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THE CUT-AND-PASTE PROCESS1

BY HARRY CRANE

Rutgers University

We characterize the class of exchangeable Feller processes evolving on
partitions with boundedly many blocks. In continuous-time, the jump mea-
sure decomposes into two parts: a σ -finite measure on stochastic matrices
and a collection of nonnegative real constants. This decomposition prompts
a Lévy–Itô representation. In discrete-time, the evolution is described more
simply by a product of independent, identically distributed random matrices.

1. Introduction. For fixed k = 1,2, . . . , a k-coloring of N := {1,2, . . .} is an
infinite sequence x = x1x2 · · · taking values in [k] := {1, . . . , k}. Two operations
bear on our main theorems:

• relabeling: for any permutation σ :N → N, the relabeling of x = x1x2 · · · by σ

is

xσ := xσ(1)xσ(2) · · · and(1.1)

• restriction: for any finite n = 1,2, . . . , the restriction of x to a k-coloring of [n]
is

x[n] := x1 · · ·xn.(1.2)

A Markov process X = (Xt , t ≥ 0) on [k]N, the space of infinite k-colorings, is

(A) exchangeable if Xσ = (Xσ
t , t ≥ 0) is a version of X for all finite permuta-

tions σ :N →N and
(B) consistent (under subsampling) if X[n] = (X

[n]
t , t ≥ 0) is a Markov chain

on k-colorings of [n], for all finite n = 1,2, . . . .

We characterize both [k]N-valued Markov processes satisfying (A) and (B) and
a class of partition-valued processes with analogous properties. When [k]N is en-
dowed with the product-discrete topology, exchangeability and consistency are
equivalent to exchangeability and the Feller property; and so our main theorems
characterize exchangeable Feller processes on [k]N and PN:k , partitions of N with
at most k blocks.
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1.1. Discrete-time characterization. A stochastic matrix S = (Sii′,1 ≤ i, i′ ≤
k) has nonnegative entries and all rows summing to one, and it determines the
transition probabilities of a time-homogeneous Markov chain Y = (Ym,m ≥ 0) on
[k] by

PS

{
Y1 = i′ | Y0 = i

} = Sii′, i, i ′ = 1, . . . , k.(1.3)

From any probability measure � on the space of k × k stochastic matrices, we
construct a Markov chain X∗

� := (X∗
m,m ≥ 0) on [k]N as follows. First, we let

X∗
0 be an exchangeable initial state and S1, S2, . . . be independent, identically dis-

tributed (i.i.d.) random matrices from �. Then, for m = 1,2, . . . , we generate the
components of X∗

m = X∗1
m X∗2

m · · · , given X∗
m−1, . . . ,X

∗
0, S1, S2, . . . , conditionally

independently from transition probability matrix Sm := (Sm(i, i′),1 ≤ i, i ′ ≤ k),

P
{
X∗j

m = i ′ | X∗
m−1, Sm

} = Sm

(
i, i′

)
on the event X

∗j
m−1 = i.

Such a construction exists for all exchangeable and consistent Markov chains
on [k]N.

THEOREM 1.1. Let X = (Xm,m ≥ 0) be a discrete-time, exchangeable, con-
sistent Markov chain on [k]N. Then there exists a unique probability measure �

such that X∗
� is a version of X.

To any x ∈ [k]N, the asymptotic frequency vector |x| := (f1(x), . . . , fk(x)) is
an element of the (k − 1)-dimensional simplex �k , where

fi(x) := lim
n→∞n−1

n∑
j=1

1
{
xj = i

}
, i = 1, . . . , k,(1.4)

is the limiting proportion of coordinates labeled i in x, if it exists. With probability
one, the asymptotic frequency vector of any exchangeable k-coloring exists and
|X| := (|Xm|,m ≥ 0) is a sequence in �k . From the same i.i.d. sequence S1, S2, . . .

used to construct X∗
� = (X∗

m,m ≥ 0) in Theorem 1.1, we can construct �� :=
(�m,m ≥ 0) in �k by putting �0 := |X∗

0 | and

�m := �m−1Sm = �0S1 · · ·Sm, m ≥ 1,(1.5)

where �m−1Sm in (1.5) is the usual right action of a k × k matrix on a 1 × k row
vector.

THEOREM 1.2. Let X = (Xm,m ≥ 0) be a discrete-time, exchangeable, con-
sistent Markov chain on [k]N. Then �� is a version of |X|, where � is the unique
probability measure from Theorem 1.1.

Together, Theorems 1.1 and 1.2 relate the evolution of discrete-time Markov
chains to products of i.i.d. random matrices. Crane and Lalley [7] have combined
representation (1.5) with the Furstenberg–Kesten theorem [10] to identify a class
of these chains that exhibits the cutoff phenomenon.
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1.2. Continuous-time characterization. In continuous-time, an exchangeable,
consistent Markov process X = (Xt , t ≥ 0) can jump infinitely often, and thus,
behaves differently than its discrete-time counterpart; but consistency limits this
behavior: since each restriction X[n] is a finite state space Markov process, it must
remain in each visited state for a positive amount of time. The upshot of these
observations is a characterization of the transition law of X by a unique σ -finite
measure on k × k stochastic matrices and a unique collection of nonnegative con-
stants.

Our next theorem yields a Lévy–Itô-type characterization of X by dividing its
discontinuities into two cases. Let t > 0 be the time of a discontinuity in X. Then
either

(I) a positive proportion of coordinates changes colors at time t , that is,

lim
n→∞n−1

n∑
j=1

1
{
X

j
t− 	= X

j
t

}
> 0 or

(II) a zero proportion of coordinates changes colors at time t , that is,

lim
n→∞n−1

n∑
j=1

1
{
X

j
t− 	= X

j
t

} = 0.

In discrete-time, Type-(I) jumps are governed by a probability measure � and
Type-(II) transitions are forbidden. In continuous-time, Type-(I) jumps are gov-
erned by a σ -finite measure � and Type-(II) transitions include only single-index
flips, that is, jumps for which exactly one coordinate changes color. Deciding the
Type-(II) jump rates is a collection of nonnegative constants c = (cii′,1 ≤ i 	= i ′ ≤
k): independently, each coordinate changes colors from i to i ′ at rate cii′ . The tran-
sition law of X is characterized by the pair (�, c).

We do not fully explain (�, c) and its relation to X until Section 4. Sparing the
details, we write X∗

�,c to denote a continuous-time Markov process constructed
from a Poisson point process with intensity measure determined by (�, c). Theo-
rem 1.3 says that any exchangeable, consistent Markov process X admits a version
with this construction.

THEOREM 1.3. Let X = (Xt , t ≥ 0) be a continuous-time, exchangeable, con-
sistent Markov process on [k]N. Then there exists a unique measure � satisfy-
ing (1.6) and unique nonnegative constants c = (cii′,1 ≤ i 	= i ′ ≤ k) such that
X∗

�,c is a version of X.

In Theorem 1.3, � is required to satisfy

�
({Ik}) = 0 and

∫
Sk

(1 − S∗)�(dS) < ∞,(1.6)
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where Ik is the k×k identity matrix, S∗ := min(S11, . . . , Skk) for any k×k stochas-
tic matrix S, and Sk is the space of k × k stochastic matrices. Consistency im-
poses (1.6): uniqueness requires the first half, finiteness of finite-dimensional jump
rates forces the second half.

As in discrete-time, we define the projection of X = (Xt , t ≥ 0) into �k by
|X| = (|Xt |, t ≥ 0). Unlike discrete-time, the existence of |X| does not follow di-
rectly from de Finetti’s theorem because now X is an uncountable collection.

THEOREM 1.4. Let X = (Xt , t ≥ 0) be a continuous-time, exchangeable, con-
sistent Markov process on [k]N. Then |X| = (|Xt |, t ≥ 0) exists almost surely and
is a Feller process on �k .

Theorems 1.3 and 1.4 give the Lévy–Itô representation. The projection |X|
jumps only at the times of Type-(I) discontinuities in X; at other times, it follows
a continuous, deterministic trajectory. Thus, Theorem 1.3 warrants the heuristic
interpretation that � governs the “discrete” component of X and c governs the
“continuous” component.

1.3. Partition-valued Markov processes. Any x ∈ [k]N determines a partition
π = B(x) of N through

i and j are in the same block of π ⇐⇒ xi = xj .(1.7)

If the characteristic pair (�, c) treats colors symmetrically, that is, � is row–
column exchangeable and cii′ = cjj ′ = c for all i 	= i′ and j 	= j ′, then the projec-
tion B(X∗

�,c) = (B(X∗
t ), t ≥ 0) into PN:k through (1.7) is an exchangeable, con-

sistent Markov process on PN:k . Our main theorem for partition-valued processes
states that any exchangeable, consistent Markov process on PN:k can be generated
by projecting an exchangeable, consistent Markov process from [k]N.

THEOREM 1.5. Let � be an exchangeable, consistent Markov process
on PN:k .

• In discrete-time, there exists a unique, row–column exchangeable probability
measure � such that B(X∗

�) is a version of �;
• in continuous-time, there exists a unique, row–column exchangeable measure

satisfying (1.6) and a unique constant c ≥ 0 such that B(X∗
�,c) is a version

of �, where cii′ = c for all 1 ≤ i 	= i′ ≤ k.

Analogously to (1.4), we define the asymptotic frequency of π ∈ PN by |π |↓,
the asymptotic block frequencies of π in decreasing order of size. When it exists,
|π |↓ is an element of the ranked k-simplex �

↓
k .

THEOREM 1.6. Let � = (�t , t ≥ 0) be a continuous-time, exchangeable,
consistent Markov process on PN:k . Then |�|↓ := (|�t |↓, t ≥ 0) exists almost
surely and is a Feller process on �

↓
k .
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1.4. The cut-and-paste process. We call X∗
�,c a cut-and-paste process: its

jumps occur by first cutting each color class into subclasses and then pasting sub-
classes together. When (�, c) treats colors symmetrically, we call X∗

�,c and its
projection into PN:k a homogeneous cut-and-paste process.

Cut-and-paste processes should not be conflated with synonymous, but not anal-
ogous, split-and-merge [15] and coagulation–fragmentation processes [8]. The
latter processes share aspects, but are not one, with the cut-and-paste process.
Each process evolves by operations that divide (cut, split, fragment) and unite
(paste, merge, coagulate), but split-and-merge processes evolve on interval par-
titions, coagulation–fragmentation processes on set partitions, and cut-and-paste
processes on k-colorings. At the time of a jump, a cut-and-paste process under-
goes two operations simultaneously (cut and paste), the others undergo only one
operation (split or merge, coagulate or fragment).

Theorems 1.5 and 1.6 do elicit qualitative connections to exchangeable coales-
cent and fragmentation processes [2, 14], both of which are characterized by pairs
(ν, c), where ν is a unique σ -finite measure on ranked-mass partitions and c ≥ 0
is a unique constant. For coalescent processes, ν determines the rate of multiple
collisions and c the rate of binary coalescence. For fragmentation processes, ν de-
termines the rate of dislocation and c the rate of erosion. In both cases, (ν, c) gives
a Lévy–Itô description. But, in a strict sense, processes on PN:k behave differently
than those on PN [5, 6], and Theorem 1.5 neither refines nor is a special case
of previous results. In Section 6.1, we further discuss any relationships (and lack
thereof) between cut-and-paste, coalescent and fragmentation processes.

1.5. Applications to DNA sequencing. Decades ago, population genetics ap-
plications motivated the initial study of random partitions and partition-valued pro-
cesses [9, 11, 13]. Somewhat later, Bertoin [2, 3] and Pitman [14, 16] connected
coalescent and fragmentation processes to Brownian motion, Lévy processes and
subordinators. In the present, DNA sequencing inspires processes restricted to par-
titions with a bounded number of blocks.

For let the colors correspond to DNA nucleotides, adenine (A), cytosine (C),
guanine (G) and thymine (T). Then, for a sample of n individuals, X1 · · ·Xn ∈
{A,C,G,T }[n] is a string of DNA nucleotides at a particular chromosomal site,
where Xi denotes the nucleotide of individual i = 1, . . . , n. If we observe a DNA
sequence (Xi

m,m ≥ 0) for each i = 1, . . . , n, then (Xm,m ≥ 0) is a sequence
in {A,C,G,T }[n], with Xm = X1

m · · ·Xn
m. By forgetting colors (in this case nu-

cleotides), we obtain a sequence of set partitions; see Table 1.
In practice, biological phenomena such as recombination induce dependence

among nearby chromosomal sites. For modeling this dependence, the Markov
property strikes a balance between practical feasibility and mathematical tractabil-
ity. Exchangeability and consistency incorporate a logical structure that is apt for
DNA sequencing. See [4] for a detailed statistical consideration of these applica-
tions.
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TABLE 1
An array of DNA sequences for 3 individuals. From this array, we obtain a sequence in

{A,C,G,T }[3]: (AAT, ATT, TTT, CCG, CGG, GGC, AAT, . . .). By ignoring nucleotide labels, we
obtain the sequence (12|3,1|23,123,12|3,1|23,12|3,12|3, . . .) of partitions of the set {1,2,3}

Individuals/sites m = 1 2 3 4 5 6 7 ···

X1
m A A T C C G A · · ·

X2
m A T T C G G A · · ·

X3
m T T T G G C T · · ·

1.6. Discussion of main theorems. For concreteness, let X be a discrete-time
Markov chain on {1,2}N. According to Theorem 1.1, a transition X 
→ X′ can be
generated in two steps:

(i) Draw a random pair (p1,p2) of success probabilities from a probability mea-
sure � on [0,1] × [0,1].

(ii) Given (p1,p2), update each coordinate j = 1,2, . . . of X independently by
the following coin flipping process.

− If Xj = 1, flip a p1-coin (P{heads} = p1); otherwise, flip a p2-coin.
− If the outcome is heads, put X′j = 1; otherwise, put X′j = 2.

The pair (p1,p2) determines a 2 × 2 stochastic matrix

S =
(

p1 1 − p1

p2 1 − p2

)
,

which describes the transition probability matrix for each coordinate, as in (1.3).
By the law of large numbers, the proportion of coordinates labeled 1 in X′ equals

f1
(
X′) = P

{
X′1 = 1 | X1 = 1

}
f1(X) + P

{
X′1 = 1 | X1 = 2

}
f2(X)

= p1f1(X) + p2f2(X).

Overall, the asymptotic frequencies |X′| = (f1(X
′), f2(X

′)) of X′ are the entries
of

|X|S = ( f1(X) f2(X) )

(
p1 1 − p1

p2 1 − p2

)
.

In discrete-time, exchangeability implies that if X′ 	= X, then the proportion
of coordinates changing colors from X to X′ is strictly positive. In continuous-
time, the transition rate X 
→ X′ need not be bounded, and thus, � need not be
finite. Furthermore, there is no requirement that a strictly positive proportion of
coordinates changes colors at the time of a discontinuity. However, the consis-
tency assumption implies that any finite collection of coordinates jumps at a finite
rate, producing condition (1.6). Together, exchangeability and consistency restrict
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Type-(II) discontinuities to involve only a single coordinate, called a single-index
flip. For instance, if “double-index flips” were permitted, that is, a pair of indices
changes colors simultaneously while all other coordinates remain unchanged, then
the finite restrictions of X could not be càdlàg. To see this, suppose any pair
(Xn,Xn′

), n < n′, changes from (1,1) to (2,2) at positive rate r. Then, by ex-
changeability, any pair (Xn,Xn′+j ), j ≥ 1, in state (1,1) must also flip at rate r.
For any such jump, the restriction of X to [n] witnesses only a change in coordi-
nate n at rate

∑
n′>n r = ∞, which contradicts assumption (B). For similar reasons,

condition (1.6) prevents infinitely many Type-(I) discontinuities from bunching up
in any finite restriction of X.

Upon observing our main theorems for [k]N-valued processes, the analogous
conclusions for PN:k-valued processes are nearly immediate. The key observation
is that the projection of X into PN:k preserves the Markov property only if the
transition law of X treats the labels [k] symmetrically, which requires row–column
exchangeability of � and cii′ = cjj ′ = c for all i 	= i′, j 	= j ′.

1.7. Examples. We illustrate our main theorems with three examples: two ex-
changeable, consistent Markov processes on [k]N (one in discrete-time and one in
continuous-time) and a family of exchangeable Markov chains that is not consis-
tent (the Ehrenfest walk on the hypercube). Example 1.9 shows why discrete-time
chains cannot admit single-index flips.

EXAMPLE 1.7 (A reversible discrete-time chain [6]). For α > 0, we define
transition probabilities

Pn

(
x, x′) :=

k∏
i=1

∏k
i′=1(α/k)↑nii′ (x,x′)

α↑ni (x)
, x, x′ ∈ [k][n],(1.8)

where nii′(x, x′) := #{j ∈ [n] :xj = i and x′j = i′}, ni(x) := #{j ∈ [n] :xj = i},
and α↑n := α(α + 1) · · · (α + n − 1). This transition probability is reversible with
respect to

λ
(n)
ξ (x) =

∏k
i=1 α↑ni (x)

(kα)↑n
, x ∈ [k][n],

and projects to a transition probability on P[n]:k (partitions of [n] with at most k

blocks) with reversible stationary distribution

�
(n)
ξ (π) := k!

(k − #π)!
∏

b∈π α↑#b

(kα)↑n
, π ∈ P[n]:k,

where #π denotes the number of blocks of π and #b denotes the cardinality of
b ⊆ [n].

Namely, in Theorem 1.1, the transition probabilities in (1.8) correspond to the
homogeneous cut-and-paste chain with �α/k = ξα/k ⊗ · · · ⊗ ξα/k , where ξα is
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the symmetric Dirichlet distribution with parameter (α, . . . , α). That is, S ∼ �α/k

is a random matrix whose rows are independent and identically distributed from
Dirichlet(α/k, . . . , α/k).

EXAMPLE 1.8 (A purely continuous process). For c12, c21 > 0, let each co-
ordinate of X = (Xt , t ≥ 0) evolve independently, each jumping from 1 to 2 at
rate c12 and from 2 to 1 at rate c21. The projection of X into the simplex evolves
continuously and deterministically by a constant interchange of mass between the
colors 1 and 2. Eventually, the projection settles to the fixed point(

c21

c12 + c21
,

c12

c12 + c21

)
.

The projection into PN:k is Markov only if c12 = c21. In this case, the projection
settles to (1/2,1/2) and, in equilibrium, there is a constant and equal flow of mass
between the two blocks.

EXAMPLE 1.9 (Nonexample: Ehrenfest chain on {0,1}[n]). The family of
discrete-time Ehrenfest chains on the hypercubes {0,1}[n], n ∈N, is not consistent,
and thus, not covered by our theory. On {0,1}[n], an Ehrenfest chain X[n] evolves
by choosing a coordinate 1, . . . , n uniformly at random and then flipping a fair
coin to decide its value at the next time. All other coordinates remain unchanged.
In the language of Section 1.6, all transitions of this chain are single-index flips.

The finite-dimensional chains are exchangeable but not consistent. For any
n ∈ N, the probability that X[n] remains in the same state after a transition is 1/2,
whereas the projection of an Ehrenfest chain X[n+1] on {0,1}[n+1] into {0,1}[n]
remains in the same state with probability (n + 2)/(2n + 2) 	= 1/2.

Six sections compose the paper. In Section 2, we lay out definitions and nota-
tion; in Section 3, we establish Theorems 1.1 and 1.2; in Section 4, we prove The-
orems 1.3 and 1.4; in Section 5, we deduce Theorems 1.5 and 1.6; in Section 6, we
conclude.

2. Preliminaries.

2.1. Notation. Throughout the paper, we write x to denote a k-coloring, X a
random k-coloring and X a random collection of k-colorings. We write π to denote
a partition, � a random partition, and � a random collection of partitions. For
terminology and notation pertaining to both k-colorings and partitions, we write λ,

, and �, as appropriate. A collection � = (
m,m ≥ 0) indexed by m evolves in
discrete-time, that is, m = 1,2, . . . , and � = (
t , t ≥ 0) indexed by t evolves in
continuous-time, that is, t ∈ [0,∞).
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2.2. Partitions and colorings. For fixed k ∈ N, a k-coloring of [n] = {1, . . . , n}
is a [k]-valued sequence x = x1 · · ·xn. A partition of [n] is a collection π =
{B1, . . . ,Br} of nonempty, disjoint subsets (blocks) satisfying

⋃r
j=1 Bj = [n]. We

can also regard π as an equivalence relation ∼π , where

i ∼π j ⇐⇒ i and j are in the same block of π.

Upon removal of its colors, any k-coloring x projects to a unique partition Bn(x)

of [n], as in (1.7). For n ∈ N, we write [k][n] to denote the set of k-colorings of
[n], P[n] to denote the set of partitions of [n], and P[n]:k to denote the subset of
partitions of [n] with at most k blocks.

Any one-to-one mapping ϕ : [m] → [n], m ≤ n, determines a map [k][n] →
[k][m], x 
→ xϕ , where

xϕ = xϕ(1) · · ·xϕ(m).(2.1)

We call the image in (2.1) a composite mapping because x 
→ xϕ can be obtained
by composing the relabeling and restriction operations in (1.1) and (1.2). Let Rm,n

denote the restriction map [k][n] → [k][m], that is, Rm,nx = x[m]. To any one-to-
one map ϕ : [m] → [n], there exists a permutation σ : [n] → [n] such that xϕ =
Rm,n(x

σ ), relabeling by σ followed by restriction to [k][m].
For a partition π ∈ P[n], relabeling, restriction and composite operations are

defined by π 
→ πσ , π 
→ π [m], and π 
→ πϕ , respectively, where

i ∼πσ j ⇐⇒ σ(i) ∼π σ(j),

i ∼π [m]j ⇐⇒ i ∼π j and

i ∼πϕj ⇐⇒ ϕ(i) ∼π ϕ(j).

When convenient, we abuse notation and also write Rm,n to denote the restriction
P[n] → P[m], that is, Rm,nπ = π [m], so that πϕ = Rm,n(π

σ ) for some σ : [n] →
[n].

Any finite k-coloring can be embedded into a k-coloring of N, and likewise for
partitions. A k-coloring of N is an infinite [k]-valued sequence x = x1x2 · · · and
is determined by its sequence of finite restrictions (x[1], x[2], . . .). A partition of
N is defined similarly as a sequence of finite partitions (π [1], π [2], . . .) for which
π [m] = Rm,nπ

[n], for every m ≤ n. As for finite sets, we denote k-colorings of N
by [k]N, partitions of N by PN, and partitions of N with at most k blocks by PN:k .

For each n ∈ N, Rn denotes the restriction map [k]N → [k][n], or PN → P[n].
The projective nature of both [k]N and PN endows each with a natural product-
discrete topology. With λ,λ′ denoting objects both in either [k]N or PN, we define
the ultrametric d by

d
(
λ,λ′) := 2−n(λ,λ′),(2.2)

where n(λ,λ′) := max{n ∈ N : Rnλ = Rnλ
′}. Under (2.2), both [k]N and PN are

compact, separable and, therefore, Polish, metric spaces. We equip [k]N and PN:k
with their discrete σ -fields, σ 〈⋃∞

n=1 [k][n]〉 and σ 〈⋃∞
n=1 P[n]〉, respectively.
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2.3. Exchangeability. An infinite sequence X := (X1,X2, . . .) of random vari-
ables is called exchangeable if its law is invariant under finite permutations of its
indices, that is, for each n ∈ N,

(Xσ(1), . . . ,Xσ(n)) =L (X1, . . . ,Xn) for every σ ∈ Sn,

where Sn denotes the symmetric group of permutations of [n]. By de Finetti’s
theorem (see, e.g., Aldous [1]), the law of any exchangeable sequence X ∈ [k]N is
determined by a unique directing probability measure ν on the (k−1)-dimensional
simplex

�k :=
{
(s1, . . . , sk) : si ≥ 0,

k∑
i=1

si = 1

}
.

In particular, conditional on s ∼ ν, X1,X2, . . . are independent and identically
distributed according to

Ps{X1 = j} = sj , j = 1, . . . , k.

A random partition � is exchangeable if � =L �σ for all σ ∈ SN, where SN

is the set of finite permutations of N, that is, permutations σ :N→N that fix all but
finitely many elements. Through (1.7), any exchangeable [k]-valued sequence X

projects to an exchangeable random partition � := B(X). This construction of �

is a special case of Kingman’s paintbox representation for exchangeable random
partitions of N [12]. If X is directed by ν, then we denote the law of � = B(X)

by �ν , the paintbox measure directed by ν.
With fi(X) defined in (1.4), the asymptotic frequency |X| = (f1(X), . . . ,

fk(X)) of any exchangeable k-coloring exists almost surely. Likewise for the
asymptotic frequency of an exchangeable partition �, denoted |�|↓, the vector
of asymptotic block frequencies listed in decreasing order of size which lives in
the ranked k-simplex �

↓
k := {(s1, . . . , sk) : s1 ≥ · · · ≥ sk ≥ 0,

∑
i si = 1}.

REMARK 2.1. To avoid measurability concerns, we can add the point ∂ to
both �k and �

↓
k and put |x| = ∂ (resp., |π |↓ = ∂) whenever the asymptotic fre-

quency of x ∈ [k]N (resp., π ∈ PN:k) does not exist. We equip �k , respectively, �↓
k ,

with the σ -field generated by | · | : [k]N → �k ∪ {∂} and | · |↓ :PN:k → �
↓
k ∪ {∂},

respectively. Beyond this point, issues of measurability never arise, and so neither
does the above formalism.

2.4. Exchangeable Markov processes. Let X = (Xt , t ∈ T ) be a random col-
lection in [k]N, with T either Z+ = {0,1, . . .} (discrete-time) or R+ = [0,∞)

(continuous-time). We say X is Markovian if, for every t, t ′ ≥ 0, the conditional
law of Xt+t ′ , given Ft := σ 〈Xs, s ≤ t〉, depends only on Xt and t ′. Specifically,
we distinguish between collections with finitely many jumps in bounded inter-
vals (Markov chains) and those with infinitely many jumps in bounded intervals
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(Markov processes). When speaking generally, we use the terminology and nota-
tion of Markov processes as a catch-all.

The Markov semigroup P = (Pt , t ∈ T ) of X = (Xt , t ∈ T ) is defined for all
bounded, measurable functions g : [k]N →R by

Pt g(x) := Exg(Xt), t ∈ T ,(2.3)

the conditional expectation of g(Xt) given X0 = x. We say X enjoys the Feller
property, or is a Feller process, if for every bounded, continuous g : [k]N → R, its
semigroup P satisfies:

• limt↓0 Pt g(x) = g(x) for all x ∈ [k]N and
• x 
→ Pt g(x) is continuous for all t ∈ T .

In general, since each Rn : [k]N → [k][n] is a many-to-one function, the restric-
tion X[n] need not be Markovian. Under the product-discrete topology induced
by (2.2), exchangeability and consistency are equivalent to exchangeability and
the Feller property, and so we use the terms consistency and Feller interchange-
ably.

PROPOSITION 2.2. The following are equivalent for a Markov process � on
either [k]N or PN:k :

(i) � is exchangeable and consistent under subsampling.
(ii) � is exchangeable and enjoys the Feller property.

2.5. Coset decompositions and associated mappings. For fixed k ∈ N, we de-
fine the coset decomposition of x ∈ [k]N by the k-tuple (x1, . . . , xk), where

xi = xixi+kxi+2k · · · , i = 1, . . . , k.(2.4)

In words, the ith coset of x is the subsequence of x including every kth element,
beginning at coordinate i. Through (2.4), the sets [k]N and [k]N⊗k ∼= [k]N × · · · ×
[k]N (k times) are in one-to-one correspondence, but we sometimes prefer one
representation over the other. To distinguish between representations, we write:

• x = x1x2 · · · to denote the object in [k]N and
• x = (x1, . . . , xk) to denote the coset representation in [k]N⊗k , with each coset

written

xi = x1
i x2

i · · · = xixi+k · · · .
We usually write x to denote an object initially defined in [k]N and M to denote an
object initially defined in [k]N⊗k . The importance of this decomposition becomes
apparent in Section 3.

For n ∈ N, the restriction of M ∈ [k]N⊗k to [k][n]⊗k ∼= [k][n] × · · · × [k][n]
(k times) is defined componentwise by

M [n] := (
M

[n]
1 , . . . ,M

[n]
k

)
.(2.5)
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Likewise, a k-tuple of finite permutations σ1, . . . , σk :N→N acts on M ∈ [k]N by

Mσ1,...,σk := (
M

σ1
1 , . . . ,M

σk

k

)
.(2.6)

Any M ∈ [k][n]⊗k functions as a map [k][n] → [k][n]. For each x ∈ [k][n], we
define the injection ϕx : [n] → [nk] by

ϕx(j) := xj + (j − 1)k, j = 1, . . . , n.(2.7)

For any M ∈ [k]N⊗k , its restriction M [n] to [k][n]⊗k , as in (2.5), is in corre-
spondence with a unique k-coloring M1 · · ·Mnk of [nk]. Using (2.1), we define
M [n] : [k][n] → [k][n] by

M [n](x) := Mϕx = Mx1
Mx2+k · · ·Mxn+(n−1)k, x ∈ [k][n] .(2.8)

The finite maps (M [n], n ∈ N) derived from M determine a unique map M : [k]N →
[k]N.

Importantly, each M ∈ [k]N⊗k determines a Lipschitz continuous map in the
metric (2.2). The identity map idk : [k]N → [k]N corresponds to the infinite repeat-
ing pattern 12 · · · k,

Zk = 12 · · · k12 · · · k · · · ,(2.9)

for example, Z2 = 121212 · · · , Z3 = 123123 · · · , and so on. The coset decom-
position of Zk is (1,2, . . . ,k), where i = iii · · · is the infinite sequence of all i’s,
for each i = 1,2, . . . . For n ∈ N, we write Zk,n to denote the restriction of Zk to
[k][n]⊗k and idk,n to denote its associated identity map [k][n] → [k][n]. By def-
inition (2.6), Zk , and hence Zk,n, is invariant under relabeling by any k-tuple
σ1, . . . , σk of permutations.

Since any mapping M : [k]N → [k]N is determined by its coset decomposi-
tion (M1, . . . ,Mk), we can define the asymptotic frequency of M by the k-tuple
(|M1|, . . . , |Mk|), provided each |Mi | exists. We express the asymptotic frequency
of M as a stochastic matrix |M|k = S = (Sii′,1 ≤ i, i ′ ≤ k), where

Sii′ := lim
n→∞n−1

n∑
j=1

1
{
M

j
i = i′

}
, 1 ≤ i, i ′ ≤ k.(2.10)

3. Discrete-time cut-and-paste chains. In this section, X = (Xm,m ≥ 0) de-
notes a discrete-time exchangeable and consistent Markov chain on [k]N, and
X[n] = (X[n]

m ,m ≥ 0) its restriction to [k][n], for each n = 1,2, . . . . By assump-
tions (A) and (B), each X[n] is an exchangeable Markov chain with transition
probability measure

Pn

(
x, x′) := P

{
X1 = x′ | X0 = x

}
, x, x′ ∈ [k][n] .

Exchangeability implies Pn(x, x′) = Pn(x
σ , x′σ ) for all permutations σ : [n] →

[n], while consistency relates (Pn,n ∈N) through

Pm

(
x, x′) = Pn

(
x∗,R−1

m,n

(
x′)), x, x′ ∈ [k][m],
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for all x∗ ∈ R−1
m,n(x) = {x̂ ∈ [k][n] : x̂[m] = x}. Writing P to denote the transition

probability measure of X on [k]N, we conclude

Pn

(
x, x′) = P

(
x∗,R−1

n

(
x′)), x, x′ ∈ [k][n], for all x∗ ∈ R−1

n (x),(3.1)

for every n ∈ N.
Theorem 1.1 asserts that P is determined by a unique probability measure �

on Sk . We construct � directly from P using the connection between k-colorings
and stochastic matrices from Section 2.5. For Zk in (2.9), we define a probability
measure χ on [k]N⊗k by

χ(·) := P(Zk, ·).(3.2)

DEFINITION 3.1 (Coset exchangeability). A random mapping M = (M1, . . . ,

Mk) ∈ [k]N⊗k is coset exchangeable if

(M1, . . . ,Mk) =L
(
M

σ1
1 , . . . ,M

σk

k

)
for all σ1, . . . , σk ∈ SN.(3.3)

For any random mapping M constructed from a random k-coloring
through (2.4), exchangeability implies coset exchangeability, but not the reverse.
By assumption, P is an exchangeable transition probability on [k]N and the coset
decomposition of Zk is invariant under coset relabeling (2.6); hence, χ defined
in (3.2) is coset exchangeable and the asymptotic frequency of M ∼ χ , as defined
in (2.10), exists with probability one. We denote the law of |M|k by |χ |k .

We complete the proof of Theorem 1.1 by showing that a random k-coloring X′
generated by first drawing M ∼ χ and then putting X′ = M(x), for fixed x ∈ [k]N,
is a draw from P(x, ·). By consistency, we need only show that M [n](x) ∼ Pn(x, ·)
for every x ∈ [k][n], for every n ∈N. We have defined Zk so that

Zk(x) = Zϕx

k,n = Zx1

k · · ·Zxn+(n−1)k
k = x1 · · ·xn = x for all x ∈ [k][n] .

By (3.1) and (3.2), the restriction of M ∼ χ to [k][n]⊗k is distributed as

M [n] ∼ χ(n)(·) = Pnk(Zk,n, ·),
which combines with (2.8) to imply M [n](x) ∼ Pn(x, ·).

We have proven the following prelude to Theorem 1.1.

THEOREM 3.2. Let X = (Xm,m ≥ 0) be a discrete-time, exchangeable, con-
sistent Markov chain on [k]N. Then there exists a probability measure χ on [k]N⊗k

such that X∗ = (X∗
m,m ≥ 0) is a version of X, where X∗

0 =L X0 and

X∗
m = (Mm ◦ · · · ◦ M1)

(
X∗

0
)
, m ≥ 1,

for M1,M2, . . . drawn i.i.d. from χ .
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To establish Theorem 1.1, we must show that χ is determined by a unique prob-
ability measure on Sk . By (2.10) and coset exchangeability, χ induces a probabil-
ity measure |χ |k on Sk . By de Finetti’s theorem, the components of M ∼ χ , given
|M|k = S, are conditionally independent with distribution

PS

{
Mi+(j−1)k = i′

} = Sii′, i, i ′ = 1, . . . , k; j = 1,2, . . . .(3.4)

We write μS to denote the conditional distribution of M , given |M|k = S, as
in (3.4) and

μ�(·) :=
∫
Sk

μS(·)�(dS)(3.5)

to denote the mixture of μS -measures with respect to �. By (3.4), the compo-
nents Y 1Y 2 · · · of M(x) are conditionally independent given |M|k = S and have
distribution

PS

{
Y j = i′ | xj = i

} = Sii′, j = 1,2, . . . .(3.6)

For every n ∈ N, the unconditional law of M [n](x) is thus

Pn

(
x, x′) =

∫
Sk

n∏
j=1

S
(
xj , x′j )|χ |k(dS), x′ ∈ [k][n] .

Putting � := |χ |k establishes Theorem 1.1.

REMARK 3.3. We call X∗
� in Theorem 1.1 an (exchangeable) cut-and-paste

chain with directing measure � and cut-and-paste measure μ� .

From Theorems 1.1 and 3.2, we can generate a version of X by drawing X0 from
the initial distribution of X and M1,M2, . . . i.i.d. from μ� . Given X0,M1,M2, . . . ,

we define

Xm := Mm(Xm−1) = (Mm ◦ · · · ◦ M1)(X0), m ≥ 1.(3.7)

By de Finetti’s theorem, |X0| = (f1(X0), . . . , fk(X0)) exists almost surely and
|M1|k, |M2|k, . . . is an i.i.d. sequence from �. By the construction of X in (3.7), X1
is chosen from the conditional transition probability in (3.6), with S = |M1|k . By
the strong law of large numbers, fi′(X1) exists almost surely for every i ′ = 1, . . . , k

and equals the i ′th component of |X0|S1, that is,

fi′(X1) =
k∑

i=1

fi(X0)S1
(
i, i′

)
.

By induction, the components of |Xm|, given |Xm−1| and |Mm|k , equal

|Xm−1||Mm|k = |X0||M1|k · · · |Mm|k for every m ≥ 1,

and Theorem 1.2 follows.
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4. Continuous-time cut-and-paste processes. We now let X = (Xt , t ≥ 0)

denote an exchangeable, consistent Markov process in continuous-time. We have
noted previously that X can jump infinitely often in bounded intervals, but its finite
restrictions can jump only finitely often. To characterize the behavior of X, we use
a Poisson point process to build a version sequentially through its finite restrictions.
Similar to our discrete-time construction (3.7), we define the intensity measure of
the Poisson point process directly from the transition law of X. Dissimilar to the
discrete-time case, this intensity need not be finite.

Let χ be a coset exchangeable measure on [k]N⊗k satisfying

χ
({idk}) = 0 and χ

({
M ∈ [k]N⊗k :M [n] 	= idk,n

})
< ∞

(4.1)
for all n ∈ N.

We construct a process X∗
χ = (X∗

t , t ≥ 0) through its finite restrictions (X∗[n]
χ , n ∈

N) as follows. Let M = {(t,Mt)} ⊆ R+ × [k]N⊗k be a Poisson point process with
intensity dt ⊗ χ , where dt denotes Lebesgue measure on [0,∞). Given an ex-
changeable initial state X0 ∈ [k]N, we put X

∗[n]
0 = X

[n]
0 and, for each t > 0:

• if t > 0 is an atom time of M for which M
[n]
t 	= idk,n, we put X

∗[n]
t :=

M
[n]
t (X

∗[n]
t− ),

• otherwise, we put X
∗[n]
t = X

∗[n]
t− .

This construction of each X∗[n]
χ is a continuous-time analog to the discrete-time

construction in (3.7); it differs only in the random time between jumps and the
possibility of infinitely many jumps in the limiting process. We have constructed
each X∗[n]

χ from the same Poisson process so that (X∗[n]
χ , n ∈ N) is compatible,

that is, X
∗[m]
t = Rm,nX

∗[n]
t for all t ≥ 0 and m ≤ n, and determines a unique [k]N-

valued process X∗
χ .

PROPOSITION 4.1. Let χ be a coset exchangeable measure on [k]N⊗k that
satisfies (4.1), and let X∗

χ be as constructed from the Poisson point process M with

intensity dt ⊗χ . Then X∗
χ is an exchangeable, consistent Markov process on [k]N.

PROOF. For each n ∈ N, X∗[n]
χ is a Markov chain by assumption (4.1) and its

Poisson point process construction. Moreover, Rm,nX
∗[n]
t = X

∗[m]
t for all t ≥ 0, for

all m ≤ n, and so (X∗[n]
χ , n ∈ N) determines a unique Markov process X∗

χ on [k]N.
Exchangeability of X∗

χ follows by coset exchangeability of χ , since all of its finite
restrictions to [k][n]⊗k are finite, coset exchangeable measures. �

COROLLARY 4.2. Every coset exchangeable measure χ on [k]N⊗k satisfy-
ing (4.1) determines the jump rates of an exchangeable Feller process on [k]N.
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A measure satisfying (4.1) can be constructed directly from the transition rates
of X. By assumption, each finite restriction X[n] = (X

[n]
t , t ≥ 0) is a càdlàg, ex-

changeable Markov process on [k][n]. Since [k][n] is finite, the evolution of X[n] is
characterized by its jump rates

Qn

(
x, x′) := lim

t↓0

1

t
P

(
X

[n]
t = x′ | X[n]

0 = x
)
, x 	= x′ ∈ [k][n],(4.2)

which satisfy

Qn

(
x, [k][n] \{x}) < ∞ for all x ∈ [k][n],(4.3)

are exchangeable in the sense that, for every σ ∈ Sn,

Qn

(
x, x′) = Qn

(
xσ , x′σ )

, x 	= x′ ∈ [k][n],(4.4)

and are consistent,

Qm

(
x, x′) = Qn

(
x∗,R−1

m,n

(
x′)),

(4.5)
x 	= x′ ∈ [k][m], for all x∗ ∈ R−1

m,n(x).

For each n ∈ N, we define

χn(M) := Qn(Zk,n,M), M ∈ [k][n]⊗k \{idk,n}.(4.6)

LEMMA 4.3. The collection (χn, n ∈ N) in (4.6) is coset exchangeable and
satisfies

χm(M) = χn

({
M∗ ∈ [k][n]⊗k :M∗[m] = M

})
for all M ∈ [k][m]⊗k,

for all m ≤ n.

PROOF. This follows from the definition of χn in (4.6), the correspondence
[k]N ↔ [k]N⊗k in (2.4), and conditions (4.3), (4.4) and (4.5). �

PROPOSITION 4.4. Let (χn, n ∈ N) be defined in (4.6). Then there exists a
unique coset exchangeable measure χ on [k]N⊗k satisfying (4.1) and

χ
({

M∗ ∈ [k]N⊗k :M∗[n] = M
}) = χn(M),

M ∈ [k][n]⊗k \{idk,n}, for every n ∈ N.

PROOF. Because
⋃∞

n=1 [k][n]⊗k is a generating π -system of the product σ -
field over [k]N⊗k , we need only determine χ on subsets of the form{

M∗ ∈ [k]N⊗k :M∗[n] = M
}
,

for every n ∈ N and M ∈ [k][n]⊗k . Lemma 4.3 implies

χm(M) = χn

({
M∗ ∈ [k][n]⊗k :M∗[m] = M

}) = ∑
M∗∈[k][n]⊗k : M∗[m]=M

χn

(
M∗)

,
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for all m ≤ n and M ∈ [k][m]⊗k . Therefore, χ defined by

χ
({

M∗ ∈ [k]N⊗k :M∗[n] = M
}) = χn(M), M ∈ [k][n]⊗k \ {idk,n},(4.7)

is additive, and Caratheodory’s extension theorem implies χ has a unique exten-
sion to a measure on [k]N⊗k \ {idk}.

To satisfy the first half of (4.1), we simply put χ({idk}) = 0. For the second half,
(4.3) implies

χ
({

M ∈ [k]N⊗k :M [n] 	= idk,n

}) = χn

([k][n]⊗k \{idk,n})
= Qnk

(
Zk,n, [k][nk] \ {Zk,n}) < ∞.

This completes the proof. �

The measure χ in Proposition 4.4 ties the Poissonian construction of X∗
χ to X,

as the next theorem shows.

THEOREM 4.5. Let X be a continuous-time, exchangeable, consistent Markov
process on [k]N. Then there exists a coset exchangeable measure χ on [k]N⊗k

satisfying (4.1) such that X∗
χ is a version of X.

PROOF. Let χ be the coset exchangeable measure with finite-dimensional dis-
tributions (4.6). By Proposition 4.4, χ satisfies (4.1).

Let X∗
χ be the Markov process constructed from M with intensity dt ⊗ χ . The

total intensity at which events occur in M is χ([k]N⊗k). For n ∈ N, the atom times
of X∗[n]

χ are a thinned version of the atom times of M. In the construction of

X∗[n]
χ , an atom (t,Mt) ∈ M results in a jump in X∗[n]

χ if and only if M
[n]
t 	= idk,n

and M
[n]
t (X

∗[n]
t− ) 	= X

∗[n]
t− . By the thinning property of Poisson processes, given

X
∗[n]
t− = x ∈ [k][n], the total intensity at which X∗[n]

χ jumps from state x to x′ 	= x

is χn({M ∈ [k][n]⊗k :M(x) = x′}). And by (4.4) and (4.5),

χn

({
M ∈ [k][n]⊗k :M(x) = x′}) = ∑

M:M(x)=x′
Qnk(Zk,n,M)

= Qnk

(
Zk,n,

{
z ∈ [k][nk] : zϕx = x′})

= Qn

(
x, x′).

It follows that the total intensity of jumps out of x is

χn

({
M ∈ [k][n]⊗k :M(x) 	= x

}) = Qn

(
x, [k][n] \{x}) < ∞,

and, for each n ∈ N, X∗[n]
χ is an exchangeable Markov process with jump rates

Qn(·, ·). Kolmogorov’s extension theorem implies X∗
χ is a version of X. �
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4.1. Lévy–Itô representation. Our entire discussion climaxes in Theorem 1.3,
the Lévy–Itô representation. For any exchangeable, consistent Markov process on
[k]N, its characteristic measure χ has two unique components: a measure � on
k × k stochastic matrices for which

�
({Ik}) = 0 and

∫
Sk

(1 − S∗)�(dS) < ∞,(4.8)

where S∗ := min(S11, . . . , Skk), and a collection c = (cii′,1 ≤ i 	= i ′ ≤ k) of non-
negative constants.

For 1 ≤ i 	= i ′ ≤ k and n ∈ N, we define ρ
(n)

ii′ as the point mass at κ
(n)

ii′ =
(z1, . . . , zk) ∈ [k]N⊗k , where

z
j ′
j =

{
i ′, j = i, j ′ = n,

j, otherwise.

In words, ρ
(n)

ii′ charges only the map κ
(n)

ii′ that fixes all but the nth coordinate of

every x ∈ [k]N: if xn = i, then the nth coordinate of κ
(n)

ii′ (x) is i ′; otherwise, the

nth coordinate is also unchanged. We call each κ
(n)

ii′ a single-index flip. For exam-

ple, with k = 3, ρ
(3)
12 puts unit mass at κ

(3)
12 = (1121 · · · ,2222 · · · ,3333 · · ·). The

measure

ρii′(·) :=
∞∑

n=1

ρ
(n)

ii′ (·), 1 ≤ i 	= i′ ≤ k,

puts unit mass at every single-index flip from i to i ′.
For any � satisfying (4.8) and any collection (cii′,1 ≤ i 	= i ′ ≤ k) of nonnega-

tive constants, we define

χ�,c := μ� + ∑
1≤i 	=i′≤k

cii′ρii′,(4.9)

where μ� was defined in (3.5).

PROPOSITION 4.6. Let � satisfy (4.8) and c = (cii′,1 ≤ i 	= i ′ ≤ k) be non-
negative constants. Then χ�,c defined in (4.9) is a coset exchangeable measure
satisfying (4.1).

PROOF. We treat each term of χ�,c separately.
Clearly, μ�({idk}) = 0 by the first half of (4.8) and the strong law of large

numbers. Now, for every n ∈ N and S ∈ Sk , we have

μS

({
M :M [n] 	= idk,n

}) ≤
k∑

j=1

μS

({
M :M [n]

j 	= j[n]}) ≤ k
(
1 − Sn∗

) ≤ nk(1 − S∗),
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where j = jj · · · ∈ [k]N and j[n] := j · · · j is its restriction to [k][n]. By (4.8),

μ�

({
M :M [n] 	= idk,n

}) ≤ nk

∫
Sk

(1 − S∗)�(dS) < ∞.

The first half of (4.1) is satisfied by
∑

i 	=i′ cii′ρii′ because each ρii′ charges only
single-index flips. Furthermore, with c∗ := max1≤i 	=i′≤k cii′ < ∞,

∑
1≤i 	=i′≤k

cii′ρii′
({

M :M [n] 	= idk,n

}) ≤ c∗ ∑
1≤i 	=i′≤k

n∑
j=1

ρ
(j)

ii′
([k]N⊗k)

= nk(k − 1)c∗ < ∞.

Thus, χ�,c satisfies (4.1).
Coset exchangeability of χ�,c follows since it is the sum of coset exchangeable

measures. �

Now, the denouement.

PROOF OF THEOREM 1.3. By Theorem 4.5, every exchangeable Feller pro-
cess on [k]N admits a version X∗

χ , for χ satisfying (4.1). In Theorem 1.3, we assert
that χ can be decomposed as in (4.9). To prove this, we proceed in three steps:

(i) χ -almost every M ∈ [k]N⊗k possesses asymptotic frequency |M|k ∈ Sk ,
(ii) there exists a unique measure � satisfying (4.8) such that the restriction of

χ to {M ∈ [k]N⊗k : |M|k 	= Ik} is a cut-and-paste measure,

1{|M|k 	=Ik}χ(dM) = μ�(dM) and

(iii) there exist unique nonnegative constants c = (cii′,1 ≤ i 	= i ′ ≤ k) such that
the restriction of χ to {M ∈ [k]N⊗k : |M|k = Ik} is a single-index flip measure,

1{|M|k=Ik}χ(dM) = ∑
1≤i 	=i′≤k

cii′ρii′ .

For (i), we let χ be the exchangeable characteristic measure of X from Theo-
rem 4.5. Then χ satisfies (4.1) and we can write χn to denote the restriction of χ

to the event {M ∈ [k]N⊗k :M [n] 	= idk,n}, for each n ∈ N. By (4.1), each χn is a
finite measure on [k]N⊗k and, by coset exchangeability, it is invariant under action
by k-tuples of permutations σ = (σ1, . . . , σk) :Nk → N

k that fix [n]k . As a result,
we define the n-shift

←−
M [n] of M ∈ [k]N⊗k as follows: for M := (M1, . . . ,Mk), we

put
←−
M [n] := (

←−
M 1,[n], . . . ,

←−
Mk,[n]), where

←−
Mi,[n] := Mn+1

i Mn+2
i · · · , i = 1, . . . , k.

(The n-shift of M is the coset decomposition of M ′ = Mnk+1Mnk+2 · · · , the k-
coloring obtained by removing the first nk coordinates of M .) The image ←−χ n of χn

by the n-shift is a finite, coset exchangeable measure on [k]N⊗k that satisfies (4.1).
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By corollary to Theorem 1.1, ←−χ n-almost every M ∈ [k]N⊗k possesses asymp-
totic frequency |M|k ∈ Sk . Since the asymptotic frequency of any M ∈ [k]N⊗k de-
pends only on its n-shift, for every n ∈ N, χn-almost every M ∈ [k]N⊗k possesses
asymptotic frequency and, by Theorem 1.1, we may write

χn(dM) =
∫
Sk

μS(dM)χn

(|M|k ∈ dS
)
.(4.10)

Since χn ↑ χ as n ↑ ∞, the monotone convergence theorem implies that χ -almost
every M ∈ [k]N⊗k possesses asymptotic frequencies.

To establish (ii), we consider the event that {M ∈ [k]N⊗k :
←−
M

[2]
[n] 	= idk,2} un-

der χn. (Here,
←−
M

[m]
[n] denotes the restriction to [k][m]⊗k of the n-shift of

←−
M [n].) We

define the n-shift measure by

←−χ n(dM) =
∫
Sk

μS(dM)←−χ n

(|M|k ∈ dS
)
,(4.11)

from which, for every S ∈ Sk ,

χn

({←−
M

[2]
[n] 	= idk,2

} | |M|k = S
) = ←−χ n

(
M [2] 	= idk,2 | |M|k = S

)
= μS

({
M [2] 	= idk,2

})
≥ 1 − S2∗
≥ 1 − S∗.

Writing �n(dS) := 1{|M|k 	=Ik}|χn|k(dS), we obtain the inequality

χn

({←−
M

[2]
[n] 	= idk,2

}) ≥
∫
Sk

(1 − S∗)�n(dS).(4.12)

By definition of χn and �n, �n increases to 1{|M|k 	=Ik}|χ |k =: � as n → ∞, the
right-hand side above converges to∫

Sk

(1 − S∗)�(dS),

and �({Ik}) = 0. On the other hand, the left-hand side in (4.12) satisfies

χn

({←−
M

[2]
[n] 	= idk,2

}) ≤ χ
({←−

M
[2]
[n] 	= idk,2

}) = χ
({

M [2] 	= idk,2
})

< ∞,

by coset exchangeability and (4.1). We conclude that∫
Sk

(1 − S∗)χ
(|M|k ∈ dS

) =
∫
Sk

(1 − S∗)�(dS) ≤ χ
({←−

M
[2]
[n] 	= idk,2

})
< ∞;

and � satisfies (4.8).
Finally, we must establish 1{|M|k 	=Ik}χ = μ� . Indeed, for every n ∈ N and fixed

M∗ 	= idk,n, the monotone convergence theorem implies

χ
({

M [n] = M∗, |M|k 	= Ik

}) = lim
m↑∞χ

({
M [n] = M∗,←−M [m]

[n] 	= idk,m, |M|k 	= Ik

})
.
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By coset exchangeability, we can write

χ
({

M [n] = M∗,←−M [m]
[n] 	= idk,m, |M|k 	= Ik

}) = ←−χ m

({
M [n] = M∗, |M|k 	= Ik

})
,

and (4.11) implies

←−χ m

({
M [n] = M∗, |M|k 	= Ik

}) =
∫
Sk

μS

({
M [n] = M∗})←−χ m

(|M|k ∈ dS
)
,

which converges to∫
Sk

μS

({
M [n] = M∗})

�(dS) = μ�

({
M ∈ [k]N⊗k :M [n] = M∗})

.

As n was chosen arbitrarily and the restriction |M|k 	= Ik forbids M = idk , we
conclude (ii).

To establish (iii), let χ∗ be the restriction of χ to the event {M ∈ [k]N⊗k :M [2] 	=
idk,2, |M|k = Ik}. By (4.1) and corollary to Theorem 1.1, χ∗ is finite and its image←−χ ∗

n by the n-shift is coset exchangeable; thus, ←−χ ∗
n-almost every M ∈ [k]N⊗k has

asymptotic frequency |M|k = Ik and ←−χ ∗
n is proportional to the unit mass at idk .

So, we may restrict our attention to the event E := {M [2] 	= idk,2,
←−
M [3] = idk}

consisting of maps [k]N → [k]N that fix coordinates n ≥ 3.
Any M = (M1, . . . ,Mk) ∈ E is specified by a k-tuple ((j11, j12), (j21, j22), . . . ,

(jk1, jk2)), that is, the ith coset of M [as in (2.4)] is

Mi = ji1ji2iii · · · , i = 1, . . . , k.(4.13)

With I = ((j11, j12), (j21, j22), . . . , (jk1, jk2)), we write MI ∈ [k]N to denote the
map in (4.13). Let K := {((j11, j12), . . . , (jk1, jk2))} be the set of all k-tuples and
K∗ := K \ {I ∗}, where I ∗ ∈ K is defined as

I ∗ := (
(1,1), (2,2), . . . , (k, k)

)
.

Then E := ⋃
I∈K∗ MI , which includes all single-index flip maps κ

(n)

ii′ for n = 1,2.
Now, since ←−χ ∗

n is proportional to the point mass at idk , χ∗ is the sum

χ∗(·) = ∑
I∈K∗

cI δMI
(·),

where δMI
(·) is the Dirac point mass at MI . By exchangeability, the requirement

χ({M :M [2] 	= idk,2}) < ∞ forces cI = 0 unless MI is a single-index flip map.
By extension of the above argument, any M ∈ [k]N⊗k for which |M|k = Ik and
cM > 0 must be a single-index flip map; otherwise, by exchangeability, each index
changes states at an infinite rate and the finite restrictions cannot have càdlàg paths.
This establishes (iii) and completes the proof. �
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4.2. Projection into the simplex. By exchangeability of X, the asymptotic fre-
quency |Xt | exists almost surely for any fixed t ≥ 0. In discrete-time, this and
countable additivity of probability measures imply the almost sure existence of
|X| = (|Xm|,m ≥ 0). In continuous-time, however, X = (Xt , t ≥ 0) is uncount-
able and the corresponding conclusion does not follow immediately. Nevertheless,
Theorem 1.3 harnesses the behavior of X to a fruitful outcome: |X| = (|Xt |, t ≥ 0)

exists and is a Feller process.
To show this, we work on the compact metric space (�k, d̃), where

d̃
(
s, s′) := 1

2

k∑
j=1

∣∣sj − s′
j

∣∣, s, s′ ∈ �k.

Under this metric, any S ∈ Sk determines a Lipschitz continuous map �k → �k ,
that is, for all D,D′ ∈ �k and any S ∈ Sk ,

d̃
(
DS,D′S

) ≤ d̃
(
D,D′).

We further exploit an alternative description of X∗
�,c by an associated Markov

process on [k]N⊗k .
Let M be the Poisson point process with intensity dt ⊗χ�,c, as above. For each

n ∈N, we define F[n] := (F
[n]
t , t ≥ 0) on [k][n]⊗k by F

[n]
0 = idk,n and:

• if t > 0 is an atom time of M for which M
[n]
t 	= idk,n, we put F

[n]
t = M

[n]
t (F

[n]
t− ),

• otherwise, we put F
[n]
t = F

[n]
t− .

We define F as the limit of (F[n], n ∈ N), which is a coset exchangeable, consis-
tent Markov process on [k]N⊗k . By its construction, F is closely tied to X∗

�,c =
(X∗

t , t ≥ 0) by the relations:

• |F0|k = Ik and
• X∗

t = Ft(X
∗
0) for all t ≥ 0.

PROOF OF THEOREM 1.4. Let (Ft , t ≥ 0) denote the natural filtration of X
and, independently of (Ft , t ≥ 0), let F := (Ft , t ≥ 0) be the process on [k]N⊗k

constructed above. By Theorem 1.3, the conditional law of Xt+s given Ft is that of
Fs(Xt). By (4.1) and exchangeability of X0, Xt possesses asymptotic frequencies
almost surely for every t ≥ 0. In fact, |Xt | exists simultaneously for all t ≥ 0 with
probability one.

From Theorem 1.3, a version of X can be constructed as X∗
�,c = (X∗

t , t ≥ 0),
whose discontinuities are of Types-(I) and (II) in Section 1.2. In the projection
|X∗

�,c|, discontinuities only occur at the times of Type-(I) discontinuities, of which
there are at most countably many. In between jumps, the trajectory of |X∗

�,c| is
deterministic and continuous in �k . As a result, |X∗

�,c| exists and is càdlàg almost
surely. By corollary to Theorem 1.2, |X∗

t+s | =L |Fs(X
∗
t )| = |Fs |k|X∗

t |, given Ft .
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Since permutation does not affect the asymptotic frequency of either Fs or X∗
t ,

|X∗
�,c| has the Markov property.
Lipschitz continuity of every S :�k → �k , S ∈ Sk , implies the Feller prop-

erty. By compactness of �k , any continuous g :�k → R is uniformly continuous
and, therefore, bounded. By the dominated convergence theorem, continuity of the
map defined by S ∈ Sk , and Theorem 1.3, the maps D 
→ Pt g(D) are continu-
ous for all t > 0. By (4.1), Ft → idk in probability as t ↓ 0; whence, |Ft |k → Ik

and |Ft(X
∗
0)| = |Ft |k|X∗

0 | → |X∗
0 |, both in probability as t ↓ 0. We conclude that

limt↓0 Pt g(D) = g(D) for every continuous function g :�k →R, from which fol-
lows the Feller property. �

5. Homogeneous cut-and-paste processes. Theorems 1.1–1.4 extend to
partition-valued processes with minor modifications. Let � = (�t , t ≥ 0) be a
continuous-time exchangeable, consistent Markov process on PN:k . Specifically,
� is a Markov process such that

(A) �σ = (�σ
t , t ≥ 0) is a version of � for all σ ∈ SN and

(B) �[n] = (�
[n]
t , t ≥ 0) is a Markov chain on P[n]:k , for every n = 1,2, . . . .

By Proposition 2.2, � is a Feller process, and thus, its evolution is determined by
the finite jump rates

Qn

(
π,π ′) := lim

t↓0

1

t
P

{
�

[n]
t = π ′ | �[n]

0 = π
}
,

(5.1)
π 	= π ′ ∈P[n]:k, for each n ∈ N,

which satisfy (4.3), (4.4) and (4.5).
For any π ∈ PN:k , we obtain its symmetric associate x̃ ∈ [k]N by labeling

the blocks of π uniformly and without replacement in [k]. In particular, for
π = (B1, . . . ,Br) ∈ PN:k (listed in order of least element), x̃ is a random k-
coloring of N obtained by drawing labels (l1, . . . , lr ) without replacement from
[k] and putting x̃ = x̃1x̃2 · · · , where

x̃j = li ⇐⇒ j ∈ Bi.

Thus, B(x̃) = π with probability one and each element in the set B−1(π) has equal
probability. For each n ∈ N, we define the symmetric associate transition rate Q̃n

on [k][n] by

Q̃n

(
x, x′) := Qn

(
Bn(x),Bn

(
x′))/k↓#Bn(x′), x 	= x′ ∈ [k][n],(5.2)

where #π denotes the number of blocks of π ∈PN and k↓j := k(k−1) · · · (k−j +
1). Under Q̃n, a transition from x ∈ [k][n] is obtained by projecting x 
→ Bn(x) =
π , generating a transition �′ ∼ Qn(π, ·), and randomly coloring the blocks of �′
to obtain a symmetric associate X̃′ ∈ [k][n]. The next proposition follows from
definition (5.2) and properties (4.3), (4.4) and (4.5) of (Qn,n ∈N) in (5.1).
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PROPOSITION 5.1. The collection (Q̃n, n ∈ N) defined in (5.2) determines a
unique exchangeable transition rate measure Q̃ on [k]N.

From Q̃, we construct X̃ = (X̃t , t ≥ 0), the symmetric associate of �, by first
generating X̃0 as the symmetric associate of a partition from the initial distribution
of � and, given X̃0, letting X̃ evolve as a Markov process with initial state X̃0 and
transition rate measure Q̃.

PROPOSITION 5.2. The symmetric associate X̃ of � is an exchangeable, con-
sistent Markov process on [k]N and B(X̃) = (B(X̃t ), t ≥ 0) is a version of �.

PROOF. We have constructed X̃ so that it projects to and respects the structure
of �. To wit, � is exchangeable and consistent, and so is X̃. �

For any permutation γ : [k] → [k], we define the recoloring of x ∈ [k]N by

γ x := γ
(
x1)

γ
(
x2) · · · .(5.3)

Since B(x) is the projection of x into PN:k by removing colors, recoloring does
not affect x 
→ B(x), that is, B(x) = B(γ x) for all x ∈ [k]N and γ ∈ Sk . Thus, by
definition (5.2), Q̃ is invariant under arbitrary recoloring of its arguments,

Q̃
(
γ x, γ ′A

) = Q̃(x,A), x ∈ [k]N,A ⊆ [k]N,(5.4)

for all γ, γ ′ ∈ Sk , where γ ′A := {γ ′x′ :x′ ∈ A} is the image of A under recoloring
by γ ′. By Theorem 4.5, Q̃ is characterized by a coset exchangeable measure χ̃

which, by condition (5.4), is invariant under the action of left- and right-recoloring,
which we now define.

For M ∈ [k]N⊗k and γ, γ ′ ∈ Sk , we define the left–right recoloring of M by
(γ, γ ′) by M ′ := γMγ ′, where

M ′(x) := γ ′M
(
γ −1x

)
, x ∈ [k]N,(5.5)

the k-coloring obtained by first recoloring x by γ −1, then applying M , and finally
recoloring by γ ′. We call a coset exchangeable measure row–column exchangeable
if it is invariant under left–right recoloring by all pairs (γ, γ ′) ∈ Sk × Sk .

LEMMA 5.3. Let χ̃ be the coset exchangeable measure that determines Q̃.
Then χ̃ is row–column exchangeable.

PROOF. Fix x ∈ [k]N and A ⊆ [k]N. By (5.4) and Theorem 1.3,

χ̃
({

M :M(x) ∈ A
}) = Q̃(x,A)

= Q̃
(
γ x, γ ′A

)
= χ̃

({
M :M(γx) ∈ γ ′A

})
= χ̃

({
M :γ −1Mγ ′−1(x) ∈ A

})
= χ̃

({
γMγ ′ :M(x) ∈ A

})
,
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implying χ̃ is row–column exchangeable. �

As a corollary to Theorem 1.3 and Proposition 5.2, χ̃ is determined by a unique
pair (�̃, c̃), where �̃ is a measure satisfying (1.6) and c̃ = (c̃ii′,1 ≤ i 	= i ′ ≤ k) is a
collection of nonnegative constants, that is,

χ̃ = μ�̃ + ∑
1≤i 	=i′≤k

c̃ii′ρii′ .(5.6)

On Sk , we call a measure � row–column exchangeable if it is invariant under
arbitrary permutation of rows and columns, S 
→ γ Sγ ′−1 := (Sγ (i)γ ′(i′),1 ≤ i, i ′ ≤
k) for all γ, γ ′ ∈ Sk .

PROPOSITION 5.4. Let χ̃ be as defined in (5.6). Then �̃ is row–column ex-
changeable and there exists a unique c ≥ 0 such that c̃ii′ = c for all 1 ≤ i 	= i′ ≤ k.

PROOF. In (5.6), χ̃ is expressed as the sum of mutually singular measures,
and we treat

∑
1≤i 	=i′≤k c̃ii′ρii′ first.

For 1 ≤ i 	= i′ ≤ k and n ∈ N, we define

Aii′(n) := {
κ

(1)

ii′ , . . . , κ
(n)

ii′
}
,

the subset of [k]N⊗k containing all single-index flips from i to i′ for indices in [n].
By Lemma 5.3, χ̃ is invariant under arbitrary left- and right-recoloring as in (5.5);
whence,

nc̃ii′ = χ̃
(
Aii′(n)

) = χ̃
(
Aγ(i)γ (i′)(n)

) = nc̃γ (i)γ (i′)

for all n ∈ N and γ ∈ Sk , implying c̃ii′ = c̃jj ′ = c for all i 	= i′ and j 	= j ′.
Restricted to the event {M ∈ [k]N⊗k : |M|k 	= Ik}, χ̃ induces a measure �̃ satis-

fying (1.6) through the map M 
→ |M|k . Row–column exchangeability follows by
row–column exchangeability of χ̃ and definition of M 
→ |M|k in (2.10). �

PROOF OF THEOREM 1.5. For � in continuous-time, Theorem 1.5 is a corol-
lary of Theorem 1.3 and Propositions 5.1, 5.2 and 5.4. The discrete-time conclu-
sion follows since single-index flips are not permitted (forcing c = 0) and Markov
processes with finite jump rates can be treated as discrete-time chains with expo-
nentially distributed hold times between jumps. �

According to Theorem 1.4, the projection into �k of an exchangeable [k]N-
valued Feller process exists and is also a Feller process. The analogous projection
of � into �

↓
k by | · |↓ also exists and is Feller.

PROOF OF THEOREM 1.6. Almost sure existence of |�|↓ follows from Theo-
rem 1.5 and the existence of |X| for any exchangeable Feller process on [k]N (The-
orem 1.4). By Proposition 5.4, the characteristic measure χ induces a row–column
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exchangeable measure |χ |k on Sk , and so |�|↓ is Markovian. Theorem 1.4 implies
the Feller property since |X| is Feller and any continuous g :�↓

k → R induces a
continuous function g′ :�k →R which is symmetric in its arguments. �

By the description in Theorem 1.5, � is characterized by its symmetric asso-
ciate X̃, whose transition law treats colors homogeneously. We commingle terms
and call both X̃ and � a homogeneous cut-and-paste process with parameter
(�̃, c̃).

5.1. Self-similar cut-and-paste processes. In [6], we introduced a family of
cut-and-paste chains, which we now call self-similar homogeneous cut-and-paste
chains. We showed an instance of these chains in Example 1.7.

For a self-similar cut-and-paste process, the measure � is the k-fold product
of some σ -finite measure on �k , that is, � = ν ⊗ · · · ⊗ ν, for ν symmetric and
satisfying

ν
({

(1,0, . . . ,0)
}) = 0 and

∫
�

↓
k

(1 − s∗)ν(ds) < ∞,(5.7)

where s∗ := min{s1, . . . , sk}. By symmetry of ν, � is row–column exchangeable.
The processes studied in [6] were pure-jump in that they did not admit single-

index flips. By letting single-index flips occur at rate c ≥ 0, we obtain the class of
self-similar homogeneous cut-and-paste processes with characteristic measure

χ = μν⊗···⊗ν + cρ,

where ρ := ∑
1≤i 	=i′≤k ρii′ . The special case c = 0 and ν = PD(−α/k,α) plays a

role in clustering applications [4].

6. Concluding remarks.

6.1. Relation to exchangeable coalescent and fragmentation processes. In
spirit, our main theorems resemble previous results for exchangeable coalescent
and fragmentation processes. In substance, our processes differ in fundamental
ways.

6.1.1. Bounded number of blocks. All processes studied in this paper evolve
on either [k]N or PN:k for fixed k ∈ N. Bounding the number of blocks is necessary
to characterize the jump probabilities/rates by a measure on stochastic matrices.
Without an upper bound on the number of blocks, an exchangeable partition need
not admit proper asymptotic frequencies. In general, for π = {B1,B2, . . .} ∈ PN,
the sum of its asymptotic block frequencies may be strictly less than one, in which
case, it is common to write s0 := 1 − ∑

i |Bi | to denote the amount of dust in
|π |↓. For an exchangeable partition of N, the dust is the totality of its singleton
blocks. Furthermore, Theorem 1.5 requires the cut-and-paste measure � to treat
all blocks symmetrically. Without a uniform distribution on a countable set, we
cannot specify such a measure on [k]N⊗k with k unbounded.



1978 H. CRANE

6.1.2. Coalescent processes with finite initial state. The representation in (5.6)
covers a special subclass of exchangeable coalescent processes whose initial state
has a finite number of blocks. In this case, we let k be the number of blocks of
the initial state �0, c = 0, and � a σ -finite row–column exchangeable measure
concentrated on {0,1}-valued stochastic matrices. In this case, the homogeneous
cut-and-paste process with initial state �0 and characteristic measure χ = μ� is
an exchangeable coalescent.

On the other hand, no class of fragmentation processes corresponds to a cut-
and-paste process. Fragmentation processes eventually fragment into the state of
all singletons, for which the number of blocks is infinite.

6.1.3. Poissonian structure, coset mappings and COAG–FRAG operators. Ex-
changeable coalescent and fragmentation processes admit Poisson point pro-
cess constructions akin to our construction of X from the Poisson point pro-
cess M on R+ × [k]N⊗k . For a coalescent process, B = {(t,Bt )} is a random
subset of R+ × PN and � = (�t , t ≥ 0) is constructed (informally) by putting
�t = COAG(�t−,Bt ), for each atom time t . For π,π ′ ∈ PN, COAG(π,π ′) is
the coagulation of π by π ′, which determines a Lipschitz continuous mapping
PN → PN. Fragmentation processes have a similar construction in terms of the
FRAG-operator, which is also Lipschitz continuous.

The coset mappings, essential to our construction of cut-and-paste processes,
are also Lipschitz continuous. To mimic the above constructions by the COAG and
FRAG operators, we can define an operation CUT-PASTE : [k]N⊗k ×PN:k → PN:k
by

CUT-PASTE(M,π) := B
(
M(x̃)

)
, x̃ the symmetric associate of π.

From a Poisson point process M with intensity dt ⊗ χ̃ , we generate � = (�t , t ≥
0) (informally) by putting �t = CUT-PASTE(Mt ,�t−), for each atom time of M.
The CUT-PASTE operator differs from COAG and FRAG because it maps [k]N⊗k ×
PN:k → PN:k , rather than PN ×PN → PN.

We spare the details. See [5] for more on the interplay between Poissonian struc-
ture, the Feller property and Lipschitz continuous mappings.

6.2. Equilibrium measures of cut-and-paste processes. The process in Exam-
ple 1.7 is a self-similar homogeneous cut-and-paste chain which is also reversible
with respect to the Poisson–Dirichlet distribution. The process in Example 1.8
evolves in continuous-time and converges to a distribution whose projection to
the simplex is degenerate at (1/2,1/2). By Kingman’s paintbox correspondence,
these are the only possibilities. In particular, the unique equilibrium measure of
an exchangeable cut-and-paste process, if it exists, is one of Kingman’s paintbox
measures. The cut-and-paste representation is a powerful tool for studying equi-
librium measures of these chains, evinced by Crane and Lalley [7].
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