in [16], and is proved similarly. For complete-
ness, we present an argument also here.

LEMMA 25. Either every path between y and z in Zd intersects both 	y

and 	z, or 	y ∩ 	z �= ∅.

PROOF. Assume that there is a path γ connecting y and z which does not
intersect 	y . We will show that this implies that 	y ∩ 	z �= ∅. Let � be a path
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from z to infinity. � must intersect both Sy and Sz, since there would otherwise be
a path from y to infinity (the concatenation of γ and �) not intersecting Sy or a
path from z to infinity (�) not intersecting Sz, thus contradicting Lemma 23. Let v

denote the first point in Sy ∪ Sz visited by �. We claim that either v ∈ Sy ∩ Sz, or
v is contained in just one of them, but connected to the other by a white path. The
claim, if true, would imply that v ∈ 	y ∩ 	z, since v would either be contained
in Sy , or contained in its interior but connected to Sy by a white path.

It remains to prove the claim. Assume that v ∈ Sz. We will next construct a white
path from v to Sy . Since Dn(z)(z) contains a vertex in an infinite white cluster, there
has to be a vertex u ∈ Sz that is connected to infinity by a white path. A white path
connecting v to infinity may now be obtained by first connecting v to u within Sz,
and thereafter connect u to infinity. This path will necessarily intersect Sy , since we
otherwise would have found a path from y to infinity avoiding Sy . The remaining
case when v ∈ Sy is analogous. �
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