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While functional regression models have received increasing attention
recently, most existing approaches assume both a linear relationship and a
scalar response variable. We suggest a new method, “Functional Response
Additive Model Estimation” (FRAME), which extends the usual linear re-
gression model to situations involving both functional predictors, Xj (t),
scalar predictors, Zk , and functional responses, Y (s). Our approach uses a pe-
nalized least squares optimization criterion to automatically perform variable
selection in situations involving multiple functional and scalar predictors. In
addition, our method uses an efficient coordinate descent algorithm to fit gen-
eral nonlinear additive relationships between the predictors and response.

We develop our model for novel forecasting challenges in the entertain-
ment industry. In particular, we set out to model the decay rate of demand for
Hollywood movies using the predictive power of online virtual stock markets
(VSMs). VSMs are online communities that, in a market-like fashion, gather
the crowds’ prediction about demand for a particular product. Our fully func-
tional model captures the pattern of pre-release VSM trading prices and pro-
vides superior predictive accuracy of a movie’s post-release demand in com-
parison to traditional methods. In addition, we propose graphical tools which
give a glimpse into the causal relationship between market behavior and box
office revenue patterns, and hence provide valuable insight to movie decision
makers.

1. Introduction. Functional data analysis (FDA) has become an important
topic of study in recent years, in part because of its ability to capture patterns and
shapes in a parsimonious and automated fashion [Ramsay and Silverman (2005)].
Recent methodological advances in FDA include functional principal components
analysis [James, Hastie and Sugar (2000), Rice and Wu (2001)], regression with
functional responses [Zeger and Diggle (1994)] or functional predictors [Ferraty
and Vieu (2002), James and Silverman (2005)], functional linear discriminant
analysis [Ferraty and Vieu (2003), James and Hastie (2001)], functional cluster-
ing [Bar-Joseph et al. (2003), James and Sugar (2003)] or functional forecasting
[Zhang, Jank and Shmueli (2010)].
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In this paper we are interested in the regression situation involving p different
functional predictors, X1(t), . . . ,Xp(t). Most existing functional regression mod-
els assume a linear relationship between the response and predictors [Yao, Müller
and Wang (2005a)], which is often an overly restrictive assumption. Recently, sev-
eral papers have suggested approaches for performing nonlinear functional regres-
sions [Chen, Hall and Müller (2011), Fan, James and Radchenko (2014), James
and Silverman (2005)] of the form

Yi =
p∑

j=1

fj (Xij ) + εi, i = 1, . . . , n,(1)

where the fj ’s are general nonlinear functions of Xij (t) and Yi is a centered re-
sponse. Generally speaking, these approaches operationalize estimation of equa-
tion (1) by using functional index models. While all of these approaches provide a
very flexible extension of the linear functional model, they are designed for scalar
responses only. In this paper, we generalize this framework to functional responses.
That is, we consider both functional predictors Xij (t) and functional responses
Yi(s) and allow them to be related in a nonlinear way.

We refer to our proposed nonlinear functional regression method as “Func-
tional Response Additive Model Estimation” (FRAME), which models both mul-
tiple functional predictors as well as functional responses. Beyond the extension
to functional responses, FRAME makes two additional important contributions to
the existing literature. First, it uses a penalized least squares approach to efficiently
fit high-dimensional functional models while simultaneously performing variable
selection to identify the relevant predictors, an area that has received very little at-
tention in the functional domain. FRAME is computationally tractable because we
use a highly efficient coordinate descent algorithm to optimize our criterion. Sec-
ond, FRAME extends beyond the standard linear regression setting to fit general
nonlinear additive models. Since the predictors, Xij (t), are infinite dimensional,
any functional regression model must perform some kind of dimension reduction.
FRAME achieves this goal by modeling the response as a nonlinear function of
a one-dimensional linear projection of Xij (t), a functional version of the single
index model approach. Our method uses a supervised fit to automatically project
the functional predictors into the best one-dimensional space. We believe this is
an important distinction because projecting into the unsupervised PCA space is
currently the dominant approach in functional regressions, even though it is well
known that this space need not be optimal for predicting the response. Our non-
linear approach allows us to model much more subtle relationships and we show
that, on our data, FRAME produces clear improvements in terms of prediction
accuracy.

We develop our model for novel forecasting challenges in the motion picture
industry. Providing accurate forecasts for the success of new products is crucial
for the 500 billion dollar entertainment industries (such as motion picture, mu-
sic, TV, gaming and publishing). These industries are confronted with enormous
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investments, short product life-cycles, and highly uncertain and rapidly decaying
demand. For instance, decision makers in the movie industry are keenly interested
in accurately forecasting a product’s demand pattern [Bass et al. (2001), Sawhney
and Eliashberg (1996)] in order to allocate, for example, weekly advertising bud-
gets according to the predicted rate of demand decay, that is, according to whether
a film is expected to open big and then decay fast, or whether it opens only mod-
erately but decays very slowly.

However, forecasting demand patterns is challenging since it is highly hetero-
geneous across different products. Take, for instance, the sample of movie demand
patterns in Figure 1. Here we have plotted the log weekly box office revenues for
the first ten weeks from the release date for a number of different movies. While
revenues for some movies (e.g., 13 GOING ON 30 and 50 FIRST DATES) decay
exponentially over time, revenues for others (e.g., BEING JULIA) increase first
before decreasing later. Even for movies with similar demand patterns (e.g., those
on the second row of Figure 1), the speed of decay varies greatly.

In this article we develop FRAME to forecast the demand patterns of box office
revenues using a number of functional predictors which capture various sources
of information about movies, such as consumers’ word of mouth, via a novel data
source, online virtual stock markets (VSMs). In a VSM, participants trade virtual

FIG. 1. Movie demand decay rates for a sample of movies.
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stocks according to their predictions of the outcome of the event represented by the
stock (e.g., the demand for an upcoming movie). As a result, VSM trading prices
can provide early and reliable demand forecasts [Foutz and Jank (2010), Spann
and Skiera (2003)]. VSMs are especially intriguing from a statistical point of view
since the shape of the trading prices may reveal additional information, such as the
speed of information diffusion which, in turn, can proxy for consumer sentiment
and word of mouth about a new product [Foutz and Jank (2010)]. For instance,
a last-moment price spurt may reveal a strengthening hype for a product and may
thus be essential in forecasting its demand.

This paper is organized as follows. In the next section we provide further back-
ground on virtual stock markets in general and our data in particular. In Section 3
we present the FRAME model and its optimization criterion. We also discuss an
efficient coordinate descent algorithm for fitting FRAME. In Section 4 an exten-
sive simulation study is used to demonstrate the superior performance of FRAME,
in comparison to a number of competitors. Section 5 discusses the results from
applying FRAME to our movie data. In that section, we also address the challenge
of interpreting the results from a model involving both functional predictors and
functional responses using “dependence plots.” Dependence plots graphically il-
lustrate, for typical shapes of the predictors, the corresponding predicted response
pattern. These dependence plots allow for a glimpse into the relationship between
response and predictors and provide actionable insight for decision makers. We
conclude with further remarks in Section 6.

2. Data. We have two different sources of data. Our input data (i.e., func-
tional predictors) come from the weekly trading histories of an online virtual stock
market for movies before their releases; our output data (i.e., functional responses)
pertain to the post-release weekly demand of those movies. We have data on a total
of 262 movies. The data sources are described below.

2.1. Online virtual stock markets. Online virtual stock markets (VSMs) oper-
ate in ways very similar to real life stock markets except that they are not neces-
sarily based on real currency (i.e., participants often use virtual currency to make
trades), and that each stock corresponds to discrete outcomes or continuous pa-
rameters of an event (rather than a company’s value). For instance, a value of $54
for the movie stock 50 FIRST DATES is interpreted as the traders’ collective belief
that the movie will accrue $54 million in the box office during its first four weeks
of theatrical exhibition. If the movie eventually earns $64 million, then traders
holding the stock will liquidate (or “cash-in”) at $64 per share.

The source of our data is the Hollywood Stock Exchange (HSX), one of the
best known online VSMs. HSX was established in 1996 and aims at predicting a
movie’s revenues over its first four weeks of theatrical exhibition. HSX has had
well over 2 million active participants worldwide and each trader is initially en-
dowed with $2 million virtual currency and can increase his or her net worth by
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strategically selecting and trading movie stocks (such as by buying low and selling
high). Traders are further motivated by opportunities to appear on the daily Leader
Board that features the most successful traders.

For each movie we collect four functional predictors between 52 and 10 weeks
prior to the movie’s release date. They are the following: the intra-day average
price (i.e., the average of the highest and lowest trading prices of the day, as
recorded by HSX) on each Friday (which is the most active trading day of the
week), each Friday’s number of accounts shorting the stock, number of shares sold,
and number of shares held short. Figure 2 shows the curves for one of these predic-
tors, average price, for the movie demand patterns from Figure 1. Note that since
our goal is to accomplish early forecasts, we only consider information between
52 and 10 weeks prior to a movie’s release (i.e., up to week −10 in Figure 2). We
form predictions of movie decay ten weeks prior to release because this provides
a realistic time frame for managers to make informed decisions about marketing
mix allocations and other strategic decisions. Of course our analysis could also be
performed using data closer to the release date.

Our FRAME method captures differences in shapes of VSM trading histories
(such as price or volume), for example, trending up or down, concavity vs. con-
vexity or last-moment spurts. The empirical results in Section 5 show that these

FIG. 2. HSX trading histories for the sample of movies from Figure 1.
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shapes are predictive of the demand pattern over a product’s life cycle. For exam-
ple, a rapid increase in early VSM trading prices may suggest a rapid diffusion
of awareness among potential adopters and a strong interest in a product. Thus, it
can suggest a strong initial demand immediately after a new product’s introduc-
tion to the market place, for example, a strong opening weekend box office for a
movie. Similarly, a new product whose trading prices increase very sharply over
the pre-release period may be experiencing strong positive word of mouth, which
may lead to both a strong opening weekend and a reduced decay rate in demand
for the movie, that is, increased longevity.

2.2. Weekly movie demand patterns. Our goal is to predict a movie’s demand
(i.e., its box office revenue). Specifically, we want to predict a movie’s demand
not only for a given week (e.g., at week 1 or week 5), but over its entire theatrical
life cycle of about 10 weeks (i.e., from its opening week 1 to week 10). Figure 3
shows weekly demand for all 262 movies in our data (on the log-scale). The left
panel plots the distribution across all movies and weeks; we can see that (log)
demand is rather symmetric and appears to be bi-modal. We can also see that a
portion of the data equals zero; these correspond to movies with zero demand,
particularly in later weeks (the constant 1 was added to all revenues before taking
the log transformation). During weeks 1 and 2, every movie has positive revenue.
In week 3, only 4 movies have zero revenue; this number increases to 67 movies

FIG. 3. Distribution of movies’ weekly demand and demand decay patterns. The right panel shows
10-week decay patterns (from the release week until 9 weeks after release) for the 262 movies in
our sample; the left panel shows the distribution of the corresponding 10 × 262 = 2620 weekly
log-revenues.
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by week 10. The right panel shows, for each individual movie, the rate at which
demand decays over the 10-week period. We can see that whereas some movies
decay gradually, a number have sudden drops, while others initially increase after
the release week. Our goal is to characterize different demand decay shapes and to
use the information from the VSM to forecast these shapes.

3. Functional Response Additive Model Estimation. In this section we de-
velop our Functional Response Additive Model Estimation (FRAME) approach
for relating a functional response, Yi(s), to a set of p functional predictors,
Xi1(t), . . . ,Xip(t), and q univariate predictors, Zi1, . . . ,Ziq , where i = 1, . . . , n.

3.1. FRAME model. The classical functional linear regression model is given
by

Yi(s) =
∫

β(s, t)Xi(t) dt + εi(s),(2)

where β(s, t) is a smooth two-dimensional coefficient function to be estimated
as part of the fitting process. Note we assume throughout that the predictors and
responses have been centered so that the intercept term can be ignored. We also
assume that the response curves Yi(s) are independent, given Xi(t); for work on
correlated response curves, see, for example, Di et al. (2009) or Crainiceanu, Caffo
and Morris (2011).

The model given by (2) has been applied in many settings. However, it has two
obvious deficiencies for use with our data. First, it assumes a single functional
predictor, whereas our data contains p = 4 functional predictors and a number of
univariate predictors. Second, the integral in (2) is a natural analogue of the sum-
mation term in the linear regression model. Hence, (2) assumes a linear relation-
ship between the predictor and the response. In many situations this assumption is
too restrictive, so we wish to allow for a nonlinear relationship.

In this paper we model the relationship between the response function and the
predictors using the following nonlinear additive model:

Yi(s) =
p∑

j=1

fj (s,Xij ) +
q∑

k=1

φk(s,Zij ) + εi(s),(3)

where fj (s, x) and φk(s, z) are general nonlinear functions to be estimated.
Model (3) has the advantage that it is able to incorporate all p + q predictors
using a natural additive model. It is also flexible enough to model nonlinear rela-
tionships. However, fitting (3) poses some significant difficulties. First, if p or q

are large relative to n, we end up in a high-dimensional situation where many dif-
ferent nonlinear functions must be estimated. We address this issue by fitting (3)
using a penalized least squares criterion. Our penalized approach has the effect of
automatically performing variable selection on the predictors, in a similar fashion
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to the lasso [Tibshirani (1996)] or group lasso [Yuan and Lin (2006)] methods.
Hence, we can very effectively deal with a large number of predictors. Second,
even for a low value of p, estimating a completely general fj (s, x) is infeasible
because Xij (t) is itself an infinite-dimensional function. Instead we model fj (s, x)

using a functional single index model:

fj (s,Xij ) = gj

(∫
βj (s, t)Xij (t) dt

)
,

where βj (s, t) is a two-dimensional index function which projects Xij (t) into a
single direction and gj (x) is a one-dimensional function representing the nonlinear
impact of the projection on Yi(s). In this way the task of estimating fj (s, x) is
reduced to the simpler problem of estimating βj (s, t) and gj (x). Note that our
primary interest in this paper is in forming accurate predictions for the response,
Yi(s). Hence, we are generally not concerned with identifiability of gj (x) and
βj (s, t), which would be more important in an inference setting. Nevertheless,
empirically we have found that gj (x) and βj (s, t) can often be well estimated.

Using this functional index model (3) reduces to

Yi(s) =
p∑

j=1

gj

(∫
βj (s, t)Xij (t) dt

)
+

q∑
k=1

φk(s,Zij ) + εi(s).(4)

We then model βj (s, t) = b(s, t)T ηj and Xij (t) = b̃(t)T θ ij , where b(s, t) and

b̃(t) are appropriately chosen basis functions. In implementation, to ensure that
βj (s, t) and gj (x) are identifiable, we constrain ‖ηj‖ = 1 for all j . Using this
representation,∫

βj (s, t)Xij (t) dt = θT
ij

[∫
b̃(t)b(s, t)T dt

]
ηj = θ̃ ij (s)

T ηj ,(5)

where θ̃ ij (s) = [∫ b(s, t)b̃(t)T dt]θ ij . Note that ηj must be estimated as part of

the fitting process, but θ̃ ij (s) can be assumed known for all s because b(s, t) and
b̃(t) are given, so the integral can be directly computed. In addition, θ ij can be
easily computed since Xij (t) is directly observed.

Using this basis representation, (4) becomes

Yi(s) =
p∑

j=1

gj

(
θ̃ ij (s)

T ηj

) +
q∑

k=1

φk(s,Zik) + εi(s).(6)

In practice, the response function, Yi(s), will generally be observed at a finite set
of time points, si1, . . . , sini

. For example, for the box office data the revenues are
observed at each of the first ten weeks. In this situation (6) can be represented as

Yil =
p∑

j=1

gj

(
θ̃T

ij lηj

) +
q∑

k=1

φk(sl,Zik) + εil,

(7)
i = 1, . . . , n, l = 1, . . . , ni,
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where Yil = Yi(sil), θ̃ ij l = θ̃ ij (sl) and εil are assumed to be independent for all i

and l [conditional on Xij (t) and Zik].

3.2. FRAME optimization criterion. Fitting FRAME requires estimating the
unobserved parameters, gj (x),ηj and φk(s, z), which we achieve using a super-
vised least squares penalization approach. In particular, the FRAME fit is produced
by minimizing the following criterion over a grid of possible values for the tuning
parameter λ ≥ 0:

1

2

n∑
i=1

∫ {
Yi(s) −

p∑
j=1

gj

(
θ̃ ij (s)

T ηj

) −
q∑

k=1

φk(s,Zik)

}2

ds

(8)

+ λ

( p∑
j=1

ρ
(‖fj‖) +

q∑
k=1

ρ
(‖φk‖))

,

where ‖fj‖2 = ∑n
i=1

∫
fj (s,Xij )

2 ds with fj (s,Xij ) = gj (θ̃ ij (s)
T ηj ), ‖φk‖2 =∑n

i=1
∫

φk(s,Zik)
2 ds and ρ(·) is a penalty function.

The first term in (8) corresponds to the squared error between Yi(s) and the
FRAME prediction, integrated over s, and ensures an accurate fit to the data. The
second term places a penalty on the �2 norms of the fj (x)’s and φk(s, z)’s. Note
that penalizing the squared �2 norms, ‖fj‖2 and ‖φk‖2, would be analogous to
performing ridge regression. However, we are penalizing the square root of this
quantity, which has the effect of shrinking some of the functions exactly to zero
and hence performing variable selection in a similar fashion to the group lasso
[Simon et al. (2013), Yuan and Lin (2006)].

For a response sampled at a finite set of evenly spaced time points, s1, s2, . . . , sL,
we approximate (8) by

1

2L

n∑
i=1

L∑
l=1

{
Yil −

p∑
j=1

gj

(
θ̃T

ij lηj

) −
q∑

k=1

φ(sl,Zik)

}2

(9)

+ λ

( p∑
j=1

ρ
(‖fj‖) +

q∑
k=1

ρ
(‖φk‖

))
,

where Yil = Yi(sl), θ̃ ij l = θ̃ ij (sl), ‖fj‖2 = ∑n
i=1

∑L
l=1 gj (θ̃

T
ij lηj )

2 and ‖φk‖2 =∑n
i=1

∑L
l=1 φ(sl,Zik)

2. Note that in using (9) we are implicitly assuming that the
response has been sampled at a dense enough set of points that the integral is
well approximated by the summation term. This approximation worked well for
our data, but for sparsely sampled responses one would need to first fit a smooth
approximation of the response and sample the fitted curve over a dense set of time
points.
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We further assume that gj (x) and φk(s, z) can, respectively, be well approx-
imated by basis functions h(x) and ω(s, z) such that gj (x) ≈ h(x)T ξ j and

φk(s, z) ≈ ω(s, z)T αk . At each response time point sl , let hij l = h(θ̃T
ij lηj ) and

ωikl = ω(sl, zik) with θ̃ ij l defined in (9). Then using this basis representation, (9)
can be expressed as

1

2L

n∑
i=1

L∑
l=1

{
Yil −

p∑
j=1

hT
ij lξ j −

q∑
k=1

ωT
iklαk

}2

(10)

+ λ

( p∑
j=1

ρ
(√

ξT
j HT

j Hj ξ j

)
+

q∑
k=1

ρ
(√

αT
k �T

k �kαk

))
,

where Hj is a matrix with rows h1j1,h1j2, . . . ,h1jL,h2j1, . . . ,hnjL and �k is
defined similarly using ωikl . The FRAME fit is then produced by minimizing (10)
over ηj , ξ j and αk .

3.3. FRAME optimization algorithm. For a given value of λ, we break the
problem of minimizing (10) into two iterative steps, where we first estimate ξ j

and αk given ηj , and second estimate ηj given ξ j and αk . One advantage of this
approach is that the minimization of (10) in the first step can be achieved using an
efficient coordinate descent algorithm which we summarize in Algorithm 1.

Our approach has the same general form as similar algorithms used in other set-
tings. In particular, arguments similar to those in Ravikumar et al. (2009) and Fan,
James and Radchenko (2014) prove that Algorithm 1 will minimize a penalized

Algorithm 1 Step 1 of FRAME algorithm

0. Initialize SH
j = (HT

j Hj )
−1HT

j and S�
k = (�T

k �k)
−1�T

k for j = 1, . . . , p

and k = 1, . . . , q , where the matrices Hj and �k are defined in (10).

For each j ∈ {1, . . . , p} and k ∈ {1, . . . , q}:
1. Fix all ξ̂ j ′ for j ′ �= j . Compute the residual vector Rj = Y−∑

j ′ �=j Hj ′ ξ̂ j ′ −∑q
k=1 �kα̂k .

2. Let ξ̂ j = cjS
H
j Rj where cj = (1 − λ/‖HjS

H
j Rj‖)+ is a shrinkage parame-

ter.
3. Center f̂j ← f̂j − mean(f̂j ).
4. Fix all α̂k′ for k′ �= k. Compute the residual vector Rk = Y − ∑p

j=1 Hj ξ̂ j −∑
k′ �=k �k′ α̂k′ .
5. Let α̂k = ckS

�
k Rk where ck = (1−λ/‖�kS

�
k Rk‖)+ is a shrinkage parameter.

6. Center φ̂k ← φ̂k − mean(φ̂k).

Repeat 1 through 6 and iterate until convergence.
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Algorithm 2 FRAME algorithm
0. Choose initial values for η̂j for j ∈ {1, . . . , p}.
1. Compute hij l using the current estimates for ηj . Estimate ξ j and αk using

Algorithm 1.
2. Conditional on the ξ j ’s and αk’s from step 1, estimate the ηj ’s by minimiz-

ing (11).
3. Repeat steps 1 and 2 and iterate until convergence.

criterion of the form given by (10) provided ρ(t) = t . We discuss the extension
to a general penalty function in the Appendix. Note that the SH

j and S�
k matrices

defined in Algorithm 1 only need to be computed once so the calculations in 1
through 6 of Algorithm 1 can all be performed efficiently.

In the second step we estimate ηj , given current estimates for the ξ j ’s and αk’s,
by minimizing the sum of squares term

n∑
i=1

L∑
l=1

{
Yij −

p∑
j=1

h
(
θ̃T

ij lηj

)T
ξ j −

q∑
k=1

ωT
iklαk

}2

(11)

over ηj . Note that we do not include the penalty when estimating ηj because the
ηj ’s are providing a direction in which to project Xij (t) and are thus constrained
to be norm one. Hence, applying a shrinkage term would be inappropriate. Min-
imization of (11) can be approximately achieved using a first order Taylor series
approximation of gj (x). We provide the details on this minimization in the Ap-
pendix.

Formally, the FRAME algorithm is summarized in Algorithm 2.

3.4. Tuning parameters. Fitting FRAME requires selecting the regularization
parameter λ and the basis functions b̃(t), b(s, t), h(x) and ω(s, t) defined in
(5) and (10). For our simulations and the HSX data we used cubic splines to
model h(x), b̃(t) and b(s, t), and a simple linear representation for ω(s, z) so
φk(s, zk) = zkαk . We selected the dimensions of these bases simultaneously us-
ing 10-fold cross-validation (CV) based on prediction error. More specifically, we
chose a grid of values for the dimension of each basis and randomly partitioned
the original sample into 10 subsamples of equal size. For each k = 1, . . . ,10, we
used 9 subsamples to fit the model with dimensions of these bases fixed at a given
combination of the grid values, and used the remaining subsample to calculate
the prediction error. The cross-validated prediction error is then calculated as the
average prediction error over the 10 validation subsamples. Thus, for every combi-
nation of basis dimensions, we obtained one cross-validated prediction error. The
final selected dimensions for these basis functions are the ones which minimize
the 10-fold cross-validated prediction error. Since the FRAME algorithm is very
efficient, this approach worked well on our data.
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To compute λ, one could potentially add a grid of values for λ to the above
10-fold CV, fit FRAME over all possible combinations of the tuning parameter
values, and select the “best” value. However, a more efficient approach is to com-
pute initial estimates for ηj , minimize (10) over ξ j and αk for each possible value
of λ, choose the ξ j ’s and αk’s corresponding to the value of λ with the lowest
10-fold CV, estimate the ηj ’s for only this one set of parameters, and iterate. This
approach means that, for each iteration, the minimization of (11) only needs to
be performed for a single value of λ. We found this approach worked well for
choosing the tuning parameters in both our simulated and real data analyses.

4. Simulations. In this section we conduct a simulation study to compare the
performance of FRAME to several alternative functional approaches. We first gen-
erated p = 6 functional predictors using Xij (t) = F(t)θ ij + εij (t), where F(t) was
a 3-dimensional Fourier basis, θ ij was simulated from a N(0, I3) distribution, and
the εij (t)’s were independent over i, j and t with a N(0,0.12) distribution. Each
predictor was sampled at 150 equally spaced time points over the interval t ∈ [0,1].
In addition, q = 8 scalar predictors, Zik , were simulated from a standard normal
distribution. Next, we generated βj (s, t) = βj1(s) + βj2(t) + 0.1βj1(s)βj2(t),
where βj1(s) = b(s)T ηj1, βj2(t) = b(t)T ηj2, b(·) was a 5-dimensional cubic
spline basis, and ηj1 and ηj2 were independent N(0, I5) vectors.

The responses were generated from the model

Yi(s�) =
p∑

j=1

gj

(∫
βj (s�, t)Xij (t) dt

)
+

q∑
k=1

γkZik + εi(s�),

(12)
i = 1, . . . , n,

where εi(s�) ∼ N(0,0.12) and Yi(s�) was sampled at 20 equally spaced time points
s1, . . . , sL over the interval s ∈ [0,1]. We set g1(x) = sin(x), g2(x) = cos(x) and
gj (x) = 0 for j = 3, . . . ,6. Thus, only the first two functional predictors were
signal variables, with the remainder representing noise. Similarly, we set γ1 = 1
and γk = 0 for k = 2, . . . ,8 so the last seven scalar predictors were noise variables.
All training data sets were generated using n = 200 observations.

We compared FRAME to six possible competitors. The simplest, Mean, ignored
the predictors and used the average of the training response, at each time point s, to
predict the responses on the test data. This method serves as a benchmark to illus-
trate the improvement in prediction accuracy that can be achieved using the predic-
tors. The next method was the Classical Functional Linear Regression model given
by (2). We fit (2) by computing the first G functional principal components (FPC)
for the response function, and also the first K FPCs for each predictor function.
We then used the 8 scalar predictors and the 6K FPC scores from the 6 functional
predictors to fit separate linear regressions to each of the first G FPC scores on
the response. To form a final prediction for the response function, we multiplied
the estimated FPC scores by the first G principal component functions. The value
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of G, between 1 and 4, and K , between 1 and 3, were both chosen using 10-fold
cross-validation. The classical functional approach does not automatically perform
variable selection, so we also fit a variant (PCA-L). The only difference between
Classical and PCA-L is that the latter method used the group Lasso to compute the
linear regressions between the response and predictor principal component scores
and hence selected a subset of the predictors.

The fourth method, PCA-NL, was identical to PCA-L except that a nonlinear
generalized additive model (GAM) was used to regress the response principal com-
ponent scores on the predictor scores. Standard GAM does not automatically per-
form variable selection, so we fit PCA-NL using a variant of SPAM [Ravikumar
et al. (2009)], which implements a penalized nonlinear additive model procedure
and hence selects a subset of the predictors. We used the Lasso penalty function
with the tuning parameter, λ, chosen over a grid of 20 values via 10-fold CV.
Similarly, the dimension of the nonlinear functions used in SPAM were chosen,
between 4 and 6, using 10-fold CV.

The next method, Last Observation, took as inputs Zi1, . . . ,Zi8 plus the last
observed values of Xij (t), that is, Xi1(t150), . . . ,Xi6(t150). We then used the re-
sulting 14 scalar predictors to estimate separate GAM regressions for the response
at each observed point, Y(s1), . . . , Y (s20), a total of 20 different regressions. As
with PCA-NL, we used a variant of SPAM to perform variable selection. While
using only the last observed time point may appear to be a naive approach, these
methods are common in situations like the HSX data, where it is often assumed
that all the information is captured at the latest time point. Hence, we implemented
this approach to illustrate the potential advantage from incorporating the entire
functional predictor.

The final comparison method, FPCA-FAR, combined the FPCA approach with
the FAR method proposed in Fan, James and Radchenko (2014). FAR does not
directly correspond to our setting because it is designed for problems involving
functional predictors but only a scalar response. FPCA-FAR addresses this limita-
tion by producing G separate FAR fits, one for each of the first G FPC scores. The
FAR method has similar tuning parameters to SPAM, which were again chosen
using 10-fold CV.

In fitting FRAME we set βj (s, t) = βj1(s) + βj2(t), where βj1(s), βj2(t) and
gj (x) were approximated using cubic splines. The dimension of the basis for both
βj2(t) and β̃(t) was selected as the value among 4,5,6, which gave the lowest pre-
diction error to Xij (t) on the held-out time points. In particular, for each possible
dimension we held out every 5th observed time point for each Xij (t), produced a
least squares fit using the remaining observations, and then calculated the squared
error between the observed and predicted values of Xij (t) at the held-out time
points. The value of λ and the dimensions of βj1(s) and gj (x) were all chosen
using 10-fold CV in a similar fashion to the other comparison methods. We set
ρ equal to the identity function, which corresponds to a group lasso type penalty
function.
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In order to match a real-life setting, we deliberately generated the data from a
model that does not match the FRAME fit. In particular, the true βj (s, t) function
included an interaction term, while the FRAME estimate was restricted to be addi-
tive, the predictors were generated from a Fourier basis but approximated using a
spline basis, and the nonlinear functions, g1(x) and g2(x), were generated accord-
ing to sin and cos functions, respectively, but approximated using a spline basis.
In addition, all the various FRAME tuning parameters were automatically selected
using CV, as part of the fitting process, so the true dimension of the basis functions
was not assumed to be known.

We generated 100 different training data sets and fit each of the seven
methods to all 100 data sets. False negative rates (FN), the fraction of sig-
nal variables incorrectly excluded, and false positive rates (FP), the fraction
of noise variables incorrectly included, were computed. The prediction error,
PE = 1

20N

∑N
i=1

∑20
l=1(Yi(sl) − Ŷi(sl))

2, was also calculated on a large test data
set with N = 1000 observations. The results, averaged over the 100 simulations,
are displayed in Table 1, with standard errors shown in parentheses. Since the Last
Observation method contains separate fits for each time point, its FN and FP rates
are averaged over the twenty different fits. Figure 4 plots the prediction errors
over s.

All methods show significant improvement over the Mean approach, indicating
that the scalar and functional variables have real predictive ability. FRAME had
perfect variable selection results on the scalar predictors, with false positive and
false negative rates both being zero. All methods had zero false negative rates
on the scalar predictors. However, PCA-NL and Last Observation both had high
false positive rates. FRAME also did a much better job than all its competitors in

TABLE 1
False positive (FP) rates, false negative (FN) rates and their prediction errors (PE) for the seven

comparison methods, averaged over the 100 simulation runs. The top rows relate to the functional
predictors, Xj (t), and the lower rows to the scalar predictors, Zk . Standard errors are

provided in parentheses

Mean Classical PCA-L PCA-NL Last Obs. FPCA-FAR FRAME

Functional FP – – 0.0600 0.4200 0.2395 0.0375 0.0000
– – (0.0182) (0.0333) (0.0101) (0.0114) (0.0000)

FN – – 0.4400 0.0200 0.3002 0.1300 0.0600
– – (0.0163) (0.0098) (0.0102) (0.0220) (0.0163)

Scalar FP – – 0.0971 0.3671 0.2419 0.0400 0.0000
– – (0.0175) (0.0247) (0.0089) (0.0117) (0.0000)

FN – – 0.0000 0.0000 0.0000 0.0000 0.0000
– – (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

PE 1.1983 0.1108 0.1040 0.1284 0.2727 0.0680 0.0651
(0.0035) (0.0030) (0.0029) (0.0024) (0.0035) (0.0019) (0.0020)
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FIG. 4. Mean prediction errors for five of the comparison methods at each of the 20 time points
that the response function was observed over. The Classical and PCA-L curves were not plotted to
make the figure easier to read.

identifying the functional predictors. PCA-NL and Last Observation had high false
positive rates for the functional predictors, and the PCA-L and Last Observation
methods had high false negative rates. In terms of prediction error, FRAME is
considerably superior to all methods except for FPCA-FAR. In comparing FRAME
to FPCA-FAR, we note that while FRAME only results in a small improvement in
terms of prediction error, it does a far better job in selecting the correct variables.

5. Forecasting demand decay rates. In this section we provide results from
applying our FRAME approach to the HSX data. In doing so, we assume that
the revenue curves of any two movies are independent, given the predictors. This
assumption is not unreasonable because managers use strategic scheduling [Einav
(2010)] to minimize the risk of two movies simultaneously competing for the same
audience. More importantly, the HSX data (i.e., our predictors) have incorporated
relevant information about the movies [Foutz and Jank (2010)]. Hence, one might
expect much lower correlations among movies after conditioning on the predictors.

Figure 5 illustrates the modeling setup. Recall that for each movie we collect
four functional predictors: the intra-day average price, the number of accounts
shorting the stock, the number of shares sold and the number of shares held short.
These curves capture related yet distinct aspects of consumer sentiment and word
of mouth about a movie. The four functional predictors (represented using the
green curve before the movie release in Figure 5) are observed from 52 up to 10
weeks prior to the movie’s release. We then use FRAME to form predictions of
Yi(s) = log(cumulative revenue for movie i at week s) (blue line after the movie
release).
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FIG. 5. Illustration of our model.

In Section 5.1 we test the predictive accuracy of FRAME on the HSX data in
relation to that of several competing methods. Then in Section 5.2 we discuss a
graphical approach to obtain new insight into the relationship between VSMs and
movies’ success.

5.1. Prediction accuracy. We compare a number of functional and nonfunc-
tional methods to predict the box office cumulative revenue pattern for our 262
movies. Table 2 provides weekly mean absolute errors (MAE) between the pre-
dicted and actual cumulative box office revenue (on the log scale) for FRAME as
well as six comparison methods. Specifically, we randomly divide the movies into
training and test data (180 and 82 movies, resp.), fit the various methods using the
training data and then compute MAE for week s on the test data:

MAE(s) = 1

|T |
∑
i∈T

∣∣Yi(s) − Ŷi(s)
∣∣,(13)

TABLE 2
Mean absolute errors (MAEs) on test data for FRAME and six competing methods averaged over

twenty random partitions of the movies

Mean Classical PCA-L PCA-NL Last Obs. FPCA-FAR FRAME

Week 1 2.1898 1.5365 1.5856 1.1793 1.1534 1.2011 1.0952
Week 2 2.0490 1.4214 1.4582 1.0951 1.0683 1.1165 1.0116
Week 3 1.9057 1.3107 1.3372 1.0157 1.0335 1.0323 0.9482
Week 4 1.8335 1.2694 1.2900 0.9915 0.9970 1.0106 0.9364
Week 5 1.7907 1.2490 1.2666 0.9815 0.9923 1.0002 0.9305
Week 6 1.7610 1.2385 1.2527 0.9785 0.9944 0.9960 0.9324
Week 7 1.7418 1.2329 1.2431 0.9759 0.9868 0.9952 0.9371
Week 8 1.7294 1.2301 1.2379 0.9749 1.0132 0.9947 0.9397
Week 9 1.7199 1.2269 1.2337 0.9759 0.9938 0.9952 0.9432
Week 10 1.7144 1.2261 1.2322 0.9772 1.0051 0.9962 0.9460
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where T represents the test data and Ŷi(s) the prediction for week s using a given
method. We repeat this process over 20 random partitions of the movies and aver-
age the resulting MAE’s. All seven methods are implemented in the same fashion
as was used in the simulation analysis.

A few trends are clear from Table 2. First, all methods dominate Mean, in-
dicating that the HSX curves contain useful predictive information. Second, the
errors tend to decline over time, suggesting that there is more variability in the
early weeks, but, to some extent, this averages out over time. Third, PCA-NL,
FPCA-FAR and Last Observation give similar results and dominate Classical and
PCA-L. Thus, there is clear evidence of a nonlinear relationship. Finally, FRAME
provides superior results in comparison to the other six approaches for each of
the ten weeks. The relative advantage of FRAME is highest in the first couple of
weeks where predictions appear to be the most difficult.

Table 3 records the number of times each of the four predictors were selected,
averaged over the 20 different training data sets. The intra-day average price vari-
able appears to be the most important, with all methods selecting it on every run.
FRAME also selected the variable of accounts trading short but ignored the re-
maining two predictors. By comparison, Last Observation chose the largest mod-
els, often including all four predictors. This may have been to compensate for the
fact that the method only observed the final time point for each curve.

To further benchmark FRAME against alternative methods that are commonly
used in the literature on movie demand forecasting [Sawhney and Eliashberg
(1996)], Table 4 provides error rates for seven additional models. For each of these
models, we estimate ten separate weekly linear regressions, one for each of the
ten revenue weeks. We fit each regression to the training data, using the same 20
random partitions as in Table 2, and report the average MAE’s on the test data. The
first six models are based on individual movie features, respectively, genre (e.g.,
drama or comedy), sequel (yes/no), production budget (in dollars), MPAA rating,
run time (in minutes) and studios (e.g., Universal or 20th Century Fox). The sev-
enth model is based on a combination of all six features. The best individual pre-
dictor appears to be genre, but combining all six predictors gives the best results.
However, the MAE’s from the combined model are still significantly higher than

TABLE 3
Average number of times each of the four predictors were selected for each method

Price Account short Shares sold Shares short

FRAME 1.00 1.00 0.00 0.00
FPCA-FAR 1.00 0.30 0.00 0.00
PCA-L 1.00 0.80 0.00 0.00
PCA-NL 1.00 0.05 0.30 0.65
Last. Obs. 1.00 0.58 0.62 1.00
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TABLE 4
Mean absolute errors on test data using various characteristics of the movies. Errors are averaged

over twenty random partitions

Genre Sequel Budget Rating Run time Studio All

Week 1 1.632 2.136 1.899 1.850 2.209 2.040 1.445
Week 2 1.589 2.003 1.762 1.749 2.064 1.915 1.395
Week 3 1.510 1.858 1.620 1.634 1.905 1.770 1.312
Week 4 1.487 1.792 1.564 1.604 1.829 1.714 1.304
Week 5 1.472 1.753 1.535 1.587 1.784 1.685 1.296
Week 6 1.463 1.728 1.516 1.578 1.755 1.668 1.291
Week 7 1.458 1.713 1.501 1.569 1.735 1.656 1.287
Week 8 1.457 1.703 1.492 1.563 1.723 1.648 1.286
Week 9 1.457 1.695 1.487 1.561 1.714 1.642 1.287
Week 10 1.458 1.691 1.484 1.559 1.709 1.639 1.287

for the best methods in Table 2, suggesting that the HSX curves provide additional
information beyond that of the movie features.

5.1.1. Why does FRAME predict so well? We now offer a closer look into
when (and potentially why) the prediction accuracy of FRAME is superior to that
of the alternative methods in Tables 2 and 4. To that end, we investigate the rela-
tionship between FRAME’s mean absolute percentage error (MAPE) in cumula-
tive revenues over the first ten weeks since release and film characteristics, such as
budget, genre, MPAA rating, and the volume and valence of critics’ reviews. Simi-
larly, we examine how the relative performance of FRAME (i.e., the difference be-
tween FRAME’s MAPE and the lowest MAPE of either PCA-NL or FPCA-FAR)
is associated with film characteristics. Tables 5 and 6 show the linear regression
results.

Table 5 shows that FRAME performs well (i.e., has a low prediction error) for
movies that are sequels, rated below R, have a shorter runtime, are released by a
major studio such as Paramount, Warner Brothers, Universal or Twentieth Century
Fox, and reviewed by a larger number of critics. Intuitively, these results suggest
that FRAME performs especially well for movies that enjoy a greater capabil-
ity for creating pre-release buzz. For instance, sequels build upon the success of
their predecessors; films released by major studios benefit from significant adver-
tising and publicity before opening; those with lower MPAA ratings, for example,
G and PG, appeal to wider audiences; and greater attention from the critics, due to,
for instance, a film’s quality or controversies, could further fuel the public’s fas-
cination. Such firm- or consumer-generated buzz provides rich information to the
HSX traders, who rapidly integrate the information into the stock trading. FRAME
seems to be capable of capturing the dynamics of such buzz and translating it into
accurate predictions.
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TABLE 5
Linear regression of FRAME’s prediction error on film characteristics

Name Coefficient Std err. t p-value

Intercept 0.098 0.068 1.439 0.151
Sequel −0.033 0.014 −2.314 0.022
Budget 0.000 0.000 0.587 0.558
Action −0.015 0.050 −0.296 0.768
Animated 0.016 0.054 0.306 0.760
Comedy −0.009 0.050 −0.185 0.853
Drama −0.011 0.050 −0.216 0.829
Horror 0.004 0.050 0.086 0.931
Other genres 0.066 0.060 1.098 0.273
Rating below R −0.026 0.011 −2.417 0.016
Runtime 0.001 0.000 2.516 0.013
Major studio −0.039 0.010 −3.744 0.000
Oscar 0.030 0.028 1.062 0.289
Critics volume −0.001 0.000 −7.600 0.000
Critics valence 0.006 0.005 1.322 0.188
Consumer WOM volume 0.000 0.000 1.943 0.053
Consumer WOM valence 0.004 0.006 0.654 0.514

TABLE 6
Linear regression of the difference between FRAME’s prediction error and

the lowest error of either PCA-NL or FPCA-FAR on film characteristics

Name Coefficient Std err. t p-value

Intercept 0.011 0.024 0.465 0.642
Sequel 0.000 0.005 0.036 0.971
Budget 0.000 0.000 −0.307 0.759
Action −0.013 0.018 −0.746 0.456
Animated −0.019 0.019 −1.023 0.308
Comedy −0.018 0.017 −1.010 0.314
Drama −0.023 0.017 −1.326 0.186
Horror −0.012 0.018 −0.685 0.494
Other genres 0.015 0.021 0.721 0.471
Rating below R −0.001 0.004 −0.302 0.763
Runtime 0.000 0.000 −1.101 0.272
Major studio −0.006 0.004 −1.731 0.085
Oscar 0.017 0.010 1.764 0.079
Critics volume 0.000 0.000 3.198 0.002
Critics valence −0.001 0.002 −0.533 0.595
Consumer WOM volume −0.000 0.000 −3.901 0.000
Consumer WOM valence 0.004 0.002 1.936 0.054
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FIG. 6. Top 6 movies with the smallest FRAME prediction error: the solid lines correspond to
FRAME’s prediction; the dashed lines show the corresponding true values. The two closest competi-
tors are given by the dotted lines (PCA-NL) and the dash-dotted lines (FPCA-FAR), respectively.

Figure 6 shows the six movies for which FRAME predicts the best in terms of
MAPE. Two-thirds of these six movies were released by major studios with the
exception of THE RING TWO and THE TERMINAL. Moreover, all of them were
rated below R except for THE MANCHURIAN CANDIDATE. And all attracted
more than a hundred critics’ reviews. A third of them are sequels, specifically
PETER PAN and THE RING TWO, as compared to 11% in the sample. Moreover,
sequels are not far down the list. For example, FRAME also provides excellent
predictions for sequels like MISS CONGENIALITY 2 and OCEAN’S TWELVE. By
contrast, FRAME predicts the least accurately for the following movies: KAENA:
THE PROPHECY, THE INTENDED and EULOGY. None of these movies was
a sequel or produced by a major studio. Only KAENA: THE PROPHECY had
a below-R rating; and the volumes of critics’ reviews for all three movies were
below 35.

It is possible that movies with some of the above identified characteristics—
sequels, low MPAA ratings, major studio releases and more critics’ reviews—are
easier to predict in general by any method, not only by FRAME. Indeed, Table 6
shows that FRAME does not have a statistically significant advantage (despite di-
rectionally so) over PCA-NL or FPCA-FAR in predicting demand for films of the
above characteristics. Nonetheless, FRAME continues to outperform the alterna-
tive methods for films generating more viewer ratings online, suggesting its distinct
ability to incorporate information potentially not captured by alternative methods,
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such as potential viewers’ interest that is not widely available ten weeks prior to a
film’s release.

5.2. Model insight. The previous section has shown that using a fully func-
tional regression method such as FRAME can be beneficial for forecasting demand
decay patterns. However, while nonlinear functional regression methods can result
in good predictions, one downside is that because both model-input (HSX trading
paths) as well as model-output (cumulative box office demand) arrive in the form
of functions, it is hard to understand the relationship between the response and the
predictors.

A useful graphical method to address this shortcoming is to visualize the rela-
tionship by generating candidate predictor curves, using the fitted FRAME model
to predict corresponding responses and then plotting X(t) and Y(s) together. The
idea is similar to the “partial dependence plots” described in Hastie, Tibshirani
and Friedman (2001); however, in contrast to their approach, our plots take into
account the joint effect of all predictors (and are hence not “partial”); we thus call
our graphs “dependence plots.”

Figure 7 displays several possible dependence plots with idealized input curves
in the left panel and corresponding output curves from FRAME in the right panel.
Note that since in our empirical analysis the intra-day average price was by far
the most important predictor, we use that variable as X(t) and fit FRAME with
this single functional predictor. We study a total of four different scenarios. The
top row corresponds to a situation where all input curves start and end at the same
values (0 and 100, resp.); their only difference is how they get from the start to the
end: the middle curve (solid line) grows at a linear rate; the upper and lower curves
(dotted and dashed lines) grow at logarithmic and exponential rates, respectively.
In that sense, the three curves represent movies whose HSX prices either grow at a
constant (linear) rate, or grow fast early but then slow down (logarithmic) or grow
slowly early only to increase toward release (exponential).

The top right panel shows the result: the logarithmic HSX price curve (dotted
line) results in the largest cumulative revenue. In particular, its cumulative rev-
enue is larger compared to the linear price curve (solid line), and both logarithmic
and linear price curves beat the cumulative revenue generated by the exponential
price curve (dashed line). In fact, the logarithmic price curve results in cumulative
revenue that continues to grow significantly, especially in later weeks. This is in
contrast to the cumulative revenue generated by the exponential price curve which
becomes almost constant after week two or three.

What do these findings imply? Recall that all three HSX price curves start and
end at the same value (0 and 100, resp.), so all observed differences are only with
respect to their shape. This suggests that shapes matter enormously in VSMs. It
also suggests that more buzz early on (i.e., the logarithmic shape) has much more
impact on the overall revenue compared to a last moment hype closer to release
time (i.e., the exponential shape).
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FIG. 7. Dependence plots for different input shapes. The left panels contain various idealized input
curves of HSX prices over time. Each figure plots three possible shapes for the observed HSX trading
history of a movie. The right panels plot the corresponding predicted cumulative revenues using
FRAME. For example, in the top row we observe that an HSX trading curve which increases rapidly
and then levels off (dotted line) corresponds to a higher predicted revenue than either a linear pattern
(solid line) or slow start with a large increase at the end (dashed line).

The next two rows of Figure 7 show additional shape scenarios with both rows
displaying input curves with a common linear shape. In the second row the curves
are converging toward a common HSX value, while the input curves in the third
row are diverging. The case of diverging curves suggests that the larger the most re-
cent HSX value, the larger is the corresponding cumulative box office revenue. The
converging case emphasizes the effect of recency of information: like in panel 1,
all HSX price curves end at the same value; however, unlike in panel 1, they all
have the same shape. We can see that the corresponding cumulative box office rev-
enue also almost converges in week 5. This suggests that the difference in shape
(e.g., linear vs. logarithmic vs. exponential) carries important information about
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the change in the dynamics of word of mouth or consumer-generated buzz which
translates into significant revenue differences.

The last row in Figure 7 shows yet another scenario of HSX price curves:
an S-shape (dashed line) and an inverse-S shape (dotted line). Notice that the
inverse-S shape features spurts of extreme growth both at the very beginning and
at the very end, almost like a combination of logarithmic and exponential growth
from panel 1. However, while the spurts resemble the logarithmic and exponential
shapes, their overall magnitude is smaller compared to that in panel 1. As a re-
sult, the cumulative revenue is smaller compared to that of the linear growth. This
suggests that while the dynamics of HSX price curves matter, their magnitude
and timing matters even more, as the linear HSX price curve features a much more
steady and sustained overall change in HSX prices compared to the inverse-S shape
(which is constant most of the time with two small spurts at the beginning and the
end). More evidence for this can be seen in the S-shaped HSX price curve (dashed
line): while it does feature some change, most of the change happens in the middle
of the curve which leads to the lowest of the three cumulative revenue curves.

6. Conclusion. This paper makes three significant contributions. First, we de-
velop a new nonlinear regression approach, FRAME, which is capable of form-
ing predictions on a functional response given multiple functional predictors and
simultaneously conducting variable selection. Our results on both the HSX and
simulated data demonstrate that FRAME is capable of providing a considerable
improvement in prediction and variable selection accuracy relative to a host of
competing methods. Second, we introduce a new and promising data source to
the statistics community. Online virtual stock markets (VSMs) are market-driven
mechanisms to capture opinions and valuations of large crowds in a single number.
Our work shows that the information captured in VSMs is rich but requires appro-
priate and creative statistical methods to extract all available knowledge [Jank and
Shmueli (2006)]. Finally, we make our approach practical for inference purposes
by developing dependence plots to illustrate the relationship between input and
output curves.

FRAME overcomes some of the technical difficulties encountered in other func-
tional models. For instance, FRAME does not require the calculation of eigenfunc-
tions, as is the case with our benchmark method, FPCA, in, for example, Tables 1
or 3. In FPCA, we first compute the principal components of the response curves,
and then apply standard modeling techniques to the principal component scores.
However, since the response curves are observed with random error, so are the cor-
responding eigenfunctions. While approaches for removing this random variation
from the eigenfunctions exist [Yao, Müller and Wang (2005b)], FRAME does not
rely on a principal component decomposition and thus does not encounter this type
of challenge.

Our results have important implications for managerial practice. Equipped with
the early forecasts of demand decay patterns, studio executives can make educated
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decisions regarding weekly advertising allocations (both before and after the open-
ing weekend), selection of the optimal release date to minimize competition with
films from other studios and cannibalization of films from the same studio [Einav
(2007)], and negotiation of the weekly revenue sharing percentages with the the-
ater owners. Studios may be able to better manage distributional intensity and con-
sumer word of mouth. For instance, for a movie predicted to have a strong opening
weekend but fast decay afterward, the studio may consider nationwide release, as
opposed to limited or platform release strategies (i.e., from initial limited release
to nationwide release later on), at the same time strategically managing potentially
negative word of mouth. The predicted demand decay of a film will also shed cru-
cial light on a studio’s sequential distributional strategies. For example, a studio
may consider delaying (or shortening) a movie’s video release or international re-
lease timing if the movie is predicted to have longevity (or faster decay) in theaters.
Given that many academics have called for serious research on the optimal release
timing in the subsequent distributional channels, such as home videos and interna-
tional theatrical markets [Eliashberg, Elberse and Leenders (2006)], and that these
channels represent five times more revenues than the domestic theatrical box office
[MPAA (2007)], our results bear further crucial implications to the profitability of
the motion picture industry.

A potential limitation of our approach is that it may only add value in inefficient
markets where valuable information, above and beyond the information contained
in the final trading price, is captured by the shape of the trading histories, such as
prices, accounts and shares. However, as outlined earlier, previous research sug-
gests that VSMs are not fully efficient. Furthermore, the strong predictive accuracy
of our functional approach provides further empirical validation for this finding. In
addition, the FRAME methodology is applicable beyond just VSM data. In gen-
eral, it can be used on any regression problem involving functional predictors and
responses.

We believe there are many other interesting applications of VSM’s to differ-
ent domains, such as music, TV shows and video games which all share similar
characteristics to movies, such as frequent introductions of new, unique and ex-
periential products, pop culture appeal and strong influence of hype on demand.
Such research would be made possible by the increasing availability of data from
VSMs for, for example, books (MediaPredict), music (HSX), TV shows (Inkling)
and video games (SimExchange).

APPENDIX: ALGORITHM DETAILS

For a general penalty function, ρ(t), we use the local linear approximation
method proposed in Zou and Li (2008) to solve (10). The penalty function can be
approximated as ρ(‖f‖) ≈ ρ ′(‖f∗‖)‖f‖ + C, where f∗ is some vector that is close
to f and C is a constant. Hence, the only required change to the FRAME algorithm
for optimizing over general penalty functions is to replace λ by λ∗ = λρ′(‖f̂j‖) in
the calculation of cj in 2, and replace λ by λ∗ = λρ′(‖φ̂k‖) in the calculation of ck
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in 5, where f̂j and φ̂k represent the most recent estimates for fj and φk . The initial
estimates of f̂j and φk can be obtained by using the Lasso penalty. This simple
approximation allows the FRAME algorithm to be easily applied to a wide range
of penalty functions.

To implement the second step of the FRAME algorithm, we minimize (11) with
respect to the ηj ’s. Directly minimizing (11) is difficult due to the nonlinearity of
the functions gj (x) ≈ h(x)T ξ j . To overcome this difficulty, we observe that, with

the estimates ξ̂ j and α̂k from Algorithm 1 and the current value, ηj,old, of ηj , the

first order approximation of g(θ̃T
ij lηj ) ≈ h(θ̃T

ij lηj )
T ξ̂ j is

h
(
θ̃T

ij lηj

)T
ξ̂ j ≈ h

(
θ̃T

ij lηj,old
)T

ξ̂ j + h′(θ̃T
ij lηj,old

)T
ξ̂ j · θ̃T

ij l(ηj − ηj,old).

Thus, we can approximate (11) by

n∑
i=1

ni∑
l=1

(
Ril −

p∑
j=1

h′(θ̃T
ij lηj,old

)T
ξ̂ j · θ̃T

ij l(ηj − ηj,old)

)2

,(14)

where Ril = Yil − ∑p
j=1 h(θ̃T

ij lηj,old)
T ξ̂ j − ∑q

k=1 ωT
iklα̂k . The above approxima-

tion (14) is a quadratic function of ηj and can be minimized easily. Hence, the new

value of ηj is updated as the minimizer of (14). We also note that if the estimate ξ̂ j

from Algorithm 1 is 0, then the corresponding value of ηj will not be updated.
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