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A BAYESIAN REGRESSION TREE APPROACH TO IDENTIFY
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We introduce a Bayesian multiple regression tree model to characterize
relationships between physico-chemical properties of nanoparticles and their
in-vitro toxicity over multiple doses and times of exposure. Unlike conven-
tional models that rely on data summaries, our model solves the low sample
size issue and avoids arbitrary loss of information by combining all measure-
ments from a general exposure experiment across doses, times of exposure,
and replicates. The proposed technique integrates Bayesian trees for model-
ing threshold effects and interactions, and penalized B-splines for dose- and
time-response surface smoothing. The resulting posterior distribution is sam-
pled by Markov Chain Monte Carlo. This method allows for inference on a
number of quantities of potential interest to substantive nanotoxicology, such
as the importance of physico-chemical properties and their marginal effect
on toxicity. We illustrate the application of our method to the analysis of a
library of 24 nano metal oxides.

1. Introduction. The increasing use of engineered nanomaterials (ENM) in
hundreds of consumer products has recently raised concern about their potential ef-
fect on the environment and human health in particular. In nanotoxicology, in vitro
dose-escalation assays describe how cell lines or simple organisms are affected by
increased exposure to nanoparticles. These assays help determine hazardous ma-
terials and exposure levels. Standard dose-escalation studies are sometimes com-
pleted by more general exposure escalation protocols, where a biological outcome
is measured against both increasing concentrations and durations of exposure. Cost
and timing issues usually only allow for a small number of nanoparticles to be
comprehensively screened in any study. Therefore, both one- and two-dimensional
escalation experiments are often characterized by small sample sizes. Furthermore,
data exhibits natural clusters related to varying levels of nanoparticles bio-activity.
The two case studies presented in Section 6 provide an overview of the structure
of typical data sets obtained with both experimental protocols.
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Beyond dose-response analysis, nanomaterial libraries are also designed to in-
vestigate how a range of physical and chemical properties (size, shape, compo-
sition, surface characteristics) may influence ENM’s interactions with biological
systems. The nano-informatics literature reports several Quantitative Structure–
Activity Relationship (QSAR) models. This exercise is conceived as a framework
for predictive toxicology, under the assumption that nanoparticles with similar
properties are likely to have similar effects. Most of existing QSAR models sum-
marize or integrate experimental data across times, doses and replicates as a pre-
processing step, before applying traditional data mining or statistical algorithms
for regression. For example, Liu et al. (2011) use a modified Student’s t-statistic
to discretize outputs in two classes (toxic or nontoxic) and a logistic regression
model to relate toxicity to physico-chemical variables. Zhang et al. (2012) use the
area under the dose-response curve as a global summary of toxicity and they model
dependence on predictors via a regression tree. Both approaches, while reasonably
sensible, ignore the uncertainty associated with data summaries and can lead to
unwarranted conclusions as well as unnecessary loss of information. Patel et al.
(2014) summarize toxicity profiles using a new definition of toxicity, called the
probability of toxicity, which is defined as a linear function of nanoparticle phys-
ical and chemical properties. While this last approach solves the issue of uncer-
tainty propagation, it still makes it impossible to predict full dose-response curves
from nanoparticle characteristics. Moreover, the use of regression trees is inher-
ently appealing, as they are able to model nonlinear effects and interactions without
compromising interpretation. We aim to extend regression tree models to account
for structured multivariate outcomes, defined as toxicity profiles of nanoparticles,
measured over a general exposure escalation domain.

Multivariate extensions of the regression tree methodology have been proposed
by Segal (1992). In this paper, the original tree-building algorithm of Breiman et al.
(1984) is modified to handle multivariate responses for commonly used covariance
matrices, such as independence or autoregressive structures. De’ath (2002) pro-
poses a similar method for an independent covariance structure. Yu and Lambert
(1999) develop regression tree models for functional data, by representing each
individual response as a linear combination of spline basis functions and using
the estimated splines coefficients in multivariate regression trees. An alternative
for longitudinal responses consists of combining a tree model and a linear model:
Sela and Simonoff (2012) replace the fixed effects of the traditional linear mixed
effects model by a regression tree. The linear random effects are unchanged. Yu
et al. (2010) fit a semi-parametric model, containing a linear part and a tree part,
for multivariate outcomes in genetics. The linear part is used to model main ef-
fects of some genetic or environmental exposures. The nonparametric tree part ap-
proximates the joint effect of these exposures. Finally, Galimberti and Montanari
(2002) develop regression tree models for longitudinal data with time-dependent
covariates. In this setting, measures for the same individual can belong to different
terminal nodes.
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Other extensions of standard regression trees include Bayesian approaches,
where tree parameters become random variables. Chipman, George and McCul-
loch (1998) introduce a Bayesian regression tree model for univariate responses.
The method is based on a prior distribution and a Metropolis–Hastings algo-
rithm which generates candidate trees and identifies the most promising ones. This
methodology has since been extended to so-called treed models, where a para-
metric model is fitted in each terminal node [Chipman, George and McCulloch
(2002)], to a sum-of-trees model [Chipman, George and McCulloch (2010a)], and
to incorporate spatial random effects for merging data sets [Zhang, Shih and Müller
(2007)]. Gramacy and Lee (2008) model nonstationary spatial data by combining
Bayesian regression trees and Gaussian processes in the leaves. This approach is
extended to the multivariate Gaussian process with separable covariance structure
in Konomi et al. (2014).

Building on previous contributions, we propose a new method to analyze the
relationship between nanoparticles physico-chemical properties and their toxic-
ity in exposure escalation experiments. We extend the Bayesian methodology of
Chipman, George and McCulloch (1998) to allow for dose- and time-response ki-
netics in terminal nodes. Our work is closely related to the methodology introduced
in Konomi et al. (2014). However, our model is specifically adapted to exposure
escalation experiments, as observations for the same nanoparticle at different doses
and times cannot fall in separate leaves of the tree. Therefore, the binary splits of
the tree only capture structure activity relationships instead of the general increase
of toxicity with exposure.

A global covariance structure accounts for correlation between measurements at
different doses and times for the same nanoparticle. Our approach is able to model
nonlinear effects and potential interactions of physico-chemical properties without
making parametric assumptions about toxicity profiles. It also addresses the issues
associated with conventional QSAR models by combining evidence across mea-
surements for all doses and times in a general experimental design. The proposed
model is particularly versatile, as it provides scores of importance for physico-
chemical properties and visual assessment of the marginal effect of these proper-
ties on toxicity.

The rest of this paper is organized as follows: Section 2 describes the regres-
sion model for dose-response data and Section 3 describes the corresponding prior
model. The resulting posterior distribution and the associated MCMC algorithm
are presented in Section 4. The model is extended to the case of dose- and time-
response surfaces in Section 5. The method is applied to a library of 24 metal
oxides in Section 6 and Section 7 concludes this paper with a discussion.

2. Regression tree formulation.

2.1. Sampling model. We first consider the case of a typical dose escalation
experiment, where a biological outcome is measured over a protocol of increased
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nanoparticle concentration. This case will be expanded in Section 5 to include
more general exposure escalation designs.

Let yik(d) denote a real-valued response associated with exposure to nanoparti-
cle i and replicate k at dose d , for i ∈ {1, . . . , I }, k ∈ {1, . . . ,K} and d ∈ [0,D]. We
assume that y has been appropriately normalized and purified of experimental arti-
facts. For the two case studies of Section 6, normalization was performed for each
tray by subtracting a baseline mean response, measured in control wells where
cells were not exposed to any nanoparticle. After normalization, we indeed as-
sume independence between wells exposed to different nanomaterials on the same
tray. Current experimental protocols only allow for the observation of the outcome
y as it varies in association with a discrete prescription of dose-escalation. How-
ever, for notational convenience and without loss of generality, we maintain that y

shall be observed for any dose level d ranging from no exposure (d = 0) to a max-
imal nanoparticle concentration level (d = D). Let also x′

i = (xi1, . . . , xip) be a
p-dimensional vector of continuous physico-chemical characteristics or predictors
associated to nanoparticle i. We assume

yik(d) = f (xi , d) + εik(d),(2.1)

where f is a random mean function, depending on the dose level d and nanopar-
ticle characteristics xi , and εik ∼ N(0, σ 2

d ). More precisely, f is defined by a re-
gression tree T on the predictor space and a functional model for dose-response
curves in the terminal nodes of T . Full details about the proposed mean structure
are described in the following section.

Given f , we assume that outcomes are independent across nanoparticles and,

for any nanoparticle i, Cov(εik(d), εik′(d ′)) = σ 2ϕ
|d−d ′|
D , with ϕD ∈ [0,1]. In this

setting, two outcomes associated with the same nanoparticle at similar doses are
assumed to be more correlated than measurements taken at distant doses, for any
replicate. The major advantage of this assumption is related to a reduced represen-
tation of a high-dimensional covariance matrix, which is now fully characterized
in terms of a 1-dimensional variance parameter σ 2 and a 1-dimensional correla-
tion ϕD .

2.2. Mean structure. The binary tree T recursively splits the predictor space
into two subspaces, according to criteria of the form x·j ≤ a vs x·j > a, for a ∈ R

and j ∈ {1, . . . , p}. Each split defines two new nodes of the tree, corresponding to
two newly created subspaces of predictors. Let n be the set of terminal nodes of
tree T .

We model the dose-response curves in each terminal node as a linear combi-
nation of spline basis functions. Unlike parametric models such as log-logistic,
spline functions do not assume a particular shape for the curve. This makes our
model fully applicable to sub-lethal biological assays, which are not expected to
follow a sigmoidal dose-response dynamic. However, if needed, the spline model
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can easily allow for possible shape constraints, such as monotonicity, by using a
modified basis [Ramsay (1998)]. This flexibility makes the use of spline basis rep-
resentations potentially preferable to Gaussian process priors or similar smoothers.
A formal comparison is, however, outside the scope of this manuscript. Our chosen
functional representation is easily extended to two-dimensional response surfaces
(Section 5). Let B1(·), . . . ,BmD+δ(·) denote mD + δ uniform B-spline basis func-
tions of order δ on [0,D], with mD fixed knots. Following Eilers and Marx (1996),
we avoid choosing the location of spline interior knots by deliberately overfitting
curves with a number of knots coinciding with the dose-escalation grid. Adap-
tive smoothness is determined by using a penalty on adjacent coefficients, via a
smoothing prior that will be presented in Section 3.

If xi is in the subset corresponding to the r th terminal node of T , f (xi , d) =∑mD+δ
�=1 βr�B�(d). We will denote with βr = (βr1, . . . , βrmD+δ)

′ the vector of
splines coefficients defining the expected dose-response trajectory in the r th ter-
minal node. Furthermore, we let β define the random set of spline coefficients,
including βr from all terminal nodes (r = 1, . . . , n). The Bayesian model is com-
pleted by prior distributions on T , β , σ 2 and ϕD .

3. Prior model. We first introduce the general dependence structure of the
prior, before describing each parameter’s prior distribution. We follow Chipman,
George and McCulloch (1998), and assume that the tree is independent of variance
components σ 2 and ϕD :

p
(
T ,β, σ 2, ϕD

) = p(T ,β)p
(
σ 2)

p(ϕD) = p(β|T )p(T )p
(
σ 2)

p(ϕD).(3.1)

Moreover, conditionally on T , terminal node parameters are assumed independent:
p(β|T ) = ∏n

r=1 p(βr |T ). Therefore, the prior is fully determined by a tree prior
p(T ), terminal node parameters priors p(βr |T ), and variance parameters priors
p(σ 2) and p(ϕD).

3.1. Tree prior. The tree prior p(T ) is implicitly described by the stochastic
tree-generating process of Chipman, George and McCulloch (1998), where each
new tree is generated according to the following: (i) the probability for a node at
depth q to be nonterminal, given by α(1+q)−ν , (q = 1,2, . . .), (ii) the probability
for a node to split at a predictor x·j , (j = 1, . . . , p), given by the discrete uniform
distribution on the set of available predictors, and (iii) given the predictor x·j , the
probability for a node to split at a value a, given by the discrete uniform distribu-
tion on the set of available splitting values. Probability (i) is a decreasing function
of q , making deeper nodes less likely to split and favoring “bushy” trees. Chipman,
George and McCulloch (1998) give guidelines to choose parameters α and ν by
plotting the marginal prior distribution of the number of terminal nodes. In (ii) and
(iii), predictors and splits are available if they lead to nonempty child nodes.
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3.2. Terminal node splines coefficients prior. We follow Lang and Brezger
(2004) and consider a conditionally conjugate P-spline prior: βr |T , τ 2 ∝
exp(− 1

2τ 2 β ′
rKββr ), where τ 2 is an additional smoothing variance parameter and

Kβ =

⎛
⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎠

(3.2)

is a penalty matrix of size (mD + δ) × (mD + δ), corresponding to a first order
random walk. Note that this prior is improper, as the matrix Kβ is not of full rank.
In order to work with a proper prior in a model comparison setting, we replace
the first and last element of the diagonal with 1 + η, where η is a small constant.
The model is completed by assigning a conjugate Inverse–Gamma hyperprior to
the smoothing parameter τ 2|T ∼ IG(aτ , bτ ).

3.3. Variance components priors. We assume σ 2 ∼ IG(aσ , bσ ). For ϕD , we
choose the conjugate prior described by Rowe (2003) for autoregressive covariance
matrices, with truncated support on [0,1]. Let 0 = d1 < · · · < dnD

= D be the
dose-escalation design sequence:

p(ϕD) ∝ (
1 − ϕ2

D

)−(nD−1)/2 exp
(
−λ01 − ϕDλ02 + ϕ2

Dλ03

2(1 − ϕ2
D)

)
IϕD∈[0,1],(3.3)

where I is the indicator function,  = (vv′)1≤v,v′≤nD
is a hyperparameter ma-

trix, and (λ01, λ02, λ03) are defined through its diagonal, subdiagonal, and super-
diagonal elements as follows: λ01 = ∑nD

v=1 vv , λ02 = ∑nD−1
v=1 (vv+1 + v+1v),

λ03 = ∑nD−1
d=2 vv . In practice, we choose  = IdnD

, the identity matrix of size
nD × nD , to put more weight on low values of ϕD and assume weak prior corre-
lations between responses at different doses. This last distribution completes the
prior model. We now turn to posterior inference on parameters, given the observa-
tions.

4. Posterior inference through MCMC simulation. We are interested in
the posterior distribution p(T ,β, σ 2, ϕD, τ 2|y). The rest of this section describes
a Markov chain Monte Carlo algorithm for sampling from this distribution, as
the number of potential trees prevents direct calculations. Our Gibbs sampler
is adapted from the algorithms of Chipman, George and McCulloch (1998) and
Gramacy and Lee (2008), with changes due to the specific structure of our model.

At each iteration, the algorithm performs a joint update of (T ,β), conditionally
on the rest of the parameters, followed by standard Gibbs component-wise updates
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of each variance parameter. The joint tree and terminal nodes’ spline coefficients
update is decomposed into

T |y, σ 2, ϕD, τ 2; followed by(4.1)

βr |T ,y, σ 2, ϕD, τ 2; for r ∈ {1, . . . , n}.(4.2)

The draw of T in (4.1) is performed by the Metropolis–Hastings algorithm of
Chipman, George and McCulloch (1998), which simulates a Markov chain of trees
that converges to the posterior distribution p(T |y, σ 2, ϕD, τ 2). The proposal den-
sity suggests a new tree based on four moves: grow a terminal node, prune a pair
of terminal nodes, change the split rule of an internal node, and swap the splits of
an internal node and one of its children’s.

The target distribution can be decomposed as follows:

p
(
T |y, σ 2, ϕD, τ 2)

(4.3)
∝ p(T )

∫
p

(
y|β,T , σ 2, ϕD, τ 2)

p
(
β|T , σ 2, ϕD, τ 2)

dβ.

The expression for the integral above is given in Low-Kam et al. (2015), in a
closed form by conjugacy of the prior on β = {β1, . . . ,βn}. Therefore, the draw
of T in (4.1) does not require a reversible-jump procedure for spaces of vary-
ing dimensions, even if nodes are added or deleted. The proposal density of the
Metropolis–Hastings algorithm can be conveniently coupled with p(T ) to simplify
calculations [Chipman, George and McCulloch (2002)]. Full conditional distribu-
tions for β1, . . . ,βn in (4.2) and variance parameters σ 2, ϕD and τ 2 are available
in Low-Kam et al. (2015).

Given posterior samples, predictive statistics are easily obtained via Monte
Carlo simulation of p(y∗

i |y), for i = 1, . . . , I . More precisely, let x∗
i = xi .

At each iteration � = 1, . . . ,N , the MCMC algorithm performs a draw from

p(T ,β, σ 2, ϕD, τ 2|y), followed by a draw of y(�)∗
i from the multivariate normal

distribution p(y(�)∗
i |T ,β, σ 2, ϕD, τ 2). In our case studies (Section 6), for example,

we compare posterior summaries from the predictive distribution p(y∗
ik(d)|y) to

observed dose-response data yik(d). We perform two series of posterior predictive
checks: in the first one, the generated predictive samples are conditioned on the
full set of dose-response curves, via the tree. The objective is to assess model ade-
quacy and calibration. The second series studies model prediction accuracy using a
leave-a-curve-out validation scheme, where each data curve is compared to the cor-
responding predictive sample obtained by fitting the tree on the remaining curves.

Posterior inference based on Monte Carlo samples is also used to derive infer-
ential summaries about nontrivial functionals of the parameter/model space. The
marginal effect of a physico-chemical property x.j on the response can be repre-
sented by the partial dependence function of Friedman (2001): let x1j , . . . , xSj be
a grid of new values for x.j . Then the partial dependence function is f (xsj , d, t) =



390 C. LOW-KAM ET AL.

(
∑I

i=1 f ((xi1, . . . , xij−1, xsj , xij+1, . . . , xip), d, t))/I , where xij ′ is the ith obser-
vation of x.j ′ in the data. For all doses, plotting the average of this function over
Monte Carlo draws provides a visualization of the marginal effect of x.j . This par-
tial dependence function can also be extended to account for the joint marginal
effect of two variables.

Similarly, posterior realizations y|x can be used to report importance scores for
each variable. For all j ∈ {1, . . . ,P }, Sj = Var{E{y|x.j }}

Var{y} and Tj = E{Var{y|x.−j }}
Var{y} are

the first-order and total sensitivity indices for variable x.j , and represent the main
and total influence, respectively, of this variable on the response [Gramacy, Taddy
and Wild (2013)]. Unlike other metrics such as the variance reduction attributed
to splits on the variable, sensitivity indices are robust to leaf model specifications
and are therefore adapted for a dose-response leaf model. Both indices are defined
given an uncertainty distribution on the inputs, usually the uniform distribution on
the covariates space. We follow Gramacy, Taddy and Wild (2013) and use a Monte
Carlo scheme to approximate Sj and Tj , that accounts for unknown responses by
using predicted values for a Latin hypercube sampling design.

5. Extending the model to two-dimensional toxicity profiles. More general
exposure escalation protocols involve the observation of a biological outcome y

in association with a prescription of dose escalation d ∈ [0,D], observed for a
series of exposure times t ∈ [t0, T ]. Letting k, (k = 1, . . . ,K) be a replication
index, we define yik(d, t) as the outcome of interest, evaluated at dose d , time
t and extend the model in (2.1): yik(d, t) = f (xi , d, t) + εik(d, t), where f is
a random mean response surface and εik(d, t) ∼ N(0, σ 2

dt ). To account for depen-
dence between doses and durations of exposure, for each nanoparticle i, we assume

Cov(εik(d, t), εik′(d ′, t ′)) = σ 2ϕ
|d−d ′|
D ϕ

|t−t ′|
T , where ϕD ∈ [0,1] and ϕT ∈ [0,1]

are autocorrelation parameters.
The response surface f in the terminal nodes of T is modeled by a ten-

sor product of two one-dimensional P-splines [Lang and Brezger (2004)]. Let
B1(·), . . . ,BmD+δ(·) defined as in Section 2.2 and B1(·), . . . ,BmT +ζ (·) denote
mT + ζ B-spline basis functions of order ζ on [t0, T ], with mT fixed knots. Then,
if xi is in the subset corresponding to the r th terminal node of Tj , f (xi , d, t) =∑mD+δ

�=1
∑mT +ζ

m=1 βr�mB�(d)Bm(t), where βr = (βr11, . . . , βr(mD+δ)(mT +ζ ))
′ is a

vector of spline coefficients associated to the r th terminal node.
The prior model has the same global dependence structure as in Section 3, but

now includes an additional independent term ϕT for time-covariance. Let t0 = t1 <

· · · < tnT
= T be the sequence of exposure times when toxicity was measured. We

adapt prior (3.3) to preserve conjugacy and introduce a similar distribution for ϕT :

p(ϕD) ∝ (
1 − ϕ2

D

)−(nT (nD−1))/2 exp
(
−λ01 − ϕDλ02 + ϕ2

Dλ03

2(1 − ϕ2
D)

)
IϕD∈[0,1],(5.1)

p(ϕT ) ∝ (
1 − ϕ2

T

)−(nD(nT −1))/2 exp
(
−γ01 − ϕT γ02 + ϕ2

T γ03

2(1 − ϕ2
T )

)
IϕT ∈[0,1],(5.2)
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where γ01, γ02 and γ03 are obtained by summing elements of the diagonal, sub-
diagonal, and superdiagonal of matrix parameter prior �, constructed following
the guidelines introduced in Section 3.3. For the terminal nodes’ spline coefficient
priors, we use a spatial extension of Besag and Kooperberg (1995), a first order
random walk prior based on the four nearest neighbours of splines coefficients,
with appropriate changes for corners and edges: βr |T , τ 2 ∝ exp(− 1

2τ 2 β ′
rKββr ),

where Kβ is a penalty band matrix of size (mD +δ)(mT +ζ )× (mD +δ)(mT +ζ ),
which extends matrix (3.2) to the two-dimensional case. For posterior inference,
we add a step to generate ϕT in the Gibbs sampler of Section 4.

6. Applications. A simulation study to assess model performance is de-
scribed in Low-Kam et al. (2015). In the rest of this section we illustrate our ap-
proach with experimental results from a case study reported by Zhang et al. (2012),
measuring toxicity of 24 metal oxides on human bronchial epithelial (BEAS-2B)
cells.

6.1. Case studies background. After 24 h, Lactate Dehydrogenase (LDH) re-
lease was used to measure the death rate of cells exposed to eleven doses of metal
oxides (from 0 to 200 µg/ml), evenly spaced on the logarithmic scale. Cell death
is commonly used to screen for ENM cytotoxicity without reference to a specific
mechanism. Figure 1 shows the LDH dose-responses curves for the 24 metal ox-
ide nanoparticles. In a second assay, Propidium Iodide (PI) fluorescence was used
to indicate the percentage of cells experiencing oxidative stress through cellular
surface membrane permeability, across the same ten doses and after six times of
exposure (from 1 to 6 h, at every hour). Figure 2 shows a heatmap representation
for the PI assay, for all metal oxides, doses, times, and replicates, where responses
are color-coded from light (low) to dark (high). In both assays, seven metal oxides
(Co3O4, CoO, Cr2O3, CuO, Mn2O3, Ni2O3 and ZnO) display a notable rise for
the higher doses, suggesting toxicity.

All metal oxides are characterized by six physico-chemical properties of po-
tential interest to explain toxicity profiles: nanoparticle size in media, a measure
of the crystalline structure (b(Å)), lattice energy (�Hlattice), which measures the
strength of the bonds in the nanoparticles, the enthalpy of formation (�HMen+ ),
which is a combined measure of the energy required to convert a solid to a gas and
the energy required to remove n electrons from that gas, metal dissolution rate, and
conduction band energy (the energy to free electrons from binding with atoms).

In our analysis, we use cubic splines, that is, δ = ζ = 4, and place interior knots
at each intermediate dose from 0.39 to 100 µg/ml. Therefore, nD = mD + 2 and
nT = mT + 2. For the tree prior, we adopt the default choice of Chipman, George
and McCulloch (1998), (α, ν) = (0.95,2), which puts more weight on trees of size
2 or 3. We place relatively diffuse priors Gamma(1,1) on precision parameters
1/τ 2 and 1/σ 2. We choose  = IdnD

and � = IdnT
, assuming no prior correla-

tions between measurements at different doses and times. Finally, moves “Grow,”
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FIG. 1. Dose-response curves for LDH assay.

“Prune,” “Change” and “Swap” of the Metropolis–Hastings tree-generating algo-
rithm have probabilities 0.1, 0.1, 0.6 and 0.2, respectively. We used a total of
160,000 iterations. After discarding 80,000 iterations for burn-in, the remaining
samples for estimation were thinned to save computer storage. The rest of this
section shows the results obtained on LDH and PI assays.

6.2. LDH dose-escalation assay. Figure 3 (top) shows both sensitivity indices
described in Section 4 for the six physico-chemical properties. Figure 3 (bottom)
shows the combined marginal effect of conduction band energy and dissolution
on LDH, obtained with the partial dependence function of Friedman (2001), and
color-coded from light (low) to dark (high), for dose 200 µg/ml. The tree isolates
a first region of high toxicity, corresponding to ENM with high dissolution rates
(ZnO and CuO). This region corresponds to the first mechanism of toxicity identi-
fied by Zhang et al. (2012): highly soluble metal oxides, such as ZnO and CuO, are
more likely to release metal ions and disturb the cellular state. A second region of
toxicity on Figure 3 (left) includes metal oxides Co3O4, CoO, Cr2O3, Mn2O3 and
Ni2O3, with Ec values ranging from −4.33 eV for Mn2O3 to −4.59 eV for Ni2O3.
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FIG. 2. Heatmap for PI fluorescence assay, color-coded from light (low) to dark (high). Each row
corresponds to a nanoparticle at one dose across 6 times (1 to 6 h) and 4 replicates. For each
nanoparticle, there are 11 rows, one for each dose (0 to 200 µg/ml), arranged from bottom to top.

This region matches the second mechanism for toxicity described by Zhang et al.
(2012): the overlap of the conduction band energy of the metal oxides with the
biological redox potential of cells, ranging from −4.12 to −4.84 eV. When these
two energy levels are alike, transfer of electrons from metal oxides to cells is fa-
cilitated, disturbing the intracellular state. Note that Figure 3 (bottom) also shows
an additional split that isolates Mn2O3, whose toxicity for the LDH assay is more
comparable to ZnO and CuO (see Figure 1). Similar figures for other doses are in-
cluded in Low-Kam et al. (2015). The LDH assay illustrates how threshold effects
and interactions of physico-chemical properties are accurately captured by a tree
structure.

We perform posterior predictive checks for model fitting. Figure 4 shows the
expected posterior predictive dose-response curves for two nontoxic metal oxides
(CeO2 and Fe3O4) and two toxic ones (Cr2O3 and ZnO), with the associated 90%
intervals. All four intervals provide good coverage for the original data. The other
20 curves exhibit similar behavior and can be found in Low-Kam et al. (2015).
We also study the prediction accuracy of the model using a leave-a-curve-out val-
idation framework. Results for CeO2, Fe3O4, Cr2O3 and ZnO are presented in
Low-Kam et al. (2015). While leave-one-out predictions recover general trends,
in some cases we observe suboptimal coverage, especially in sparse areas of the
physico-chemical spectrum. For example, nanoparticles ZnO and CuO alone de-
termine tree splits on the metal dissolution parameter and, once removed, cannot
be accurately predicted by the model.
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FIG. 3. LDH assay. (Top) First order (S) and total (T) sensitivity indices for the six physio-chemical
properties in the LDH assay. (Bottom) 2-dimensional partial dependence function for marginal effect
of metal dissolution (log scale) and conduction band energy in the LDH assay at 200 µg/ml. The
toxicity response is color-coded from light (low) to dark (high). The figure also shows the projections
of the 24 metaloxides in this subspace.
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FIG. 4. Posterior predictive curves for CeO2, Fe3O4, Cr2O3 and ZnO. The points are the observed
replicates and the dashed line is the average observed response. The expected posterior predictive
curve and 90% interval are in solid lines.
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Finally, the proposed methodology is compared for validation to the Bayesian
Additive Regression Trees (BART) method of Chipman, George and McCulloch
(2010a), a sum-of-tree extension of Chipman, George and McCulloch (1998),
with the R package “BayesTree” [Chipman, George and McCulloch (2010b)]. As
BART model one-dimensional responses, we use the area under the LDH curves
(AUC) as the dependent variable. In Chipman, George and McCulloch (2010a), the
proportion of all splitting rules attributed to a variable at each draw on all trees, av-
eraged over all iterations, is proposed as a measure of variable importance, when
the number of trees is small. Results are presented in Low-Kam et al. (2015).
Variable importance scores and marginal effects from BART are similar to those
obtained with our method and confirm that the AUC is an accurate summary for
toxicity for the LDH assay. The first advantage of using a dose-response leaf model
instead of the AUC is that we avoid preliminary assessment of the data for choosing
a summary over another: toxicologists usually report several toxicity parameters
(EC50, slope), as they may convey different information. The second advantage is
better understood from a predictive perspective, as our model allows for full dose-
response dynamics instead of the AUC. A comparison with the Treed Gaussian
Process, using the R package tgp [Gramacy and Taddy (2010)], is also included
in Low-Kam et al. (2015). After tuning tgp to forbid splitting on dose (basemax,
splitmin), we can indeed reproduce the essential structure of our model using
this well-tested R library. Our findings proved to be robust to differing details in
the prior specification, as the model fit with tgp also captures the marginal effects
of the predictors metal dissolution and conduction band energy on toxicity.

6.3. PI general exposure assay. Figure 5 (top) shows the variable sensitiv-
ity indices of the six physico-chemical properties. Figure 5 (bottom) illustrates
the marginal effect of both conduction band energy and dissolution on membrane
damage, calculated with the partial dependence function, and color-coded from
light to dark, for dose 200 µg/ml and time 6 h. The tree model for PI assay also
identifies the two areas of toxicity indicated in Zhang et al. (2012), corresponding
to highly soluble metal oxides and nanoparticles whose conduction band energy
overlaps with cellular redox potential range. Additional figures for marginal ef-
fect of conduction band energy and metal dissolution, for all doses and times, are
included in Low-Kam et al. (2015). The similarity of variable importance scores
and marginal effect of conduction band energy and dissolution obtained for LDH
and PI assays indicates a strong correlation between these assays for nanoparti-
cle toxicity assessment, as noted by Zhang et al. (2012). Figure 6 illustrates the
posterior predictive 90% surface intervals for two nontoxic metal oxides (La2O3
and TiO2) and two toxic ones (Co3O4 and CuO), showing good posterior coverage
over all doses and times of exposure. Similar surfaces for the other 20 metal oxides
are plotted in Low-Kam et al. (2015). Leave-a-surface-out predictions for La2O3,
TiO2, Co3O4, and CuO are presented in the appendix and show the limitations of
the model for prediction when extrapolating to sparse areas of the covariate space,
similar to what we observed in the LDH assay.
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FIG. 5. PI uptake. (Top) First order (S) and total (T) sensitivity indices for the six physio-chemical
properties in the PI assay. (Bottom) 2-dimensional partial dependence function for marginal effect of
metal dissolution (log scale) and conduction band energy in the PI assay at 200 µg/ml and 6 h. The
toxicity response is color-coded from light (low) to dark (high). The figure also shows the projections
of the 24 metaloxides in this subspace.
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FIG. 6. Posterior predictive surfaces for La2O3, TiO2, Co3O4 and CuO. The solid line is the
expected posterior predictive surface with the associated 90% interval. The points are the observed
data replicates.

7. Discussion. We propose a Bayesian regression tree model to define rela-
tionships between physico-chemical properties of engineered nanomaterials and
their functional toxicity profiles in dose-escalation assays. As demonstrated by
the case studies, the tree structure is adapted to account for flexible models of
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structure-activity relationships, such as threshold effects and interactions. The pro-
posed model integrates information across all doses and replicates, and therefore
is adapted to small sample sizes usually found in nanotoxicology data sets. Monte
Carlo integration over the model space provides straightforward inference on non-
trivial functionals of parameters of interest and prediction of full dose-response
curves from nanoparticle characteristics. The smoothing splines representation al-
lows for easy extension of the model to two-dimensional toxicity profiles of gen-
eral exposure escalation assays as well as for modeling sub-lethal outcomes.

The convergence of Bayesian tree models should be carefully assessed for all
applications of the proposed methodology. The four moves of the Metropolis–
Hastings algorithm of Chipman, George and McCulloch (1998) work well in
our simulations and case studies, however, other applications might require addi-
tional moves to move faster through the tree space and improve convergence [see,
e.g., Gramacy and Lee (2008), Wu, Tjelmeland and West (2007)]. As illustrated
in Section 6, another potential pitfall of the model is its predictive performance
for sparsely explored nanoparticle characteristics. This issue is not specific to our
model and possible improvements would be obtained by combining multiple stud-
ies in a meta-analysis framework, with the appropriate adjustments for data het-
erogeneity or formalizing explicit prior knowledge about hazardous nanoparticle
properties.

As seen in the case study for cell death and cellular membrane permeability,
different toxicity mechanisms can be closely related. Therefore, an important op-
portunity for model extensions would be to combine different biological assays in
a single analysis, the final goal being that of understanding if nanoparticles phys-
ical and chemical properties have a differential effect on different cellular injury
pathways. This would require more sophisticated modeling strategies that will be
more likely to be useful if technological advances will allow for feasible screening
of much larger nanomaterial libraries.
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SUPPLEMENTARY MATERIAL

Additional results for online publication (DOI: 10.1214/14-AOAS797SUPPA;
.pdf). This appendix provides full conditional distributions and additional experi-
mental results.

Code (DOI: 10.1214/14-AOAS797SUPPB; .zip). This folder contains a C++
implementation of the algorithm.

http://dx.doi.org/10.1214/14-AOAS797SUPPA
http://dx.doi.org/10.1214/14-AOAS797SUPPB
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