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NONLINEAR NOISE EXCITATION OF INTERMITTENT
STOCHASTIC PDES AND THE TOPOLOGY OF LCA GROUPS1

BY DAVAR KHOSHNEVISAN AND KUNWOO KIM

University of Utah

Consider the stochastic heat equation ∂tu = L u+λσ(u)ξ , where L de-
notes the generator of a Lévy process on a locally compact Hausdorff Abelian
group G, σ : R → R is Lipschitz continuous, λ � 1 is a large parameter, and
ξ denotes space–time white noise on R+ × G.

The main result of this paper contains a near-dichotomy for the (expected
squared) energy E(‖ut‖2

L2(G)
) of the solution. Roughly speaking, that di-

chotomy says that, in all known cases where u is intermittent, the energy
of the solution behaves generically as exp{const ·λ2} when G is discrete
and ≥ exp{const ·λ4} when G is connected.

1. An informal introduction. Consider a stochastic heat equation of the
form

∂

∂t
u = L u + λσ(u)ξ.(SHE)

Here, σ : R → R is a Lipschitz continuous function, t > 0 denotes the time vari-
able, x ∈ G is the space variable, for a locally compact Hausdorff Abelian group
G—such as R, Zd , or [0,1]—and the initial value u0 :G → R is nonrandom
and well behaved. The operator L acts on the variable x only, and denotes the
generator of a Lévy process on G, and ξ denotes space–time white noise on
(0,∞)×G whose control measure is the restriction of the Haar measure on R×G

to (0,∞) × G. The number λ is a positive parameter; this is the so-called level of
the noise.

In this paper, we study the “noisy case.” That is when λ is a large quantity. The
case that λ is small is also interesting; see, for example, the deep theory of Freidlin
and Wentzel [24].

We will consider only examples of (SHE) that are intermittent. Intuitively
speaking, “intermittency” is the property that the solution ut(x) develops extreme
oscillations at some values of x, typically when t is large. Intermittency was an-
nounced first (1949) by Batchelor and Townsend in a WHO conference in Vi-
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enna [1], and slightly later by Emmons [21] in the context of boundary-layer tur-
bulence. Ever since that time, intermittency has been observed in an enormous
number of scientific disciplines. Shortly, we will point to concrete instances in
theoretical physics. In the mean time, let us also mention that, in neuroscience,
intermittency is observed as “spikes” in neural activity. (Tuckwell [42] contains
a gentle introduction to SPDEs in neuroscience.) And in finance, intermittency is
usually associated with financial “shocks.”

The standard mathematical definition of intermittency (see Molchanov [35] and
Zeldovich et al. [44]) is that

γ (k)

k
<

γ (k′)
k′ whenever 2 ≤ k < k′ < ∞,(1.1)

where γ denotes any reasonable choice of a so-called Lyapunov exponent of the
moments of the energy of the solution: we may use either

γ (k) := lim sup
t→∞

t−1 log E
(‖ut‖k

L2(G)

)
or γ (k) := lim inf

t→∞ t−1 log E
(‖ut‖k

L2(G)

)
.

Other essentially-equivalent choices are also possible. One can justify this def-
inition either by making informal analogies with finite-dimensional nonrandom
dynamical systems [34], or by making a somewhat informal appeal to the Borel–
Cantelli lemma [3]. Gibbon and Titi [26] contains an exciting modern account of
mathematical intermittency and its role in our present-day understanding of phys-
ical intermittency.

In the case that G = R, G = [0,1] or G = Zd , there is a huge literature that is
devoted to the intermittency properties of (SHE) when σ(x) = const ·x; this par-
ticular model—the so-called parabolic Anderson model—is interesting in its own
right, as it is connected deeply with a large number of diverse questions in proba-
bility theory and mathematical physics. See, for example, the ample bibliographies
of [3, 8, 10, 11, 17, 19, 22, 25, 29, 30, 35, 44].

The parabolic Anderson model arises in a surprisingly large number of diverse
scientific problems; see Carmona and Molchanov [8], Introduction. We mention
quickly a few such instances: if σ(0) = 0, u0(x) > 0 for all x ∈ G, and G is ei-
ther R or [0,1] then Mueller’s comparison principle [37] shows that ut (x) > 0
almost surely for all t > 0 and x ∈ G; see also [13], page 130. In that case,
ht (x) := logut(x) is well defined and is the so-called Cole–Hopf solution to the
KPZ equation of statistical mechanics [29, 30]. The parabolic Anderson model
has many connections also with the stochastic Burger’s equation [8] and Majda’s
model of shear-layer flow in turbulent diffusion [33].

Foondun and Khoshnevisan [22] have shown that the solution to (SHE) is fairly
generically intermittent even when σ is nonlinear, as long as σ behaves as a line
in one form or another.

It was noticed early on, in NMR spectroscopy, that intermittency can be associ-
ated strongly to nonlinear noise excitation. See, for example, Blümich [5]; Lindner
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et al. [32] contains a survey of many related ideas in the physics literature. In the
present context, this informal observation is equivalent to the existence of a non-
linear relationship between the energy ‖ut‖L2(G) of the solution at time t and the
level λ of the noise. A precise form of such a relationship will follow as a ready
consequence of our present work in all cases where the solution is known (and/or
expected) to be intermittent. In fact, the main findings of this paper will imply that
typically, when the solution is intermittent, there is a near-dichotomy:

• On one hand, if G is discrete then the energy of the solution behaves roughly as
exp{const ·λ2};

• on the other hand, if G has a connected locally compact Hausdorff Abelian
subgroup, then the said energy behaves at least as badly as exp{const ·λ4}.

And quite remarkably, these properties do not depend in an essential way on the
operator L ; they depend only on the connectivity properties of the underlying
state space G.

Every standard numerical method for solving (SHE) that is known to us begins
by first discretizing G and L . Our results suggest that when λ is modestly large,
then nearly all such methods will generically underestimate by a vast margin when
we use them to predict the size of the biggest intermittency islands (or shocks, or
spikes) of the solution to (SHE).

Other SPDE models are analyzed in a companion paper [31] which should ide-
ally be read before the present paper. That paper is less abstract than this one and,
as such, has fewer mathematical prerequisites. We present in that paper the surpris-
ing result that the stochastic heat equation on an interval is typically significantly
more noise excitable than the stochastic wave equation on the real line.

REMARK 1.1. The referees of the paper have unanimously suggested that we
describe, in words, an intuitive explanation for this near dichotomy. We agree that
such an exposition will add value to the presentation of the paper, and would like to
say a few things in this direction. Therefore, let us briefly consider the case that G

is a very nice LCA group (such as a finite group, Zd , or R) and σ(u) = cu for some
constant c > 0 (the parabolic Anderson model). First, one can see that when G is
finite, (SHE) is another way to write a finite-dimensional stochastic differential
equation; see Examples 4.1 and 4.2. In this case, it is not hard to verify directly,
using only SDE technology, that the energy of the solution to (SHE) typically
grows as exp{const ·λ2} as λ → ∞.2 In some sense, G = Zd can be thought of as
a limit of the finite case: since most of the mass of the solution ut is concentrated
on compacts [because ut ∈ L2(G)], this suggests that the case that G = Zd should
behave as does the finite case. And it does. On the other hand, when L is the

2For an example, the reader is encouraged to consider the exponential martingale of Brownian

motion. In that case, the exp{const ·λ2} behavior of the solution is more or less immediate.
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generator of a nice Lévy process—say an isotropic α-stable process—on G = R,
then α is necessarily in (1,2] (see Dalang [14]), and a simple scaling argument
shows that the large-λ behavior of the solution to (SHE) is the same as the large-
time behavior of the solution to (SHE) with λ = 1, provided that we rescale time as
T := λ2α/(α−1)t . The existing literature on the parabolic Anderson model suggests
that the energy at large time T of the solution to (SHE) with λ = 1 should behave
as exp{const ·T }. Set T = λ2α/(α−1)t in order to see that the energy to (SHE) with
variable λ � 1 ought to behave as exp{const ·λ2α/(α−1)t} as λ → ∞, for all t > 0
fixed. In other words, when σ(u) = cu and the underlying Lévy process is isotropic
stable, the energy behaves as exp{const ·λq} as λ → ∞ for q = 2α/(α − 1) ≥ 4,
where the time variable t is fixed.

2. Main results. The main goal of this article is to describe the behavior
of (SHE) for a locally compact Hausdorff Abelian group G, where the initial value
u0 is nonrandom and is in the group algebra L2(G).3 Compelling, as well as easy
to understand, examples can be found in Section 4 below.

We assume throughout that the operator L acts on the space variable only and
denotes the generator of a Lévy process X := {Xt }t≥0 on G (see Section 3 for anal-
ysis on LCA groups and Section 5 for Lévy processes on LCA groups), σ : R → R
is Lipschitz continuous and nonrandom and ξ denotes space–time white noise on
(0,∞) × G. That is, ξ is a generalized centered Gaussian process that is indexed
by (0,∞) × G and whose covariance measure is described via

Cov
(∫

ϕ dξ,

∫
ψ dξ

)
=
∫ ∞

0
dt

∫
G

mG(dx)ϕt (x)ψt(x),(2.1)

for all ϕ,ψ ∈ L2(dt × dmG), where mG denotes the Haar measure on G, and∫
ϕ dξ and

∫
ψ dξ are defined as Wiener integrals. Finally, λ > 0 designates a fixed

parameter that is generally referred to as the level of the noise.
One can adapt the method of Dalang [14] in order to show that, in the linear

case—that is, when σ ≡ constant—(SHE) has a function solution if∫
G∗

(
1

β + Re�(χ)

)
mG∗(dχ) < ∞ for one, hence all, β > 0,(D)

where � denotes the characteristic exponent of our Lévy process {Xt }t≥0 and mG∗
denotes the Haar measure on the dual G∗ to our group G. See also Brzeźniak and
Jan van Neerven [7] and Peszat and Zabczyk [38]. Because we want (SHE) to have
a function solution, at the very least in the linear case, we have no choice but to
assume Dalang’s condition (D) from now on. Henceforth, we assume (D) without
further mention.

3This is the usual space of all measurable functions f :G → R that are square integrable with
respect to the Haar measure on G.
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In some cases, condition (D) always holds. For example, suppose G is discrete.
Because G∗ is compact, thanks to Pontryagin–van Kampen duality [36, 41], conti-
nuity of the function � implies its uniform boundedness, whence we find that the
Dalang condition (D) always holds when G is discrete. This simple observation
is characteristic of many interesting results about the heat equation (SHE) in the
sense that a purely topological property of the group G governs important aspects
of (SHE): in this case, we deduce the existence of a solution generically when G

is discrete. For a probabilistic proof of this particular fact, see Lemma 10.1 below.
We wish to establish that “noise excitation” properties of (SHE) are “intrinsic

to the group G.” This goal forces us to try and produce solutions that take values
in the group algebra L2(G). The following summarizes the resulting existence and
regularity theorem that is good enough to help us begin our discussion of noise
excitation. We note that an exact definition of a mild solution will be given in (7.2).
That definition will imply that our solution is in L2(G) at all times, and hence is a
bona fide function on G at all times.

THEOREM 2.1. Suppose that σ is Lipschitz continuous and, in addition, that
either G is compact or σ(0) = 0. Then for every nonrandom initial value u0 ∈
L2(G) and λ > 0, the stochastic heat equation (SHE) has a mild solution {ut }t≥0,
with values in L2(G), that satisfies the following: there exist finite constants c1 > 0
and c2 > 0 that yield the energy inequality

E
(‖ut‖2

L2(G)

)≤ c1ec2t for every t ≥ 0.(2.2)

Moreover, if v is an arbitrary mild solution that satisfies (2.2) subject to v0 = u0,
then P{‖ut − vt‖L2(G) = 0} = 1 for all t ≥ 0.

REMARK 2.2. For more explicit bounds on the constants c1 and c2, see the
inequality (7.12) below. That inequality describes carefully how c1 and c2 depend
on the various parameters of (SHE)—in particular it states abstractly how c1 and
c2 depend on λ—and will be used several times in the sequel.

The proof of Theorem 2.1 will be given in Sections 7 and 8; see also Section 6,
in which we develop the requisite machinery for Theorem 2.1 and the other main
results in this paper. However, the preceding result is well known for many Eu-
clidean examples; see, in particular, Dalang and Mueller [15].

Thus, we assume from now on, and without further mention, that

either G is compact, or σ(0) = 0,(2.3)

in order to know a priori that (SHE) has an L2(G)-valued solution.4

4In other words, we do not need to assume that σ(0) = 0 when G is compact. However, we do
need this condition in general when G is noncompact. There are examples of σ such that σ(0) �= 0,
noncompact LCA groups G, and Lévy process generators L for which (SHE) does not have an
L2(G)-valued solution for all time.
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The principal aim of this paper is to study the energy of the solution when λ is
large. In order to simplify the exposition, let us denote the energy of the solution
at time t by

Et (λ) :=
√

E
(‖ut‖2

L2(G)

)
.(2.4)

To be more precise, Et (λ) denotes the L2(P)-norm of the energy of the solution.
But we refer to it as the energy in order to save on the typography.

We begin our analysis of noise excitation by first noting the following fact: if σ

is essentially bounded and G is compact, then the solution to (SHE) is at most
linearly noise excitable. The following is the precise formulation of this statement
(see Section 9 for the proof).

PROPOSITION 2.3 (Linear noise excitation). If σ ∈ L∞(R) and G is compact,
then

lim sup
λ↑∞

Et (λ)

λ
< ∞ for all t > 0.(2.5)

This bound can be reversed in the following sense: if also infx∈G |u0(x)| > 0 and
infz∈R |σ(z)| > 0, then

lim inf
λ↑∞

Et (λ)

λ
> 0 for all t > 0.(2.6)

We do not know what happens, at this level of generality, when σ ∈ L∞(R) and
G is noncompact.

The bulk of this paper is concerned with the behavior of (SHE) when the energy
Et (λ) behaves as exp(const ·λq), for a fixed positive constant q , as λ ↑ ∞. With
this in mind, let us define for all t > 0,

e(t) := lim inf
λ↑∞

log logEt (λ)

logλ
, e(t) := lim sup

λ↑∞
log logEt (λ)

logλ
.(2.7)

If e(t) > 0 for all t > 0, then the solution to (SHE) is expected to be also “intermit-
tent,” not only in the usual mathematical sense [8], but also in a physical sense [i.e.,
in cases where the solution to (SHE) represents the density of a particle system].

DEFINITION 2.4. We refer to e(t) and e(t), respectively, as the upper and the
lower excitation indices of u at time t . In many cases of interest, e(t) and e(t) are
equal and do not depend on the time variable t > 0 (N.B. not to be confused with
t ≥ 0). In such cases, we tacitly write e for that common value, and we think of e
as the index of nonlinear noise excitation of the solution to (SHE).
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Thus, Proposition 2.3 implies that e = 0 when σ is essentially bounded and G

is compact.
As a central part of our analysis, we will prove that both of these indices are

natural quantities, as they are “group invariants” in a sense that will be made clear
in Section 11. Moreover, one can deduce from our work that when G is unimodular
(see Definition 11.2) the law of the solution to (SHE) is itself a “group invariant.”
A careful explanation of the quoted terms will appear later on in Theorem 11.10.
For now, we content ourselves by stating the main three results of this paper.

THEOREM 2.5 (Discrete case). If G is discrete, then e(t) ≤ 2 for all t > 0. In
fact, e = 2, provided additionally that


σ := inf
z∈R\{0}

∣∣σ(z)/z
∣∣> 0.(2.8)

Recall that the nonlinearity σ : R → R is assumed to be Lipschitz continuous,
and hence supz∈R\{0} |σ(z)/z| < ∞. Thus, (2.8) is the assertion that the graph of σ

lies globally in some cone.

THEOREM 2.6 (Connected case). Suppose that G is connected and (2.8)
holds. Then e(t) ≥ 4 for all t > 0, provided that in addition either G is noncompact
or G is compact, metrizable and has more than one element.

REMARK 2.7. The proofs will show a slightly more general statement, thanks
to projection. Namely (see Proposition 12.1) that if G contains a noncompact con-
nected LCA subgroup, or if G contains a compact metrizable connected LCA sub-
group of more than one element, then e(t) ≥ 4 as long as (2.8) holds.

THEOREM 2.8 (Connected case). For every θ ≥ 4, there are models of the
triple (G,L , u0) for which e = θ .

The proofs of the above theorems are presented in Section 14 below, and use
the results in Sections 12 and 13. In particular, Section 12 enables us to obtain the
lower bound of the lower excitation index in Theorem 2.6 “by projection.”

We now see that if (2.8) holds, in addition to the preceding conditions, then
Theorems 2.5, 2.6 and 2.8 together imply the following: either the energy of the
solution behaves as exp(const ·λ2) or it is greater than exp(const ·λ4) for large
noise levels, and this lower bound cannot be improved upon in general. Moreover,
the connectivity properties of G—and not the operator L —alone determine the
first-order strength of the growth of the energy, viewed as a function of the noise
level λ.

Finally, we will soon see that when the energy behaves as exp(const ·λ2), this
means that (SHE) is only as noise excitable as a classical Itô stochastic differen-
tial equation. Martin Hairer has asked (private communication) whether intermit-
tency properties of (SHE) are always related to those of the McKean exponential
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martingale for Brownian motion. A glance at Example 4.1 below shows in some
sense that, as far as nonlinear noise excitation is concerned, intermittent exam-
ples of (SHE) behave as the exponential martingale if and only if G is essentially
discrete.

Throughout, Lσ designates the optimal Lipschitz constant of the function σ . In
more succinct terms, we have

Lσ := sup
−∞<x<y<∞

∣∣∣∣σ(x) − σ(y)

x − y

∣∣∣∣< ∞.(2.9)

3. Analysis on LCA groups. We follow the usual terminology of the liter-
ature and refer to a locally compact Hausdorff Abelian group as an LCA group.
Morris [36] and Rudin [41] are two standard references for the theory of LCA
groups.

If G is an LCA group, then we let mG denote the Haar measure on G.5 The
dual, or character, group to G denoted by G∗.6 In addition, the Fourier transform
on L1(G) is defined via the following normalization:

f̂ (χ) :=
∫
G
(x,χ)f (x)mG(dx) for all χ ∈ G∗ and f ∈ L1(G),(3.1)

where (x,χ) := χ(x) := x(χ) are interchangeable notations that all describe the
natural pairing between x ∈ G and χ ∈ G∗.7

Of course, mG is defined uniquely only up to a multiplicative factor. There-
fore, we always assume the standard normalization of Haar measures; that is any
normalization that ensures that the Fourier transform has a continuous isometric
extension to L2(G) = L2(G∗). Analytically speaking, this means that our normal-
ization of Haar measure ensures that the following formulation of the Plancherel
identity is valid:

‖f ‖L2(G) = ‖f̂ ‖L2(G∗) for all f ∈ L2(G).(3.2)

Our normalization of Haar measure translates to well-known normalizations of
Haar measures via Pontryagin–van Kampen duality [36, 41]:

Case 1. If G is compact, then G∗ is discrete; mG(G) = 1; and mG∗ denotes the
counting measure on subsets of �∗.

5That is, mG is a nonzero Radon measure on G that is translation invariant under group multipli-
cation.

6That is, χ ∈ G∗ if and only if χ :G → C is a group homomorphism from G to the circle group;
that is, χ is homeomorphic and satisfies χ(xy) = χ(x)χ(y) for all x, y ∈ G. Every χ ∈ G∗ is called
a character on G. Thus, for instance, if G = Rd , then G∗ = Rd and χ(x) = exp(ix · χ). Also, when
G = Zd , then G∗ = [0,2π)d and χ(x) = exp(ix · χ).

7This notation is justified by the Pontryagin–van Kampen duality theorem [36, 41]: the dual of G∗
is G. Consequently, x ∈ G acts on χ ∈ G∗ in the same way as χ ∈ G∗ acts on x ∈ G, whence x(χ)

can be identified with χ(x), as asserted. We emphasize that different authors use slightly different
normalizations of Fourier transforms from us; see, for example, Rudin [41].
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Case 2. If G is discrete, then G∗ is compact, mG∗(G∗) = 1, and mG coincides
with the counting measure on G.

Case 3. If G = Rn for some integer n ≥ 1, then G∗ = Rn; we may choose
mG and mG∗ , in terms of n-dimensional Lebesgue measure, as mG(dx) = a dx

and mG∗(dx) = b dx for any two positive reals a and b that satisfy the relation
ab = (2π)−n.

4. Some examples. The stochastic PDEs introduced here are quite natural; in
many cases, they are in fact well-established equations. In this section, we iden-
tify some examples to highlight the preceding claims. Of course, one can begin
with the most obvious examples of stochastic PDEs; for instance, where G = R,
L = �, etc. But we prefer to have a different viewpoint: as far as interesting ex-
amples are concerned, it is helpful to sometimes think about concrete examples of
LCA groups G; then try to understand the Lévy processes on G (a kind of Lévy–
Khintchine formula) in order to know which operators L are relevant. And only
then one can think about the actual resulting stochastic partial differential equation.
This slightly-different viewpoint produces interesting examples.

EXAMPLE 4.1 (The trivial group). For our first example, let us consider the
trivial group G with only one element g. The only Lévy process on this group
is Xt := g. All functions on the group G are, by default, constants. Therefore,
L f = 0 for all f :G → R, and hence Ut := ut (g) solves the Itô SDE

dUt = λσ(Ut )dBt with U0 = u0(g),(4.1)

where Bt := ∫
[0,t]×G dξ defines a Brownian motion. In other words, when G is the

trivial group, (SHE) characterizes all drift-free one-dimensional Itô diffusions.

EXAMPLE 4.2 (Cyclic groups, part I). For a slightly more interesting example
consider the cyclic group G := Z2 on two elements. We may think of G as Z/2Z;
that is, the set {0,1} endowed with binary addition (addition mod 1) and discrete
topology. It is an elementary fact that the group G admits only one 1-parameter
family of Lévy processes. Indeed, we can apply the strong Markov property to the
first jump time of X to see that if X is a Lévy process on Z2, then there necessarily
exists a number κ ≥ 0 such that, at independent exponential times, the process X

changes its state at rate κ : from 0 to 1 if X is at 0 at the jump time, and from 1 to
0 when X is at 1 at the jump time (κ = 0 yields the constant process). In this way,
we find that (SHE) is an encoding of the coupled two-dimensional SDE

dut (0) = κ
[
ut (1) − ut (0)

]
dt + λσ

(
ut (0)

)
dBt(0),

(4.2)
dut (1) = κ

[
ut (0) − ut (1)

]
dt + λσ

(
ut (1)

)
dBt(1),

where B(0) and B(1) are two independent one-dimensional Brownian motions.
In other words, when G = Z2, (SHE) describes a two-dimensional Itô diffusion
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with local diffusion coefficients where the particles (coordinate processes) feel an
attractive linear drift toward their neighbors (unless κ = 0, which corresponds to
two decoupled diffusions).

EXAMPLE 4.3 (Cyclic groups, part II). Let us consider the case that G := Zn

is the cyclic group on n elements when n ≥ 3. We may think of G as Z/nZ; that
is, the set {0, . . . , n − 1} endowed with addition (modn) and discrete topology. If
X is a Lévy process on G, then it is easy to see that there exist n − 1 parameters
κ1, . . . , κn−1 ≥ 0 such that X jumps (at i.i.d. exponential times) from i ∈ Z/nZ to
i + j (modn) at rate κj for every i ∈ {0, . . . , n − 1} and j ∈ {1, . . . , n − 1}. In this
case, our stochastic heat equation (SHE) is another way to describe the evolution
of the n-dimensional Itô diffusion (u(1), . . . , u(n)), where for all i = 0, . . . , n− 1,

dut (i) =
n−1∑
j=1

κj

[
ut

(
i + j (modn)

)− ut(i)
]
dt + λσ

(
ut (i)

)
dBt(i),(4.3)

for an independent system B(0), . . . ,B(n − 1) of one-dimensional Brownian mo-
tions. Thus, in this example, (SHE) encodes all possible n-dimensional diffusions
with local diffusion coefficients and Ornstein–Uhlenbeck type attractive drifts.
Perhaps the most familiar example of this type is the simple symmetric case in
which κ1 = κn−1 := κ > 0 and κj = 0 for j /∈ {1, n − 1}. In that case, (4.3) simpli-
fies to

dut (i) = κ(�ut)(i) + λσ
(
ut(i)

)
dBt(i),(4.4)

where (�f )(i) := f (i � 1) + f (i � 1) − 2f (i) denotes the “group Laplacian” of
f : Zn → R, a � b := a + b(modn), and a � b := a − b(modn).

EXAMPLE 4.4 (Lattice groups). In this example, G denotes a lattice subgroup
of Rd . This basically means that G = δZd for some δ > 0 and d = 1,2, . . . . The
class of all Lévy processes on G coincides with the class of all continuous-time
random walks on G. Thus, standard random walk theory tells us that there ex-
ists a constant κ ≥ 0—the rate—and a probability function {J (y)}y∈δZd —the so-
called jump measure—such that (L f )(x) = κ

∑
y∈δZd {f (y) − f (x)}J (y), and

hence (SHE) is an encoding of the following infinite system of interacting Itô-type
stochastic differential equations:

dut (x) = κ
∑

y∈δZd

[
ut (y) − ut (x)

]
J (y) + λσ

(
ut(x)

)
dBt(x),(4.5)

for i.i.d. one-dimensional Brownian motions {B(z)}z∈δZd and all x ∈ δZd . A par-
ticularly well-known case is when J (y) puts equal mass on the neighbors of the
origin in δZd . In that case,

dut (x) = κ

2d
(�ut)(x) + λσ

(
ut (x)

)
dBt(x),(4.6)
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where (�f )(x) := ∑
|y−x|=1{f (y) − f (x)} denotes the graph Laplacian of

f : δZd → R with |y − x| :=∑d
i=1 |yi − xi |.

EXAMPLE 4.5 (The real line). As an example, let us choose G := R and X :=
one-dimensional Brownian motion on R. Then L f = f ′′ and (SHE) becomes the
usual stochastic heat equation

∂ut (x)

∂t
= κ

∂2ut (x)

∂x2 + λσ
(
ut (x)

)
ξ,(4.7)

driven by space–time white noise on (0,∞) × R.

EXAMPLE 4.6 (The torus). Next, we may consider G := [0,1); as usual we
identify the ends of [0,1) in order to obtain the torus G := T, endowed with addi-
tion mod 1. Let X := Brownian motion on T. Its generator is easily seen to be the
Laplacian on [0,1) with periodic boundary conditions. Hence, (SHE) encodes⎡⎢⎣ ∂ut (x)

∂t
= κ

∂2ut(x)

∂x2 + λσ
(
ut(x)

)
ξ for all 0 ≤ x < 1,

subject to ut(0) = ut (1−),

(4.8)

in this case.

EXAMPLE 4.7 (Totally disconnected examples). Examples 4.1 through 4.6
are concerned with more or less standard SDE/SPDE models. Here, we mention
one among many examples where (SHE) is more exotic. Consider G := Z2 ×
Z2 ×· · · to be a countable direct product of the cyclic group on two elements. Then
G is a compact Abelian group; this is a group that acts transitively on binary trees
and is related to problems in fractal percolation. A Lévy process on G is simply a
process that has the form X1

t × X2
t × · · · at time t ≥ 0, where X1 × · · · × Xk is a

Lévy process on
∏k

i=1 Z2 for every k ≥ 1 (see Example 4.1). It is easy to see then
that if f :G → R is a function that is constant in every coordinate except for the
coordinates in some finite set F , then the generator of X acts on f as

∏
j∈F L jf ,

where L j denotes the generator of Xj (see Example 4.1) and A B denotes the
compositions of operators A and B. The resulting stochastic heat equation (SHE)
is not the subject of our analysis here per se. Thus, we mention only in passing
that, in this case, (SHE) appears to have connections to interacting random walks
on a random environment on a binary tree.

EXAMPLE 4.8 (Positive multiplicative reals). Our next, and last example, re-
quires a slightly longer discussion than its predecessors. But we feel that this is an
illuminating example, and thus worth the effort.

Let

h(x) := ex (x ∈ R).(4.9)
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The range G := h(R) of the function h is the multiplicative positive reals. Fre-
quently, one writes G as R×

>0; this is an LCA group, and h is an isomorphism
between R and R×

>0. [There are of course other topological isomorphisms from R
to R×

>0; in fact, R � x �→ exp(qx) ∈ R×
>0 works for every real number q �= 0.] As h

also maps G∗ to R∗ = R homomorphically as well, it follows that the dual of R×
>0

is R, and that the Fourier transform on R×
>0 is none other than the classical Mellin

transform.
Since h(x) = ex is a topological isomorphism from R onto R×

>0, every Lévy
process X := {Xt }t≥0 on R×

>0 can be written as Xt = exp(Yt ), where Y := {Yt }t≥0
is a Lévy process on R. An interesting special case is Yt = Bt + δt , where B :=
{Bt }t≥0 denotes one-dimensional Brownian motion on R and δ ∈ R is a parameter.
Thus,

t �→ Xt := eBt+δt(4.10)

defines a continuous Lévy process on R×
>0. The best-known example is the case

that δ = −1/2, in which case X is the exponential martingale.
An application of Itô’s formula (or an appeal to classical generator computa-

tions) shows that if f ∈ C∞(R), then for all x > 0,

Ef (xXt) = f (x) + t

2
x2f ′′(x) + t (1 + 2δ)

2
xf ′(x) + o(t) as t ↓ 0.(4.11)

Thus, we can summarize the preceding as follows: the exponential martingale is
a Lévy process on R×

>0 with generator (L f )(x) = 1
2x2f ′′(x) + (δ + 1

2)xf ′(x).
Thus, we can understand our stochastic heat equation (SHE), in this context, as the
following Euclidean SPDE:

∂ut (x)

∂t
= x2

2

∂2ut(x)

∂x2 +
(
δ + 1

2

)
x

∂ut (x)

∂x
+ λσ

(
ut (x)

)
ξh;(4.12)

for t, x > 0. Moreover, ξh denotes a space–time white noise on (0,∞) × (0,∞)

whose control measure is proportional to x−1 dt dx 1(0,∞)2(t, x) [the restriction
of the Haar measure on R+ × R×

>0 to (0,∞) × R×
>0]. We expend a few lines

and make the following amusing observation as an aside: from the perspective of
these SPDEs, the most natural case is the drift-free case where δ = −1/2. In that
case, the underlying Lévy process X is the exponential martingale, as was noted
earlier. The exponential martingale is one of the archetypal classical examples of
an intermittent process [44]. Moreover, X is centered when δ = −1/2 in the sense
that EXt is the group identity. Interestingly enough, the exponential martingale is
natural in other sense as well: (1) The process X is a natural candidate for being a
“Gaussian” process with values in the group R×

>0 in the sense that X is the image of
a real-valued Gaussian process under the exponential map; and (2) X has quadratic
variation t , that is,

lim
n→∞

∑
0≤k≤2nt

[
X(k+1)/2nX−1

k/2n

]2 = t almost surely for all t ≥ 0.(4.13)
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This property can be verified by standard methods.

5. Lévy processes. Let us recall some basic facts about Lévy processes
on LCA groups. For more details, see Berg and Forst [2] and Port and Stone
[39, 40]. Bertoin [4] and Jacob [28] are masterly accounts of the probabilistic and
analytic aspects of the theory of Lévy processes on Rn and Zn.

Throughout, (�,F ,P) is a fixed probability space.
Let G denote an LCA group, and suppose Y := {Yt }t≥0 is a stochastic process

on (�,F ,P) with values in G. [We always opt to write Yt in place of Y(t), as is
customary in the theory of stochastic processes.] We say that Y is a Lévy process
on G if:

(1) Y0 = eG, the identity element of G;
(2) Yt+sY

−1
s is independent of {Yu}u∈[0,s] and has the same distribution as Yt ,

for all s, t ≥ 0; and
(3) the random function t �→ Yt is right continuous and has left limits every-

where with probability one.

Our definition might appear to be slightly more stringent than the standard def-
inition, but turns out to be equivalent to the standard definition, for instance, when
G is metrizable.

Let μt := P ◦ Y−1
t denote the distribution of the random variable Yt . Then

{Pt }t≥0 is a convolution semigroup, where

(Ptf )(x) := Ef (xYt ) :=
∫
G

f (xy)μt (dy).(5.1)

We can always write the Fourier transform of the probability measure μt as fol-
lows:

μ̂t (χ) = E(Yt , χ) = e−t�(χ) for all t ≥ 0 and χ ∈ G∗,(5.2)

where � :G∗ → C is continuous and �(eG∗) = 0. It is easy to see that Dalang’s
condition (D) always implies the following:∫

G∗
e−t Re�(χ)mG∗(dχ) < ∞ for all t > 0.(5.3)

See, for example, [23], Lemma 8.1. In this case, the following is well defined:

pt(x) =
∫
G∗
(
x−1, χ

)
e−t�(χ)mG∗(dχ) for all t > 0 and x ∈ G.(5.4)

The following is a consequence of Fubini’s theorem.

LEMMA 5.1. The function (t, x) �→ pt(x) is well defined and bounded as well
as uniformly continuous for (t, x) ∈ [δ,∞) × G for every fixed δ > 0. Moreover,
we can describe the semigroup via

(Ptf )(x) =
∫

f (xy)pt (y)m(dy) for all t > 0, x ∈ G,f ∈ L1(G).(5.5)
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Consequently, pt(x) ≥ 0 for all t > 0 and x ∈ G.

We omit the proof, as it is elementary. Let us mention, however, that the preced-
ing lemma guarantees that the Chapman–Kolmogorov equation holds pointwise.
That is,

pt+s(x) = (pt ∗ ps)(x) for all s, t > 0 and x ∈ G,(5.6)

where “∗” denotes the usual convolution on L1(G), that is,

(f ∗ g)(x) :=
∫
G

f (y)g
(
xy−1)mG(dy).(5.7)

Define, for all t > 0 and x ∈ G,

p̄t (x) := (Ptpt )(x) =
∫
G

pt(xy)pt (y)mG(dy).(5.8)

In particular, we apply the preceding with x := eG in order to see that

p̄t (eG) = ‖pt‖2
L2(G)

for all t > 0.(5.9)

Furthermore, it can be shown that the following inversion theorem holds for all
t > 0 and x ∈ G:

p̄t (x) =
∫
G∗
(
x−1, χ

)
e−2t Re�(χ)mG∗(dχ).(5.10)

Thus, we find that

ϒ(β) :=
∫ ∞

0
e−βt‖pt‖2

L2(G)
dt(5.11)

satisfies

ϒ(β) :=
∫ ∞

0
e−βt‖pt‖2

L2(G)
dt =

∫
G∗

mG∗(dχ)

β + 2 Re�(χ)
.(5.12)

Consequently, Dalang’s condition (D) can be recast equivalently and succinctly as
the condition that ϒ : [0,∞) → [0,∞] is finite on (0,∞).

Since t �→ ∫ t
0 p̄s(eG)ds is nondecreasing, Lemma 3.3 of [23] implies the fol-

lowing Abelian/Tauberian bound:

e−1ϒ(1/t) ≤
∫ t

0
p̄s(eG)ds ≤ eϒ(1/t) for all t > 0.(5.13)

Finally, by the generator of {Xt }t≥0 we mean the linear operator L with domain

Dom[L ] :=
{
f ∈ L2(G) :L f := lim

t↓0
t−1(Ptf − f ) in L2(G)

}
.(5.14)

This defines L as an L2-generator, which is a slightly different operator than the
one that is usually obtained from the Hille–Yosida theorem. The L2-theory makes
good sense here for a number of reasons; chief among them is the fact that G need
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not be second countable, and hence the standard form of the Hille–Yosida theorem
is not applicable. The L2-theory has the added advantage that the domain is more
or less explicit, as will be seen shortly.

Recall that each Pt is a contraction on L2(G), and observe that

P̂tf (χ) = f̂ (χ) exp
{−t�(χ)

}
for all t ≥ 0 and χ ∈ G∗.(5.15)

Therefore, for all f,g ∈ L2(G),∫
G

g(Ptf − f )dmG = −
∫
G∗

f̂ (χ)ĝ(χ)
(
1 − e−t�(χ))mG∗(dχ).(5.16)

It follows fairly readily from this relation that L : Dom[L ] → L2(G),

Dom[L ] =
{
f ∈ L2(G) :

∫
G∗
∣∣f̂ (χ)

∣∣2∣∣�(χ)
∣∣2mG∗(dχ) < ∞

}
,(5.17)

and for all f ∈ Dom[L ] and g ∈ L2(G),∫
G

gL f dmG = −
∫
G∗

f̂ (χ)ĝ(χ)�(χ)mG∗(dχ).(5.18)

The latter identity is another way to write

L̂ f (χ) = −f̂ (χ)�(χ) for all f ∈ Dom[L ] and χ ∈ G∗.(5.19)

In other words, L is a pseudo-differential operator on L2(G) with Fourier multi-
plier (“symbol”) −� .

6. Stochastic convolutions. Throughout this paper, ξ will denote space–time
white noise on R+ × G. That is, ξ is a set-indexed Gaussian random field, in-
dexed by Borel subsets of R+ × G that have finite measure Leb×mG (product of
Lebesgue and Haar measures, resp., on R+ and G). Moreover, Eξ(A × T ) = 0 for
all measurable A ⊂ R+ and T ⊂ G of finite measure (resp., Lebesgue and Haar),
and

Cov
(
ξ(B × T ), ξ(A × S)

)= Leb(B ∩ A) · mG(T ∩ S),(6.1)

for all Borel sets A,B ⊂ R+ that have finite Lebesgue measure and all Borel sets
S,T ⊆ G that have finite Haar measure. It is easy to see that ξ is then a vector-
valued measure with values in L2(P).

The principal goal of this section is to introduce and study stochastic convolu-
tions of the form

(K � Z)t (x) :=
∫
(0,t)×G

Kt−s

(
yx−1)Zs(y)ξ(ds dy),(6.2)

where Z is a suitable space–time random field and K is a nice nonrandom space–
time function from (0,∞) × G to R; Lemma 6.5 below will make precise the
meaning of “suitable” in this context.
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If Z is a predictable random field, in the sense of Walsh [43] and Dalang [14],
and satisfies

sup
t∈[0,T ]

sup
x∈G

E
(∣∣Zt(x)

∣∣2)< ∞,

∫ T

0
ds

∫
G

mG(dy)
[
Ks(y)

]2
< ∞,(6.3)

for all T > 0, then the stochastic convolution K � Z is the same stochastic in-
tegral that has been obtained in Walsh [43] and, in particular, Dalang [14]. One
of the essential properties of the resulting stochastic integral is the following L2

isometry:

E
(∣∣(K � Z)t (x)

∣∣2)=
∫ t

0
ds

∫
G

mG(dy)
[
Kt−s

(
yx−1)]2E

(∣∣Zs(y)
∣∣2).(6.4)

In this section, we briefly describe an extension of the Walsh–Dalang stochastic
integral that has the property that t �→ (K �Z)t is a stochastic process with values
in the group algebra L2(G). Thus, the resulting stochastic convolution need not be,
and in general is not, a random field in the modern sense of the word. Rather, we
can realize the stochastic convolution process t �→ (K � Z)t as a Hilbert-space-
valued stochastic process, where the Hilbert space is L2(G).

Our construction has a similar flavor as some other recent constructions; see,
in particular, Da Prato and Zabczyk [12] and Dalang and Quer–Sardanyons [16].
However, our construction also has some novel aspects.

Let us set forth some notation first. As always, let (�,F ,P) denote a probabil-
ity space.

DEFINITION 6.1. Let Z := {Zt(x)}t∈I,x∈G be a two-parameter (space–time)
real-valued stochastic process indexed by I × G, where I is a measurable subset
of R+. We say that Z is a random field when the function Z : (ω, t, x) �→ Zt(x)(ω)

is product measurable from � × I × G to R.

The preceding definition is somewhat unconventional; our random fields are
frequently referred to as “universally measurable random fields.” Because we will
never have need for any other random fields than universally measurable ones, we
feel justified in abbreviating the terminology.

DEFINITION 6.2. For every random field Z := {Zt(x)}t≥0,x∈G and β ≥ 0, let
us define

Nβ(Z;G) := sup
t≥0

{
e−2βtE

(‖Zt‖2
L2(G)

)}1/2
.(6.5)

We may sometimes only write Nβ(Z) when it is clear which underlying group we
are referring to.

Each Nβ defines a norm on space–time random fields, provided that we identify
a random field with all of its versions.
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DEFINITION 6.3. For every β ≥ 0, we define L2
β(G) be the L2-space of all

measurable functions � : (0,∞) × G → R with ‖�‖L2
β(G) < ∞, where

‖�‖2
L2

β(G)
:=

∫ ∞
0

e−2βs‖�s‖2
L2(G)

ds.(6.6)

We emphasize that the elements of L2
β(G) are nonrandom.

Define, for every ϕ ∈ L2(G) and t ≥ 0,

Bt(ϕ) :=
∫
(0,t)×G

ϕ(y)ξ(ds dy).(6.7)

The preceding is understood as a Wiener integral, and it is easy to see that
{Bt(ϕ)}t≥0 is Brownian motion scaled to have variance ‖ϕ‖L2(G) at time one. Let
Ft denote the σ -algebra generated by all random variables of the form Bs(ϕ), as s

ranges within [0, t] and ϕ ranges within L2(G). Then {Ft }t≥0 is the (raw) filtration
of the white noise ξ . Without changing the notation, we will complete [P] every
σ -algebra Ft and also make {Ft }t≥0 right continuous in the usual way. In this
way, we may apply the martingale-measure machinery of Walsh [43] whenever
we need to.

A space–time stochastic process Z := {Zt(x)}t≥0,x∈G is called an elementary
random field [43] if we can write Zt(x) = X1[a,b)(t)ψ(x), where 0 < a < b, ψ ∈
Cc(G) (the usual space of real-valued continuous functions with compact support
on G), and X ∈ L2(P) is Fa-measurable. Clearly, elementary random fields are
random fields in the sense mentioned earlier.

A space–time stochastic process is a simple random field [43] if it is a finite
nonrandom sum of elementary random fields.

DEFINITION 6.4. For every β ≥ 0, we define P2
β(G) to be the completion

of the collection of simple random fields in the norm Nβ . We may observe that:
(i) Every P2

β(G) is a Banach space, once endowed with norm Nβ ; and (ii) if α < β ,

then P2
α(G) ⊆P2

β(G).

We can think of an element of P2
β(G) as a “predictable random field” in some

extended sense.
Let us observe that if K ∈ L2

β(G), then
∫ T

0 ds
∫
G mG(dy)[Ks(y)]2 < ∞ all

T > 0. Indeed, ∫ T

0
ds

∫
G

mG(dy)
[
Ks(y)

]2 ≤ e2βT ‖K‖2
L2

β(G)
.(6.8)

Therefore, we can define the stochastic convolution K � Z for all simple ran-
dom fields Z and all K ∈ L2

β(G) as in Walsh [43]. The following yields further
information on this stochastic convolution. For other versions of such stochastic
Young inequalities, see Foondun and Khoshnevisan [22], and especially Conus
and Khoshnevisan [9].
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LEMMA 6.5 (Stochastic Young inequality). Suppose that Z is a simple ran-
dom field and K ∈ L2

β(G) for some β ≥ 0. Then K � Z ∈ P2
β(G), and

Nβ(K � Z) ≤ Nβ(Z) · ‖K‖L2
β(G).(6.9)

If K ∈ L2
β(G), then Walsh’s theory [43] produces a space–time stochastic pro-

cess (t, x) �→ (K � Z)t (x); that is, a collection of random variables (K � Z)t (x),
one for every (t, x) ∈ (0,∞) × G. Thus, the stochastic convolution in Lemma 6.5
is well defined.

Lemma 6.5 implies that the stochastic convolution operator K � • is a bounded
linear map from Z ∈P2

β(G) to K � Z ∈ P2
β(G) with operator norm being at most

‖K‖L2
β(G). In particular, it follows readily from this lemma that K �Z is a random

field, since it is an element of P2
β(G).

PROOF OF LEMMA 6.5. It suffices to consider the case that Z is an elementary
random field.

Let us say that a function K : (0,∞) × G → R is elementary (in the sense of
Lebesgue) if we can write Ks(y) = A1[c,d)(s)φ(y) where A ∈ R, 0 ≤ c < d , and
φ ∈ Cc(G) (the usual space of continuous real-valued functions on G that have
compact support). Let us say also that K is a simple function (also in the sense of
Lebesgue) if it is a finite sum of elementary functions. These are small variations
on the usual definitions of the Lebesgue theory of integration. But they produce
the same theory as that of Lebesgue. Here, these variations are particularly handy.

From now on, let us choose and fix some constant β ≥ 0, and let us observe that
if K were an elementary function, then K ∈ L2

β(G) for every β ≥ 0.
Suppose we could establish (6.9) in the case that K is an elementary function.

Then of course (6.9) also holds when K is a simple function. Because Cc(G) is
dense in L1(mG) [41], E8, page 268, the usual form of Lebesgue’s theory ensures
that simple functions are dense in L2

β(G). Therefore, by density, if we could prove

that “K �Z ∈ P2
β(G)” and (6.9) both hold in the case that K is elementary, then we

can deduce “K �Z ∈ P2
β(G)” and (6.9) for all K ∈ L2

β(G). This reduces our entire
problem to the case where Z is an elementary random field and K is an elementary
function, properties that we assume to be valid throughout the remainder of this
proof. Thus, from now on we consider

Ks(y) = A · 1[c,d)(s)φ(y) and Zt(x) = X · 1[a,b)(t)ψ(x),(6.10)

where A ∈ R, 0 ≤ c < d , 0 < a < b, X ∈ L2(P) is Fa-measurable, ψ ∈ Cc(G),
and φ ∈ Cc(G). The remainder of the proof works is divided naturally into three
steps.

Step 1 (measurability). We first show that K � Z is a random field in the sense
of this paper.
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Choose and fix some T > 0. According to the Walsh theory [43],

(K � Z)t (x) = AX ·
∫
T (t)×G

φ
(
yx−1)ψ(y)ξ(ds dy),(6.11)

where T (t) := (0, t) ∩ [a, b) ∩ [t − d, t − c), and the stochastic integral can be
understood as a Wiener integral, since the integrand is nonrandom and square in-
tegrable [ds × mG(dy)]. In particular, we may observe that for all x,w ∈ G and
t ∈ [0, T ],

E
(∣∣(K � Z)t (x) − (K � Z)t (w)

∣∣2)
= A2E

(
X2)∣∣T (t)

∣∣ · ∫
G

mG(dy)
[
ψ(y)

]2∣∣φ(yx−1)− φ
(
yw−1)∣∣2(6.12)

≤ const ·
∫
G

∣∣φ(yw−1x
)− φ(y)

∣∣2mG(dy),

where |T (t)| = t (b − a)(d − c) denotes the Lebesgue measure of T (t), and the
implied constant does not depend on (t, x,w) ∈ [0, T ] × G × G. Similarly, for
every 0 ≤ t ≤ τ ≤ T and x ∈ G,

E
(∣∣(K � Z)t (x) − (K � Z)τ (x)

∣∣2)≤ const · (τ − t),(6.13)

where the implied constant does not depend on (t, x,w) ∈ [0, T ] × G × G. Con-
sequently,

lim
x→w
t→τ

E
(∣∣(K � Z)t (x) − (K � Z)τ (w)

∣∣2)= 0,(6.14)

uniformly for all τ ∈ [0, T ] and w ∈ G. In light of a separability theorem of
Doob [18], Chapter 2, the preceding implies that (�, (0,∞),G) � (ω, t, x) �→
(K � Z)t (x)(ω) has a product-measurable version.8

Step 2 (extended predictability). Next, we prove that K � Z ∈ P2
β(G).

Let us define another elementary function K̄s(y) := A1[c,d)(s)φ̄(y) where
A and (c, d) are the same as they were in the construction of K , but φ̄ ∈ L2(G) is
not necessarily the same as φ. It is easy to see that

E
(∣∣(K � Z)t (x) − (K̄ � Z)t (x)

∣∣2)
= A2E

(
X2)∣∣T (t)

∣∣ · ∫
G

[
ψ(y)

]2∣∣φ(yx−1)− φ̄
(
yx−1)∣∣2mG(dy)(6.15)

≤ const · ‖φ − φ̄‖2
L2(G)

,

8As written, Doob’s theorem is applicable to the case of stochastic processes that are indexed by
Euclidean spaces. But the very same proof will work for processes that are indexed by R+ × G.
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where the implied constant does not depend on (t, x,φ, φ̄). The definition of the
stochastic convolution shows that

supp
(
(K � Z)t

)⊆ supp(ψ) ⊕ supp(φ),(6.16)

almost surely for all t ≥ 0, where “supp” denotes “support.” Since K � Z and
K̄ � Z are both random fields (step 1), we can integrate both sides of (6.15)
[exp(−2βt)dt × mG(dx)] in order to find that[

Nβ(K � Z − K̄ � Z)
]2 ≤ const · ‖φ − φ̄‖2

L2(G)
· mG

(
supp(ψ) ⊕ S

)
,(6.17)

where S is any compact set that contains both the supports of both φ and φ̄. Of
course, supp(ψ) ⊕ S has finite mG-measure since it is a compact set.

We now use the preceding computations as follows: let us choose in place
of φ̄ a sequence of functions φ1, φ2, . . . , all in L2(G) and all supported in
one fixed compact set S ⊃ supp(φ), such that: (i) Each φj can be written as
φj (x) := ∑nj

i=1 ai,j 1Ei
(x) for some constants ai,j ’s and compact sets Ej ⊂ G;

and (ii) ‖φ − φj‖L2(G) → 0 as j → ∞. The resulting kernel can be written as Kj

(in place of K̄). Thanks to (6.17),

lim
j→∞Nβ

(
K � Z − Kj � Z

)= 0.(6.18)

A direct computation shows that Kj �Z is an elementary random field, and hence
it is in P2

β . Thanks to the preceding display, K � Z is also in P2
β . This completes

the proof of step 2.

Step 3 [proof of (6.9)]. Since

E
(∣∣(K � Z)t (x)

∣∣2)= ∫ t

0
ds

∫
G

mG(dy)
[
Kt−s

(
yx−1)]2E

(∣∣Zs(y)
∣∣2),(6.19)

we integrate both sides [dm] in order to obtain

E
(∥∥(K � Z)t

∥∥2
L2(G)

)=
∫ t

0
‖Kt−s‖2

L2(G)
E
(‖Zs‖2

L2(G)

)
ds

≤ e2βt [Nβ(Z)
]2 ∫ t

0
e−2β(t−s)‖Kt−s‖2

L2(G)
ds(6.20)

≤ e2βt [Nβ(Z)
]2‖K‖2

L2
β

.

The interchange of integrals and expectation is justified by Tonelli’s theorem,
thanks to step 1. Divide by exp(−2βt) and optimize over t ≥ 0 to deduce (6.9)
whence the lemma. �

Now we extend the definition of the stochastic convolution as follows: sup-
pose K ∈ L2

β and Z ∈ P2
β for some β ≥ 0. Then we can find simple random

fields Z1,Z2, . . . such that limn→∞Nβ(Zn − Z) = 0. Lemma 6.5 ensures that

lim
n→∞Nβ

(
Kn � Z − K � Z

)= 0,(6.21)
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and hence the following result holds.

THEOREM 6.6. If K ∈ L2
β(G) and Z ∈ P2

β(G) for some β ≥ 0, then there

exists K � Z ∈ P2
β(G) such that (K,Z) �→ K � Z is a.s. a bilinear map that

satisfies (6.9). This stochastic convolution K � Z agrees with the Walsh stochastic
convolution when Z is a simple random field.

The random field K � Z is the stochastic convolution of K and Z. Let us em-
phasize, however, that this construction of K � Z produces a stochastic process
t �→ (K � Z)t with values in L2(G).

7. Proof of Theorem 2.1: Part 1. The proof of Theorem 2.1 is divided natu-
rally in two parts: first, we study the case that σ(0) = 0; after that we visit the case
that G is compact. The two cases are handled by different methods. Throughout
this section, we address only the first case, and hence we assume that

σ(0) = 0 whence
∣∣σ(z)

∣∣≤ Lσ |z| for all z ∈ R;(7.1)

see (2.9).
Our derivation follows ideas of Walsh [43] and Dalang [14], but has novel fea-

tures as well, since our stochastic convolutions are not defined as classical (ev-
erywhere defined) random fields but rather as elements of the space

⋃
β≥0 P2

β(G).
Therefore, we hash out some of the details of the proof of Theorem 2.1. Through-
out, we write ut (x) in place of u(t, x), as is customary in the theory of stochastic
processes. Thus, let us emphasize that we never write ut in place of ∂u/∂t .

Let us follow (essentially) the treatment of Walsh [43], and say that a stochastic
process u := {ut }t≥0 with values in L2(G) is a mild solution to (SHE) with initial
function u0 ∈ L2(G), when u satisfies

ut = Ptu0 + λ
(
p � σ(u)

)
t a.s. for all t > 0,(7.2)

viewed as a random dynamical system on L2(G).9 Somewhat more precisely, we
wish to find a β ≥ 0, sufficiently large, and solve the preceding as a stochastic
integration equation for processes in P2

β(G), using that value of β . Since the spaces

{P2
β(G)}β≥0 are nested, there is no unique choice. But as it turns out there is a

minimal acceptable choice for β , which we also will identify for later purposes.

The proof proceeds, as usual, by an appeal to Picard iteration. Let u
(0)
t (x) :=

u0(x) and define iteratively

u
(n+1)
t := Ptu0 + λ

(
p � σ

(
u(n)))

t ,(7.3)

9In statements such as this, we sometimes omit writing “a.s.,” particularly when the “almost sure”
assertion is implied clearly.
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for all n ≥ 1. Since

Nβ(Ptu0) ≤ sup
t≥0

‖Ptu0‖L2(G) = ‖u0‖L2(G) for all β ≥ 0,(7.4)

and because ‖p‖2
L2

β

= ϒ(2β), it follows from Lemma 6.5 that

Nβ

(
u(n+1)) ≤ ‖u0‖L2(G) + λNβ

(
σ ◦ u(n))(∫ ∞

0
e−2βs‖ps‖2

L2(G)
ds

)1/2

(7.5)
= ‖u0‖L2(G) + λNβ

(
σ ◦ u(n))√ϒ(2β),

for all n ≥ 1 and β ≥ 0. Next, we apply the Lipschitz condition of σ together with
the fact that σ(0) = 0 in order to deduce the iterative bound

Nβ

(
u(n+1))≤ ‖u0‖L2(G) +Nβ

(
u(n))λLσ

√
ϒ(2β).(7.6)

Now we choose β somewhat carefully. Let us choose and fix some ε ∈ (0,1), and
then define

β := 1

2
ϒ−1

(
1

(1 + ε)2λ2L2
σ

)
,(7.7)

which leads to the identity λLσ

√
ϒ(2β) = (1 + ε)−1, whence

Nβ

(
u(n+1))≤ ‖u0‖L2(G) + 1

(1 + ε)
Nβ

(
u(n)).(7.8)

Since Nβ(u0) = ‖u0‖L2(G), it follows that

sup
n≥0

Nβ

(
u(n))≤ 1 + ε

ε
‖u0‖L2(G).(7.9)

The same value of β can be applied in a similar way in order to deduce that

Nβ

(
u(n+1) − u(n))≤ 1

1 + ε
Nβ

(
u(n) − u(n−1)).(7.10)

This shows, in particular, that
∑∞

n=0 Nβ(u(n+1) − u(n)) < ∞, whence there exists
u such that limn→∞Nβ(u(n) − u) = 0. Since

Nβ

(
p �

[
σ
(
u(n))− σ(u)

])
≤ λNβ

(
σ
(
u(n))− σ(u)

) · (∫ ∞
0

e−2βs‖ps‖2
L2(G)

ds

)1/2

(7.11)

≤ λLσ · Nβ

(
u(n) − u

)√
ϒ(2β),

it follows that the stochastic convolution p � σ(u(n)) converges in norm Nβ to
the stochastic convolution p � σ(u). Thus, it follows that u solves the stochastic
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heat equation and the L2 moment bound on u is a consequence of the fact that
Nβ(u) ≤ (1 + ε)ε−1‖u0‖L2(G), for the present choice of β . The preceding can be
unscrambled as follows:

E
(‖ut‖2

L2(G)

)≤ (1 + ε)2

ε2 ‖u0‖2
L2(G)

exp
{

t

2
ϒ−1

(
1

(1 + ε)2λ2L2
σ

)}
,(7.12)

for all ε ∈ (0,1) and t ≥ 0. Of course, (2.2) is a ready consequence. This proves
the existence of the right sort of mild solution to (SHE).

The proof of uniqueness follows the ideas of Dalang [14] but computes norms
in L2(G) rather than pointwise norms. To be more specific, suppose v is another
solution that satisfies (2.2) for some finite constant c ≥ 0. Then of course v sat-
isfies (2.2) also when c is replaced by any other larger constant. Therefore, there
exists β ≥ c ≥ 0 such that u, v ∈ P2

β (for the same β). A calculation, very much
similar to those we made earlier for Picard’s iteration, shows that

Nβ(u − v) ≤ λLσ · Nβ(u − v) ·
√

ϒ(2β),(7.13)

whence it follows that the L2(G)-valued stochastic processes {ut }t≥0 and {vt }t≥0
are modifications of one another. This completes the proof. �

8. Proof of Theorem 2.1: Part 2. It remains to prove theorem in the case that
G is compact. If, additionally, σ(0) = 0, then the existence and uniqueness of a
solution follows from the proof of the noncompact case. That proof states, in an a
priori sense, that if u0 ∈ L2(G) and σ(0) = 0, then ut ∈ L2(G) for all t > 0 as well.
This property is not in general true. Therefore, we need to proceed otherwise. Our
approach is to reduce the problem to the case that u0 ∈ Cc(G), by approximation.
Then we show that, in the case that u0 ∈ Cc(G), (SHE) has a pointwise (random
field) solution that has the property that

CT := sup
t∈[0,T ]

sup
x∈G

E
(∣∣ut(x)

∣∣2)< ∞ for all T > 0.(8.1)

It then follows from Tonelli’s theorem that supt∈[0,T ] Et (λ) ≤ CT < ∞, since
mG(G) = 1 in the compact case.

The actual proof requires a number of small technical steps.
Recall the norms Nβ . We now introduce a slightly different family of norms

that were introduced earlier in Foondun and Khoshnevisan [22].

DEFINITION 8.1. For every β ≥ 0 and for all everywhere-defined random
fields Z := {Zt(x)}t≥0,x∈G, we define

Mβ(Z) := sup
t≥0

sup
x∈G

{
e−2βtE

(∣∣Zt(x)
∣∣2)}1/2

.(8.2)
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We can define predictable random fields P∞
β (G) with respect to the preceding

norms, just as we defined spaces P2
β(G) of predictable random fields for Nβ in

Definition 6.4.

DEFINITION 8.2. For every β ≥ 0, we define P∞
β (G) to be the completion

of the collection of simple random fields in the norm Mβ . We may observe that:
(i) Every P∞

β (G) is a Banach space, once endowed with norm Mβ ; and (ii) if
α < β , then P∞

α (G) ⊆ P∞
β (G).

Note that Mβ is a larger norm than Nβ on P∞
β (G), since G is compact. Indeed,

because mG(G) = 1 it follows that Nβ(Z) ≤ Mβ(Z) for all Z ∈P∞
β (G).

The stochastic convolution K � Z can be defined for Z ∈ P∞
β (G) as well, just

as one does it for Z ∈ P2
β(G) (Theorem 6.6). The end result is the following.

THEOREM 8.3. If K ∈ L2
β(G) and Z ∈ P∞

β (G) for some β ≥ 0, then there
exists K � Z ∈ P∞

β (G) such that (K,Z) �→ K � Z is a.s. a bilinear map that
satisfies the stochastic Young inequality,

Mβ(K � Z) ≤ Mβ(Z) · ‖K‖L2
β(G).(8.3)

This stochastic convolution K � Z agrees with the Walsh stochastic convolution
when Z is a simple random field.

The proof of Theorem 8.3 follows the same general pattern of the proof of
Theorem 6.6 but one has to make a few adjustments that, we feel, are routine.
Therefore, we omit the details. However, we would like to emphasize that this
stochastic convolution is not always the same as the one that was constructed in the
previous sections. In particular, let us note that if K ∈ L2

β(G) and Z ∈ P∞
β (G) for

some β ≥ 0, then (K � Z)t (x) is a well-defined uniquely defined random variable
for all t > 0 and x ∈ G. This should be compared to the fact that (K � Z)t is
defined only as an element of L2(G) when Z ∈ P2

β(G).
The next result shows that (SHE) has a a.s.-unique mild pointwise solution u

whenever u0 ∈ L∞(G), in the sense that u is the a.s.-unique solution to the equa-
tion

ut(x) = (Ptu0)(x) + (
p � σ(u)

)
t (x),(8.4)

valid a.s. for every x ∈ G and t > 0. The preceding stochastic convolution is un-
derstood to be the one that we just constructed in this section. Among other things,
the following tacitly ensures that the said stochastic convolution is well defined.

THEOREM 8.4. Let G be an LCA group, and {Xt }t≥0 be a Lévy process on G.
If u0 ∈ L∞(G), then for every λ > 0, the stochastic heat equation (SHE) has a
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mild pointwise solution u that satisfies the following: there exists a finite constant
b ≥ 1 that yields the energy inequality

sup
x∈G

E
(∣∣ut (x)

∣∣2)≤ bebt for every t ≥ 0.(8.5)

Moreover, if v is any mild solution that satisfies (2.2) as well as v0 = u0, then
P{ut(x) = vt (x)} = 1 for all t ≥ 0 and x ∈ G.

One can model a proof of Theorem 8.4 after the already-proved portion of The-
orem 2.1 [i.e., in the case that σ(0) = 0], but use the norm Mβ in place of Nβ .
In fact, such a proof will imply that (8.5) has a solution that is in L∞(G) at all
times as long as u0 ∈ L∞(G), even if G is not compact and σ(0) is not 0. When
G = R, the latter facts are also contained within the theory of Dalang [14]. For
these reasons, we omit the proof of Theorem 8.4. But let us emphasize that since
u is a random field in the sense of the present paper, (8.5) and Fubini’s theorem
together imply that if u0 ∈ L∞(G), then

E
(‖ut‖2

L2(G)

)≤ bebtmG(G).(8.6)

Now let us recall that for our present purposes G is compact, and hence
mG(G) = 1. It follows from these conditions that the solution ut is also in L2(G),
for all t > 0, as long as u0 ∈ L∞(G).10

Now we begin our proof of Theorem 2.1 in the case that G is compact, an
assumption which we assume for the remainder of the section.

Our normalization of Haar measure ensures that mG(G) = 1 in the present com-
pact case. Consequently, L∞(G) ⊂ L2(G), and hence if u0 ∈ L∞(G), then (SHE)
has a random field solution, with values in L2(G) ∩ L∞(G) at all times, such that

E
(‖ut‖2

L2(G)

)≤ bebt .(8.7)

We also find, a priori, that u ∈ P2
β(G) for all sufficiently large β . This proves the

theorem when G is compact and u0 ∈ L∞(G).
In fact, we can now use the a priori existence bounds that we just developed in

order to argue, somewhat as in the Walsh theory, and see that [in this case where
u0 ∈ L∞(G)]

E
(∣∣ut (x)

∣∣2)= ∣∣(Ptu0)(x)
∣∣2

(8.8)

+ λ2
∫ t

0
ds

∫
G

mG(dy)
[
pt−s

(
yx−1)]2E

(∣∣σ (us(y)
)∣∣2),

10This property can fail when G is not compact and σ(0) is not zero. For example, if u0 = 0, G = R,
and σ ≡ 1 (the linear stochastic heat equation), then there is a unique solution that is in L∞(R) at all
times but there is no solution that is in L2(R) at any time t > 0.
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for all t > 0 and x ∈ G. But we will not need this formula at this time. Instead, let
us observe the following variation: if v solves (SHE)—for the same white noise
ξ—with v0 ∈ L∞(G), then

E
(∣∣ut (x) − vt (x)

∣∣2)
= ∣∣(Ptu0)(x) − (Ptv0)(x)

∣∣2
+ λ2

∫ t

0
ds

∫
G

mG(dy)
[
pt−s

(
yx−1)]2E

(∣∣σ (us(y)
)− σ

(
vs(y)

)∣∣2)(8.9)

≤ ∣∣(Ptu0)(x) − (Ptv0)(x)
∣∣2

+ λ2L2
σ ·
∫ t

0
ds

∫
G

mG(dy)
[
pt−s

(
yx−1)]2E

(∣∣us(y) − vs(y)
∣∣2).

Since each Pt is a linear contraction on L2(G), we may integrate both sides of the
preceding inequality in order to deduce the following from Fubini’s theorem: for
every β ≥ 0,

E
(‖ut − vt‖2

L2(G)

)
≤ ‖u0 − v0‖2

L2(G)
+ λ2L2

σ ·
∫ t

0
‖pt−s‖2

L2(G)
E
(‖us − vs‖2

L2(G)

)
(8.10)

≤ ‖u0 − v0‖2
L2(G)

+ λ2L2
σ e2βt [Nβ(u − v)

]2 · ϒ(2β).

In particular,[
Nβ(u − v)

]2 ≤ ‖u0 − v0‖2
L2(G)

+ λ2L2
σ

[
Nβ(u − v)

]2
ϒ(2β).(8.11)

Owing to (8.7), we know that Nβ(u − v) < ∞ if β is sufficiently large. By the
dominated convergence theorem, limβ↑∞ ϒ(2β) = 0, whence we have

λ2L2
σϒ(2β) ≤ 1/2 for all β large enough.(8.12)

This shows that

Nβ(u − v) ≤ const · ‖u0 − v0‖L2(G),(8.13)

for all u0, v0 ∈ L∞(G) and an implied constant that is finite and depends only on
(λ,Lσ ,ϒ).

Now that we have proved (8.13), we can complete the proof of Theorem 2.1 (in
the case that G is compact) as follows: suppose u0 ∈ L2(G). Since Cc(G) is dense
in L2(G), we can find u

(1)
0 , u

(2)
0 , . . . ∈ Cc(G) such that u

(n)
0 → u0 in L2(G) as

n → ∞. Let u(n) := {u(n)
t (x)}t≥0,x∈G denote the solution to (SHE) starting at u

(n)
0 .

Equation (8.13) shows that {u(n)}∞n=1 is a Cauchy sequence in P2
β(G) provided

that β is chosen to be sufficiently large (but fixed). Therefore, w := limn→∞ u(n)

exists in P2
β(G). Lemma 6.5 ensures that p � u(n) converges to p � w, and hence

w solves (SHE) starting at u0. This proves existence. Uniqueness is proved by
similar approximation arguments.
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9. Proof of Proposition 2.3. First, consider the case that u0 ∈ L∞(G). In that
case, we may apply (8.8) in order to see that the solution u is defined pointwise
and satisfies

E
(∣∣ut (x)

∣∣2)≤ ∣∣(Ptu0)(x)
∣∣2 + λ2‖σ‖2

L∞(R)

∫ t

0
‖ps‖2

L2(G)
ds.(9.1)

Since
∫ t

0 ‖ps‖2
L2(G)

ds = ∫ t
0 p̄s(eG)ds ≤ eϒ(1/t) < ∞ [(5.13)] and G is compact,

the L2(G)-contractive property of Pt yields[
Et (λ)

]2 = E
(‖ut‖2

L2(G)

)≤ ‖u0‖2
L2(G)

+ eλ2‖σ‖2
L∞(R)ϒ(1/t).(9.2)

If u is known to be only in L2(G), then by density we can find for every ε > 0
a function v ∈ L∞(G) such that ‖u0 − v0‖L2(G) ≤ ε. The preceding paragraph
and (8.13) together yield[

Et (λ)
]2 ≤ 2e2βt [Nβ(u − v)

]2 + 2
(‖v0‖2

L2(G)
+ eλ2‖σ‖2

L∞(R)ϒ(1/t)
)

(9.3)
≤ const ·2e2βtε2 + 2

(
2‖u0‖2

L2(G)
+ 2ε2 + eλ2‖σ‖2

L∞(R)ϒ(1/t)
)
.

This is more than enough to show that Et (λ) = O(λ) for all t > 0. In fact, it yields
also the quantitative bound,

Et (λ) ≤ const · (‖u0‖L2(G) + λ‖σ‖L∞(R)

√
ϒ(1/t)

)
,(9.4)

for a finite universal constant. This completes the first portion of the proof.
If |σ | is bounded uniformly from below, then we reduce the problem to the case

that u0 ∈ L∞(G) just as we did in the first half, using (8.13), and then apply (8.8)
in order to see that [in the case that u0 ∈ L∞(G)],

E
(∣∣ut(x)

∣∣2)≥ inf
z∈G

∣∣u0(z)
∣∣2 + λ2 inf

z∈R

∣∣σ(z)
∣∣2 ·

∫ t

0
‖ps‖2

L2(G)
ds.(9.5)

We will skip the remaining details on how one makes the transition from con-
siderations of initial values u0 ∈ L∞(G) to initial values u0 ∈ L2(G): this issue
has been dealt with already in the first half of the proof. Instead, let us conclude
the proof by observing that the preceding is consistent, since

∫ t
0 ‖ps‖2

L2(G)
ds > 0,

for if this integral were zero for all t then the proof would fail. But because G is
compact and mG is a probability measure on G, Jensen’s inequality reveals that
‖ps‖2

L2(G)
≥ ‖ps‖2

L1(G)
= 1. Therefore,

∫ t
0 ‖ps‖2

L2(G)
ds ≥ t is positive when t is

positive, as was advertised.

10. Condition (D) and local times. Dalang’s condition (D) is connected inti-
mately to the theory of local times for Lévy processes. This connection was pointed
out in Foondun, Khoshnevisan and Nualart [23] when G = R; see also Eisenbaum
et al. [20]. Here, we describe how one can extend that connection to the present,
more general, setting where G is an LCA group.
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Let Y := {Yt }t≥0 be an independent copy of X, and consider the stochastic pro-
cess

St := XtY
−1
t (t ≥ 0).(10.1)

It is easy to see that S := {St }t≥0 is a Lévy process with characteristic function

E(St , χ) = e−2t Re�(χ) for all t ≥ 0 and χ ∈ G∗,(10.2)

where � denote the Lévy–Khintchine exponent, or characteristic exponent, of the
Lévy process {Xt }t≥0. The process S is called the Lévy symmetrization of X; the
nomenclature is motivated by the fact that each St is a symmetric random variable
in the sense that St and S−1

t have the same distribution for all t ≥ 0.
Let J denote the weighted occupation measure of S, that is,

J (A) :=
∫ ∞

0
1A(Ss)e

−s ds,(10.3)

for all Borel sets A ⊂ G. It is easy to see that

Ĵ (χ) :=
∫
G
(x,χ)J (dx) =

∫ ∞
0

(Ss,χ)e−s ds
(
χ ∈ G∗),(10.4)

whence

E
(∣∣Ĵ (χ)

∣∣2)= 2
∫ ∞

0
e−t dt

∫ t

0
e−s ds E

[
(Ss,χ)(St , χ)

]
.(10.5)

For every s, t ≥ 0 and for all characters χ ∈ G∗,

(Ss,χ)(St , χ) = χ(Ss)χ
(
S−1

t

)= χ
(
SsS

−1
t

)= (
SsS

−1
t

)
(χ).(10.6)

Note that SsS
−1
t = (StS

−1
s )−1, and that the distribution of StS

−1
s is the same as

the distribution of St−s for t ≥ s ≥ 0. Since St−s has the same distribution as that
of S−1

t−s , by the symmetry of S, it follows that

E
(∣∣Ĵ (χ)

∣∣2)= 2
∫ ∞

0
e−t dt

∫ t

0
e−s ds E

[
(St−s, χ)

]
= 2

∫ ∞
0

e−s ds

∫ ∞
s

e−tdt e−(t−s)Re�(χ)(10.7)

= 1

1 + 2 Re�(χ)
,

for every χ ∈ G∗. Therefore,

E
(‖Ĵ‖2

L2(G∗)
)=

∫
G∗

(
1

1 + 2 Re�(χ)

)
mG∗(dχ) = ϒ(1).(10.8)

In particular, we have proved that Dalang’s condition (D) is equivalent to the
condition that


(x) := dJ

dmG

(x) exists and is in L2(P × mG),(10.9)
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and in this case,

E
(‖
‖2

L2(G)

)= E
(‖Ĵ‖2

L2(G∗)
)= ϒ(1),(10.10)

thanks to Plancherel’s theorem. For real-valued Lévy processes, this observation
is due essentially to Hawkes [27].

The random field 
 is called the local times of {St }t≥0; 
 has, by its very defini-
tion, the property that it is a random probability function on G such that∫

G
f 
dmG =

∫ ∞
0

f (St )e
−t dt a.s.,(10.11)

for all nonrandom functions f ∈ L2(G).
Let us now return to the following remark that was made in the Introduction.

LEMMA 10.1. Dalang’s condition (D) holds whenever G is discrete.

This lemma was shown to hold as a consequence of Pontryagin–van Kampen
duality. We can now understand this lemma probabilistically.

A PROBABILISTIC PROOF OF LEMMA 10.1. When G is discrete, local times
always exist and are described via


(x) :=
∫ ∞

0
1{x}(St )e

−t dt (x ∈ G).(10.12)

In light of (10.10), it remains to check only that 
 ∈ L2(P×mG), since it is evident
that 
 = dJ/dmG in this case. But since mG is the counting measure on G,

ϒ(1) = ‖
‖2
L2(P×mG)

= 2
∑
x∈G

∫ ∞
0

e−s ds

∫ ∞
s

e−t dt P{Ss = x,St = x}(10.13)

= 2
∫ ∞

0
e−s ds

∫ ∞
s

e−t dt P{St−s = eG},

where eG denotes the identity element in G. Since P{St−s = eG} ≤ 1, it follows
readily that ϒ(1) < ∞, whence follows condition (D). �

11. Group invariance of the excitation indices. The principal aim of this
section is to prove that the noise excitation indices e(t) and e(t) are “group invari-
ants.” In order to do this, we need to apply some care, but it is easy to describe
informally what group invariance means: if we apply a topological isomorphism
to G, then we do not change the values of e(t) and e(t).
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DEFINITION 11.1. Recall that two LCA groups G and � are isomorphic (as
topological groups) if there exists a homeomorphic homomorphism h :G → �.
We will denote by Iso(G,�) the collection of all such topological isomorphisms,
and write “G ∼= �” when Iso(G,�) �= ∅; that is precisely when G and � are iso-
morphic to one another.

Throughout this section, we consider two LCA groups G ∼= �.
It is easy to see that if h ∈ Iso(G,�), then m� ◦h is a translation-invariant Borel

measure on G whose total mass agrees with the total mass of mG. Therefore, we
can find a constant μ(h) ∈ (0,∞) such that

m� ◦ h = μ(h)mG for all h ∈ Iso(G,�).(11.1)

DEFINITION 11.2. We refer to μ : Iso(G,�) → (0,∞) as the modulus func-
tion, and μ(h) as the modulus of an isomorphism h ∈ Iso(G,�). In particular, we
say that G is unimodular when μ(h) = 1.

This definition is motivated by the following: since G ∼= G, the collection
Aut(G) := Iso(G,G) of all automorphisms of G is never empty. Recall that
Aut(G) is in general a non-Abelian group endowed with group product h◦g (com-
position) and group inversion h−1 (functional inversion). It is then easy to see that
μ is a homomorphism from Aut(G) into the multiplicative positive reals R×

>0; that
is, that μ(h◦g) = μ(h)μ(g) and μ(h−1) = 1/μ(h) for every h,g ∈ Aut(G). Thus,
the Definition 11.2 of a unimodular group agrees with the usual one when � = G.

The following simple lemma is an immediate consequence of our standard nor-
malization of Haar measures and states that compact and/or discrete LCA groups
are unimodular. But it is worth recording.

LEMMA 11.3. Every element of Iso(G,�) is measure preserving when G is
either compact or discrete. In other words, if G is compact or discrete, then so
is �, and μ(h) = 1 for every h ∈ Iso(G,�).

Next, let ξ denote a space–time white noise on R+ × G. Given a function h ∈
Iso(G,�), we may define a random set function ξh on � as follows:

ξh(A × B) :=√
μ(h)ξ

(
A × h−1(B)

)
,(11.2)

for all Borel sets A ⊂ R+ and B ⊂ � with finite respective measures Leb(A) and
mG(B). In this way, we find that ξh is a totally scattered Gaussian random measure
on R+ × � with control measure Leb×m� . Moreover,

E
(∣∣ξh(A × B)

∣∣2)= μ(h)Leb(A)
(
mG ◦ h−1)(B)

(11.3)
= Leb(A)m�(B).

In other words, we have verified the following simple fact.
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LEMMA 11.4. Let ξ denote a space–time white noise on R+ × G. Then ξh is
a white noise on R+ × � for every h ∈ Iso(G,�).

Note, in particular, that we can solve SPDEs on (0,∞)×� using the space–time
white noise ξh. We will return to this matter shortly.

If f ∈ L2(G) and h ∈ Iso(G,�), then f ◦ h−1 can be defined uniquely as an
element of L2(�) as well as pointwise. Here is how: first, let us consider f ∈
Cc(G), in which case f ◦ h−1 :� → R is defined pointwise and is in Cc(�). Next,
we observe that ∥∥f ◦ h−1∥∥2

L2(�) =
∫
�

∣∣f (h−1(x)
)∣∣2m�(dx)

=
∫
G

∣∣f (y)
∣∣2(m� ◦ h)(dy)(11.4)

= μ(h)‖f ‖2
L2(G)

.

Since Cc(G) is dense in L2(G), the preceding constructs uniquely f ◦h−1 ∈ L2(�)

for every topological isomorphism h :G → �. Moreover, it follows that (11.4) is
valid for all f ∈ L2(G). This construction has a handy consequence which we
describe next.

For the sake of notational simplicity, if Z is a random field, then we write Z ◦
h−1 for the random field Zt(h

−1(x)), whenever h is such that this definition makes
sense. Of course, if Z is nonrandom, then we may use the very same notation; thus,
K ◦ h−1 makes sense equally well in what follows.

LEMMA 11.5. Let β ≥ 0 and h ∈ Iso(G,�). If Z ∈ P2
β(G), then Z ◦ h−1 ∈

P2
β(�), where(

Z ◦ h−1)
t (x) := Zt

(
h−1(x)

)
for all t > 0 and x ∈ �.(11.5)

Moreover,

Nβ

(
Z ◦ h−1;�)=√

μ(h)Nβ(Z;G).(11.6)

PROOF. It suffices to prove the lemma when Z is an elementary random field.
But then the result follows immediately from first principles, thanks to (11.4). �

Our next result is a change of variables formula for Wiener integrals.

LEMMA 11.6. If F ∈ L2(R+ × �) and h ∈ Iso(G,�), then∫
R+×G

(F ◦ h)dξ = 1√
μ(h)

∫
R+×�

F dξh a.s.(11.7)
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PROOF. Thanks to the very construction of Wiener integrals, it suffices to
prove the lemma in the case that Ft(x) = A1[c,d](t)1Q(x) for some A ∈ R,
0 ≤ c < d , and Borel-measurable set Q ⊂ � with m�(Q) < ∞. In this special
case, (F ◦ h)t (x) = A1[c,d)(t)1h−1(Q)(x), whence we have∫

R+×G
(F ◦ h)dξ = Aξ

([c, d) × h−1(Q)
)

(11.8)

which is [μ(h)]−1/2 times Aξh([c, d) × Q) = ∫
R+×� F dξh, by default. �

LEMMA 11.7. Let � denote stochastic convolution with respect to the white
noise ξ on R+ × G, as before. For every h ∈ Iso(G,�), let �h denote stochastic
convolution with respect to the white noise ξh on R+ × �. Choose and fix some
β ≥ 0. Then, for all K ∈ L2

β(�) and Z ∈P2
β(�),

(K ◦ h) � (Z ◦ h) = 1√
μ(h)

(K �h Z) ◦ h,(11.9)

almost surely.

PROOF. Lemma 11.4 shows that ξh is indeed a white noise on R+ × �; and
Lemma 11.5 guarantees that Z ◦ h ∈ P2

β(G). In order for (K ◦ h) � (Z ◦ h) to be a

well-defined stochastic convolution, we need K ◦h to be in L2
β(G) (Theorem 6.6).

But (11.4) tells us that

‖Kt ◦ h‖2
L2(G)

= 1

μ(h)
‖Kt‖2

L2(�)
for all t > 0,(11.10)

and hence

‖K ◦ h‖2
L2

β(G)
= 1

μ(h)
‖K‖2

L2
β(�)

< ∞.(11.11)

This shows that (K ◦ h) � (Z ◦ h) is a properly-defined stochastic convolution.
In order to verify (11.9), which is the main content of the lemma, it suffices

to consider the case that K and Z are both elementary; see Lemma 6.5 and our
construction of stochastic convolutions. In other words, it remains to consider the
case that K and Z have the form described in (6.10): that is, in the present con-
text: (i) Ks(y) = A1(c,d](s)φ(y) where A ∈ R, 0 ≤ c < d , and φ ∈ Cc(�); and
(ii) Zt(x) = X1[a,b)(t)ψ(x) for 0 < a < b, X ∈ L2(P) is Fa-measurable, and
ψ ∈ Cc(�). In this case,

(K ◦ h)s(y) = A1(c,d](s)φ
(
h(y)

)
,

(11.12)
(Z ◦ h)t (x) = X1(a,b](t)ψ

(
h(x)

)
.
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Therefore,[
(K ◦ h) � (Z ◦ h)

]
t (x)

(11.13)
= AX

∫
(0,t)×G

1(c,d](s)1(a,b](t − s)φ
(
h
(
yx−1))ψ(h(y)

)
ξ(ds dy).

The preceding integral is a Wiener integral, and the above quantity is almost surely
equal to

AX√
μ(h)

∫
(0,t)×�

1(c,d](s)1(a,b](t − s)φ
(
y
(
h(x)

)−1)
ψ(y)ξh(ds dy)

(11.14)

= 1√
μ(h)

(K �h Z)t
(
h(x)

)
,

thanks to Lemma 11.6. �

Finally, if X := {Xt }t≥0 is a Lévy process on G, then Yt := h(Xt) defines a
Lévy process Y := h ◦ X on �. In order to identify better the process Y := h ◦ X,
let us first recall [36], Chapter 4, that since � = h(G), every character ζ ∈ �∗ is of
the form χ ◦h−1 for some χ ∈ G∗ and vice versa. In particular, we can understand
the dynamics of Y = h ◦ X via the following computation:

E(ζ, Yt ) = E
(
χ ◦ h−1, Yt

)= E
[
χ
(
h−1(Yt )

)]= E
[
χ(Xt)

]
(11.15)

= E(χ,Xt) = E(ζ ◦ h,Xt),

for every t ≥ 0 and ζ = χ ◦ h−1 ∈ �∗. Let �W denote the characteristic exponent
of every Lévy process W . Then it follows that

�h◦X(ζ ) = �X(ζ ◦ h) for all ζ ∈ �∗.(11.16)

In particular, we can evaluate the ϒ-function for Y := h ◦ X as follows:∫
�∗

(
1

1 + Re�h◦X(ζ )

)
m�∗(dζ ) =

∫
�∗

(
1

1 + Re�X(ζ ◦ h)

)
m�∗(dζ ).(11.17)

Since ζ ◦ h is identified with χ through the Pontryagin–van Kampen duality pair-
ing, we find the familiar fact that �∗ ∼= G∗ [36], Chapter 4, whence we may deduce
the following: ∫

�∗

(
1

1 + Re�h◦X(ζ )

)
m�∗(dζ )

=
∫
G∗

(
1

1 + Re�X(χ)

)(
m�∗ ◦ h−1)(dχ)(11.18)

= μ(h) ·
∫
G∗

(
1

1 + Re�X(χ)

)
mG∗(dχ).
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This μ(h) is the same as the constant in (11.1), because our normalization of Haar
measures makes the Fourier transform an L2-isometry.

In other words, we have established the following.

LEMMA 11.8. Let X := {Xt }t≥0 denote a Lévy process on G, and choose and
fix h ∈ Iso(G,�). Then the G-valued process X satisfies Dalang’s condition (D) if
and only if the �-valued process Y := h ◦ X satisfies Dalang’s condition (D).

Let us make another simple computation, this time about the invariance proper-
ties of semigroups and their L2-generators.

LEMMA 11.9. Let X := {Xt }t≥0 denote a Lévy process on G, with semigroup
{P X

t }t≥0 and generator L X , and choose and fix h ∈ Iso(G,�). Then the semi-
group and generator of Y := h ◦ X are(

P h◦X
t f

)
(y) = (

P X
t (f ◦ h)

)(
h−1(y)

)
(11.19)

and (
L h◦Xf

)
(y) = (

L X(f ◦ h)
)(

h−1(y)
)
,(11.20)

respectively, where t ≥ 0, y ∈ �, and f ∈ L2(�).

PROOF. If t ≥ 0 and y ∈ �, then yh(Xt) = h(h−1(y)Xt), whence it follows
that for all f ∈ Cc(�),(

P h◦X
t f

)
(y) = E

[
f
(
yh(Xt)

)]= E
[
(f ◦ h)

(
h−1(y)Xt

)]
.(11.21)

This yields the semigroup of h◦X by the density of Cc(G) in L2(G). Differentiate
with respect to t to compute the generator. �

As a ready consequence of Lemma 11.9, we find that if X := {Xt }t≥0 denotes
a Lévy process on G with transition densities pX (with respect to mG), and if
h ∈ Iso(G,�), then h ◦ X is a Lévy process on � with transition densities ph◦X
(with respect to m�) that are given by

ph◦X := pX ◦ h−1

μ(h)
.(11.22)

Indeed, Lemma 11.9 and the definition of μ(h) together imply that∫
ψph◦X

t dm� = E
[
ψ
(
h(Xt)

)]
,(11.23)

for all t > 0 and ψ ∈ Cc(G). Therefore, ph◦X is a version of the transition density
of h ◦ X. Lemma 5.1 ensures that ph◦X is in fact the unique continuous version of
any such transition density.

We are ready to present and prove the main result of this section. Throughout,
X := {Xt }t≥0 denotes a Lévy process on G that satisfies Dalang’s condition (D),
and recall our convention that either G is compact or σ(0) = 0. In this way, we see
that (SHE) has a unique solution for every nonrandom initial function in L2(G).
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THEOREM 11.10 (Group invariance of SPDEs). Suppose u0 ∈ L2(G) is
nonrandom, and let u denote the solution to (SHE)—viewed as an SPDE on
(0,∞) × G—whose existence and uniqueness is guaranteed by Theorem 2.1.
Choose and fix h ∈ Iso(G,�). Then vt := ut ◦ h−1 defines the unique solution
to the stochastic heat equation∣∣∣∣∣∣∣

∂vt (x)

∂t
= (

L h◦Xvt

)
(x) + λ

√
μ(h)σ

(
vt (x)

)
ξh,

v0 = u0 ◦ h−1,

(11.24)

viewed as an SPDE on � = h(G), for x ∈ � and t > 0.

PROOF. With the groundwork under way, the proof is quite simple. Let v be
the solution to (11.24); its existence is guaranteed thanks to Lemma 11.8 and The-
orem 2.1.

Let v(n) and u(n), respectively, denote the Picard iterates of (11.24) and u. That
is, u(n)’s are defined iteratively by (7.3), and v’s are defined similarly as

v
(n+1)
t := P h◦X

t v0 + λ
√

μ(h)
(
ph◦X �h σ

(
v(n)))

t .(11.25)

We first claim that for all t > 0,

v
(n)
t = u

(n)
t ◦ h−1 a.s. for all n ≥ 0.(11.26)

This is a tautology when n = 0, by construction. Suppose v
(n)
t = u

(n)
t ◦ h−1 a.s.

for every t > 0, where n ≥ 0 is an arbitrary fixed integer. We next verify that
v

(n+1)
t = u

(n+1)
t ◦ h−1 a.s. for all t > 0, as well. This and a relabeling [n ↔ n + 1]

will establish (11.26).
Thanks to the induction hypothesis, Lemma 11.9 and (11.22),

v
(n+1)
t := (

P X
t u0

) ◦ h−1 + λ√
μ(h)

((
pX ◦ h−1)�h σ

(
u(n) ◦ h−1))

t ,(11.27)

almost surely. Therefore, Lemma 11.7 implies that

v
(n+1)
t := (

P X
t u0

) ◦ h−1 + λ
(
pX � σ

(
u(n)))

t ◦ h−1,(11.28)

almost surely. We now merely recognize the right-hand side as u
(n+1)
t ◦ h−1;

see (7.3). In this way, we have proved (11.26).
Since we now know that v(n) = u(n) ◦ h−1, two appeals to Theorem 2.1 (via

Lemma 11.5) show that if β is sufficiently large, then v(n) converges in P2
β(�) to

v and u(n) → u in P2
β(G), as n → ∞. Thus, it follows from a second application

of Lemma 11.5 that v = u ◦ h−1. �

The following is a ready corollary of Theorem 11.10; its main content is in the
last line where it shows that our noise excitation indices are “invariant under group
isomorphisms.”
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COROLLARY 11.11. In the context of Theorem 11.10, we have the following
energy identity:

E
(‖ut‖2

L2(G)

)= 1

μ(h)
E
(‖vt‖2

L2(�)

)
,(11.29)

valid for all t ≥ 0. In particular, u and v have the same noise excitation indices.

PROOF. Since vt (x) = ut (h
−1(x)), it follows from Theorem 11.10 and (11.4)

that

‖ut‖2
L2(G)

= 1

μ(h)
‖vt‖2

L2(�)
a.s.,(11.30)

which is more than enough to imply (11.29). The upper noise-excitation index of
u at time t ≥ 0 is

e(t) = lim sup
λ↑∞

1

logλ
log log

√
E
(‖ut‖2

L2(G)

)
,(11.31)

whereas the upper noise excitation index of v at time t is

lim sup
λ↑∞

1

log[λ√
μ(h)] log log

√
E
(‖vt‖2

L2(�)

)
,(11.32)

which is equal to e(t), thanks to (11.29) and the fact that log[λ√
μ(h)] ∼ logλ as

λ ↑ ∞. This proves that the upper excitation indices of u and v are the same. The
very same proof shows also that the lower excitation indices are shared as well.

�

12. Projections. Consider our stochastic heat equation (SHE) in the case that
the underlying LCA group G is noncompact, metrizable and has more than one
element; that is, consider the general setting of Theorem 2.6. According to the
structure theory of LCA groups, which we will recall in due time, we can write
G ∼= Rn ×K for a nonnegative integer n and a compact LCA group K . It is easy to
see that the underlying Lévy process on G can then be written—coordinatewise—
as X × Y := {Xt × Yt }t≥0, where {Xt }t≥0 is a Lévy process on Rn and {Yt }t≥0
a Lévy process on K . The results of this section will allow us to compare the
energy of our stochastic PDE to the energy of another version of (SHE), whose
x-variable now ranges in Rn, and whose operator L is the generator of {Xt }t≥0.
This comparison principle is a kind of parallel to the classical energy inequality
of potential theory. In the present setting, it states that the energy of (SHE) on
G ∼= Rn × K—using the Lévy process X × Y —is greater than or equal to the
energy of (SHE) on Rn—using the Lévy process X. Moreoever, if (SHE) has a
solution—that is, if X × Y satisfies Dalang’s condition (D)—then (SHE) on Rn

must have a solution—that is, X must satisfy Dalang’s condition (D)—and hence
n = 1. The structure theory of Lévy processes on R will then show us that the
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lowest energy we can expect is from the case that X is Brownian motion. In that
case, a simple scaling argument can yield the desired exp{const ·λ4} lower bound,
which will ultimately verify Theorem 2.6.

In this section, we study the natural projection G of a (larger) LCA group
G × K , where K is a compact Abelian group. It is easy to see from first principles
that such a projection maps a Lévy process on G × K to a Lévy process on G.
One of the main results of this section is that if the original process on G satisfied
Dalang’s condition (D)—on G × K—then the new process on G will satisfy con-
dition (D) on G. Thanks to the structure theory of LCA groups, this fact and its
ensuing “energy inequality” will be instrumental in the proof of Theorem 2.6 (see
Section 14).

We will prove Theorem 2.6 in Section 14. Presently, we satisfy ourselves by
stating and proving a general form of the mentioned projection theorem/energy
inequality.

Throughout this section, we let G denote an LCA group and K a compact
Abelian group. Then it is well known, and easy to see directly, that G × K is
an LCA group with dual group (G × K)∗ = G∗ × K∗ [36], Chapter 4. (For pur-
poses of comparison, let us state that the G×K of this section is going to play the
role of G ∼= Rn × K of the preceding paragraphs.)

Let π :G × K → G denote the canonical projection map. Since π is a (con-
tinuous) group homomorphism, it follows that if X := {Xt }t≥0 is a Lévy process
on G × K , then (π ◦ X)t := π(Xt) defines a Lévy process on G. If χ ∈ G∗, then
χ ◦ π ∈ (G × K)∗, and hence

E
(
χ,π(Xt)

)= E
[
(χ ◦ π,Xt)

]= e−t�X(χ◦π),(12.1)

for all t ≥ 0 and χ ∈ G∗. In other words, we can write the characteristic exponent
of π ◦ X in terms of the characteristic exponent of X as follows:

�π◦X(χ) = �X(χ ◦ π) for all χ ∈ G∗.(12.2)

PROPOSITION 12.1. If X satisfies Dalang’s condition (D) on G × K , then
the Lévy process π ◦ X satisfies condition (D) on G. In fact, we have the following
“energy inequality”:

ϒπ◦X(β) ≤ ϒX(β) for all β ≥ 0,(12.3)

where ϒW is the function defined in (5.11) and/or (5.12) for every Lévy process W

that has transition densities.

PROOF. First of all, note that the product measure mG × mK is a translation-
invariant Borel measure on G × K , whence mG×K = cmG × mK for some con-
stant c. It is easy to see that c ∈ (0,∞); let us argue next that c = 1. If f ∈ L2(G)

and g ∈ L2(K) satisfy mG{f > 0} > 0 and mK{g > 0} > 0, then (f ⊗g)(x×y) :=
f (x)g(y) satisfies f ⊗ g ∈ L2(G × K), and

‖f ⊗ g‖L2(G×K) = ‖f ‖L2(G)‖g‖L2(K) = ‖f ⊗ g‖L2(mG×mK).(12.4)
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Since the left-most term is equal to c times the right-most term, it follows that
c = 1.

Let pW denote the transition densities of W for every Lévy process W that pos-
sesses transition densities. It is a simple fact about “marginal probability densities”
that since X has nice transition densities pX (see Lemma 5.1), so does π ◦ X. In
fact, because mG×K = mG × mK—as was proved in the previous paragraph—we
may deduce that

pπ◦X
t (x) =

∫
K

pX
t (x × y)mK(dy) for all t > 0 and x ∈ G.(12.5)

Now we simply compute: because K is compact, mK is a probability measure, and
hence ∥∥pX

t

∥∥2
L2(G×K) =

∫
G

mG(dx)

∫
K

mK(dy)
∣∣pX

t (x × y)
∣∣2(12.6)

≥
∫
G

mG(dx)

∣∣∣∣∫
K

mK(dy)pX
t (x × y)

∣∣∣∣2
= ∥∥pπ◦X

t

∥∥2
L2(G),(12.7)

for all t > 0, owing to the Cauchy–Schwarz inequality. We can integrate both sides
of the preceding [exp(−βt)dt] in order to see that∫ ∞

0
e−βs

∥∥pπ◦X
s

∥∥2
L2(G) ds ≤

∫ ∞
0

e−βs
∥∥pX

s

∥∥2
L2(G×K) ds,(12.8)

for all β ≥ 0, and the result follows. �

13. An abstract lower bound. The main result of this section is an abstract
lower estimate for the energy of the solution in terms of the function ϒ that was
defined in (5.11); see also (5.12).

PROPOSITION 13.1. If u0 ∈ L2(G), ‖u0‖L2(G) > 0, and (2.8) holds, then
there exists a finite constant c ≥ 1 such that

Et (λ) ≥ c−1 exp(−ct) ·
√√√√1 +

∞∑
j=1

(

2
σλ2

e
· ϒ(j/t)

)j

,(13.1)

for all t ≥ 0. The constant c depends on u0 as well as the underlying Lévy pro-
cess X.

PROOF. Consider first the case that

u0 ∈ L∞(G) ∩ L2(G).(13.2)
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Thanks to (13.2), we may apply (8.8); upon integration [mG(dx)], this and Fubini’s
theorem together yield the following formula:

E
(‖ut‖2

L2(G)

)= ‖Ptu0‖2
L2(G)

+ λ2
∫ t

0
‖pt−s‖2

L2(G)
E
(‖σ ◦ us‖2

L2(G)

)
ds

≥ ‖Ptu0‖2
L2(G)

+ 
2
σ λ2

∫ t

0
‖pt−s‖2

L2(G)
E
(‖us‖2

L2(G)

)
ds(13.3)

= ‖Ptu0‖2
L2(G)

+ 
2
σ λ2

∫ t

0
p̄t−s(eG)E

(‖us‖2
L2(G)

)
ds.

Appeals to Fubini’s theorem are indeed justified, since Theorem 2.1 contains im-
plicitly the desired measurability statements about u.

Next we prove that (13.3) holds for every u0 ∈ L2(G) and not just those that
satisfy (13.2). With this aim in mind, let us appeal to density in order to find

u
(1)
0 , u

(2)
0 , . . . ∈ L∞(G) ∩ L2(G) such that

lim
n→∞

∥∥u(n)
0 − u0

∥∥
L2(G) = 0.(13.4)

Then (8.13) assures us that there exists β > 0, sufficiently large, such that

lim
n→∞Nβ

(
u(n) − u

)= 0,(13.5)

where u
(n)
t (x) denotes the solution to (SHE) with initial value u

(n)
0 . Equation (13.5)

implies readily that

lim
n→∞ E

(∥∥u(n)
t

∥∥2
L2(G)

)= E
(‖ut‖2

L2(G)

)
for all t ≥ 0.(13.6)

And because Pt is contractive on L2(G),

lim
n→∞

∥∥Ptu
(n)
0

∥∥
L2(G) = ‖Ptu0‖L2(G) for all t ≥ 0.(13.7)

Therefore, our claim that (13.3) holds is verified once we show that

lim
n→∞

∫ t

0
p̄t−s(eG)E

(∥∥u(n)
s − us

∥∥2
L2(G)

)
ds = 0(13.8)

for every t > 0. This is so because of (13.5) and the fact that the preceding integral
is bounded above by

[
Nβ

(
u(n) − u

)]2 ·
∫ t

0
e−2β(t−s)p̄t−s(eG)ds

(13.9)
≤ [

Nβ

(
u(n) − u

)]2 · ϒ(2β);
see also (5.12). Thus, we have established (13.3) in all cases of interest. We can
now proceed to prove the main part of the proposition.
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Let us define, for all t > 0,11

P(t) := 
2
σ λ2p̄t (eG), I(t) := ‖Ptu0‖2

L2(G)
,

(13.10)
E(t) := E

(‖ut‖2
L2(G)

)
.

Thanks to (13.3), we obtain the pointwise convolution inequality

E ≥ I + (P ∗ E)

≥ I + (P ∗ I) + (P ∗P ∗ E)
(13.11)

...

≥ I + (P ∗ I) + (P ∗P ∗ I) + (P ∗P ∗P ∗ I) + · · · ,
where (ψ ∗ φ)(t) := ∫ t

0 ψ(s)φ(t − s)ds defines the usual (temporal) convolution
operator “∗.” In particular, we may note that the final quantity in (13.11) depends
only on the function I , which is related only to the initial function u0.

A direct computation shows us that the Fourier transform of Ptu0, evaluated
at χ ∈ G∗, is exp{−t�(χ−1)}û0(χ); see (5.4). Therefore, we may apply the
Plancherel’s theorem to see that

I(t) =
∫
G∗

e−2t Re�(χ)
∣∣û0(χ)

∣∣2mG∗(dχ) for all t > 0.(13.12)

Since u0 ∈ L2(G), we can find a compact neighborhood K of the identity of G∗
such that ∫

K

∣∣û0(χ)
∣∣2mG∗(dχ) ≥ 1

2

∫
G∗
∣∣û0(χ)

∣∣2mG∗(dχ) = 1

2
‖u0‖2

L2(G)
,(13.13)

thanks to Plancherel’s theorem (as well as the monotone convergence theorem, of
course). In this way, we find that

I(t) ≥
‖u0‖2

L2(G)

2
e−c0t for all t > 0,(13.14)

where

c0 := 2 sup
χ∈K

Re�(χ).(13.15)

We will require the fact that 0 ≤ c0 < ∞; this fact holds simply because � is
continuous and Re� is nonnegative. In this way, (13.14) yields an estimate for the
first term on the right-hand side of (13.11).

11It is easy to write E in terms of the energy of the solution. Indeed, E(t) = [Et (λ)]2.
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As for the other terms, let us write P∗(n) in place of the n-fold convolution,
P ∗ · · · ∗P , where P∗(1) := P . Then it is easy to deduce from (13.14) that

(
P∗(n) ∗ I

)
(t) ≥

‖u0‖2
L2(G)

2
e−c0t

(
P∗(n) ∗ 1

)
(t) for all t > 0,(13.16)

where 1(t) := 1 for all t > 0. Thus, we conclude from (13.11) that

E(t) ≥
‖u0‖2

L2(G)

2
e−c0t ·

∞∑
n=0

(
P∗(n) ∗ 1

)
(t),(13.17)

where P∗(0) ∗ 1 := 1.
Now,

(P ∗ 1)(t) = 
2
σ λ2 ·

∫ t

0
p̄s(eG)ds.(13.18)

Consequently,

(P ∗P ∗ 1)(t)

= 
4
σ λ4 ·

∫ t

0
p̄s2(eG)ds2

∫ t−s2

0
p̄s1(eG)ds1,

(P ∗P ∗P ∗ 1)(t)(13.19)

= 
8
σ λ8 ·

∫ t

0
p̄s3(eG)ds3

∫ t−s3

0
p̄s2(eG)ds2

∫ t−s3−s2

0
p̄s1(eG)ds1,

....

For all real t ≥ 0 and integers n ≥ 1,

(
P∗(n) ∗ 1

)
(t) ≥ 
2n

σ λ2n

(∫ t/n

0
p̄s(eG)ds

)n

(13.20)

≥
(


2
σ λ2

e
· ϒ(n/t)

)n

.

The first bound follows from an application of induction to the variable n, and
the second follows from (5.13). Since (P∗(0) ∗ 1)(t) = 1, the proposition follows
from (13.17). �

14. Proofs of the main theorems. We have set in place all but one essential
ingredients of our proofs. The remaining part is the following simple real-variable
result. We prove the result in detail, since we will need the following quantitative
form of the ensuing estimates.
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LEMMA 14.1. For all integers a ≥ 0 and real numbers ρ > 0, there exists a
positive and finite constant ca,ρ > 1 such that

∞∑
j=a

(
b

jρ

)j

≥ c−1
a,ρ exp

(
(ρ/e)b1/ρ) for all b ≥ ca,ρ.(14.1)

PROOF. It is an elementary fact that (j/e)j ≤ j ! for every integer j ≥ 1.
Therefore, whenever n, m and jm/n are positive integers,(

jm

en

)jm/n

≤
(

jm

n

)
!.(14.2)

In particular, for all b > 0,
∞∑

j=a

(
b

jm/n

)j

≥ ∑
j≥a

jm∈nZ+

bj (m/en)jm/n

(jm/n)! ≥ ∑
k≥am/n

k∈Z+

ck

k! ,(14.3)

where c := bn/mm/(en). Since∑
k<am/n

k∈Z+

ck

k! ≤ max
(
ba,1

) ∞∑
k=0

(m/en)k

k! = exp
{

m

en

}
· max

(
ba,1

)
,(14.4)

we immediately obtain the inequality
∞∑

j=a

(
b

jm/n

)j

≥ ec − exp
{

m

en

}
· max

(
ba,1

)
(14.5)

= exp
{
bn/mm

en

}
− exp

{
m

en

}
· max

(
ba,1

)
.

The preceding bound is valid for all integers n and m that are strictly posi-
tive. We can choose now a sequence nk and mk of positive integers such that
limk→∞(mk/nk) = ρ. Apply the preceding with (m,n) replaced by (mk,nk) and
then let k → ∞ to deduce the following bound:

∞∑
j=a

(
b

jρ

)j

≥ exp
(
(ρ/e)b1/ρ)− exp(ρ/e) · max

(
ba,1

)
.(14.6)

Since the preceding is valid for all b > 0, the lemma follows readily. �

With the preceding under way, we conclude the paper by proving Theo-
rems 2.5, 2.6 and 2.8 in this order.

PROOF OF THEOREM 2.5. We plan to appeal to (7.12) in order to verify the
stated energy upper bound.
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Since Re� is nonnegative,

ϒ(β) ≤ β−1 for all β > 0,(14.7)

and hence for every ε ∈ (0,1),

ϒ−1
(

1

(1 + ε)2λ2L2
σ

)
≤ const ·λ2 for all λ > 1,(14.8)

where the implied constant is independent of λ. Now we merely apply (7.12) in
order to see that there exist finite constants a and b such that Et (λ) ≤ a exp(bλ2)

for all λ > 1. This proves that e(t) ≤ 2.
For the converse bound, we recall that mG∗ has total mass one because G∗ is

compact. Since � is continuous, it follows that Re� is bounded uniformly on G∗,
and hence for all β0 > 0 there exists a positive constant such that

ϒ(β) =
∫
G∗

(
1

β + Re�(χ)

)
mG∗(dχ) ≥ const

β
for all β > β0.(14.9)

Proposition 13.1 then ensures that

Et (λ) ≥ const ·
√√√√1 +

∞∑
j=1

(
t
2

σ λ2

ej

)j

≥ a exp
(
bλ2),(14.10)

for some finite a and b that depend only on t , and in particular are independent
of λ > c1,1. (We have appealed to Lemma 14.1—with ρ := 1 and a := 1—in or-
der to see that c1,1 is strictly greater than one; we have also used the assumption
that 
σ > 0.) This proves that e(t) ≥ 2 when 
σ > 0, and completes our proof of
Theorem 2.5. �

PROOF OF THEOREM 2.6. First, we consider the case that G is noncompact.
According to the structure theory of LCA groups ([36], Chapter 6), since G is

connected we can find an integer n ≥ 0 and a compact Abelian group K such that

G ∼= Rn × K.(14.11)

Because G is not compact, we must have n ≥ 1. Now we put forth the following
claim:

n = 1.(14.12)

In order to prove (14.12), let π denote the canonical projection from G ∼= Rn ×
K to Rn. Because condition (D) holds for the Lévy process X on G ∼= Rn × K ,
Proposition 12.1 assures us that the Lévy process π ◦ X on Rn also satisfies con-
dition (D). That is, ϒπ◦X(β) < ∞ for one, hence all, β > 0. Recall from (5.12)
that

ϒπ◦X(β) = const ·
∫

Rn

(
1

β + Re�π◦X(z)

)
dz for all β > 0,(14.13)
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where “const” accounts for a suitable normalization of Haar measure on Rn. Since
π ◦X is a Lévy process on Rn, a theorem of Bochner ([6], see (3.4.14) on page 67)
ensures that there exists A ∈ (0,∞) such that

Re�π◦X(z) ≤ A
(
1 + ‖z‖2) for all z ∈ Rn.(14.14)

Because ϒπ◦X(β) < ∞, by assumption, it follows that
∫

Rn(β + ‖z‖2)−1 dz < ∞
and hence n = 1.12 This proves our earlier assertion (14.12).

Now that we have (14.12), we know that G ∼= R × K for a compact Abelian
group K . Because of Theorem 11.10, we may assume, without loss of generality,
that our LCA group G is in fact equal to R ×K . Thus, thanks to Propositions 12.1
and 13.1,

E
(‖ut‖2

L2(R×K)

)≥ const ·
{

1 +
∞∑

j=1

(

2
σ λ2

e
· ϒX(j/t)

)j
}

(14.15)

≥ const ·
{

1 +
∞∑

j=1

(

2
σ λ2

e
· ϒπ◦X(j/t)

)j
}
.

According to Bochner’s estimate (14.14),

ϒπ◦X(β) ≥ const ·
∫ ∞

0

dx

β + x2 ≥ const√
β

,(14.16)

uniformly for all β ≥ β0, for every fixed β0 > 0. Thus, we may appeal to
Lemma 14.1—with ρ := 1/2 and a = 1—in order to see that E(‖ut‖2

L2(R×K)
) ≥

a exp(bλ4), simultaneously for all λ > c1,1/2, where c1,1/2 is a finite constant that
is independent of λ. This proves that e(t) ≥ 4 when G is noncompact (as well as
connected).

We complete the proof of the theorem by proving it when G is compact, con-
nected, metrizable and has at least 2 elements.

A theorem of Pontryagin ([36], Theorem 33, page 106) states that if G is a
locally connected LCA group that is also metrizable then

G ∼= Rn × Tm × D,(14.17)

where 0 ≤ n < ∞, 0 ≤ m ≤ ∞, and D is discrete. Of course, T∞ := T × T × · · ·
denotes the countable direct product of the torus T with itself, as is customary.

Since G is compact and connected, we can deduce readily that n = 0 and D is
trivial; that is, G ∼= Tm for some 0 ≤ m ≤ ∞. Because, in addition, G contains at
least 2 elements, we can see that m �= 0; thus,

G ∼= Tm for some 1 ≤ m ≤ ∞.(14.18)

12This illustrates, in the present setting, the well-known folklore fact that the SHE does not have a
mild solution as a function on Rn when n ≥ 2; see Dalang [14] and Peszat and Zabczyk [38].
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As a matter of fact, the forthcoming argument can be refined to prove that m = 1;
see our earlier proof of (14.12) for a model of such a proof. But since we will not
need this fact, we will not prove explicitly that m = 1. Suffice it to say that, since
m ≥ 1, an application of Tychonoff’s theorem yields

G ∼= T × K,(14.19)

for a compact Hausdorff Abelian group K . Theorem 11.10 reduces our problem to
the case that G = T × K , owing to projection.

Let now π denote the canonical projection from T × K to T, and argue as in
the noncompact case to see that

E
(‖ut‖2

L2(T×K)

)≥ const ·
{

1 +
∞∑

j=1

(

2
σ λ2

e
· ϒπ◦X(j/t)

)j
}
.(14.20)

Bochner’s estimate (14.14) has the following analogue for the Lévy process π ◦ X

on T: there exists A ∈ (0,∞) such that

Re�π◦X(n) ≤ A
(
1 + n2) for all n ∈ Z.(14.21)

[The proof of this bound is essentially the same as the proof of (14.14).] Since the
dual to T is Z, it follows that

ϒπ◦X(β) = const ·
∞∑

n=−∞

1

β + Re�(n)
≥ const√

β
,(14.22)

uniformly for all β ≥ β0, for every fixed β0 > 0. A final appeal to Lemma 14.1—
with ρ := 1/2—completes the proof. �

PROOF OF THEOREM 2.8. Consider the special case that G = R and X is a
symmetric stable Lévy process with index α ∈ (0,2]; that is, �(ξ) = |ξ |α . Con-
dition (D) holds if and only if α ∈ (1,2], a condition which we now assume. The
generator of X is the fractional Laplacian L := −(−�)α/2 on R. A direct com-
putation reveals that

ϒ(β) = const ·
∫ ∞

0

dx

β + xα
= const ·β−(α−1)/α.(14.23)

In particular, for every ε ∈ (0,1),

ϒ−1
(

1

(1 + ε)2λ2L2
σ

)
≤ const ·λ2α/(α−1) for all λ > 1.(14.24)

This yields

e(t) ≤ 2α

α − 1
,(14.25)
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in this case; see the proof of the first portion of Theorem 2.5 for more details. And
an appeal to Lemma 14.1 yields

e(t) ≥ 2α

α − 1
.(14.26)

See the proof of Theorem 2.6 for some details.
Thus, for every α ∈ (1,2], we have found a model whose noise excitation in-

dex is

e = 2α

α − 1
.(14.27)

Since θ := 2α/(α − 1) can take any value in [4,∞), as α varies in (1,2], equa-
tion (14.27) proves the theorem. �
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