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ON A FUNCTIONAL CONTRACTION METHOD

BY RALPH NEININGER AND HENNING SULZBACH

Goethe University Frankfurt

Methods for proving functional limit laws are developed for sequences
of stochastic processes which allow a recursive distributional decomposition
either in time or space. Our approach is an extension of the so-called con-
traction method to the space C[0,1] of continuous functions endowed with
uniform topology and the space D[0,1] of càdlàg functions with the Sko-
rokhod topology. The contraction method originated from the probabilistic
analysis of algorithms and random trees where characteristics satisfy natu-
ral distributional recurrences. It is based on stochastic fixed-point equations,
where probability metrics can be used to obtain contraction properties and
allow the application of Banach’s fixed-point theorem. We develop the use
of the Zolotarev metrics on the spaces C[0,1] and D[0,1] in this context.
Applications are given, in particular, a short proof of Donsker’s functional
limit theorem is derived and recurrences arising in the probabilistic analysis
of algorithms are discussed.

1. Introduction. The contraction method is an approach for proving conver-
gence in distribution for sequences of random variables which satisfy recurrence
relations in distribution. Such recurrence relations for a sequence (Yn)n≥0 are often
of the form

Yn
d=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ b(n), n ≥ n0,(1)

where d= denotes that the left-hand side and right-hand side are identically dis-
tributed, and (Y

(r)
j )j≥0 have the same distribution as (Yn)n≥0 for all r = 1, . . . ,K ,

where K ≥ 1 and n0 ≥ 0 are fixed integers. Moreover, I (n) = (I
(n)
1 , . . . , I

(n)
K ) is a

vector of random integers in {0, . . . , n}. The basic independence assumption that

fixes the distribution of the right-hand side is that (Y
(1)
j )j≥0, . . . , (Y

(K)
j )j≥0 and

(A1(n), . . . ,AK(n), b(n), I (n)) are independent. Note, however, that dependencies
between the coefficients Ar(n), b(n) and the integers I

(n)
r are allowed.

Recurrences of the form (1) come up in diverse fields, for example, in the study
of random trees, the probabilistic analysis of recursive algorithms, in branching
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processes, in the context of random fractals and in models from stochastic geom-
etry where a recursive decomposition can be found, as well as in information and
coding theory. For surveys of such occurrences, see [21, 22, 29]. In some applica-
tions, one may need K to depend on n or the case K = ∞, where generalizations
of the results for our case of fixed K can be stated; cf. [22], Section 4.3, for such
extensions in the finite-dimensional case.

The sequence (Yn)n≥0 satisfying (1) often is a sequence of real random variables
with real coefficients Ar(n), b(n). However, the same recurrence appears also for
sequences of random vectors (Yn)n≥0 in Rd . Then the Ar(n) are random linear
maps from Rd to Rd and b(n) is a random vector in Rd . We will also review be-
low work that considered random sequences (Yn)n≥0 into a separable Hilbert space
satisfying (1) where Ar(n) become random linear operators on the space and b(n)

a random vector in the Hilbert space. In the present work, we develop a limit theory
for such sequences in separable Banach spaces, where our main applications are
first to the space C[0,1] endowed with the uniform topology. Secondly, although
not a Banach space, we will also be able to cover the space D[0,1] equipped with
the Skorokhod topology. Hence, we consider sequences (Yn)n≥0 of stochastic pro-
cesses with state space R and time parameter t ∈ [0,1] with continuous, respec-
tively, cádlág paths and are interested in conditions that together with (1) allow to
deduce functional limit theorems for rescaled versions of (Yn)n≥0.

For functions f ∈ C[0,1] or f ∈ D[0,1], we denote the uniform norm by

‖f ‖∞ := sup
x∈[0,1]

∣∣f (x)
∣∣.

For functions f,g ∈ D[0,1], the Skorokhod distance dsk(f, g) is used; see Sec-
tion 2.2.

The rescaling of the process (Yn)n≥0 can be done by centering and normaliza-
tion by the order of the standard deviation in case moments of sufficient order are
available. Subsequently, we assume that the scaling has already been done and we
denote the scaled process by (Xn)n≥0. Note that affine scalings of the Yn implies
that the sequence (Xn)n≥0 also does satisfy a recurrence of type (1), where only
the coefficients are changed:

Xn
d=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0(2)

with conditions on identical distributions and independence similar to recur-
rence (1). The coefficients A

(n)
r and b(n) in the modified recurrence (2) are typi-

cally directly computable from the original coefficients Ar(n), b(n) and the scaling
used; see, for example, for the case of random vectors in Rd , [22], equation (4).
Subsequently, we consider equations of type (2) together with assumptions on the
moments of Xn which in applications have to be obtained by an appropriate scal-
ing.
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For the asymptotic distributional analysis of sequences (Xn)n≥0 satisfying (2),
the so-called contraction method has become a powerful tool. In the seminal pa-
per [26], Rösler introduced this methodology for deriving a limit law for a special
instant of this equation that arises in the analysis of the complexity of the Quick-
sort algorithm. In the framework of the contraction method, first one derives limits
of the coefficients A

(n)
r , b(n),

A(n)
r → Ar, b(n) → b (n → ∞)(3)

in an appropriate sense. If with n → ∞, also the I
(n)
r become large and it is plau-

sible that the quantities Xn converge, say to a random variable X; then, by letting
formally n → ∞, equation (2) turns into

X
d=

K∑
r=1

ArX
(r) + b(4)

with X(1), . . . ,X(K) distributed as X and X(1), . . . ,X(K), (A1, . . . ,Ak, b) inde-
pendent. Hence, one can use the distributional fixed-point equation (4) to charac-
terize the limit distribution L(X). The idea from Rösler [26] to formalize such an
approach and to derive at least weak convergence Xn → X consists of first using
the right-hand side of (4) to define a map as follows: if Xn are B-valued random
variables, denote by M(B) the space of all probability measures on B and

T :M(B) → M(B),(5)

T (μ) = L
(

K∑
r=1

ArZ
(r) + b

)
,(6)

where (A1, . . . ,AK,b),Z(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K) have
distribution μ. Then a random variable X solves (4) if and only if its distribution
L(X) is a fixed point of the map T . To obtain fixed points of T appropriate sub-
spaces of M(B) are endowed with a complete metric, such that the restriction
of T becomes a contraction. Then Banach’s fixed-point theorem yields a (in the
subspace) unique fixed point of T and one can as well use the metric to also derive
convergence of L(Xn) to L(X) in this metric. If the metric is also strong enough
to imply weak convergence, one has obtained the desired limit law Xn → X.

This approach has been established and applied to a couple of examples in
Rösler [26, 27] and Rachev and Rüschendorf [25]. In the latter paper also the flexi-
bility of the approach by using various probability metrics has been demonstrated.
Later on general convergence theorems have been derived stating conditions under
which convergence of the coefficients of the form (3) together with a contraction
property of the map (5) implies convergence in distribution Xn → X. For random
variables in R with the minimal �2 metric, see Rösler [28], and Neininger [20]
for Rd with the same metric. For a more widely applicable framework for random
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variables in Rd , see Neininger and Rüschendorf [22], where in particular various
problems with normal limit laws could be solved which seem to be beyond the
scope of the minimal �p metric; see also [23]. An extension of these theorems to
continuous time, that is, to processes (Xt)t≥0 satisfying recurrences similar to (2)
was given in Janson and Neininger [17].

For the case of random variables in a separable Hilbert space leading to func-
tional limit laws, general limit theorems for recurrences (1) have been developed
in Drmota, Janson and Neininger [12]. The main application there was a functional
limit law for the profile of random trees which, via a certain encoding of the pro-
file, led to random variables in the Bergman space of square integrable analytic
functions on a domain in the complex plane. In Eickmeyer and Rüschendorf [13],
general limit theorems for recurrences in D[0,1] under the Lp-topology were
developed. Note that the uniform topology for C[0,1] and the Skorokhod topol-
ogy for D[0,1] considered in the present paper are finer than the Lp-topology.
In C[0,1], the uniform topology provides more continuous functionals such as
the supremum f �→ supt∈[0,1] f (t) or projections f �→ f (s1, . . . , sk), for fixed
s1, . . . , sk ∈ [0,1], to which the continuous mapping theorem can be applied. In
D[0,1], these functionals are also appropriate for the continuous mapping theo-
rem if the limit random variable has continuous sample paths.

Besides the minimal �p metrics the probability metrics that have proved useful
in most of the papers mentioned above is the family of Zolotarev metrics ζs being
reviewed and further developed here in Section 2. All generalizations from R via
Rd to separable Hilbert spaces are based on the fact that convergence in ζs im-
plies weak convergence; see Section 2. However, for Banach spaces this is not true
in general. Counterexamples have been reported in Bentkus and Rachkauskas [4],
sketched here in Section 2.1. Also completeness of the ζs metrics on appropri-
ate subspaces of M(B) is only known for the case of separable Hilbert spaces;
see [12], Theorem 5.1.

Our study of the spaces (C[0,1],‖ · ‖∞) and (D[0,1], dsk) is also based on the
Zolotarev metrics ζs . Hence, we mainly have to deal with implications that can
be drawn from convergence in the ζs metrics as well as with the lack of knowl-
edge about completeness of ζs . In Section 2.3, implications of convergence in the
Zolotarev metric are discussed together with additional conditions that enable to
deduce in general weak convergence from convergence in ζs . A key ingredient
here is a technique developed in Barbour [2] in the context of Stein’s method; see
also Barbour and Janson [3]. We also obtain criteria for the uniform integrability
of {‖Xn‖s∞|n ≥ 0} for 0 ≤ s ≤ 3 in the presence of convergence in the Zolotarev
metric. This enables in applications as well to obtain moments convergence of the
sup-functional.

In Section 3, we give general convergence theorems in the framework of the
contraction method first for a general separable Banach space and then apply and
refine this to the space (C[0,1],‖·‖∞) and develop a technique to also apply this to
the metric space (D[0,1], dsk). In particular, based on Janson and Kaijser [16], we
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give a criterion for the finiteness of the Zolotarev metric on appropriate subspaces
that can easily be checked in applications.

To compensate for the lack of knowledge about completeness of the ζs met-
rics, we need to assume that the map T in (5) has a fixed point in an appropriate
subspace of M(C[0,1]) and M(D[0,1]), respectively. In applications, one may
verify this existence of a fixed point either by guessing one successfully: in the
application of our framework to Donsker’s functional limit theorem in Section 4.1,
the Wiener measure can easily be guessed and be seen to be the fixed point of the
map T coming up there. Alternatively, in general the existence of a fixed point
may arise from infinite iteration of the map T : applied to some probability mea-
sure, such an iteration has a series representation for which one may be able to
show that it is the desired fixed point. This path is being taken in an application of
our framework outlined in Section 4.2.

In Section 4.1, we apply our functional contraction method to derive a short
proof of Donsker’s functional limit theorem. This does not require the full gener-
ality of our setting but illustrates how self-similarities can easily been exploited
with this approach. The application in Section 4.2 is on the asymptotic study of
fundamental complexities in computer science. Here, the full generality of our ap-
proach is needed to obtain a functional limit law. We highlight and discuss the
use of our conditions (C1)–(C5) formulated in Section 3 on the recurrence (2) at
this example. Details on the verification of the conditions are contained in Broutin,
Neininger and Sulzbach [6] where, based on the functional limit law, also various
long open standing problems on the complexities in computer science are solved.

2. The Zolotarev metric. Let (B,‖ · ‖) be a real Banach space and B its
Borel σ -algebra. In Section 2.1, we assume that the norm on B induces a separa-
ble topology. We denote by M(B) the set of all probability measures on (B,B).
First, we introduce the Zolotarev metric ζs and collect some of its basic proper-
ties, mainly covered in [32, 33]. In the second subsection, we define our use of the
Zolotarev metrics on the metric space (D[0,1], dsk). Although not a Banach space,
we will be able to declare the Zolotarev metrics ζs on (D[0,1], dsk) using the no-
tion of differentiability of functions D[0,1] → R induced by the supremum norm
on D[0,1]. We also comment in Remarks 6 and 7 on delicate measurability issues
for the nonseparable Banach space (B,‖ · ‖) = (D[0,1],‖ · ‖∞) and the realm of
our methodology when working with the coarser (separable) topology on D[0,1]
induced by the Skorokhod metric. In the third subsection, conditions that allow
to conclude from convergence in ζs to weak convergence are studied for the case
(B,‖ · ‖) = (C[0,1],‖ · ‖∞) as well as for the case (D[0,1], dsk). We also discuss
further implications from ζs -convergence in these two spaces as well as criteria for
finiteness of ζs . Additional material to the content of this section can be found in
the second author’s dissertation [31], Chapter 2.
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2.1. Definition and basic properties. For functions f :B → R, which are
Fréchet differentiable, the derivative of f at a point x is denoted by Df (x). Note
that Df (x) is an element of the space L(B,R) of continuous linear forms on B .
We also consider higher order derivatives, where Dmf (x) denotes the mth deriva-
tive of f at a point x. Thus, Dmf (x) is a continuous m-linear (or multilinear) form
on B . The space of continuous multilinear forms g :Bm →R is equipped with the
norm

‖g‖ = sup
‖h1‖≤1,...,‖hm‖≤1

∣∣g(h1, . . . , hm)
∣∣.

For a comprehensive account on differentiability in Banach spaces, we refer to
Cartan [7]. Subsequently, s > 0 is fixed and for m := 	s
 − 1 and α := s − m we
define

Fs = {
f :B →R :

∥∥Dmf (x) − Dmf (y)
∥∥≤ ‖x − y‖α, ∀x, y ∈ B

}
.(7)

For μ,ν ∈M(B), the Zolotarev distance between μ and ν is defined by

ζs(μ, ν) = sup
f ∈Fs

∣∣E[f (X) − f (Y )
]∣∣,(8)

where X and Y are B-valued random variables with L(X) = μ and L(Y ) = ν.
Here, L(X) denotes the distribution of the random variable X. The expres-
sion in (8) does not need to be finite or even well defined. However, we have
ζs(μ, ν) < ∞ if ∫

‖x‖s dμ(x),

∫
‖x‖s dν(x) < ∞(9)

and ∫
f (x, . . . , x) dμ(x) =

∫
f (x, . . . , x) dν(x)(10)

for any bounded k-linear form f on B and any 1 ≤ k ≤ m. For random variables
X, Y in B , we use the abbreviation ζs(X,Y ) := ζs(L(X),L(Y )). Finiteness of
ζs(X,Y ) in Rd fails to hold if X and Y do not have the same mixed moments up to
order m. The assumption on the finite absolute moment of order s can be relaxed
slightly; see Theorem 4 in [34].

We denote

Ms(B) :=
{
μ ∈ M(B)

∣∣∣ ∫ ‖x‖s dμ(x) < ∞
}

and for all ν ∈ Ms(B) denote

Ms(ν) := {
μ ∈ Ms(B)|μ and ν satisfy (10)

}
.

Then ζs is a metric on the space Ms(ν) for any ν ∈ Ms(B); see [35], Remark 1,
page 198.

A crucial property of ζs in the context of recursive decompositions of stochastic
processes is the following lemma; see Theorem 3 in [34]. A short proof is given
for the reader’s convenience.
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LEMMA 1. Let B ′ be a Banach space and g :B → B ′ a linear and continuous
operator. Then we have

ζs

(
g(X), g(Y )

)≤ ‖g‖sζs(X,Y ), L(X),L(Y ) ∈ Ms(ν).

Here, ‖g‖ denotes the operator norm of g, that is, ‖g‖ = supx∈B,‖x‖≤1 ‖g(x)‖.

PROOF. Note that g is also bounded. It suffices to show that{‖g‖−sf ◦ g :f ∈ F ′
s

}⊆ Fs,

where F ′
s is defined analogously to Fs in B ′. Let f ∈ Fs and η := ‖g‖−sf ◦

g. Then η is m-times continuously differentiable and we have Dmη(x) =
‖g‖−s(Dm(f (g(x))) ◦ g⊗m for x ∈ B . Here, g⊗m :Bm → (B ′)m denotes the map-
ping g⊗m(h1, . . . , hm) = (g(h1), . . . , g(hm)). This implies∥∥Dmη(x) − Dmη(y)

∥∥= ‖g‖−s
∥∥(Dmf

(
g(x)

)) ◦ g⊗m − (Dmf
(
g(y)

)) ◦ g⊗m
∥∥

≤ ‖g‖−α
∥∥g(x) − g(y)

∥∥α
= ‖g‖−α

∥∥g(x − y)
∥∥α ≤ ‖x − y‖α.

The assertion follows. �

Another basic property is that ζs is (s,+) ideal.

LEMMA 2. The metric ζs is ideal of order s on Ms(ν) for any ν ∈ Ms(B),
that is, we have

ζs(cX, cY ) = |c|sζs(X,Y ),

ζs(X + Z,Y + Z) ≤ ζs(X,Y )

for any c ∈ R \ {0}, L(X),L(Y ) ∈Ms(ν) and random variables Z in B , such that
(X,Y ) and Z are independent.

The lemma directly implies

ζs(X1 + X2, Y1 + Y2) ≤ ζs(X1, Y1) + ζs(X2, Y2)(11)

for L(X1),L(Y1) ∈ Ms(ν1) and L(X2),L(Y2) ∈ Ms(ν2) with arbitrary ν1, ν2 ∈
Ms(B) such that (X1, Y1) and (X2, Y2) are independent.

We want to give a result similar to Lemma 1 where the linear operator may
also be random itself. We focus on the case that B ′ either equals B or R where an
extension to Rd for d > 1 is straightforward. Let B∗ be the topological dual of B

and B̂ be the space of all continuous linear maps from B to B . Endowed with the
operator norms

‖f ‖op = sup
x∈B,‖x‖≤1

∣∣f (x)
∣∣, ‖f ‖op = sup

x∈B,‖x‖≤1

∥∥f (x)
∥∥,
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both spaces, B∗ and B̂ , respectively, are Banach spaces. However, these spaces
are typically nonseparable, hence not suitable for our purposes of measurability.
Therefore, we will equip them with smaller σ -algebras. Similar to the use of weak-
* convergence, let B∗ be the σ -algebra on B∗ that is generated by all continuous
(with respect to ‖ · ‖op) linear forms ϕ on B∗ (i.e., elements of the bidual B∗∗)
of the form ϕ(a) = a(x) for some x ∈ B . Note that the set of these continuous
linear forms coincides with the bidual B∗∗ if and only if B is reflexive, a property
that is not satisfied in our applications. We move on to B̂ and define B̂ to be the
σ -algebra generated by all continuous (with respect to ‖ · ‖op) linear maps ψ from
B̂ to B of the form ψ(a) = a(x) for some x ∈ B . By Pettis’ theorem, we have
B = σ(� ∈ B∗). Hence, if S ⊆ B∗ with B = σ(� ∈ S), then B̂ is also generated by
the continuous linear forms 
 on B̂ that can be written as 
(a) = �(a(x)) for � ∈ S

and x ∈ B .
Using the separability of B , it is now easy to see that the norm-functionals

B∗ → R, f �→ ‖f ‖op and B̂ → R, f �→ ‖f ‖op are B∗–B(R) measurable and
B̂–B(R) measurable, respectively.

DEFINITION 3. By a random continuous linear form on B , we denote any
random variable with values in (B∗,B∗). Analogously, random continuous linear
operators on B are random variables with values in (B̂, B̂).

Note that the definition of the σ -algebras B∗ and B̂ implies in particular that
for any a ∈ B∗ or a ∈ B̂, x ∈ B , random continuous linear form or operator A and
random variable X in B , we have that the compositions a(X), A(x) and A(X) are
again random variables. The latter property follows from measurability of the map
(a, x) �→ a(x) with respect to (B∗ ⊗B)–B(R) and (B̂⊗B)–B, respectively. In the
case of the dual space, this follows as for any r ∈ R we have{

(a, x) ∈ B∗ × B :a(x) < r
}

= ⋃
k≥1

⋃
m≥1

⋂
n≥m

⋃
i≥1

{
a ∈ B∗ :a(ei) < r − 1/k

}× {x ∈ B :‖x − ei‖ < 1/n},

where {ei |i ≥ 1} denotes a countable dense subset of B; the case B̂ being analo-
gous.

The following lemma follows from Lemma 1 by conditioning.

LEMMA 4. Let L(X),L(Y ) ∈ Ms(ν) for some ν ∈ Ms(B). Then, for any
random linear continuous form or operator A with E[‖A‖s

op] < ∞ independent of
X and Y , we have

ζs

(
A(X),A(Y )

)≤ E
[‖A‖s

op
]
ζs(X,Y ).
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Zolotarev gave upper and lower bounds for ζs , most of them being valid if more
structure on B is assumed. Subsequently, only an upper bound in terms of the min-
imal �p metric is needed. For p > 0 and μ,ν ∈ Mp(B), the minimal �p distance
between μ and ν is defined by

�p(μ, ν) = inf E
[‖X − Y‖p](1/p)∧1

,

where the infimum is taken over all common distributions L(X,Y ) with marginals
L(X) = μ and L(Y ) = ν. We abbreviate �p(X,Y ) := �p(L(X),L(Y )).

The next lemma gives an upper bound of ζs in terms of �s where the first state-
ment follows from the Kantorovich–Rubinstein theorem and the second essentially
coincides with Lemma 5.7 in [12].

LEMMA 5. Let L(X),L(Y ) ∈Ms(ν) for some ν ∈Ms(B) with B separable.
If s ≤ 1 then

ζs(X,Y ) = �s(X,Y ).(12)

If s > 1 then

ζs(X,Y ) ≤ (E[‖X‖s]1−1/s + E
[‖Y‖s]1−1/s)

�s(X,Y ).

If Xn,X are real-valued random variables, n ≥ 1, then ζs(Xn,X) → 0 implies
convergence of absolute moments of order up to s since there is a constant Cs > 0
such that the function x �→ Cs |x|s is an element of Fs , hence |E[|Xn|s − |X|s]| ≤
C−1

s ζs(Xn,X).
We proceed with the fundamental question of how convergence in the ζs dis-

tance relates to weak convergence on B . By the first statement of the previous
lemma, or more elementary, by the proof of the Portmanteau lemma [5], Theo-
rem 2.1(ii)–(iii), one obtains that for 0 < s ≤ 1 convergence in the ζs metric im-
plies weak convergence; see also [12], page 300.

If B is a separable Hilbert space, then for any s > 0 convergence in the ζs met-
ric implies weak convergence. This was first proved by Giné and León in [15], see
also Theorem 5.1 in [12]. In infinite-dimensional Banach spaces convergence in
the ζs metric does not need to imply weak convergence: for any probability distri-
bution μ on B = C[0,1] with zero mean and

∫ ‖x‖s∞ dμ(s) < ∞ for some s > 2,
that is pre-Gaussian, that is, there exists a Gaussian measure ν on C[0,1] with
zero mean and the same covariance as μ, one has ζs-convergence of a rescaled
sum of independent random variables with distribution μ toward ν; see inequal-
ity (48) in [32]. However, pre-Gaussian probability distributions supported by a
bounded subset of C[0,1] that do not satisfy the central limit theorem can be found
in [30]. For the central limit theorem in Banach spaces, see [18]. Note that con-
vergence with respect to ζs implies convergence of the characteristic functions,
hence ζs(Xn,X) → 0 implies that L(X) is the only possible accumulation point
of (L(Xn))n≥0 in the weak topology.
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2.2. The Zolotarev metric on (D[0,1], dsk). In this section, we discuss our use
of the Zolotarev metric on the metric space (D[0,1], dsk) of càdlàg functions on
[0,1] endowed with the Skorokhod metric defined by

dsk(f, g)

= inf
{
ε > 0|max

{∣∣f (t) − g
(
τ(t)

)∣∣, ∣∣τ(t) − t
∣∣}< ε for all t ∈ [0,1]

for some monotonically increasing and bijective τ : [0,1] → [0,1]}.
The Borel σ -algebra of the induced topology is denoted by Bsk. For a general intro-
duction to this space, see Billingsley [5], Chapter 3. In particular, (D[0,1], dsk) is a
Polish space, Bsk coincides with the σ -algebra generated by the finite-dimensional
projections, the σ -algebra generated by the open spheres (with respect to the uni-
form metric) and the σ -algebra generated by all norm-continuous linear forms on
D[0,1]; see [24], Theorem 3. Subsequently, norm on D[0,1] will always refer to
the uniform norm ‖ · ‖∞. Moreover, the norm function D[0,1] → R, f �→ ‖f ‖∞
is Bsk–B(R) measurable. By Theorem 2, respectively, Theorem 4, in [24], any
norm-continuous linear form on D[0,1] is Bsk–B(R) measurable and any norm-
continuous linear map from D[0,1] to D[0,1] is Bsk–Bsk measurable. Recently,
Janson and Kaijser [16], Theorem 15.8, generalized the latter result and proved
that any norm-continuous k-linear form on D[0,1] is (Bsk)

⊗k–B(R) measurable.
We do, however, not know whether Fs defined in (7) based on the uniform norm
on D[0,1] is a subset of the Bsk–B(R) measurable functions. Hence, we denote the
Bsk–B(R) measurable functions by E and define the Zolotarev metrics analogously
to (8) by

ζs(μ, ν) = sup
f ∈Fs∩E

∣∣E[f (X) − f (Y )
]∣∣,

where X and Y are (D[0,1], dsk)-valued random variables with L(X) = μ and
L(Y ) = ν.

We denote by Ms(D[0,1]) the set of probability distributions μ on D[0,1] with∫ ‖x‖s∞ dμ(x) < ∞ and for ν ∈Ms(D[0,1]), we define Ms(ν) to be the subset of
measures μ from Ms(D[0,1]) satisfying (10). Then ζs is a metric on Ms(ν) for all
ν ∈ Ms(D[0,1]), Lemmas 1 and 2, inequality (11), Lemma 5 where (12) is to be
replaced by ζs(X,Y ) ≤ �s(X,Y ), and the implication ζs(Xn,X) → 0 ⇒ Xn → X

in distribution if 0 < s ≤ 1 remain valid.
The situation becomes more involved concerning random linear forms and op-

erators as defined in Definition 3 in the separable Banach case. Let D[0,1]∗
and D̂[0,1] be the dual space, respectively, the space of norm-continuous en-
domorphisms on D[0,1] as in the Banach case. For reasons of measurability,
we need to restrict to smaller subspaces. Let D[0,1]∗c ⊆ D[0,1]∗ be the subset
of functions that are additionally continuous with respect to dsk. Analogously,
D̂[0,1]c ⊆ D̂[0,1] are those endomorphism which are continuous regarded as
maps from (D[0,1], dsk) to (D[0,1], dsk). We endow D[0,1]∗c with the σ -algebra
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generated by the function f �→ ‖f ‖op and all elements ϕ of D[0,1]∗∗ of the form

ϕ(a) = a(x) for some x ∈ D[0,1]. Also the σ -algebra on D̂[0,1]c is generated by
the function f �→ ‖f ‖op and the continuous linear maps ψ : D̂[0,1] → D[0,1] of
the form ϕ(a) = a(x) for some x ∈ D[0,1]. Under these conditions, we have the
same measurability results as in the Banach case and Lemma 4 remains valid.

REMARK 6. Note that we could as well develop the use of the Zolotarev met-
ric together with the contraction method for the Banach space (D[0,1],‖ · ‖∞).
This can be done analogously to the discussion of Sections 2.3 and 3 and in
fact would lead to a proof of Donsker’s theorem similar to the one given in Sec-
tion 4.1.1 when replacing the linear interpolation Sn = (Sn

t )t∈[0,1] by a constant
(càdlàg) interpolation of the random walk. However, the applicability of such a
framework seems to be limited due to measurability problems in the nonseparable
space (D[0,1],‖ · ‖∞): for example, the random function X defined by

Xt = 1{t≥U}, t ∈ [0,1]
with U being uniformly distributed on the unit interval is known to be nonmeasur-
able with respect to the Borel-σ -algebra on (D[0,1],‖ · ‖∞). However, we have
applications of the functional contraction method developed here in mind on pro-
cesses with jumps at random times. A typical example in the context of random
trees is given in Section 4.2; see also [6]. Hence, in order to even have measura-
bility of the processes considered it requires to work with the coarser Skorokhod
topology than the uniform topology and this is our reason for using the Zolotarev
metric on (D[0,1], dsk) instead of (D[0,1],‖ · ‖∞).

REMARK 7. Although the methodology developed below covers sequences
(Xn)n≥0 of processes with jumps at random times these times will typically need
to be the same for all n ≥ n0. In particular, sequences of processes with jumps
at random times that require a (uniformly small) deformation of the time scale to
be aligned cannot be covered by this methodology. The technical reason is that in
condition (C1) below (see Section 3) the convergence of the random continuous
endomorphisms ‖A(n)

r − Ar‖s is with respect to the operator norm based on the
uniform norm which in general does not allow a deformation of the time scale.

2.3. Weak convergence on (C[0,1],‖ · ‖∞) and (D[0,1], dsk). In this subsec-
tion, we only consider the spaces (C[0,1],‖ · ‖∞) and (D[0,1], dsk).

For random variables X = (X(t))t∈[0,1], Y = (Y (t))t∈[0,1] in (C[0,1],‖ · ‖∞)

with ζs(X,Y ) < ∞ we have

ζs

((
X(t1), . . . ,X(tk)

)
,
(
Y(t1), . . . , Y (tk)

))≤ ks/2ζs(X,Y )(13)

for all 0 ≤ t1 ≤ · · · ≤ tk ≤ 1. This follows from Lemma 1 using the continuous
and linear function g :C[0,1] → Rk, g(f ) = (f (t1), . . . , f (tk)) and observing that
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‖g‖ = √
k. The bound ζs((X(t1), . . . ,X(tk)), (Y (t1), . . . , Y (tk))) ≤ ζs(X,Y ) can

be obtained if Rk is endowed with the max-norm instead of the Euclidean norm.
However, no use of this is made here. Hence, we obtain for random variables Xn,
X in (C[0,1],‖ · ‖∞), n ≥ 1, the implication

ζs(Xn,X) → 0 ⇒ Xn
f.d.d.−→ X.

Here,
f.d.d.−→ denotes weak convergence of all finite-dimensional marginals of the

processes. Additionally, if Z is a random variable in [0,1], independent of (Xn)

and X, then applying Lemma 4 with the random continuous linear form A defined
by A(f ) = f (Z) implies

ζs

(
Xn(Z),X(Z)

)≤ E
[
Zs]ζs(Xn,X).(14)

In the càdlàg case, that is, X = (X(t))t∈[0,1], Y = (Y (t))t∈[0,1] being random
variables in (D[0,1], dsk) inequality (13) remains true by Lemma 1. (The fact that
g is not continuous with respect to the product Skorokhod topology does not cause
problems since measurability is sufficient here.) Next, in general, the operator A

is no element of D[0,1]∗c . Hence, we cannot apply Lemma 4 to deduce (14). Nev-
ertheless, by Theorem 2 in [34], the convergence of the characteristic functions of
Xn(t) is uniform in t , hence we also have convergence in distribution of Xn(Z)

to X(Z). The same argument works for the moments of Xn(Z). We summarize

these properties in the following proposition, where
d−→ denotes convergence in

distribution.

PROPOSITION 8. For random variables Xn, X in (C[0,1],‖ · ‖∞) or
(D[0,1], dsk), n ≥ 1, with ζs(Xn,X) → 0 for n → ∞ we have

Xn
f.d.d.−→ X.

L(X) is the only possible accumulation point of (L(Xn))n≥1 in the weak topology.
For all t ∈ [0,1] we have

Xn(t)
d−→ X(t), E

[∣∣Xn(t)
∣∣s]→ E

[∣∣X(t)
∣∣s].

For any random variable Z in [0,1] being independent of (Xn) and X, we have

E
[∣∣Xn(Z)

∣∣s]→ E
[∣∣X(Z)

∣∣s], Xn(Z)
d−→ X(Z).

To conclude from convergence in the ζs metric to weak convergence on
(C[0,1],‖ · ‖∞) or (D[0,1], dsk), further assumptions are needed. Let, for r > 0,

Cr [0,1] := {
f ∈ C[0,1]|∃0 = t1 < t2 < · · · < t� = 1, ∀i = 1, . . . , � :

(15)
|ti − ti−1| ≥ r, f |[ti−1,ti ] is linear

}
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denote the set of all continuous functions for which there is a decomposition of
[0,1] into intervals of length at least r such that the function is piecewise linear on
those intervals. Analogously, we define

Dr [0,1] := {
f ∈ D[0,1]|∃0 = t1 < t2 < · · · < t� = 1, ∀i = 1, . . . , � :

(16)
|ti − ti−1| ≥ r, f |[ti−1,ti ) is constant, continuous in 1

}
.

THEOREM 9. Let Xn be random variables in Crn[0,1], n ≥ 0, and X a random
variable in C[0,1]. Assume that for 0 < s ≤ 3 with s = m + α as in (7)

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.(17)

Then Xn → X in distribution. The assertion remains valid if C[0,1],Crn[0,1] are
replaced by D[0,1], Drn[0,1] endowed with the Skorokhod topology and X has
continuous sample paths.

As discussed above, ζs convergence does not imply weak convergence in the
spaces C[0,1] and D[0,1] without any further assumption such as (17). In the
counterexample from [30], the sequence Sn/

√
n there converges to a Gaussian

limit with respect to ζs for 2 < s ≤ 3 where the rate of convergence is upper
bounded by the order n1−s/2; see [32] or [31]. Moreover, the sequence is piecewise
linear but the sequence rn can only be chosen of the order (cn)−2n for some c > 0.
Hence, (17) is not satisfied.

In applications such as our proof of Donsker’s functional limit law in Sec-
tion 4.1.1 or the application of the present methodology to a problem from the
probabilistic analysis of algorithms in [6], the rate of convergence will typically be
of polynomial order which is fairly sufficient.

We postpone the proof of the theorem to the end of this section and state two
variants, where the first one, Corollary 10, contains a slight relaxation of the as-
sumptions that is useful in applications such as in the analysis of the complexity
of partial match queries in quadtrees; see Section 4.2 or [6]. The second one will
be needed in the case s > 2; see Section 4.1.

COROLLARY 10. Let Xn,X be C[0,1] valued random variables, n ≥ 0, and
0 < s ≤ 3 with s = m + α as in (7). Suppose Xn = Yn + hn with Yn being C[0,1]
valued random variables and hn ∈ C[0,1], n ≥ 0, such that ‖hn − h‖∞ → 0 for a
h ∈ C[0,1] and

P
(
Yn /∈ Crn[0,1])→ 0.(18)

If

ζs(Xn,X) = o

(
log−m

(
1

rn

))
,
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then

Xn
d−→ X.

The statement remains true if C[0,1] and Crn[0,1] are replaced by D[0,1] and
Drn[0,1] endowed with the Skorokhod topology, respectively, X has continuous
sample paths and h remains continuous.

COROLLARY 11. Let Xn,Yn,X be C[0,1] valued random variables, n ≥ 0,
and 0 < s ≤ 3 with s = m + α as in (7). Suppose Xn ∈ Crn[0,1] for all n and
Yn → X in distribution. If

ζs(Xn,Yn) = o

(
log−m

(
1

rn

))
,

then

Xn
d−→ X.

The statement remains true if C[0,1] and Crn[0,1] are replaced by D[0,1] and
Drn[0,1] endowed with the Skorokhod topology, respectively, and X has continu-
ous sample paths.

In C[0,1] (or D[0,1], if the limit X has continuous paths), convergence in dis-
tribution implies distributional convergence of the supremum norm ‖Xn‖∞ by the
continuous mapping theorem. In applications, one is also interested in convergence
of moments of the supremum. For random variables X in C[0,1] or D[0,1], we
denote by

‖X‖s := (
E
[‖X‖s∞

])(1/s)∧1

the Ls -norm of the supremum norm.

THEOREM 12. Let Xn,X be C[0,1] valued random variables and 0 < s ≤ 3
with ‖Xn‖s,‖X‖s < ∞ for all n ≥ 0. Suppose one of the following conditions is
satisfied:

(1) Xn ∈ Crn[0,1] for all n and

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.(19)

(2) Xn = Yn + hn with Yn being C[0,1] valued random variables and hn ∈
C[0,1], n ≥ 0, such that ‖hn − h‖∞ → 0 for a h ∈ C[0,1],

E
[‖Xn‖s∞1{Yn /∈Crn [0,1]}

]→ 0(20)

and

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.
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(3) (Yn)n≥0 is a sequence of C[0,1] valued random variables with Yn ≤ Z al-
most surely for a C[0,1] valued random variable Z with ‖Z‖s < ∞, Xn ∈ Crn[0,1]
for all n and

ζs(Xn,Yn) = o

(
log−m

(
1

rn

))
.

Then {‖Xn‖s∞|n ≥ 0} is uniformly integrable. All statements remain true if
C[0,1],Crn[0,1] are replaced by D[0,1],Drn[0,1] and h in item (2) remains con-
tinuous.

It is of interest whether the metric space (Ms(ν), ζs) is complete. This is true
for 0 < s ≤ 1. Also, in the case that B is a separable Hilbert space, this holds true;
see Theorem 5.1 in [12]. Nevertheless, the problem remains open in the general
case, in particular in the cases C[0,1] and D[0,1] with s > 1. We can only state
the following proposition.

PROPOSITION 13. Let B = (C[0,1],‖ · ‖∞) or B = (D[0,1], dsk), s > 0 and
ν ∈ Ms(B). Furthermore, let (μn)n≥0 be a sequence of probability measures from
Ms(ν) which is a Cauchy sequence with respect to the ζs metric. Then there exists
a probability measure μ on R[0,1] such that, as n → ∞,

μn
f.d.d.−→ μ.(21)

PROOF. Let L(Xn) = μn for all n ≥ 0. According to (13), (Xn(t1), . . . ,

Xn(tk))n≥0 is a Cauchy sequence and hence it exists a random variable Yt1,...,tk

in Rk with (
Xn(t1), . . . ,Xn(tk)

) d−→ Yt1,...,tk (n → ∞).

The set of distributions of Yt1,...,tk for 0 ≤ t1 < · · · < tk ≤ 1 and k ∈ N is consistent
so there exists a process Y on the product space R[0,1] whose distribution satis-
fies (21). �

REMARK 14. If the distribution μ found in Proposition 13 has a version with
continuous paths then condition (10) for μn and μ is satisfied.

We now present proofs of the theorems and corollaries of the present sections.
Theorem 9 essentially follows directly from Theorem 2 in [2]; see also [3]. Nev-
ertheless, we present a version of the proof given there so that we can deduce the
variants and implications given in our other statements. A basic tool are Theo-
rems 2.2, 2.3 and 2.4 in Billingsley [5].
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LEMMA 15. Let (μn)n≥0,μ be probability measures on a separable met-
ric space (S, d). For r > 0, x ∈ S let Br(x) = {y ∈ S :d(x, y) < r}. If for any
x1, . . . , xk ∈ S,γ1, . . . , γk > 0 with μ(∂Bγi

(xi)) = 0 for i = 1, . . . , k it holds

μn

(⋂
i∈I

Bγi
(xi)

)
→ μ

(⋂
i∈I

Bγi
(xi)

)
,(22)

where I = {1, . . . , k}, then μn → μ weakly.
Let (S, d) = (D[0,1], dsk). Then the assertion remains true when the balls

Bγi
(xi) are still defined with respect to the uniform distance and μ(C[0,1]) = 1.

PROOF. The first part of the lemma is a special case of Theorem 2.4 in [5].
To prove the assertion in the càdlàg space, we apply Theorem 2.2 in [5] upon
choosing AP there to be the set of finite intersection of sets A where A is either a
μ-continuous open sphere (in the uniform distance) whose center lies in C[0,1] or
a measurable set with positive uniform distance from C[0,1]. Using (22) and the
inclusion-exclusion formula, it is easy to see that μn(C) → 0 for any measurable
set C with positive uniform distance from C[0,1], in particular μn(A) → μ(A)

for any A ∈ AP . Moreover, we can decompose any open set O ∈ D[0,1] (in the
Skorokhod topology) into O ′ and O \ O ′ with

O ′ :=⋃
x,δ

B‖·‖
x (δ),

where the union is over all x ∈ O ∩ C′ for a countable set C′ that is dense in
C[0,1] and δ ∈ Q+ such that B

‖·‖
x (δ) ⊆ O and B

‖·‖
x (δ) is μ-continuous. We have

O ∩ C[0,1] ⊆ O ′ since any ball in the metric dsk with center in C[0,1] contains a
concentric ball in the uniform distance. Hence,

O \ O ′ = ⋃
δ∈Q+

{
x ∈ O \ O ′ :‖y − x‖ > δ for all y ∈ C[0,1]}.

Thus, any open set O is a countable union of sets in AP which proves all condi-
tions of Theorem 2.2 in [5] to be satisfied and the claim follows. �

A main difficulty in deducing weak convergence from convergence in ζs com-
pared to the Hilbert space case is the nondifferentiability of the norm function
x �→ ‖x‖∞; see [10], page 147. We will instead use the smoother Lp-norm which
approximates the supremum norm in the sense that

Lp(x) → ‖x‖∞(23)

for any fixed x ∈ C[0,1] as p → ∞.
For the remaining part of this section, p, for fixed values or tending to infinity,

is always to be understood as an even integer with p ≥ 4. We use the Bachmann–
Landau big-O notation.
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LEMMA 16. For x, y ∈ C[0,1] let

Lp(x) =
(∫ 1

0

[
x(t)

]p
dt

)1/p

, ψp,y(x) = Lp

((
1 + [x − y]2)1/2)

.

Then Lp is smooth on C[0,1] \ {0} where 0 is the zero-function and ψp,y is smooth
on C[0,1] for all y ∈ C[0,1]. Furthermore, for k ∈ {1,2,3}, we have∥∥DkLp(x)

∥∥= O
(
pk−1L1−k

p (x)
)
,

uniformly for p and x ∈ C[0,1] \ {0}. Moreover, again for k ∈ {1,2,3},∥∥Dkψp,y(x)
∥∥= O

(
pk−1)(24)

uniformly for p and x, y ∈ C[0,1]. All assertions remain valid when C[0,1] is
replaced by D[0,1], moreover both functions Lp and ψp,y are continuous with
respect to the Skorokhod metric for all p and y ∈D[0,1].

PROOF. The smoothness properties are obvious. Differentiating Lp by the
chain rule yields

DLp(x)[h] =
(∫ 1

0

[
x(t)

]p
dt

)1/p−1 ∫ 1

0

[
x(t)

]p−1
h(t) dt.

For h ∈ C[0,1] with ‖h‖ ≤ 1 by Jensen’s inequality and Lp(h) ≤ ‖h‖, we obtain
that the right-hand side of the latter display is uniformly bounded by 1. The bounds
on the norms of the higher order derivatives follow along the same lines. Using the
same ideas, it is easy to see that

∥∥Dkψp,y(x)
∥∥= O

(
k∑

j=1

pj−1L1−j
p

(
ωy(x)

))
,

uniformly in p and x, y ∈ C[0,1] where ωy(x) = (1+|x −y|2)1/2. This gives (24).
�

Note that the convergence in (23) holds pointwise; it is easy to construct a se-
quence of continuous functions (xp)p≥0 such that Lp(xp) → 0 and ‖xp‖∞ → ∞
as p → ∞. Additionally to the obvious bound Lp(x) ≤ ‖x‖∞, we will need the
following simple lemma which contains sort of a converse of this inequality.

LEMMA 17. Let λ denote the Lebesgue measure on the unit interval and let
γ > 0 and 0 < ϑ < 1.

(a) For all f ∈Dr [0,1], we have

‖f ‖∞ ≥ γ ⇒ λ
({

t :
∣∣f (t)

∣∣≥ (1 − ϑ)γ
})≥ r.

Moreover, for any g ∈ C[0,1], there exists a δ = δ(g, γ,ϑ) > 0 such that

‖f − g‖∞ ≥ γ ⇒ λ
({

t :
∣∣f (t) − g(t)

∣∣≥ (1 − ϑ)γ
})≥ min(r, δ).
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(b) For all f ∈ Cr [0,1], we have

‖f ‖∞ ≥ γ ⇒ λ
({

t :
∣∣f (t)

∣∣≥ (1 − ϑ)γ
})≥ ϑ

2
r.

Moreover, for g ∈ C[0,1], there exists a δ = δ(g, γ,ϑ) > 0 with

‖f − g‖∞ ≥ γ ⇒ λ
({

t :
∣∣f (t) − g(t)

∣∣≥ (1 − ϑ)γ
})≥ ϑ

4
min(r, δ).

PROOF. Ad (a): The first assertion is trivial. The second one follows by choos-
ing δ > 0 small enough such that |g(x) − g(y)| ≤ ϑγ

2 for all |x − y| < δ.
Ad (b): For the first statement, assume ‖f ‖∞ ≥ γ and let [e0, e1] be an inter-

val where f attains its maximum. A geometric argument shows that the quantity
λ({t ∈ [e0, e1] : |f (t)| ≥ (1 − ϑ)γ }) is minimized when f (e0) = γ and f (e1) =
−(1 − ϑ)γ . In this case, the quantity equals ϑr/(2(2 − ϑ)) which implies the as-
sertion since 0 < ϑ < 1. Finally, the last statement follows from a combination of
the latter argument and by choosing δ > 0 again such that |g(x) − g(y)| ≤ ϑγ

2 for
all |x − y| < δ. �

We start with the proofs of Theorem 9 and its corollaries in the continuous case.

PROOF OF THEOREM 9. For r > 0, x ∈ C[0,1] let Br(x) = {y ∈ C[0,1] :‖y −
x‖∞ < r}. According to Lemma 15, we need to verify that

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
→ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
(25)

for I = {1, . . . , k} and x1, . . . , xk ∈ S,γ1, . . . , γk > 0 such that P(X ∈
(∂Bγi

(xi))) = 0. The lack of uniformity in (23) leads us to find lower and upper
bounds on the desired quantity. We will establish

lim sup
n→∞

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≤ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
(26)

and

lim inf
n→∞ P

(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
(27)

separated from each other. To this end, it is sufficient to construct functions
gi,n, g̃i,n :C[0,1] → [0,1] satisfying

g̃i,n(x) ≤ 1Bγi
(xi)(x) ≤ gi,n(x) for all x ∈ Crn[0,1],(28)

gi,n(x), g̃i,n(x) → 1Bγi
(xi)(x) for all x ∈ C[0,1] \ ∂Bγi

(xi)(29)
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and such that an

∏
i∈I gi,n, ãn

∏
i∈I g̃i,n ∈ Fs for appropriate constants an, ãn > 0

such that a−1
n ζs(Xn,X) → 0 and ã−1

n ζs(Xn,X) → 0 as n → ∞. This is sufficient
since we then may conclude

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≤ E

[∏
i∈I

gi,n(Xn)

]
(30)

≤ E
[∏
i∈I

gi,n(X)

]
+ a−1

n ζs(Xn,X)

and

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ E

[∏
i∈I

g̃i,n(Xn)

]
(31)

≥ E
[∏
i∈I

g̃i,n(X)

]
− ã−1

n ζs(Xn,X).

While this is the basic idea subsequently, the construction is slightly more in-
volved.

We first give a motivation of how to construct the functions gi,n: according
to (29), asymptotically, the functions gi,n have to separate points x ∈ C[0,1] which
are in Bγi

(xi) from those which are not. This is why we use the Lp norm. Consider
ψp,xi

as introduced in Lemma 16. If x ∈ Bγi
(xi), then ψp,xi

(x) ≤ (1 + γ 2
i )1/2

whereas if x /∈ Bγi
(xi) then lim infp→∞ ψp,xi

(x) > (1 + γ 2
i )1/2.

Let ϕ :R → [0,1] be a three times continuously differentiable function with
ϕ(u) = 1 for u ≤ 0 and ϕ(u) = 0 for u ≥ 1. For 
 ∈ R and η > 0, we denote
ϕ
,η :R+ → [0,1] by ϕ
,η(u) = ϕ((u − 
)/η).

Let gi(x) = ϕ(1+γ 2
i )1/2,η(ψp,xi

(x)). Let gi,n = gi with η = ηn ↓ 0 and p = pn ↑
∞. Then gi,n has the properties in (28) and (29).

We do not know how to construct functions g̃i,n with the properties (28)
and (29). Instead, we construct functions ḡi,n satisfying related conditions: let
0 < ϑ < 1 and x ∈ Crn[0,1]. By Lemma 17(b), we can find δ = δ(ϑ) (also de-
pending on x1, . . . , xk, γ1, . . . , γk which are kept fixed) with{‖x − xi‖∞ ≥ γi

}
⊆
{
λ
({

t :
∣∣x(t) − xi(t)

∣∣≥ γi(1 − ϑ)
})≥ ϑ

4
min(rn, δ)

}
(32)

⊆
{
ψp,xi

(x) ≥ (1 + γ 2
i (1 − ϑ)2)1/2

(
ϑ

4
min(rn, δ)

)1/p}
⊆ {

ḡi,n(x) = 0
}

with ḡi,n(x) = ϕ(1+γ 2
i (1−ϑ)2)1/2(ϑ min(rn,δ)/4)1/p−η,η(ψp,xi

(x)). This gives (28). ḡi,n

does not fulfill (29), but we have

ḡi,n(x) → 1Bγi (1−ϑ)(xi)(x)
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for x ∈ C[0,1] \ ∂Bγi(1−ϑ)(xi) and p = pn ↑ ∞, η = ηn ↓ 0 such that r
1/pn
n → 1.

This gives for every 0 < ϑ < 1 with P(X ∈ ∂Bγi(1−ϑ)(xi)) = 0 for all i ∈ I

lim
n→∞ E

[∏
i∈I

ḡi,n(X)

]
= P

(
X ∈⋂

i∈I

Bγi(1−ϑ)(xi)

)
.

Assuming that ān

∏
i∈I ḡi,n ∈Fs and letting n tend to infinity (31) rewrites as

lim inf
n→∞ P

(
Xn ∈⋂

i∈I

Bγi
(xi)

)
(33)

≥ P
(
X ∈⋂

i∈I

Bγi(1−ϑ)(xi)

)
− lim sup

n→∞
ā−1
n ζs(Xn,X),

where ān may depend on ϑ and δ. Below, we will see that the error term on the
right-hand side of (33) vanishes as n → ∞ uniformly in ϑ, δ. So, choosing ϑ ↓ 0
such that P(X ∈ ∂Bγi(1−ϑ)(xi)) = 0 for all i ∈ I the assertion

lim inf
n→∞ P

(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
follows.

It remains to show that the error terms vanish in the limit. By Lemma 16 g(x) =
ϕ
,η(ψp,y(x)) and using the mean value theorem, we obtain for m = 0,1,2∥∥g(m)(x + h) − g(m)(x)

∥∥≤ Cmpmη−(m+1)‖h‖α∞
for p ≥ 4, η < 1 and some constants Cm > 0. It is easy to check that the same is
valid for products of functions of form g with different constants, independent of
the parameters. It follows that both error terms in (30) and (33) are bounded by
C′

mpm
n η

−(m+1)
n ζs(Xn,X) for all n, uniformly in ϑ, δ, where C′

m denotes a fixed
constant for each m ∈ {0,1,2}. By (17), we can choose pn ↑ ∞ and ηn ↓ 0 such
that both r

1/pn
n → 1 and the error terms vanish in the limit. �

PROOF OF COROLLARY 10. Again, according to Lemma 15, we only have
to verify (25), for which we modify the proof of Theorem 9: first note that the
assumption of piecewise linearity of Xn and the convergence rate for ζs(Xn,X)

are not necessary for the upper bound

lim sup
n→∞

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≤ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
.

For the lower bound let ε > 0 and note that

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ P

(
Xn ∈⋂

i∈I

Bγi
(xi) ∩ {Yn ∈ Crn[0,1]}).
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We modify the functions ḡi,n(x). Let 0 < γKi
< γi such that

P
(
X ∈⋂

i∈I

BγKi
(xi)

)
≥ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
− ε

and P(X ∈ ∂BγKi
(xi)) = 0 for all i. Let 0 < ϑ < 1 and n0 be large enough such

that 
n = ‖hn −h‖∞ < mini (γKi
(1 −ϑ)∧ γ − γKi

) and P(Yn /∈ Crn[0,1]) < ε for
all n ≥ n0. By Lemma 17(b), there exists δ = δ(ϑ) such that for y ∈ Crn[0,1] with
x = y + hn and n ≥ n0{‖x − xi‖∞ ≥ γi

}
⊆ {‖y + h − xi‖∞ ≥ γKi

}
⊆
{
λ
({

t :
∣∣y(t) + h(t) − xi(t)

∣∣≥ γKi
(1 − ϑ)

})≥ ϑ

4
min(rn, δ)

}
⊆
{
λ
({

t :
∣∣x(t) − xi(t)

∣∣≥ γKi
(1 − ϑ) − 
n

})≥ ϑ

4
min(rn, δ)

}
⊆
{
ψp,xi

(x) ≥ (1 + (
γKi

(1 − ϑ) − 
n

)2)1/2
(

ϑ

4
min(rn, δ)

)1/p}
⊆ {

ḡi,n(x) = 0
}

with ḡi,n(x) = ϕ(1+(γKi
(1−ϑ)−
n)2)1/2(ϑ min(rn,δ)/4)1/p−η,η(ψp,xi

(x)). Hence,

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ E

[∏
i∈I

ḡi,n(Xn)1{Yn∈Crn [0,1]}
]

≥ E
[∏
i∈I

ḡi,n(Xn)

]
− ε

for n ≥ n0. The upper bound of the error term ā−1
n ζs(Xn,X) is a function of p and

η so it is uniform in 
n,ϑ, δ. Following the same lines as in the proof of Theorem 9
gives

lim inf
n→∞ P

(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≥ P

(
X ∈⋂

i∈I

BγKi
(xi)

)
− ε

≥ P
(
X ∈⋂

i∈I

Bγi
(xi)

)
− 2ε.

Since ε > 0 was arbitrary, the result follows. �

PROOF OF COROLLARY 11. In the setting of the proof of Theorem 9,
(30) rewrites as

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)

≤ E
[∏
i∈I

gi,n(Xn)

]
≤ E

[∏
i∈I

gi,n(Yn)

]
+ a−1

n ζs(Xn,Yn)

= E
[∏
i∈I

gi,n(Yn)

]
− E

[∏
i∈I

gi,n(X)

]
+ E

[∏
i∈I

gi,n(X)

]
+ a−1

n ζs(Xn,Yn).
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We may choose Yn → X almost surely. On the event {X ∈ Bγi
(xi)}, we have

limn gi,n(Yn) = limn gi,n(X) = 1 and on {X /∈ Bγi
(xi)} we have limn gi,n(Yn) =

limn gi,n(X) = 0. Since P(X ∈ ∂Bγi
(xi)) = 0, it follows∏

i∈I

gi,n(Yn) −∏
i∈I

gi,n(X) → 0

for n → ∞ almost surely and dominated convergence yields

lim sup
n→∞

P
(
Xn ∈⋂

i∈I

Bγi
(xi)

)
≤ P

(
X ∈⋂

i∈I

Bγi
(xi)

)
,

just like in the proof of Theorem 9. The lower bound follows similarly. �

We now head over to the case of càdlàg functions. We only discuss the approach
in the proof of Theorem 9. Following exactly the same arguments as in the contin-
uous case and using the additional statements of Lemmas 16 and 17(a), it is easy to
see that we also obtain (25) if the balls Bγi

(xi) are defined with the uniform metric
in D[0,1]. Remember that we still have xi ∈ C[0,1]. Thus, Lemma 15 yields the
assertion.

The proof of Theorem 12 is close to the one of Lemma 5.3 in [12]. The Lp

approximation of the supremum norm complicates the argument slightly. We only
give all details in the continuous case.

PROOF OF THEOREM 12. Suppose 0 ≤ s ≤ 3 and that the first assumption
of Theorem 12 is satisfied. Let κ :R+

0 → R+
0 be a smooth, monotonic function

with κ(u) = 0 for u ≤ 1
2 and κ(u) = us for u ≥ 1. We may as well assume that

the interpolation for 1
2 ≤ u ≤ 1 is done smoothly such that we have κ(u) ≤ us for

1
2 ≤ u ≤ 1, thus κ(u) ≤ us for all u ∈ R+

0 . Let f,f (p) :C[0,1] → R be given by

f (x) = κ
(‖x‖∞

)
,

f (p)(x) = κ
(
Lp(x)

)
.

By Lemma 16, the restrictions of Lp and f (p) to C[0,1] \ {0} are smooth. Fur-
thermore, all derivatives of f (p) vanish for ‖x‖∞ < 1/2 which implies that f (p)

is smooth on C[0,1]. Again, by Lemma 16 it is easy to check that for any
k ∈ {1, . . . ,m + 1}, ∥∥Dkf (p)(x)

∥∥= O
(
pk−1Ls−k

p (x)
)
,

uniformly in p and x ∈ C[0,1]. Let x, y ∈ C[0,1] with Lp(x),Lp(y) ≤ 2‖x −
y‖∞. Then∥∥Dmf (p)(x) − Dmf (p)(y)

∥∥ ≤ ∥∥Dmf (p)(x)
∥∥+ ∥∥Dmf (p)(y)

∥∥
= O

(
pm−1‖x − y‖α∞

)
.
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Conversely let 2‖x − y‖∞ ≤ Lp(x) [the case 2‖x − y‖∞ ≤ Lp(y) being anal-
ogous]. Then, by the mean value theorem, there exists z ∈ [x, y] := {λx + (1 −
λ)y|λ ∈ [0,1]}, such that∥∥Dmf (p)(x) − Dmf (p)(y)

∥∥= ∥∥Dm+1f (p)(z)
∥∥ · ‖x − y‖∞

= O
(
pmLα−1

p (x)
) · ‖x − y‖∞

= O
(
pm‖x − y‖α∞

)
.

Hence, there is a constant c > 0 such that cp−mf (p) ∈ Fs for all p ≥ 4. We define,
for r > 0,

fr(x) := crsf (x/r),

f (p)
r (x) := crsf (p)(x/r).

Then p−mf
(p)
r ∈ Fs . Furthermore, fr(x) and f

(p)
r (x) are bounded by c‖x‖s

for all x ∈ C[0,1], uniformly in p. For any fixed x we have fr(x) → 0 and
supp≥4 f

(p)
r (x) → 0 as r → ∞. Hence, by E[‖X‖s] < ∞ and dominated con-

vergence this implies

E
[
sup
p≥4

f (p)
r (X)

]
→ 0 (r → ∞).(34)

By the definition of ζs , we have

E
[
f (p)

r (Xn)
]≤ E

[
f (p)

r (X)
]+ pmζs(Xn,X).

By the definition of fr , for ‖x‖ > r we have ‖x‖s = c−1fr(x). Hence,

E
[‖Xn‖s∞1{‖Xn‖∞≥2r}

]
= c−1E

[
fr(Xn)1{‖Xn‖∞≥2r}

]
≤ c−1E

[
f (p)

r (Xn)
]+ c−1(E[(fr(Xn) − f (p)

r (Xn)
)
1{‖Xn‖∞≥2r}

])
(35)

≤ c−1E
[
f (p)

r (X)
]+ c−1pmζs(Xn,X)

+ c−1(E[(fr(Xn) − f (p)
r (Xn)

)
1{‖Xn‖∞≥2r}

])
.

Now, let ε > 0 be arbitrary. By (34), fix r > 0 such that E[f (p)
r (X)] < ε for all

p ≥ 4. Additionally, by the given assumptions there exists a sequence pn ↑ ∞
such that

log rn

pn

→ 0, pm
n ζs(Xn,X) → 0 (n → ∞).

Therefore, let N0 be large enough such that pm
n ζs(Xn,X) < ε for all n ≥ N0. It

remains to bound the third summand in (35). Using Lemma 17(a), piecewise lin-
earity of Xn implies that for all 0 < ϑ < 1,

Lp(Xn) ≥ ‖Xn‖∞(1 − ϑ)

(
ϑrn

2

)1/pn

.
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In particular, we have Lp(Xn) ≥ ‖Xn‖∞
2 for all n sufficiently large. For those n and

‖Xn‖ > 2r we also have f
(p)
r (Xn) = cLs

p(Xn). This yields

E
[(

fr(Xn) − f (p)
r (Xn)

)
1{‖Xn‖∞≥2r}

]
(36)

= cE
[(‖Xn‖s∞ − Ls

p(Xn)
)
1{‖Xn‖∞≥2r}

]
≤ c

(
1 − 2−s)E[‖Xn‖s∞1{‖Xn‖∞≥2r}

]
(37)

for all n sufficiently large. Increasing N0 if necessary, inserting (37) into (35) and
rearranging terms implies

E
[‖Xn‖s∞1{‖Xn‖∞≥2r}

]≤ 21+sc−1ε

for all n ≥ N0. Since ε was arbitrary, the assertion follows.
Now, suppose the second assumption is satisfied. Then we have to modify the

last part of the proof. In (36), we can decompose

Ls
p(Xn) = Ls

p(Xn)1{Yn∈Crn [0,1]} + Ls
p(Xn)1{Yn /∈Crn [0,1]}.

Using Ls
p(Xn) ≤ ‖Xn‖s∞, the assumptions guarantee the expectation of the second

term to be small in the limit n → ∞. For the first one, using similar arguments as
above, given {Yn ∈ Crn[0,1]}, we find

Lp(Xn) ≥ ‖Xn‖∞
2

− 2
n

with 
n = ‖hn −h‖∞ for all n sufficiently large. Proceeding as in the first part, we
obtain the result. Given the third assumption, it only remains to bound E[f (p)

r (Yn)]
which appears instead of E[f (p)

r (X)] by E[f (p)
r (Z)] in (35). �

3. The contraction method. In this section, the contraction method is devel-
oped first for a general separable Banach space B . Then the framework is special-
ized to the cases (C[0,1],‖ ·‖∞) and (D[0,1], dsk). For this section, B will always
denote a separable Banach space or (D[0,1], dsk).

We recall the recursive equation (2). We have

Xn
d=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0,(38)

where A
(n)
1 , . . . ,A

(n)
K are random continuous linear operators, b(n) is a B-valued

random variable, (X
(1)
n )n≥0, . . . , (X

(K)
n )n≥0 are distributed like (Xn)n≥0, and

I (n) = (I
(n)
1 , . . . , I

(n)
K ) is a vector of random integers in {0, . . . , n}. Moreover,

(A
(n)
1 , . . . ,A

(n)
K , b(n), I (n)), (X(1)

n )n≥0, . . . , (X
(K)
n )n≥0 are independent and n0 ∈ N.

Recall that in order to be a random continuous linear operator, A has to take
values in the set of continuous endomorphisms on C[0,1], respectively, the set
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of norm-continuous endomorphisms that are continuous with respect to dsk on
D[0,1] such that A(x)(t) is a real-valued random variable for all x ∈ C[0,1], re-
spectively, x ∈ D[0,1] and t ∈ [0,1]. In D[0,1], we additionally have to guarantee
‖A‖op to be a real-valued random variable; see Section 2.2.

We make assumptions about the moments and the asymptotic behavior of the
coefficients A

(n)
1 , . . . ,A

(n)
K , b(n). For a random continuous linear operator A, we

write

‖A‖s := E
[‖A‖s

op
]1∧(1/s)

.

We consider the following conditions with an s > 0:

(C1) We have ‖X0‖s, . . . ,‖Xn0−1‖s , ‖A(n)
r ‖s,‖b(n)‖s < ∞ for all r =

1, . . . ,K and n ≥ 0 and there exist random continuous linear operators A1, . . . ,AK

on B and a B-valued random variable b such that, as n → ∞,

γ (n) := ∥∥b(n) − b
∥∥
s +

K∑
r=1

(∥∥A(n)
r − Ar

∥∥
s + ∥∥1{I (n)

r ≤n0}A
(n)
r

∥∥
s

)→ 0(39)

and for all � ∈ N,

E
[
1{I (n)

r ∈{0,...,�}∪{n}}
∥∥A(n)

r

∥∥s
op

]→ 0.(40)

(C2) We have

L :=
K∑

r=1

E
[‖Ar‖s

op
]
< 1.

The limits of the coefficients determine the limiting operator T from (5):

T :M(B) → M(B),
(41)

μ �→ L
(

K∑
r=1

ArZ
(r) + b

)
,

where (A1, . . . ,AK,b), Z(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K) have
distribution μ.

(C3) The map T has a fixed point η ∈ Ms(B), such that L(Xn) ∈ Ms(η) for
all n ≥ n0.

The existence of a fixed point is not in general implied by contraction properties
of T with respect to a Zolotarev metric due to the lack of knowledge of complete-
ness of the metric on a the space B . However, we can argue that there is at most
one fixed point of T in Ms(η):
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LEMMA 18. Assume the sequence (Xn)n≥0 satisfies (38). Under conditions
(C1)–(C3), we have T (Ms(η)) ⊆Ms(η) and

ζs

(
T (μ),T (λ)

)≤ Lζs(μ,λ) for all μ,λ ∈ Ms(η).

In particular, the restriction of T to Ms(η) is a contraction and has the unique
fixed-point η.

PROOF. Let μ ∈ Ms(η). Recall that we have s = m + α with m ∈ N0 and
α ∈ (0,1]. We introduce an accompanying sequence

Qn :=
K∑

r=1

A(n)
r

(
1{I (n)

r <n0}X
(r)

I
(n)
r

+ 1{I (n)
r ≥n0}Z

(r))+ b(n), n ≥ n0,(42)

where (A
(n)
1 , . . . ,A

(n)
K , b(n)), Z(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K)

have distribution μ.
We first show that L(Qn) ∈ Ms(η) for all n ≥ n0. Condition (C1), conditioning

on the coefficients and Minkowski’s inequality, implies E[‖Qn‖s∞] < ∞ for all n.
For s ≤ 1, we already obtain L(Qn) ∈ Ms(η).

For s > 1, we choose arbitrary 1 ≤ k ≤ m and multilinear and bounded
f :Bk →R. We have

E
[
f (Z, . . . ,Z)

]= E
[
f (Xn, . . . ,Xn)

]
= E

[
f

(
K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), . . . ,

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n)

)]
.

To show L(Qn) ∈ Ms(η), we need to verify that the latter display is equal to
E[f (Qn, . . . ,Qn)]. Since f is multilinear, both terms can be expanded as a sum
and it suffices to show that the corresponding summands are equal:

E
[
f
(
C

(n)
j1

, . . . ,C
(n)
jk

)]= E
[
f
(
D

(n)
j1

, . . . ,D
(n)
jk

)]
,(43)

where j1, . . . , jk ∈ {1, . . . ,K} and for each i ∈ {1, . . . , k} we either have

C
(n)
ji

= A
(n)
ji

X
(ji)

I
(n)
ji

and D
(n)
ji

= A
(n)
ji

(
1{I (n)

ji
<n0}X

(ji)

I
(n)
ji

+ 1{I (n)
ji

≥n0}Z
(ji)
)

(44)

or

C
(n)
ji

= b(n) and D
(n)
ji

= b(n).(45)

The equality in (43) is obvious for the case where we have (45) for all i = 1, . . . , k.
For the other cases, we have (44) for at least 1 ≤ � ≤ k arguments of f , say, for
simplicity of presentation, for the first � with 1 ≤ �1 < · · · < �d = � such that
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js = j�i
for all s = �i−1 + 1, . . . , �i, i = 1, . . . , d and j�i

pairwise different for
i = 1, . . . , d (by convention �0 := 0). The claim in (43) reduces to

E
[
f
(
C

(n)
j�1

, . . . ,C
(n)
j�1

,C
(n)
j�2

, . . . ,C
(n)
j�d

, b(n), . . . , b(n))]
(46)

= E
[
f
(
D

(n)
j�1

, . . . ,D
(n)
j�1

,D
(n)
j�2

, . . . ,D
(n)
j�d

, b(n), . . . , b(n))].
We will prove that, for each p ∈ {1, . . . , d},

E
[
f
(
C

(n)
j�1

, . . . ,C
(n)
j�p−1

,C
(n)
j�p

, . . . ,C
(n)
j�p

,D
(n)
j�p+1

, . . . ,D
(n)
j�d

, b(n), . . . , b(n))](47)

= E
[
f
(
C

(n)
j�1

, . . . ,C
(n)
j�p−1

,D
(n)
j�p

, . . . ,D
(n)
j�p

,

(48)
D

(n)
j�p+1

, . . . ,D
(n)
j�d

, b(n), . . . , b(n))],
which in turn implies (46). Abbreviating Y

(r)
i = (1{i<n0}X

(r)
i +1{i≥n0}Z(r)) and de-

noting by ϒ the joint distribution of (A
(n)
j�1

, . . . ,A
(n)
j�d

, I
(n)
j�1

, . . . , I
(n)
j�d

, b(n)) we have

E
[
f
(
C

(n)
j�1

, . . . ,C
(n)
j�i−1

,C
(n)
j�i

, . . . ,C
(n)
j�i

,D
(n)
j�i+1

, . . . ,D
(n)
j�d

, b(n), . . . , b(n))]
=
∫

f (α1x1, . . . , αp−1xp−1, αpxp, . . . , αpxp,

αp+1xp+1, . . . , αdxd, b, . . . , b)

× dPXi1
(x1) · · ·dPXip

(xp) dPYip+1
(xp+1) · · ·dPYid

(xd)

× dϒ(α1, . . . , αd, i1, . . . , id , b)

=
∫

E
[
g(Xip, . . . ,Xip)

]
dPXi1

· · ·dPXip−1
dPYip+1

· · ·dPYid
dϒ,

where, for all fixed α1, . . . , αd, i1, . . . , id, b, x1, . . . , xp−1, xp+1, . . . , xd , we use
the bounded and multilinear function g :B�p−�p−1 →R,

g(y1, . . . , y�p−�p−1)

:= f (α1x1, . . . , αp−1xp−1, αpy1, . . . , αpy�p−�p−1,

αp+1xp+1, . . . , αdxd, b, . . . , b).

Since L(Xm),L(Z) ∈ Ms(η) for all m ≥ n0 we can replace Xip by Yip . This
shows the equality (47), hence (43). Altogether, we obtain L(Qn) ∈ Ms(η) for
all n ≥ n0.

Now, we show T (μ) ∈ Ms(η). Let W be a random variable with distri-
bution T (μ). By (C2), in particular, ‖Ar‖s < ∞ for r = 1, . . . ,K , by (C1)
we have ‖b‖s < ∞. Thus, as for Qn, from Minkowski’s inequality we obtain
E[‖W‖s∞] < ∞, hence T (μ) ∈ Ms(η) for s ≤ 1. For the case s > 1, we consider
again arbitrary 1 ≤ k ≤ m and multilinear and bounded f :Bk → R. It suffices
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to show E[f (Qn, . . . ,Qn)] = E[f (W, . . . ,W)] for some n ≥ n0. In fact, we will
show that limn→∞ E[f (Qn, . . . ,Qn)] = E[f (W, . . . ,W)]. For this, we expand

E
[
f (W, . . . ,W)

]= E

[
f

(
K∑

r=1

ArZ
(r) + b, . . . ,

K∑
r=1

ArZ
(r) + b

)]

into summands corresponding to (43) and have to show that

lim
n→∞ E

[
f
(
D

(n)
j1

, . . . ,D
(n)
jk

)]= E
[
f (Ej1, . . . ,Ejk

)
]
,(49)

where j1, . . . , jk ∈ {1, . . . ,K}. For each i ∈ {1, . . . , k}, we have in case (44) that
Eji

= Aji
Z(ji), in case (45) that Eji

= b. We obtain, introducing a telescoping sum
and using Hölder’s inequality,∣∣E[f (D(n)

j1
, . . . ,D

(n)
jk

)]− E
[
f (Ej1, . . . ,Ejk

)
]∣∣

=
∣∣∣∣∣

k∑
q=1

E
[
f
(
Ej1, . . . ,Ejq−1,D

(n)
jq

, . . . ,D
(n)
jk

)

− f
(
Ej1, . . . ,Ejq ,D

(n)
jq+1

, . . . ,D
(n)
jk

)]∣∣∣∣∣
≤

k∑
q=1

∣∣E[f (Ej1, . . . ,Ejq−1,D
(n)
jq

− Ejq ,D
(n)
jq+1

, . . . ,D
(n)
jk

)]∣∣
≤

k∑
q=1

‖f ‖∥∥D(n)
jq

− Ejq

∥∥
k

q−1∏
v=1

‖Ejv‖k

k∏
v=q+1

∥∥D(n)
jv

∥∥
k.

Note that the ‖Ejv‖k and ‖D(n)
jv

‖k are all uniformly bounded by independence,
(C1), and ‖X0‖s, . . . ,‖Xn0−1‖s , ‖Z‖s < ∞. Hence, it suffices to show that

‖D(n)
jv

− Ejv‖k → 0 for all jv . In case (45), this is ‖b(n) − b‖k → 0 by condi-
tion (C1). In case (45), we have, abbreviating r = ji ,∥∥A(n)

r

(
1{I (n)

r <n0}X
(r)

I
(n)
r

+ 1{I (n)
r ≥n0}Z

(r))− ArZ
(r)
∥∥
k

≤ ∥∥(A(n)
r − Ar

)
Z(r)

∥∥
k + ∥∥A(n)

r

(
1{I (n)

r <n0}
(
X

(r)

I
(n)
r

− Z(r)))∥∥
k.

The first summand of the latter display tends to zero by independence, ‖Z‖s < ∞
and condition (C1). The second summand tends to zero applying Hölder’s in-
equality, condition (C1), which implies that ‖A(n)

r ‖s in uniformly bounded,
‖X0‖s, . . . ,‖Xn0−1‖s,‖Z‖s < ∞ and conditions (C1) and (C3). Altogether we
obtain T (μ) ∈Ms(η).
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Let μ,λ ∈ Ms(η). Conditioning on the coefficients, using Lemma 1 and (11),
it follows that

ζs

(
T (μ),T (λ)

)≤ ( K∑
r=1

E
[‖Ar‖s

op
])

ζs(μ,λ).

Thus, by condition (C2), the restriction of T to Ms(η) is a contraction with respect
to ζs .

Assume, μ was a fixed point of T as well. Then the contraction property implies

ζs(μ,η) = ζs

(
T (μ),T (η)

)≤ Lζs(μ,η),

hence ζs(μ,η) = 0. Since the ζs-distance is a metric on Ms(η) it follows μ = η.
�

We now turn to the problem of convergence of the sequence (Xn)n≥0 to the
fixed-point η.

Aiming to proof Xn → X condition (C1) is natural in the context of contraction
method. Condition (C2) is necessary if working with ζs metrics. We will discuss
this in detail for the cases C[0,1] and D[0,1] below. The existence of a solution
of the fixed-point equation in condition (C3) is required since we miss knowl-
edge about completeness of the ζs metrics. If μ ∈ Ms(B), then (T n(μ))n≥0 is a
Cauchy sequence with respect to ζs , the proof being similar to the one of the pre-
vious lemma. Then, for B = C[0,1] or B = D[0,1], by Proposition 13, all finite-
dimensional marginals of T n(μ) converge to the corresponding marginals of some
measure ν on R[0,1], the natural candidate for a fixed-point of (41). In the applica-
tion discussed in Section 4.2, the solution of the fixed-point equation (69) is con-
structed via a sequence (Zn)n≥0 of random variables that satisfy L(Zn) = T n(μ)

and converge uniformly almost surely (cf. [6] for details). The starting point is the
Dirac measure μ = δf with a specific function f ∈ C[0,1].

The following proposition uses the ideas developed so far to infer convergence
of Xn to X in the ζs distance. The proof extends a similar proof for the case
B = Rd ; see [22], Theorem 4.1. We draw further implications from this proof;
see Corollary 21.

PROPOSITION 19. Let (Xn)n≥0 satisfy recurrence (38) with conditions
(C1)–(C3). Then for the fixed-point η = L(X) of T in (41) we have, as n → ∞,

ζs(Xn,X) → 0.

PROOF. We use the accompanying sequence defined in (42). Throughout the
proof, let n ≥ n0. Again since the ζs -distance is a metric, we have

ζs(Xn,X) ≤ ζs(Xn,Qn) + ζs(Qn,X).(50)
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First, we consider the second term. By (C1) and Minkowski’s inequality, absolute
moments of order s of the sequence (Qn)n≥n0 are bounded, hence using Lemma 5
it suffices to show

�s(Qn,X) → 0.

Using the same set of independent random variables X(1), . . . ,X(K) for Qn and in
the recurrence of X, we obtain

�s(Qn,X) ≤
∥∥∥∥∥

K∑
r=1

(
Ar − 1{I (n)

r ≥n0}A
(n)
r

)
X(r)

∥∥∥∥∥
s

+
∥∥∥∥∥

K∑
r=1

1{I (n)
r <n0}A

(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

+ ∥∥b(n) − b
∥∥
s

≤
K∑

r=1

(∥∥Ar − A(n)
r

∥∥
s + ∥∥1{I (n)

r <n0}
∥∥A(n)

r

∥∥
op

∥∥
s

)‖X‖s + ∥∥b(n) − b
∥∥
s

+
∥∥∥∥∥

K∑
r=1

1{I (n)
r <n0}A

(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

.

By (C1) the first two summands tend to zero. Also, the third one converges to zero
using (C1) and∥∥1{I (n)

r <n0}
∥∥A(n)

r

∥∥
opX

(r)

I
(n)
r

∥∥
s ≤ ∥∥1{I (n)

r <n0}
∥∥A(n)

r

∥∥
op

∥∥
s

∥∥∥ sup
j<n0

‖Xj‖
∥∥∥
s
.

Furthermore, conditioning on the coefficients and using that ζs is (s,+) ideal
and Lemma 1, it is easy to see that

ζs(Qn,Xn) ≤ pnζs(Xn,X) + E

[
K∑

r=1

1{n0≤I
(n)
r ≤n−1}

∥∥A(n)
r

∥∥s
opζs(XI

(n)
r

,X)

]
(51)

≤ pnζs(Xn,X) +
(

K∑
r=1

E
[∥∥A(n)

r

∥∥s
op

])
sup

n0≤i≤n−1
ζs(Xi,X),(52)

where

pn = E

[
K∑

r=1

1{I (n)
r =n}

∥∥A(n)
r

∥∥s
op

]
→ 0, n → ∞.

Combining (50) and (52) implies

ζs(Xn,X) ≤ 1

1 − pn

[
K∑

r=1

E
[∥∥A(n)

r

∥∥s
op

]
sup

n0≤i≤n−1
ζs(Xi,X) + o(1)

]
.

From this, it follows that ζs(Xn,X) is bounded. Let

η̄ := sup
n≥n0

ζs(Xn,X), η := lim sup
n→∞

ζs(Xn,X)
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and ε > 0 arbitrary. Then there exists � > 0 with ζs(Xn,X) ≤ η + ε for all n ≥ �.
Using (50), (51) and splitting {n0 ≤ I

(n)
r ≤ n − 1} into {n0 ≤ I

(n)
r ≤ �} and {� <

I
(n)
r ≤ n − 1}, we obtain

ζs(Xn,X) ≤ η̄

1 − pn

E

[
K∑

r=1

1{n0≤I
(n)
r ≤�}

∥∥A(n)
r

∥∥s
op

]

+ η + ε

1 − pn

E

[
K∑

r=1

∥∥A(n)
r

∥∥s
op

]
+ o(1),

which, by (C1), finally implies

η ≤ E

[
K∑

r=1

‖Ar‖s
op

]
(η + ε).

Since ε > 0 is arbitrary and by condition (C2), we obtain η = 0. �

REMARK 20. As pointed out in [13] for a related convergence result, the state-
ments of Lemma 18 and Proposition 19 remain true if condition (C1) is weakened
by replacing

K∑
r=1

∥∥A(n)
r − Ar

∥∥
s → 0

by

K∑
r=1

∥∥(A(n)
r − Ar

)
f
∥∥
s → 0,

∥∥A(n)
r

∥∥
s → ‖Ar‖s

for all f ∈ C[0,1] and uniform boundedness of ‖A(n)
r ‖s for all n ≥ 0 and all r =

1, . . . ,K . This follows from the given independence structure and the dominated
convergence theorem.

To be able to apply the results of the previous section to deduce weak conver-
gence from convergence in ζs for the special cases C[0,1] and D[0,1], rates of
convergence for ζs are required. We impose a further assumption on the conver-
gence rate of the coefficients to establish a rate of convergence for the process
that strengthens condition (C2). We use the Bachmann–Landau big-O notation for
sequences of numbers.

(C4) The sequence (γ (n))n≥n0 from condition (C1) satisfies γ (n) = O(R(n))

as n → ∞ for some positive sequence R(n) ↓ 0 such that

L∗ = lim sup
n→∞

E

[
K∑

r=1

∥∥A(n)
r

∥∥s
op

R(I
(n)
r )

R(n)

]
< 1.
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COROLLARY 21. Let (Xn)n≥0 satisfy recurrence (38) with conditions (C1),
(C3) and (C4). Then for the fixed-point η = L(X) of T in (41) we have, as n → ∞,

ζs(Xn,X) = O
(
R(n)

)
.

PROOF. We consider the quantities introduced in the proof of Proposition 19
again. By condition (C4), we have ζs(Qn,X) ≤ CR(n) for some C > 0 and all n.
Furthermore, we can choose γ > 0 and n1 > 0 such that

E

[
K∑

r=1

∥∥A(n)
r

∥∥s
op

R(I
(n)
r )

R(n)

]
≤ 1 − γ, pn ≤ γ

2

for n ≥ n1. Obviously, for any n2 ≥ n1, we can choose K ≥ 2C/γ such that
d(n) := ζs(Xn,X) ≤ KR(n) for all n < n2. Using (51), this implies

d(n2) ≤ pn2d(n2) + E

[
K∑

r=1

1{I (n2)
r ≤n2−1}

∥∥A(n2)
r

∥∥s
opd
(
I (n2)
r

)]+ CR(n2)

hence

d(n2) ≤ 1

1 − pn2

(
E

[
K∑

r=1

∥∥A(n2)
r

∥∥s
opKR

(
I (n2)
r

)]+ CR(n2)

)

= 1

1 − pn2

(
KR(n2)E

[
K∑

r=1

∥∥A(n2)
r

∥∥s
op

R(I
(n2)
r )

R(n2)

]
+ CR(n2)

)

≤ 1

1 − pn2

(
(1 − γ )K + C

)
R(n2) ≤ KR(n2).

Inductively, d(n) ≤ KR(n) for all n. �

We now consider the special cases C[0,1] and D[0,1]. Related to Corollary 10,
we consider the following additional assumption, where the notation Cr [0,1] de-
fined in (15) is used.

(C5) Case (C[0,1],‖ · ‖∞): we have Xn = Yn + hn for all n ≥ 0, where ‖hn −
h‖∞ → 0 with hn,h ∈ C[0,1], and there exists a positive sequence (rn)n≥0 such
that

P
(
Yn /∈ Crn[0,1])→ 0.

Case (D[0,1], dsk): we have Xn = Yn +hn for all n ≥ 0, where ‖hn −h‖∞ → 0
with hn ∈ D[0,1], h ∈ C[0,1], and there exists a positive sequence (rn)n≥0 such
that

P
(
Yn /∈ Drn[0,1])→ 0.
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We now state the main theorem of this section. It follows immediately from
Proposition 8, Corollary 10, Proposition 19 and Corollary 21.

THEOREM 22. Let (Xn)n≥0 be a sequence of random variables in (C[0,1],
‖ · ‖∞) or (D[0,1], dsk) satisfying recurrence (38) with conditions (C1), (C2),
(C3) being satisfied. Then, for L(X) = η, we have for all t ∈ [0,1]

Xn(t)
d−→ X(t), E

[∣∣Xn(t)
∣∣s]→ E

[∣∣X(t)
∣∣s].(53)

If Z is distributed on [0,1] and independent of (Xn) and X then

Xn(Z)
d−→ X(Z), E

[∣∣Xn(Z)
∣∣s]→ E

[∣∣X(Z)
∣∣s].(54)

If moreover conditions (C4) and (C5) are satisfied, where R(n) in (C4) and rn
in (C5) can be chosen with

R(n) = o

(
1

logm(1/rn)

)
, n → ∞,(55)

then we have convergence in distribution:

Xn
d−→ X.

Finally, we give sufficient criteria to verify condition (C3) for the cases C[0,1]
and D[0,1]. First, consider the general case where L(Y ) = ν is a probability distri-
bution on a separable Banach space (B,‖ · ‖) with E[‖Y‖s] < ∞. If B is a Hilbert
space, it is easy to see (and already indicated in [32] for m = 2) that for a proba-
bility measure L(X) = μ on B to be in Ms(ν) the defining properties (9) and (10)
are equivalent to E[‖X‖s] < ∞ and

E
[
ϕ1(X) · · ·ϕk(X)

]= E
[
ϕ1(Y ) · · ·ϕk(Y )

]
for all 0 < k ≤ m and continuous linear forms ϕ1, . . . , ϕn on B . A generalization
of this equivalence to Banach spaces does not hold in general, a counterexam-
ple is constructed in Janson and Kaijser [16]. However, with deeper arguments
from functional analysis, Janson and Kaijser [16] proved that this equivalence
does hold for separable Banach spaces having the approximation property, such
as C[0,1]. The case D[0,1] is also treated in [16]. Combining (9), (10) and Theo-
rems 1.3 and 16.13 in [16] implies the following lemma.

LEMMA 23. Let L(Y ) = L((Yt )t∈[0,1]) = ν and L(X) = L((Xt)t∈[0,1]) = μ

be probability measures on C[0,1]. For 0 < s ≤ 1 we have μ ∈ Ms(ν) if

E
[‖X‖s∞

]
,E
[‖Y‖s∞

]
< ∞.(56)

For 1 < s ≤ 2 we obtain μ ∈ Ms(ν) if we have condition (56) and

E[Xt ] = E[Yt ] for all 0 ≤ t ≤ 1.(57)
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For 2 < s ≤ 3 we obtain μ ∈ Ms(ν) if we have conditions (56), (57) and

Cov(Xt ,Xu) = Cov(Yt , Yu) for all 0 ≤ t, u ≤ 1.(58)

The assertions remain true if C[0,1] is replaced by D[0,1].

REMARK 24. Interpreting E[X] as a Bochner integral in the continuous case,
condition (57) is equivalent to E[X] = E[Y ]. This is due to the fact that E[X] is
a continuous function with E[X](t) = E[X(t)] and ϕ(E[X]) = E[ϕ(X)] for all
continuous linear forms ϕ on C[0,1]. Also the higher moments can be interpreted
similarly as expectations of corresponding tensor products; see [12] or, for an elab-
orate account [16].

REMARK 25. Note that condition (58) typically cannot be achieved for a
sequence (Xn)n≥0 that arises as in (2) by an affine scaling from a sequence
(Yn)n≥0 as in (1). This fundamental problem for developing a functional contrac-
tion method on the basis of the Zolotarev metrics ζs with 2 < s ≤ 3 was already
mentioned in [12], Remark 6.2. We describe a way to circumvent this problem in
our application to Donsker’s invariance principle by a perturbation argument; see
Section 4.1.

4. Applications. As applications, we first give as a toy example a short proof
of Donsker’s invariance principle in Section 4.1. In Section 4.2, we discuss further
examples from the probabilistic analysis of algorithms on partial match queries
which requires the full generality of our abstract setting. This allows to settle var-
ious long standing open questions about asymptotics of the complexity of such
queries.

4.1. Donsker’s invariance principle. Let (Vn)n∈N be a sequence of inde-
pendent, identically distributed real valued random variables with E[V1] = 0,
Var(V1) = 1 (for simplicity) and E[|V1|2+ε] < ∞ for some ε > 0. We consider
the properly scaled and linearized random walk Sn = (Sn

t )t∈[0,1], n ≥ 1, defined
by

Sn
t = 1√

n

(�nt�∑
k=1

Vk + (nt − �nt�)V�nt�+1

)
, t ∈ [0,1].

With W = (Wt)t∈[0,1], a standard Brownian motion Donsker’s function limit law
states the following.

THEOREM 26 (Donsker [11]). We have Sn d−→ W as n → ∞ in (C[0,1],
‖ · ‖∞).
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4.1.1. A contraction proof. In this section, we apply the general methodology
of Sections 2 and 3 to give a short proof of Theorem 26. For a recursive decompo-
sition of Sn and W , we define operators for β > 1,

ϕβ :C[0,1] → C[0,1], ϕβ(f )(t) = 1{t≤1/β}f (βt) + 1{t>1/β}f (1),

ψβ :C[0,1] → C[0,1], ψβ(f )(t) = 1{t≤1/β}f (0) + 1{t>1/β}f
(

βt − 1

β − 1

)
.

Note that both ϕβ and ψβ are linear, continuous and ‖ϕβ(f )‖∞ = ‖ψβ(f )‖∞ =
‖f ‖∞ for all f ∈ C[0,1], hence we have ‖ϕβ‖op = ‖ψβ‖op = 1. By construction,
we have

Sn d=
√

	n/2

n

ϕn/	n/2

(
S	n/2
)+

√
�n/2�

n
ψn/	n/2


(
Ŝ�n/2�), n ≥ 2,(59)

where (S1, . . . , Sn) and (Ŝ1, . . . , Ŝn) are independent and Sj and Ŝj are identically
distributed for all j ≥ 1. Therefore, (Sn)n≥1 satisfies recurrence (38) choosing

K = 2, I
(n)
1 = 	n/2
, I

(n)
2 = �n/2�, n0 = 2,

A
(n)
1 =

√
	n/2


n
ϕn/	n/2
, A

(n)
2 =

√
�n/2�

n
ψn/	n/2
, b(n) = 0.

In the following, let Ŵ = (Ŵt )t∈[0,1] be a standard Brownian motion, independent
of W . Properties of Brownian motion imply

W
d=
√

1

β
ϕβ(W) +

√
β − 1

β
ψβ(Ŵ )(60)

for any β > 1. Hence, the Wiener measure L(W) is a fixed point of the operator T

in (41) with

K = 2, A1 =
√

1

β
ϕβ, A2 =

√
β − 1

β
ψβ, b = 0.(61)

For β = 2, the coefficients in (59) converge to the ones in (60), that is, as n → ∞,√
	n/2


n
→ 1√

2
,

√
�n/2�

n
→ 1√

2
,

but the coefficients A
(n)
1 ,A

(n)
2 only converge to A1,A2 in the operator norm for n

even. Nevertheless, from the point of view of the contraction method, this suggests
weak convergence of Sn to W .

Note that the operator T associated with the fixed-point equation (60), that is,
with the coefficients in (61), satisfies condition (C2) only with s > 2. In view
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of condition (C3) and Lemma 23, we need to match the mean and covariance
structure. We have E[Sn

t ] = 0 for all 0 ≤ t ≤ 1 and a direct computation yields

Cov
(
Sn

s , Sn
t

)=
⎧⎨⎩

s, for �ns� < �nt�,
1

n

(�ns� + (ns − �ns�)(nt − �nt�)), for �ns� = �nt�.
(62)

Hence, we do not have finite ζ2+ε-distance between Sn and W since they do not
share their covariance functions. To surmount this problem, we consider a lin-
earized version of the Brownian motion W . For fixed n ∈ N, we divide the unit
interval into pieces of length 1/n and interpolate W linearly between the points
0,1/n,2/n, . . . , (n− 1)/n,1. The interpolated process Wn = (Wn

t )t∈[0,1] is given
by

Wn
t := W�nt�/n + (

nt − �nt�)(W(�nt�+1)/n − W�nt�/n), t ∈ [0,1].
We have E[Wn

t ] = 0 and Wn and Sn have the same covariance function (62) for all
n ∈ N. Furthermore, Wn has the same distributional recursive decomposition (59)
as Sn.

Note that the linearized Brownian motion does not differ much from the original
one:

LEMMA 27. We have ‖Wn − W‖∞ → 0 as n → ∞ almost surely.

PROOF. This directly follows from the uniform continuity of W . For ε > 0,
there exists a random δ > 0 such that |W(t) − W(s)| < ε for any s, t ∈ [0,1] with
|t − s| < δ. The triangle inequality implies ‖Wn − W‖∞ < 2ε for any n > 1/δ.

�

In view of Corollary 11, it suffices to prove that Sn and Wn are close with
respect to ζ2+ε . The proof of this runs along the same lines as the one for Propo-
sition 19, respectively, Corollary 21; in fact, it is much shorter due to the simple
form of the recurrence:

PROPOSITION 28. For any δ < ε/2 we have ζ2+ε(S
n,Wn) = O(n−δ) as

n → ∞.

PROOF. We have

ζ2+ε

(
Sn,Wn)= ζ2+ε

(√	n/2

n

ϕn/	n/2

(
S	n/2
)+

√
�n/2�

n
ψn/	n/2


(�S�n/2�),√
	n/2


n
ϕn/	n/2


(
W 	n/2
)+

√
�n/2�

n
ψn/	n/2


(�W �n/2�))
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≤
(	n/2


n

)1+ε/2

ζ2+ε

(
S	n/2
,W 	n/2
)

+
(�n/2�

n

)1+ε/2

ζ2+ε

(
S�n/2�,W �n/2�).

We abbreviate

dn := ζ2+ε

(
Sn,Wn), an :=

(	n/2

n

)1+ε/2

, bn :=
(�n/2�

n

)1+ε/2

and note that we have an + bn ≤ 2−ε/2 + C′/n for some constant C′ > 0 and all
n ∈N. For arbitrary δ < ε/2, we prove the assertion by induction: fix δ < δ′ < ε/2
and choose m0 ∈ N such that �n/2�−δ ≤ (n/2)−δ2ε/2−δ′

and 1+2ε/2C′/n ≤ 2δ′−δ

for all n ≥ m0. Furthermore, let C > 0 be large enough such that dn ≤ Cn−δ for
all 1 ≤ n ≤ m0. Then, for n > m0, assuming the claim to be verified for all smaller
indices,

dn ≤ and	n/2
 + bnd�n/2�

≤ C
(
an(n/2)−δ + bn(n/2)−δ2ε/2−δ′)

≤ Cn−δ2δ2ε/2−δ′
(an + bn)

≤ Cn−δ.

The assertion follows. �

Now Donsker’s theorem (Theorem 26) follows from Proposition 28, Lemma 27
and Corollary 11.

Note that our approach requires the assumption E[|V1|2+ε] < ∞ for some ε > 0,
which in Donsker’s theorem can be weakened to E[V 2

1 ] < ∞.
By Theorem 12, we directly obtain convergence of moments of the supremum.

COROLLARY 29. Suppose E[|V1|2+α] < ∞ with 0 < α ≤ 1. Then ‖Sn‖2+α∞
is uniformly integrable. Thus, E[‖Sn‖κ∞] converges to E[‖W‖κ∞] for any 0 < κ ≤
2 + α.

REMARK 30. Based on the recursion (59), it is easy to show that E[‖Sn‖k∞]
is bounded uniformly in n for integer valued k ≥ 3 if the increment V1 has finite
absolute moment of order k. In this case, we have E[‖Sn‖κ∞] → E[‖W‖κ∞] for any
real 0 < κ < k.

4.1.2. Characterizing the Wiener measure by a fixed-point property. We re-
consider the map T corresponding to the fixed-point equation (60) for the case
β = 2:

T :M
(
C[0,1])→M

(
C[0,1]), T (μ) = L

(
1√
2
ϕ2(Z) + 1√

2
ψ2(�Z)

)
,(63)
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where Z, �Z are independent with distribution L(Z) = L(�Z) = μ. Our discussion
above implies that the Wiener measure L(W) is the unique fixed point of T re-
stricted to M2+ε(L(W)) for any ε > 0. Note that M2+ε(L(W)) is the space
of the distributions of all continuous stochastic processes V = (Vt )t∈[0,1] with
E[‖V ‖2+ε∞ ] < ∞, E[Vt ] = 0 and Cov(Vt ,Vu) = t ∧ u for all 0 ≤ t, u ≤ 1. Note
that one easily verifies that T (M2+ε(L(W))) ⊂ M2+ε(L(W)) and the last part
of the proof of Lemma 18 implies that T restricted to M2+ε(L(W)) is Lipschitz-
continuous with Lipschitz constant at most L = 2−ε/2 < 1, hence L(W) is the
unique fixed point of T in M2+ε(L(W)).

We now show that a more general statement is true, the Wiener measure is
also, up to multiplicative scaling, the unique fixed point of T in the larger space
of probability measures L(V ) ∈ M(C[0,1]) with V0 = 0. For a related statement,
see also Aldous [1], page 528. The subsequent proof is based on the fact that
the centered normal distributions are the only solutions of the fixed-point equa-
tion

X
d= X + �X√

2
,(64)

where X, �X are independent, identically distributed real-valued random variables;
see Theorem 7.2.1 in [19].

THEOREM 31. Let X = (Xt)t∈[0,1] be a continuous process with X0 = 0. Then
L(X) is a fixed-point of (63) if and only if either X = 0 a.s. or there exists a
constant σ > 0, such that (σ−1Xt)t∈[0,1] is a standard Brownian motion.

PROOF. Let L(X) be a fixed point of (63) and �X = (�Xt)t∈[0,1] be independent
of X with the same distribution. The fixed point property implies

X1
d= X1 + �X1√

2
,

hence L(X1) = N (0, σ 2) for some σ 2 ≥ 0, where N (0, σ 2) denotes the centered
normal distribution with variance σ 2. This implies

X1/2
d= X1√

2
,

hence L(X1/2) = N (0, σ 2/2). Let D = {m2−n :m,n ∈ N0,m ≤ 2n} by the set
of dyadic numbers in [0,1]. By induction, we obtain L(Xt) = N (0, σ 2t) for all
t ∈ D . For the distribution of the increments, we first obtain

X1 − X1/2
d= X1√

2
,

hence L(X1 − X1/2) = N (0, σ 2/2). Again inductively, we obtain L(X1 − Xt) =
N (0, (1 − t)σ 2) for all t ∈ D . Also by induction, it follows L(Xt − Xs) =
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N (0, (t − s)σ 2) for all s, t ∈ D with s < t . Finally, continuity of X implies the
same property for all s, t ∈ [0,1]. It remains to prove independence of increments.
Denoting by X(1),X(2), . . . independent distributional copies of X, we obtain from
iterating the fixed-point property

(Xt)t∈[0,1] d=
(

2−n/2
2n∑

m=1

1{(m−1)2−n<t≤m2−n}X(m)
2nt−m+1 + 1{m2−n<t}X(m)

1

)
t∈[0,1]

for all n ∈ N. Hence, for any dyadic points 0 ≤ t1 < t2 < · · · < tk ≤ 1, choosing
n large enough, each Xti+1 − Xti can be expressed as a function of a subset of
X(1), . . . ,X(2n) these subsets being pairwise disjoint for i = 0, . . . , n − 1. Since,
D is dense in [0,1], this shows that X has independent increments. For σ = 0, we
have X = 0 a.s., otherwise σ−1X is a standard Brownian motion.

The converse direction of the theorem is trivial. �

REMARK 32. Note that we cannot cancel the assumption on continuity of X

without replacement, for example, the process

Yt =
{

Wt, t /∈ D ,
0, t ∈ D

also solves (60) and is not a multiple of Brownian motion. However, it would be
sufficient to require càdlàg paths, so C[0,1] could be replaced by D[0,1] in our
statement.

REMARK 33. Our decomposition of Brownian motion in (60) is in time. How-
ever, equation (64) suggests to also investigate a decomposition in space

(Xt)t∈[0,1] d=
(

Xt + �Xt√
2

)
t∈[0,1]

,(65)

where (Xt)t∈[0,1] and (�Xt)t∈[0,1] are independent and identically distributed.
Again, equation (65) induces a map on M(C[0,1]) that is a contraction in
ζ2+ε on the subspace M2+ε(L(W)), so the Wiener measure is the only solu-
tion in M2+ε(L(W)). In this case, we cannot remove the moment assumption
as in Theorem 31 since any centered, continuous Gaussian process solves equa-
tion (65). Using (64), it is not hard to see that there are no further solutions
of (65).

4.2. Partial match queries in quad trees. In this section, we outline recur-
rences coming up in the probabilistic analysis of the performance of data struc-
tures and discuss in detail the use and verification of our conditions (C1)–(C5) and
Theorem 22. In this example, the full generality of our setup is needed.
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For preprocessing and supporting search queries in multidimensional data var-
ious types of search trees are in use, most prominently quad trees and k-d trees.
Among various other fundamental search operations in multivariate data so-called
partial match queries are of particular importance. For a partial match query, one
specifies some of the components of the data and asks to report all data in the
given set that match the specified components and are arbitrary in the remaining
components. We will subsequently not need to introduce these data structures and
the partial match queries since there is a geometric reformulation that is discussed
and used below. For details about the computer science background and precise
definition of the structures and queries, see [6].

Consider a sequence (Ui,Vi)i≥1 of independent and identically distributed ran-
dom vectors all with the uniform distribution on the unit square [0,1]2. We iter-
atively construct a decomposition of [0,1]2 as follows. The first point (U1,V1)

decomposes the square into four rectangles by drawing the two lines through
(U1,V1) in [0,1]2 that are perpendicular to its sides. We call these line segments
the horizontal and vertical lines. The second point (U2,V2) almost surely falls into
the interior of one of the four rectangles. We recursively draw the horizontal and
vertical lines through (U2,V2) within the rectangle. Hence, we then have a decom-
position of the original square [0,1]2 into seven rectangles. Now we iterate this
process. After n − 1 steps, we have 3(n − 1) + 1 rectangles and the nth point is
used to decompose the rectangle it falls in into four new rectangle by the horizontal
and vertical lines through it; see Figure 1. We identify this decomposition of the
unit square with all the line segments drawn and call it the decomposition after n

steps.
Now fix t ∈ [0,1] and denote the number of horizontal lines in the decom-

position after n steps that are cut by the vertical line x1 = t by Cn(t); see Fig-
ures 1 and 2.

In the computer science setting, this is the measure for the complexity of a
partial match query in a random (point) quad tree where the first component is
specified as t , the second component is arbitrary and n data are inserted in the
uniform model; see [6]. We have C0(t) = 0 and C1(t) = 1 for all t ∈ [0,1]. We
consider the process (Cn(t))t∈[0,1] as a process in (D[0,1], dsk).

FIG. 1. The construction of a quad tree at times n = 1,2,3,4. The dashed line in the right most
square indicates the query line x1 = t .
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FIG. 2. Left column: A realization of the decomposition of the unit square for a quad tree of size
n = 10 and its process (Cn(t))t∈[0,1]. Right column: A realization of the decomposition of the unit
square for a quad tree of size n = 300 and the process (Xn(t))t∈[0,1]. The smooth curve indicates

the function t �→ (t (1 − t))β/2.

For a recursive decomposition of this process, we denote the numbers of
points among the first n points which fall into each of the four rectangles

generated by the first point (U1,V1) =: (U,V ) by I (n) = (I
(n)
1 , I

(n)
2 , I

(n)
3 , I

(n)
4 ).

Hence, conditionally on (U,V ), the vector I (n) has the multinomial distribution
M(n − 1;UV,U(1 − V ), (1 − U)V, (1 − U)(1 − V )), where a numbering of the
four quadrants is used. Moreover, conditionally on (U,V ) and I (n) we have that
each point set within a rectangle is a set of independent and identically distributed
points each with the uniform distribution on the particular rectangle and that the
four point sets are also independent. Hence, for processes (C

(r)
j (t))t∈[0,1] which
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are independent and independent of (U,V, I (n)), and (C
(r)
j (t))t∈[0,1] distributed as

(Cj (t))t∈[0,1] for r = 1, . . . ,4 and j ∈ N0 we obtain the recurrence(
Cn(t)

)
t∈[0,1]

d=
(

1 + 1{t<U}
[
C

(1)

I
(n)
1

(
t

U

)
+ C

(2)

I
(n)
2

(
t

U

)]
(66)

+ 1{t≥U}
[
C

(3)

I
(n)
3

(
t − U

1 − U

)
+ C

(4)

I
(n)
4

(
t − U

1 − U

)])
t∈[0,1]

.

The arguments t/U and (1 − t)/(1 − U) adjust that a vertical line x1 = t within
the whole square [0,1]2, after scaling, corresponds to the line x1 = t/U in the left
rectangles (if t < U ) and to the line x1 = (1 − t)/(1 − U) in the right rectangles
(if t ≥ U ). Note that equation (66) has exactly the form (1), where the indicators
and rescalings in time in (66) give the random linear maps Ar(n) for r = 1, . . . ,4,
and we have b(n) = 1.

The first asymptotic analysis of this process was done by Flajolet et al. [14],
where the one-dimensional averaged complexity Cn(ξ) was considered with ξ uni-
formly distributed on [0,1] and independent of the sequence (Ui,Vi)i∈N. In [14],
is shown that, as n → ∞,

E
[
Cn(ξ)

]∼ κnβ with κ = �(2β + 2)

2(�(β + 1))3 , β =
√

17 − 3

2
,

where � denotes the gamma function; see also Chern and Hwang [8] for more
refined analysis of this expectation. Recently, Curien and Joseph [9] showed

E
[
Cn(t)

]∼ χ
(
t (1 − t)

)β/2
nβ with χ = κ

B((β/2) + 1, (β/2) + 1)
,(67)

where B(·, ·) denotes the beta function (Euler integral). The analysis beyond
expectations, in particular of variances and limit laws either for the process
(Cn(t))t∈[0,1] itself or its marginals or the averaged complexity Cn(ξ) or the worst
case complexity supt∈[0,1] Cn(t) remained open.

We now discuss how our general framework from Section 3 can be applied to
a proper normalization of (Cn(t))t∈[0,1] and highlight the use and verification of
conditions (C1)–(C5), which can be shown to hold with the choice s = 2. The
details are worked out in [6]. The resulting functional limit law allows to settle the
open questions raised in the previous paragraph.

Let us first use the normalization X0(t) := 0 and

Xn(t) := Cn(t)

χnβ
, n ≥ 1, t ∈ [0,1](68)

and write Xn := (Xn(t))t∈[0,1]. See Figure 2 for a simulation of Xn. For Xn, we
obtain the recurrence

Xn
d=
(

1

χnβ
+ 1{t<U}

[(
I

(n)
1

n

)β

X
(1)

I
(n)
1

(
t

U

)
+
(

I
(n)
2

n

)β

X
(2)

I
(n)
2

(
t

U

)]

+ 1{t≥U}
[(

I
(n)
3

n

)β

X
(3)

I
(n)
3

(
t − U

1 − U

)
+
(

I
(n)
4

n

)β

X
(4)

I
(n)
4

(
t − U

1 − U

)])
t∈[0,1]



ON A FUNCTIONAL CONTRACTION METHOD 1819

with assumptions on independence and identical distributions as in (66). This sug-
gests that a limit process X = (X(t))t∈[0,1] satisfies

X
d=
(

1{t<U}
[
(UV )βX(1)

(
t

U

)
+ (U(1 − V )

)β
X(2)

(
t

U

)]
+ 1{t≥U}

[(
(1 − U)V

)β
X(3)

(
t − U

1 − U

)
(69)

+ (
(1 − U)(1 − V )

)β
X(4)

(
t − U

1 − U

)])
t∈[0,1]

,

where U and V are independent [0,1]-uniform random variables and
(X(r)(t))t∈[0,1], for r = 1, . . . ,4, are independent copies of the process X, also
independent of (U,V ). Note that (69) is a fixed-point equation of type (4).

This heuristic derivation of equation (69) can be turned into a rigorous approach
as follows. First, note that the operators A

(n)
1 and A1 on D[0,1] are given as fol-

lows: for f ∈ D[0,1], the random functions A
(n)
1 (f ) and A1(f ) are

t �→ 1{t<U}
(

I
(n)
1

n

)β

f

(
t

U

)
and t �→ 1{t<U}(UV )βf

(
t

U

)
(70)

and direct integration shows that condition (C2) is satisfied for the choice s = 2.
For condition (C3) first an appropriate process X = (X(t))t∈[0,1] which

solves (69) has to be constructed. Since we do not know the completeness of
ζ2 on an appropriate subspace of M2(D[0,1]) and also are not able to guess X

as a well-known process (as in the example in Section 4.1.1) such a process X

has to be constructed individually. In view of (67), the normalization (68), the
choice s = 2 and Lemma 23 we additionally need to have E[‖X‖2∞] < ∞ and
E[X(t)] = (t (1 − t))β/2 for t ∈ [0,1]. In [6], a sequence of random continuous
functions is constructed from a discrete recurrence approximating (69) which con-
verges uniformly. The construction uses concentration inequalities and tail bounds
for the saturation level of random quad trees. Its limit X is the stochastic process as
needed. Moreover, it can also be shown that it has continuous paths almost surely.

Our normalization does not imply that L(Xn) ∈ M2(L(X)) for all n ≥ 1, since
the normalization in (68) does violate condition (57). Thus, the processes Xn can-
not be compared with X using the ζ2 distance. To overcome this technical issue,
one can instead consider the normalization

Cn(t) − E[Cn(t)]
χnβ

, t ∈ [0,1], n ≥ 1(71)

and the shifted limit (X(t)− (t (1 − t))β/2)t∈[0,1]. Then condition (C3) is satisfied.
This also shows the necessity to allow the perturbation hn in Corollary 10 and
condition (C5) in our general setup. The centering of the sequence Xn and the
solution X only affects the additive term b(n) and the toll term b. In particular,
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condition (C2) remains valid in the centered setting and we have ‖A(n)
1 −A1‖s → 0

for any s > 0. Similarly, ‖A(n)
r − Ar‖s → 0 for r = 2,3,4. Convergence of the

additive term b(n) is equivalent to uniformity of the expansion in (67). This is
shown in [6]. It is also easily seen that (40) holds, hence condition (C1) is true.

For condition (C4), an appropriated rate of convergence of the coefficients
in (39) is needed. Note that such a rate can only be derived if a rate in the asymp-
totic expansion of the means in (67) is available. Hence, as a technical step in [6]
a polynomial additive error term of the order O(nβ−ε) for some ε > 0 is shown
to hold valid uniformly in t ∈ [0,1]. This implies that the convergence rates γ (n)

in (39) satisfy γ (n) = O(n−ε) as n → ∞. Hence, for the sequence (R(n))n≥1 in
condition (C4) we can choose R(n) = n−ε′

with 0 < ε′ ≤ ε sufficiently small such
that we obtain L∗ < 1 in (C4).

Finally, note that the jumps of your piecewise constant processes Xn occur at
the random times U1, . . . ,Un so that interval lengths between consecutive jumps
may become arbitrarily small. Condition (C5) allows to cover such instances of
processes if the probability for close jumps can be controlled. In our example, it is
easy to see that the smallest interval between jumps is of length at least n−3 with
probability of order O(1/n). Hence, condition (C5) is satisfied with the choice
rn = n−3 there. Moreover, the sequences (rn)n∈N and (R(n))n∈N are chosen such
that condition (55) is fulfilled. Hence, our main result Theorem 22 applies and we
first obtain distributional convergence of the centered normalized sequence in (71)
which also implies

Xn
d−→ X

in (D[0,1], dsk). Here, we may also apply Theorem 12 to infer convergence of
moments of ‖Xn‖ toward the moments of ‖X‖.

The use of some other search trees to support partial match queries leads to
distributional recurrences related to (66), for example, the 2-d-trees. For the appli-
cation of our framework in this case, see [6].
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