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BAYESIAN PROTEIN STRUCTURE ALIGNMENT1
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The analysis of the three-dimensional structure of proteins is an impor-
tant topic in molecular biochemistry. Structure plays a critical role in defining
the function of proteins and is more strongly conserved than amino acid se-
quence over evolutionary timescales. A key challenge is the identification
and evaluation of structural similarity between proteins; such analysis can
aid in understanding the role of newly discovered proteins and help elucidate
evolutionary relationships between organisms. Computational biologists have
developed many clever algorithmic techniques for comparing protein struc-
tures, however, all are based on heuristic optimization criteria, making statis-
tical interpretation somewhat difficult. Here we present a fully probabilistic
framework for pairwise structural alignment of proteins. Our approach has
several advantages, including the ability to capture alignment uncertainty and
to estimate key “gap” parameters which critically affect the quality of the
alignment. We show that several existing alignment methods arise as maxi-
mum a posteriori estimates under specific choices of prior distributions and
error models. Our probabilistic framework is also easily extended to incorpo-
rate additional information, which we demonstrate by including primary se-
quence information to generate simultaneous sequence–structure alignments
that can resolve ambiguities obtained using structure alone. This combined
model also provides a natural approach for the difficult task of estimating
evolutionary distance based on structural alignments. The model is illustrated
by comparison with well-established methods on several challenging protein
alignment examples.

1. Introduction. Protein alignment is among the most powerful and widely
used tools available for inferring homology and function of gene products, as well
as determining evolutionary relationships between organisms. In particular, protein
sequence alignment uses information about the identity of amino acids to establish
regions of similarity, and has a long history of providing valuable insights. For ex-
ample, the alignment of a putative human colon cancer gene with a yeast mismatch
repair gene played a crucial rule in its identification and characterization [Bronner
et al. (1994), Papadopoulos et al. (1994), Zhu, Liu and Lawrence (1998)].

Sequence alignment is most useful for shorter evolutionary distances, when
amino acid composition has not drifted dramatically from a common ancestor.
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However, when comparing proteins that are distantly related, sequence conser-
vation may be too dilute to establish meaningful relationships. Because a pro-
tein’s function is largely determined by its three-dimensional structure, and sig-
nificant sequence mutation can occur while maintaining this structure, it is widely
recognized that structural similarity is conserved over much longer evolutionary
timescales than sequence similarity. In addition, sequence alignment cannot detect
convergent evolution, when proteins with similar 3D structure and carrying out
similar functions have evolved from unrelated genes.

Aligning 3D structures requires choosing which amino acids to match as in se-
quence alignment, but has the added complexity of handling coordinate frames
arising from arbitrary rotation and translation. Early work in structural alignment
[Rao and Rossmann (1973), Rossmann and Argos (1975, 1976)] developed tech-
niques that iterate between a rigid body registration and an alignment step, and
Satow et al. (1986) introduced the use of dynamic programming [applied to se-
quence alignment by Needleman and Wunsch (1970)] as an efficient way to con-
struct the alignment given a registration. Similar methods have been adopted by
many authors [Cohen (1997), Gerstein and Levitt (1998), Wu et al. (1998)]. Most
work uses a penalized root mean squared deviation (RMSD) between correspond-
ing backbone α-carbon (Cα) atoms to measure quality of the alignments, but sev-
eral other measures have been proposed, including soap-bubble surface metrics
[Falicov and Cohen (1996)], differential geometry [Kotlovyi, Nichols and Eyck
(2003)], and heuristic rules like the SSAP method of Taylor and Orengo (1989).

An alternative to iterative methods is the use of distance geometry to avoid the
registration problem, thus representing each protein by a pairwise distance matrix
between all Cα atoms. The popular DALI [Holm and Sander (1993)] method is
an example of this approach. Other techniques are specially tailored for the large-
scale computational demands of rapid searching of large protein databases, some-
times employing highly redundant representations of the data; these include geo-
metric hashing [Altschul et al. (1990), Fischer et al. (1994), Wallace, Laskowsi and
Thornton (1996)], graph algorithms [Taylor (2002)] and clustering methods like
VAST [Gibrat, Madej and Bryant (1996)]. Finally, some authors combine these
ideas with additional heuristics to produce faster or more accurate algorithms, in-
cluding CE [Shindyalov and Bourne (1998)] and PROSUP [Lackner et al. (2000)].
Detailed reviews on pairwise structural alignment methods can be found in Brown,
Orengo and Taylor (1996), Eidhammer, Jonassen and Taylor (2000) and Lemmen
and Lengauer (2000).

The profusion of methods shows the difficulties involved in performing struc-
tural alignments: in defining how to measure alignment quality and in computing
“best” alignments efficiently. It has been well documented in the literature that
different algorithms can produce alignments sharing very few amino acid pair-
ings, and are sensitive to both the initial alignment and the specific choice of algo-
rithm parameters [Gerstein and Levitt (1998), Godzik (1996), Zu-Kang and Sippl
(1996)]. Additional complications arise when trying to determine the significance
of the resulting alignments. Although substantial effort has been devoted to this
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point and important progress made [Gerstein and Levitt (1998), Levitt and Ger-
stein (1998), Lipman and Pearson (1985), Mizuguchi and Go (1995)], the solutions
remain based on heuristics and upper bounds that are difficult to interpret. Finally,
all the methods described above approach the structural alignment as an optimiza-
tion problem, finding a single best alignment. However, structural comparisons are
subject to substantial uncertainties arising from evolutionary divergence, popula-
tion variability, experimental measurement error and protein conformational vari-
ability, not to mention sensitivity to parameters of comparison metrics and opti-
mization algorithms. To address these sources of variability, approaches based on
explicit statistical modeling are desirable, and the results of structural comparisons
require careful analysis to understand the impact of uncertainty.

In this paper, we develop a Bayesian statistical approach to pairwise protein
structure alignment, combining techniques from statistical shape analysis [Dryden
and Mardia (1998), Kendall et al. (1999), Small (1996)] and Bayesian sequence
alignment [Liu and Lawrence (1999), Webb, Liu and Lawrence (2002), Zhu, Liu
and Lawrence (1998)]. This represents one aspect of a general Bayesian frame-
work developed here and elsewhere [Schmidler (2003, 2004)], and subsequently
extended by Schmidler (2007a, 2007b), Wang and Schmidler (2008). Green and
Mardia (2006) and Dryden, Hirst and Melville (2007) independently developed re-
lated approaches for hierarchical Bayesian alignment of protein active sites rather
than whole proteins, and for small molecules, respectively. However, our approach
differs in a number of important points: we introduce hierarchical priors on the
space of alignments that are equivalent to the standard affine gap penalty of clas-
sical alignment approaches, but allow us to estimate the parameters controlling
the complexity of the alignment. We also introduce an efficient computational ap-
proach that allows rapid computation and sampling, which both enables identi-
fication of alternative alignments and provides direct measures of alignment un-
certainty. A significant advantage of our formulation is the unification of many
existing alternative methods for structural alignment, which can be seen as special
cases of MAP alignment under different specific choices of error models or align-
ment priors. This provides valuable insight into the relationships and properties of
existing algorithms.

Another powerful advantage of a fully probabilistic framework is the ability
to incorporate disparate sources of information in a natural and coherent fashion.
Using our Bayesian structural alignment model as a platform, we also develop a
fully probabilistic approach for simultaneous sequence-and-structure alignment,
which combines information from both primary sequence and 3D structure. In the
presence of unambiguity in geometric matching for highly-divergent proteins or
low-resolution structural data, amino acid identities or preferred substitutions can
significantly alleviate the remaining uncertainty. We demonstrate this approach on
some difficult structural alignment problems from the literature. Finally, we show
that our simultaneous alignment approach provides a natural method for estimating
evolutionary distances directly from structure comparison, a notoriously difficult
task.
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FIG. 1. The chemical structure of proteins, showing the combination of two amino acids to form a
peptide bond. Repeated applications of this process form a linear chain to make a protein. The iden-
tities of the R-groups determine the protein sequence and thus its properties, including 3D structure
and biochemical function.

2. Proteins and their structure. Proteins are the most diverse macro-
molecules in organisms, playing a wide range of roles: as enzymes, molecular
receptors, antibodies, hormones, structural proteins, and molecular transporters.
Proteins are linear polymers, molecular chains created by stringing together amino
acids using peptide bonds to form a polypeptide. The constituent amino acids are
themselves small molecules characterized by a central carbon atom (Cα) to which
additional chemical groups are attached, including a carboxyl group (COOH), an
amino group (NH2) and an organic side chain (see Figure 1). There are 20 distinct
naturally occurring types of side chains, ranging from very simple (G) to relatively
complex (F), giving the 20 naturally-occurring amino acids their identities. During
the process of peptide-bond formation, a water molecule is shed and, as a result,
amino acids occurring within a protein chain are often referred to as “residues.”
Because residues are not symmetric, the chain is directional, with the beginning
end having a free amino group known as the amino- (or N-) terminus and the
end having a free carboxyl group known as the carboxy- (or C-) terminus. The
sequences of amino acids making up proteins are encoded in DNA by the uni-
versal genetic code; Figure 2 shows a simple classification of these amino acids
including some of their chemical properties. It is the combinatorics of combining
these properties in different numbers and orderings that gives rise to the diversity
of protein structures and functions.

The linear sequence of amino acid identities makes up the primary structure of
a protein and, like DNA, can be encoded using strings of letters. Primary protein
sequences can be aligned to identify evolutionarily related or otherwise similar
regions, using algorithms for string comparison. This requires an amino acid dis-
tance metric, often summarized in the form of substitution matrices such as PAM
[Dayhoff and Eck (1968)] or BLOSUM [Henikoff and Henikoff (1992)]. Sequence
alignments can provide important insights into the function of proteins and the
evolution of organisms.

The diverse chemical properties of amino acids lead proteins to “fold” repro-
ducibly into complicated, sequence-specific bundles. This three-dimensional struc-
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FIG. 2. The twenty amino acids encoded by the universal genetic code, and their chemical proper-
ties.

ture enables a protein to perform its functions (such as specific binding of a tar-
get). Within this fold are often smaller, recognizable structural “motifs” occurring
across many proteins, known as secondary structures. These are regularly repeat-
ing local structural patterns, with the most famous being α-helices (successive
backbone atoms following a right-handed helical path though space) and β-sheets
(extended stretches of backbone connected laterally to form sheets). Because these
secondary structure elements are local, many regions of different secondary struc-
ture can be present in the same protein molecule. In contrast, the tertiary struc-
ture of a protein refers the overall 3D shape, including the relative locations of
secondary structures in space. In this paper we are concerned with the problem
of alignment between this 3D structure of two proteins, as 3D structures tend to
be much more highly conserved across evolution than the sequence itself. This 3D
shape is well summarized by the positions of the Cα carbons, giving a path through
space known as the backbone of the protein.

Protein structural data arises most frequently from the experimental methods of
X-ray crystallography and NMR spectroscopy. Although these experimental tech-
niques differ greatly, the end result of each is a set of 3D coordinates for the pro-
tein atoms in an arbitrary coordinate system. These coordinates, which are publicly
available at the Protein Data Bank repository (http://www.pdb.org/) along with the
primary sequence, are the data we use in developing our models.

3. Bayesian protein structure alignment. Let Xn×3 and Ym×3 be coordinate
matrices for two proteins, with rows xi (yi) containing coordinates of the Cα of
the ith amino acid. An alignment between X and Y is a n × m match matrix
M = (mij ) such that mij = 1 if residues Xi and Yj are matched, and 0 otherwise.
Each position in X can be matched to at most one position in Y , so each row and
column of M contains at most one nonzero entry, thus, M is the adjacency matrix
for a matching (a subset of edges, no two sharing an endpoint) on a complete

http://www.pdb.org/
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bipartite graph between sets X and Y . In the sequel we denote by XM and YM

the |M| = ∑
ij mij nonzero rows of M ′X and MY giving the coordinates of the

matched positions, and by XM̄ and YM̄ the rows of X and Y not included in XM

and YM giving coordinates of the unmatched position.
We adopt a Bayesian approach to structure alignment which defines a prior dis-

tribution on alignments P(M) and, given a probability model for the coordinates
matrices X and Y conditional on M , obtains the posterior distribution:

P(M|X,Y ) = P(X,Y |M)P(M)∑
M P(X,Y |M)P(M)

,

where the marginal likelihood P(X,Y ) = ∑
M P(X,Y |M)P(M) involves a sum

over all possible alignments. Although the number of matchings is exponential in
n and m, inferences may be obtained by Monte Carlo sampling from the posterior
P(M|X,Y ) to approximate posterior summaries such as the posterior mode,

M̂ = arg max
M

P(M|X,Y ),(1)

or the marginal alignment matrix, (pij ), giving the marginal posterior probabil-
ity pij = ∑

M mijP (M|X,Y ) of matching position Xi with Yi summing over all
possible alignments. MAP estimates have well-known drawbacks: they ignore the
variability in the posterior, including that arising from uncertainty in hyperparam-
eters or potential multimodality. However, they are simple to obtain and provide a
convenient “representative” alignment in which each residue matches at most one
other. The marginal alignment matrix is easily obtained by sampling alignments
from the posterior distribution, but is somewhat harder to visualize. In Section 6
we use heatmaps for this purpose, but it is also possible to generate a point esti-
mator by maximizing an appropriate utility function, as an alternative to the MAP
alignment.

3.1. Likelihood. Given a matching matrix M , we factor the joint likelihood
of the observed structures X and Y into (dependent) matched and (independent)
unmatched positions:

P(X,Y |M) = P(YM |XM)P (YM̄)P (X).(2)

This arises naturally, for example, by viewing the aligned positions as homologous
(having a common evolutionary ancestor) and the unmatched positions as random
insertions and deletions occurring independently in each protein after divergence.
Note that while assuming YM⊥YM̄ |M ignores the physical constraints of neigh-
boring bonds, it simplifies the calculations in important ways described below.

We adopt a probabilistic model for matched regions of the proteins which as-
sumes that deviations are independent and normally distributed,

YM = XM + ε, ε ∼ N
(
0, σ 2I

)
,(3)
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and, to complete the model, we assume that the rows in YM̄ follow common dis-
tribution f . (This normality assumption is discussed with possible relaxations in
Section 3.4.)

However, both X and Y are observed only up to arbitrary coordinate frames.
That is, we observe [X] and [Y ], where [X] denotes the size-and-shape of X, for-
mally defined [Dryden and Mardia (1998), Kendall et al. (1999)] as an equivalence
class of invariant matrices under the group of Euclidean transformations:

[X] = {
XR + μ :R ∈ SO(3),μ ∈ R3}

.

Here SO(3) is the special orthogonal group of 3 × 3 rotation matrices. [Alignment
using a somewhat more general class of nonrigid transformations is considered by
Schmidler (2007b).] We therefore define the likelihood by

P(X,Y |M) = (
2πσ 2)−3|M|/2

(4)

× exp− 1

2σ 2

∥∥YM − (
XMR̂M + 1μ̂′

M

)∥∥2
F P (X)

∏
yi∈YM̄

f (yi |λ),

where ‖X‖F = tr(X′X)1/2 is the Frobenius norm, f (·;λ) is a one-parameter den-
sity for inserted/deleted positions, and P(X) is a probability distribution describ-
ing the shape of the reference protein X. Here (R̂M, μ̂M) are the optimal least-
squares rotation and translation placing X and Y on a common coordinate system,
given by R̂M = UMV T

M and μ̂M = ȲM − X̄MR̂M , where VM,UM ∈ SO(3) are
obtained from the singular value decomposition YT

MCMXM = UMDMV T
M for cen-

tering matrix CM = I − 1
|M|11T .

The appearance of (μ̂M, R̂M) in likelihood (4) may be interpreted in two differ-
ent ways. First, (4) may be viewed as a profile likelihood for M , maximizing over
nuisance parameters (μ,R) corresponding to the unknown translation and rotation
conditional on M , under the model

YM = (XM + ε)R + μ, ε ∼ N
(
0, σ 2I

)
.

A fully Bayesian approach would instead assign prior distributions to these nui-
sance parameters and integrate them out. Green and Mardia (2006), Dryden, Hirst
and Melville (2007) and Wang and Schmidler (2008) adopt this integration ap-
proach, and Schmidler (2007a, 2007b) considers both (maximization and integra-
tion) approaches for handling the unknown registration parameters. However, in
our experience the uncertainty on (μ,R) given M is minimal for most structural
alignments, with the posterior heavily concentrated about the mode, making the
two approaches perform nearly identically. Kenobi and Dryden (2012) report sim-
ilar findings and discuss this issue in detail.

We may also interpret (4) as a sampling density defined directly on (a local
tangent space approximation to) the underlying shape space of the configurations,
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replacing 3|M| in the normalizing constant with 3|M| − 6, the dimension of the
shape manifold. The exponent ‖YM −(XMR̂M +1μ̂′

M)‖2
F = d2

P (X,Y ) is known as
the (squared) partial Procrustes distance, and serves as the Riemannian metric on
this (size-and) shape space [Dryden and Mardia (1998), Kendall et al. (1999)]. This
metric effectively defines a one-to-one correspondence between matchings M and
Euclidean transformations (μ,R), enabling inference to be performed directly in
the space of matchings. Under this interpretation, our approach is fully Bayesian,
but the likelihood is approximated by evaluating the density in the tangent space.

In what follows, we take f (·|λ) = λ = 1/|�| uniform over a bounded region �;
then λ can be interpreted as a lower bound for the gap penalty as discussed in
Section 3.4. Note that the factorization (2) implies that the marginal distribution
P(X) cancels in the posterior distribution, and may be left unspecified so long
as it is assumed to be functionally independent of parameters M and σ 2. This is
similar to a proportional hazards model where the baseline risk is left unspecified
to obtain a semi-parametric survival model. In addition, the isotropic error model
ensures the model is symmetric in X and Y if we take

P(X) = ∏
xi∈X

f (xi |λ).

3.2. Prior on the alignment matrix. Prior distributions on matchings P(M)

may be specified in a variety of ways; here we adopt a gap-penalty formula-
tion familiar in the sequence and structure alignment literature, where unmatched
stretches of amino acids are penalized by the affine function:

u(M;g,h) = gs(M) + h

s(M)∑
i=1

li(M)

with gap-opening penalty g and gap-extension penalty h, where s(M) is the num-
ber of gaps in alignment M and li(M) is the length of the ith gap. Exponentiating
and normalizing this function provides a prior on M [Liu and Lawrence (1999)],
essentially a Markov chain parametrized as a “Boltzmann chain” Gibbs random
field [Saul and Jordan (1995), Schmidler, Lucas and Oas (2007)]:

P(M|g,h) = Z(g,h)e−u(M;g,h)(5)

with normalizing constant Z. This prior encourages grouping of matches together
along the protein backbone. It allows for explicit control over the number of gaps,
compared to, for example, the prior of Green and Mardia (2006) which controls
only the expected total length.

Under the affine-gap-penalty prior, sampling may be done efficiently using
stochastic recursions analogous to those of standard sequence alignment algo-
rithms [Liu and Lawrence (1999)], along with additional Monte Carlo steps, as
described below. Note that this prior requires the alignment to preserve the se-
quential order along the polypeptide backbone, requiring topological equivalence
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of the two proteins. More general priors applicable for comparing proteins of po-
tentially different topologies (convergent evolution) are easily accommodated with
the introduction of additional Monte Carlo steps, but will be described elsewhere.
Although the prior allows for simultaneous gaps on both proteins, for identifiabil-
ity purposes we do not allow gaps in X to be followed by gaps in Y [see Webb,
Liu and Lawrence (2002) for details].

3.3. Hyperpriors. In standard sequence and structure alignment algorithms,
the gap parameters g and h are assigned fixed values. However, they have a crit-
ical effect on the resulting alignment, with large opening gap penalties g tending
to produce alignments with few gaps and vice versa. In the context of sequence
alignment, Liu and Lawrence (1999) treat (g,h) as nuisance parameters and as-
sign hyperpriors, integrating them out to obtain a marginal posterior distribution
over alignments. We similarly assign g and h Gamma hyperpriors,

g ∼ Ga(ag, bg), h ∼ Ga(ah, bh),(6)

with hyperparameters (ag, bg, ah, bh) chosen to be diffuse (but proper). An alter-
native is to utilize manually-obtained reference alignments [e.g., BAliBASE, see
Thompson, Plewniak and Poch (1999) and Thompson et al. (2005)] to obtain infor-
mative priors for g and h. The model is completed by specifying inverse-gamma
prior σ 2 ∼ IGa(aσ , bσ ) on variance parameter σ 2.

3.4. Many existing structure alignment algorithms are special cases. Rather
than summarize the posterior P(M|X,Y ) by Monte Carlo sampling, we may in-
stead obtain a single MAP alignment (1) by maximizing the (log-) posterior. Con-
ditioning on parameters θ = (σ 2, g, h,λ), we obtain

log
(
P(M|X,Y, θ)

)

= −3

2
|M| log(2πσ) − 1

2σ 2 d2
P (XM,YM) + (

n + m − |M|) log(λ)(7)

+ log
(
Z(g,h)

) − u(M;g,h)

and noting that
∑s(M)

i=1 li(M) = (n + m) − 2|M|, this is equivalent to minimizing

d2
P (XM,YM) + u

(
M;g∗, h∗) + C

(
σ 2, λ, g,h

)
,

where g∗ = σ 2(g + 3
2 log(2πσ)+ logλ) and h∗ = σ 2h, and C(σ 2, λ, g,h) is inde-

pendent of M . Therefore, the MAP estimate for M with (g,h,λ,σ 2) fixed corre-
sponds to a global alignment obtained via dynamic programming [Needleman and
Wunsch (1970)], using RMSD under optimal least-squares rotation/translation as
the dissimilarity metric, and with gap opening and extension penalties given by g∗
and h∗. Since g ≥ 0, the term (3

2 log(2πσ)+ logλ) serves as a lower bound on g∗,
the “effective” gap extension penalty.



BAYESIAN PROTEIN STRUCTURE ALIGNMENT 2077

Note that the relative posterior probability of two alignments which differ by an
unmatched pair (xi, yj ) is greater than one if and only if

∣∣yj − (
xiR + μ′)∣∣ < g∗(1 − ξij ) + h∗ξij ,

where ξij is an indicator taking value 1 if removing the pair (xi, yj ) creates a new
gap in the alignment and 0 otherwise. Thus, the model favors inclusion of pairs
below a dynamically estimated threshold given by g∗ and h∗. Since these threshold
parameters are estimated from the data (in contrast to standard optimization-based
alignment algorithms where they are fixed a priori), our approach automatically
controls for the error rates associated with multiple comparisons.

It is also worth noting that the assumption of normally distributed errors in (3)
may be replaced with an alternative error model, altering the dP term in (4) and
the corresponding posterior distribution. In particular, robust error models with
heavy tails may be considered (e.g., Student-t or double exponential distributions)
to account for possible outliers. In this way, our probabilistic formulation provides
statistical insight into various existing optimization-based algorithms.

For example, Gerstein and Levitt (1998) define the similarity between residues
xi and yj by

Sij = c

1 + (dij /d0)2 ,

where dij denotes the distance between i and j under the current optimal reg-
istration and c and d0 are arbitrarily chosen constants. Then dynamic program-
ming is employed to obtain the alignment M maximizing the similarity between
proteins, defined by

∑
(i,j)∈M Sij . This is equivalent to obtaining the MAP es-

timate under our Bayesian model when the distribution of the error ε is given
by f (x) ∝ exp{−M(1 + (x/d2

0 ))−1}, which is an exponentiated Cauchy density.
[This is indeed a proper density as

∫ ∞
−∞ exp{− M

1+(x/d0)
2 }dx < ∞.] Thus, our uni-

fied probabilistic framework allows us to interpret such heuristics in terms of their
underlying assumptions about the data generating process.

4. Computational algorithms. Combining (4), (5) and (6), we obtain the
posterior distribution,

P
(
M,g,h,σ 2|X,Y

) ∝ P
(
X,Y |M,σ 2)

P(M|g,h)P
(
σ 2)

P(g)P (h).

This posterior can be explored using a Markov chain Monte Carlo algorithm that it-
erates between sampling from the conditional distributions, P(M|g,h,σ 2,X,Y ),
P(g,h|M,X,Y ) and P(σ 2|M,X,Y ). The full-conditional posterior for the vari-
ance σ 2 is obtained by standard conjugate updating:

σ 2|M,X,Y ∼ IGa
(
aσ + 3

2 |M|, bσ + 1
2d2

P (XM,YM)
)
.
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The gap penalty parameters (g,h) are updated jointly by a two-dimensional geo-
metric random walk proposal with Metropolis–Hastings acceptance probability

1 ∧ Z(g′, h′)e−u(M;g′,h′)

Z(g,h)e−u(M;g,h)

g′h′

gh

(
g′

g

)ag−1(
h′

h

)ah−1

e−(bg(g′−g)+bh(h′−h)).(8)

In the previous expression (g′, h′) correspond to the proposed values and (g,h)

correspond to the current values of the gap parameters. The required normaliz-
ing constants Z(g,h) can be calculated efficiently via the recursions provided in
Appendix.

As shown by Schmidler (2003), if we condition on registration parameters
(R,μ), the alignment matrix M may be sampled from its full conditional dis-
tribution using a forward–backward algorithm similar to that of sequence align-
ment [Liu and Lawrence (1999), Zhu, Liu and Lawrence (1998)] and described
in Appendix. Wang and Schmidler (2008) use this approach for structural align-
ment. However, here we have instead defined the likelihood (4) directly on shape
space using maximal values (R̂M, μ̂M) associated with each distinct M , so this
is no longer the case. But we may still use this efficient block Gibbs step to
generate efficient Metropolis–Hastings proposals P(M → M ′) with distribution
q(M ′;RM,μM), where (RM,μM) is the registration associated with the current
state M , and

q
(
M ′;RM,μM

)

∝ P
(
M ′|g,h

)(
2πσ 2)−3|M ′|/2e−1/(2σ 2)‖YM′−X̂M′,M‖2

F

∏
yi∈Y

M̄′
f (yi |λ),

where X̂M ′,M = XM ′R̂M +1μ̂′
M . This q can be sampled efficiently using the recur-

sions of Appendix. The proposed M ′ is then accepted according to the Metropolis–
Hastings criteria

1 ∧ P(X,Y |M ′, σ 2)P (M ′|g,h)q(M;RM ′,μM ′)

P (X,Y |M,σ 2)P (M|g,h)q(M ′;RM,μM)
,

with the required normalizing constants of q obtained from the sampling recur-
sions.

These dynamic programming proposals are highly efficient for local sampling
and sufficient for closely matched proteins. However, when multiple alternative
alignments with distinct rotation/translations exist, mixing between them will be
slow. We therefore add an additional Metropolized independence step where global
moves are proposed without conditioning on the values of (μ̂M, R̂M) associated
with the current alignment. To construct the independence proposal distribution,
we first generate a library of viable registrations using the following procedure:

1. Compute the least-squares registration for each pair of consecutive 6-residue
subsequences on protein X to each such subsequence on Y .
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2. If the subsequence RMSD is less than threshold δ, include the corresponding
registration in the library.

This library is computed once upon initialization of the algorithm and stored
for use throughout the simulation, generating an efficient data-set-specific pro-
posal distribution that deals effectively with potential multimodality in the poste-
rior. A proposal is made from this distribution by drawing a registration (R′,μ′)
uniformly at random from the library and proposing a new alignment M ′ from
q(M ′;R′,μ′) using the forward–backward algorithm. It is then accepted accord-
ing to the Metropolis–Hastings criteria

1 ∧ P(X,Y |M ′, σ 2)P (M ′|g,h)q(M;R′,μ′)
P (X,Y |M,σ 2)P (M|g,h)q(M ′;R′,μ′)

,

leaving the posterior distribution invariant.

5. Bayesian synthesis of sequence and structure information. Another ad-
vantage of the Bayesian probabilistic framework given above is the ability to seam-
lessly incorporate additional information when available. For example, our ap-
proach leads to a natural algorithm for performing alignments based on primary
sequence and tertiary structure simultaneously. This approach allows alignments
which synthesize two types of information: geometric conservation of the protein
architecture, and physico-chemical properties and evolutionary information pro-
vided by sidechain identities. As an important consequence, our approach enables
the estimation of evolutionary distances from structure comparison, which has
previously been quite difficult [Chothia and Lesk (1986), Grishin (1997), Johnson,
Sutcliffe and Blundell (1990), Koehl and Levitt (2002), Levitt and Gerstein (1998),
Wood and Pearson (1999)]. Being able to estimate evolutionary distances from
structural information has important implications because structure is much more
strongly conserved than sequence, enabling comparisons across much longer evo-
lutionary timescales.

The model given by (4) for structural observations is easily extended to account
simultaneously for both sequence and structure information by assuming the struc-
ture and sequence to be conditionally independent given the alignment M , that is,
P(Ax,Ay,X,Y |M,θ) = P(Ax,Ay |M,θ)P (X,Y |M,θ). We take the conditional
likelihood of the sequences given the alignment to be

P
(
Ax,Ay |M,�

) = ∏
(i,j)∈M

�
(
Ax

i ,A
y
j

) ∏
i /∈M

�
(
Ax

i , ·
) ∏
j /∈M

�
(·,Ay

j

)
,(9)

where A
y
i is the ith amino acid in protein x, �(a,b) gives the probability of

residues a and b being matched on related sequences, and �(a, ·) = �(·, a) gives
the marginal probability for residue a. Equation (9) is the standard likelihood
form of sequence alignment [Bishop and Thompson (1986)], and these joint and
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marginal distributions form the bases of standard sequence alignment substitu-
tion matrices such as PAM and BLOSUM [Dayhoff and Eck (1968), Henikoff
and Henikoff (1992)], where the distributions are estimated from alignments of
closely related proteins. For example, the PAM-k substitution can be written as
k = (k(a, b)), where

k(a, b) = 10 log10

(
�k(a, b)

�(a, ·)�(·, b)

)
,

and k represents the expected percentage of amino acid replacements, most often
between 30 and 250, with larger numbers used for sequences further away in the
evolutionary scale. Sequence alignment may then be formulated as a maximum-
likelihood or Bayesian inference problem [Bishop and Thompson (1986), Durbin
et al. (1998), Liu and Lawrence (1999), Zhu, Liu and Lawrence (1998)], where the
introduction of �k amounts to the introduction of a number of new fixed hyper-
parameters. Inference on k can also be carried out by placing a prior distribution
over members of the PAM family of matrices [Zhu, Liu and Lawrence (1998)].
The posterior distribution on k then provides an estimate of evolutionary distance
between the two proteins.

Multiplication of equations (4) and (9) directly yields a joint likelihood for in-
ferring M by combining both sequence and structure information. However, as
we noted in Section 2, structure is generally much more strongly conserved than
sequence, thus, we would like to weight the contribution of structure information
in determining the alignment more heavily than that of sequence. In this way the
sequences will serve primarily to provide supplementary information in regions
of the alignment where structural information leaves uncertainty; as we will see,
it also permits the estimation of evolutionary distance from the largely structure-
based alignment.

To control the relative weighting of sequence and structure information, we in-
troduce a concentration (or inverse temperature) parameter η, resulting in the mod-
ified sequence likelihood

Pr
(
Ax,Ay |M,�,η

)

=
∏

(i,j)∈M �(Ax
i ,A

y
j )

η ∏
i /∈M �(Ax

i , ·)η
∏

j /∈M �(·,Ay
j )

η

∑
Ax∗,Ay∗

∏
(i,j)∈M �(Ax∗

i ,A
y∗
j )η

∏
i /∈M �(Ax

i , ·)η
∏

j /∈M �(·,Ay
j )

η

= ∏
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j )

η
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Ar,As
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i /∈M
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i , ·)η∑

Ar
�(Ar, ·)η

∏
j /∈M
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j , )

η

∑
As

�(·,Ar)η
.

Setting η = 1 corresponds to simple multiplication of the sequence and structure
likelihoods (4) and (9), while as η → 0, Pr(Ax,Ay |M,�,η) approaches a uniform
distribution for every � and η = 0 reduces to the structure-only model (9). Thus,
η−1 plays the role of a dispersion parameter for the discrete observations A. We
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can consider estimating η directly under the restriction η̂ < 1, in which case η̂ can
be interpreted as a measure of agreement between sequence and structure, which
shrinks to down-weight the contribution of sequence information if sequence and
structural information are in conflict.

6. Examples. We apply our Bayesian structural alignment algorithm to a
number of illustrative examples. Hyperparameter values used are given in Table 1:
the prior distribution for σ 2 has mean 1.5 Å and variance 1.0 Å, in line with the
results for analogous proteins in Chothia and Lesk (1986), and following Gerstein
and Levitt (1998), the prior mean for h is about 40 times larger than the prior mean
for g. Results were mostly unaffected by changes in the prior mean for σ 2 between
0.5 Å and 4.0 Å, or by changes in the prior mean of g and h of around 50%. All
inferences described are based on 100,000 samples obtained after a burn-in period
of 20,000 iterations, with convergence verified by visual inspection of the trace
plots and using the Gelman–Rubin convergence test [Gelman and Rubin (1992)].
Monitored quantities include the length of the alignment, the rotation angles corre-
sponding to rotation matrix R̂M , the translation vector μ̂M and the two gap penalty
parameters (g,h). We report MAP alignments unless otherwise noted.

We first analyze 16 pairs of proteins from Ortiz, Strauss and Olmea (2002). This
list includes pairs of very different lengths and proteins from various structural
classes, including α proteins containing primarily α-helical secondary structure,
β proteins containing primarily β-sheets and α +β proteins containing significant
fractions of both. Table 2 summarizes the results obtained using three different
values for λ ranging from a relatively low (7.6) to the relatively high (9.6), and
compares the Bayesian alignments against those obtained using the popular CE
algorithm [Shindyalov and Bourne (1998)]. In most cases, the differences between
Bayesian and CE alignments are important; in more than half the examples less
than 20% of the matched residues coincide. These differences are mostly due to
the way CE handles gaps: to reduce the computational complexity, CE assumes
that gaps cannot be introduced simultaneously in both proteins. Similar restrictions
can be easily introduced in our model [by setting qi,j (2,3) = 0 in Appendix], and
when this is done the results for both methods tend to agree. Generally speaking,
the added flexibility means that the quality of the Bayesian alignments is superior
to CE: it tends to produce alignments containing more matched residues but with
a lower RMSD.

TABLE 1
Hyperparameter values used in the examples

aσ bσ ah bh ag bg

2.25 1.5 2 1/2 2 20
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TABLE 2
Bayesian structural alignments of the 16 pairs of proteins from Ortiz, Strauss and Olmea (2002), compared against the popular CE algorithm

[Shindyalov and Bourne (1998)]. |M| is the length of the alignment, NCE denotes the number of matches in common with CE, and RMSD is expressed
in Å. The values of g and h reported correspond to posterior means

CE λ = 7.6 λ = 8.6 λ = 9.6

X–Y n m |M| RMSD |M| RMSD NCE h g |M| RMSD NCE h g |M| RMSD NCE h g

1ABA–1DSB 87 188 56 4.5 24 2.2 0 9.64 0.01 57 3.7 0 6.26 0.13 76 4.7 14 6.10 0.42
1ABA–1TRS 87 105 70 2.7 65 3.0 37 5.68 0.14 72 3.4 38 5.68 0.22 75 3.6 38 5.70 0.24
1ACX–1COB 108 151 92 4.0 66 2.1 49 6.89 0.06 86 3.8 57 6.60 0.15 93 4.1 57 6.38 0.21
1ACX–1RBE 108 104 56 7.3 25 2.5 6 9.02 0.01 31 2.8 0 7.89 0.02 50 4.2 15 7.45 0.03
1MJC–5TSS 69 194 61 2.7 52 2.3 25 7.89 0.03 60 3.0 29 7.24 0.36 66 3.9 15 7.36 0.44
1PGB–5TSS 56 194 48 2.9 39 2.3 19 6.52 0.56 55 3.3 40 6.60 0.87 55 3.1 34 6.65 0.94
1PLC–1ACX 102 108 80 3.3 71 3.4 23 5.92 0.10 84 4.0 23 5.80 0.20 89 4.6 23 6.30 0.22
1PTS–1MUP 119 157 80 4.1 76 3.0 0 6.80 0.06 83 3.1 0 6.60 0.09 88 3.5 0 6.77 0.12
1TNF–1BMV 152 185 115 4.1 70 2.7 3 7.86 0.02 109 4.2 40 7.10 0.08 113 4.3 35 6.94 0.11
1UBQ–1FRD 76 98 64 4.4 62 3.0 28 5.41 0.15 62 2.9 23 5.10 0.25 65 3.1 32 5.36 0.29
1UBQ–4FXC 76 98 64 4.0 46 2.3 22 5.46 0.13 61 2.9 34 5.20 0.24 66 3.4 42 5.43 0.29
2GB1–1UBQ 56 76 48 3.1 44 2.1 0 5.38 0.18 51 3.4 6 5.27 0.46 51 3.3 6 5.66 0.59
2GB1–4FXC 56 98 48 3.6 35 3.5 0 9.06 0.06 53 3.9 7 7.56 0.42 55 4.1 0 7.55 0.62
2RSL–3CHY 119 128 80 4.1 43 2.6 22 7.99 0.02 76 3.8 31 6.76 0.08 81 4.0 33 6.67 0.11
2TMV–256B 154 106 84 3.5 65 2.3 0 7.39 0.06 79 2.9 0 7.13 0.10 89 4.0 69 6.87 0.19
3CHY–1RCF 128 169 116 3.9 80 3.0 38 6.89 0.06 122 4.5 87 5.99 0.54 126 4.7 70 6.05 0.76
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Some pairs of proteins seem to be somewhat sensitive to the choice of λ (e.g.,
1ACX–1COB), while the alignment of other pairs seems to be remarkably robust
(e.g., 1UBQ–FRD). In general, larger values of λ (which imply larger penalties for
both opening and extension) tend to generate longer alignments. The sensitivity of
the model to λ is not surprising; indeed, setting λ = 0 immediately implies that the
optimal alignment is empty for any pair of proteins. The model is robust to small
changes in λ (around 5% or so), which can be absorbed by g and h. However,
when λ is increased by a large amount, we set a new baseline threshold that pairs
of residues need to satisfy in order to be included in the alignment, favoring the
alignment of sections that were previously not close enough to be aligned. When
structural similarity varies dramatically along the alignment (as is the case for
some pairs in our list), this “threshold effect” can produce important changes in
the resulting alignment. In general, we can think of λ as controlling the tightness
of the alignment. In our experience, a conservative value such as λ = 7.6 works
well in most applications, and we use this value in further illustrations.

Table 2 also shows the posterior median of the gap penalties for each alignment.
Opening penalties range between 5 and 9, while extension penalties range from
0.01 to nearly 0.9, reflecting the differing levels of similarity across different pairs.

Next, we consider in detail the alignment of two α proteins from the globin
family, 5MBN and 2HBG. Figure 3 presents both the marginal alignment matrix
(which provides information on the uncertainty associated with the alignment) and
the MAP alignment, comparing it against that obtained from CE. The most striking
feature about this example is that different alignment methods tend to disagree in
regions where the uncertainty in the Bayesian alignment is high (the regions sur-
rounding the gap between residues 47 and 62 of 5MBN, the extremes of the helix
between residues 81 and 98 of 5MBN, and at the very end of the alignment). This
highlights the importance of using a probabilistic alignment framework, rather than
relying on a single optimum. Figure 4 shows the prior and posterior distributions
for both gap penalty parameters in this example, which demonstrate that the model
does adaptively estimate parameters relevant to the data at hand.

Finally, we explore the alignment of the α +β proteins 1CEW_I and 1OUN_A.
Lackner et al. (2000) describe two alternative alignments for these proteins hav-
ing a comparable number of equivalent residues (70 vs. 68) and RMSD (2.4 Å
both), which arise by shifts in the alignment of the secondary structures. Figure 5
shows the marginal alignment probabilities for all pairs of residues. Unlike the
previous example, uncertainty levels in this alignment are very high, particularly
in the α-helix region between residues 10 and 20. The two alternative alignments
for this region correspond to the two alignments described in Lackner et al. (2000).
However, the alignment of the rest of the proteins corresponds to the 70 residue
alignment discussed by those authors. This example shows how the global sam-
pling of the full posterior enables the model to automatically weight the relative
importance of closely related alternative alignments, and how the estimation of
gap penalties can further improve this.
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FIG. 3. Bayesian structural alignment of 5MBN and 2HBG. (a) Marginal alignment probability
matrix for all pairs of residues, showing uncertainty associated with the alignment. (b) Plot of all
sampled alignments. (c) Comparison of the MAP alignment (red) with the CE alignment (blue);
common regions are shown in purple.

6.1. Combined sequence–structure alignment. To illustrate the performance
of our simultaneous sequence-and-structure alignment approach, we consider two
pairs of proteins that have been previously analyzed in the literature. For conve-
nience we consider a discrete set of discount factors ranging from 0 to 1 in in-
crements of 0.1, along with 21 PAM matrices ranging from PAM100 to PAM300.
“Noninformative” uniform prior distributions are used for both discount factors
and PAM matrices. All results are based on 130,000 iterations of the Gibbs sam-
pler, after a burn-in period of 30,000 iterations.
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FIG. 4. Prior and posterior distributions for gap penalty parameters obtained for the Bayesian
alignment of globins 5MBN and 2HBG. The Bayesian approach allows the algorithm to adaptively
determine the appropriate gap parameters rather than treating them as fixed.

In the first example we analyze two kinases studied by Bayesian sequence align-
ment in Zhu, Liu and Lawrence (1998); a guanylate kinase from yeast (1GKY) and

FIG. 5. Marginal alignment matrix for the Bayesian structural alignment of 1OUN:A and 1CEW:I.
The posterior uncertainty in the alignment can be seen at the N-terminus, where two possible align-
ments of the α-helix at positions 10–20 have comparable posterior probabilities.
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FIG. 6. Marginal probabilities over aligned pairs for 1GKY and 2AK3_A. (a) Shows alignments
based only on structure, while (b) presents alignments that also incorporate sequence information.
Although there is some structural similarity in regions I and II, sequence similarity in these areas is
low (see Table 3).

an adenylane kinase from the beef heart mitochondrial matrix (2AK3_A), which
are VAST structural neighbors [Gibrat, Madej and Bryant (1996)]. A structural
alignment for these proteins using the combinatorial extension (CE) algorithm
[Shindyalov and Bourne (1998)] shows very little sequence similarity (under 13%
identity). Figure 6 compares our structural and simultaneous sequence–structure
alignments for these two proteins by showing the marginal probability of align-
ing any pair of residues integrated over all other parameters in the model (in-
cluding PAM matrices and discount factors). Both algorithms tend to agree on
which regions should be aligned. For example, both avoid aligning the section
of the α-helix located between residues 150–162 in 1GKY and residues 175–191
in 2AK3_A (marked III in Figure 6). The axes for these helixes are not parallel,
producing a big divergence at the C terminus.

TABLE 3
Sequence alignment of corresponding to the best structural alignment between
region II of 2AK3_A and 1GKY, with residues 93–100 of 2AK3_A matched with

residues 103–111 of 1GKY. Numbers correspond to the PAM 250 (log-odds) scores
for each matched residue pair and clearly show that despite the shape similarity,

there is little evidence of common ancestry in this region of the protein

2AK3_A R T L P Q A E A
1GKY G V K S V K A I

−3 0 −3 1 −2 −1 0 −1
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In spite of the similarities, some differences are evident among both models.
For example, a section of the alignment starting at residue 108 of 1GKY (marked
II in Figure 6) is excluded when the sequence information is included in the anal-
ysis. Both proteins present a short helix in this region, and they can be structurally
aligned reasonably well. However, there are important incompatibilities in the two
sequences for these helices, which suggests that this section is not functionally im-
portant. Table 3 presents the sequence correspondence associated with the struc-
tural alignment of this section, along with the scores for each site. Note that the
structural alignment implies no conserved residues in the area and the substitu-
tion of various basic and acidic amino acids by either hydrophobic or hydrophilic
residues. Indeed, of the eight substitutions, only one happens between members
of a common chemical group. This is a local discrepancy between sequence and
structure that is not seen in other regions of the proteins, and suggests that the re-
gion should be dropped from the alignment. Similarly, a couple of short regions in
the remote site for mono and triphosphate binding located between residues 35–80
for 1GKY and 38–73 in 2AK3_A (marked I in Figure 6), that show a moderate
probability of being aligned under the structural model, are down-weighted (but
not completely removed) when the sequence information is included. This region,
which was probably functionally important in an ancestor, has degraded since both
proteins diverged and does not seem functionally active in these proteins. These
two minimal changes in the alignment lowers the RMSD from 3.5 Å to a median
of 1.95 Å [with a 90% high posterior density interval of (1.84, 2.17)].

Figure 7 shows the marginal posterior probability distribution over PAM ma-
trices that arises from our joint sequence–structure model, contrasting it with the

FIG. 7. Posterior probabilities of PAM distances based on sequence information alone (a) and
based on the Bayesian sequence–structure alignment.
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results in Zhu, Liu and Lawrence (1998). Whereas the sequence-based analysis
in the original paper led to a multimodal posterior with modes at PAMs 110, 140
and 200, our posterior is smooth and unimodal, with its mode located between
PAM200 and PAM210. This demonstrates the strong additional information ob-
tained by aligning based on structure and sequence simultaneously: virtually all
sequence alignments which are compatible with structural alignment indicate the
larger evolutionary distance (posterior mean 212, median 206). The marginal mode
for the temperature is 1 (posterior probability 0.57), indicating that there is very
little need to discount sequence with respect to structure information.

Our second example focuses on comparing the single-chain fused Monellin
from the Serendipity berry (1MOL_A) and the chicken egg white Cystatin
(1CEW_I) analyzed previously in Lackner et al. (2000) and Kotlovyi, Nichols and
Eyck (2003). Figure 8 shows the Bayesian alignments obtained with and with-
out inclusion of sequence information. Again, the two alignments are quite sim-
ilar as expected, but the sequence information leads to small refinements in the
structural alignment. For example, two alternative alignments of the initial strand
are supported by the structure-only alignment, with the one where 1MOL_A is
shifted toward the C terminus being slightly preferred (this is also the one pre-
ferred by CE). However, incorporation of sequence information reverses this to
prefer the N-terminus shifted alignment (approximate posterior probabilities of
0.85 vs 0.15), and examination of the sequences strongly supports this choice.
Table 4 shows the sequence alignment under both alternatives, with amino acids
colored by a simple classification according to physico-chemical properties (Ta-
ble 5) to demonstrate the improved similarity on top of amino acid identity. The

FIG. 8. Marginal probabilities over aligned pairs for 1MOL_A and 1CEW_I. (a) Shows alignments
based only on structure, while (b) presents alignments that also incorporate sequence information.
Circles show the strand region discussed in Table 4.
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TABLE 4
Sequence alignment of the first strand of 1MOL_A and 1CEW_I
induced by the two alternative models. (a) Mode using structural
information only and (b) mode under the Bayesian simultaneous

sequence–structure alignment. Colors refer to the classification in
Table 5; note the improvement in matching of chemical classes

sequence–structure alignment yields six matches in amino acid type, including an
additional two identities and a hydrophilic match on top of the three hydrophobics
achieved by the structural alignment. The corresponding price paid in structural
distance [mean RMSD of 1.91 Å versus 1.89 Å, with both 90% h.p.d. regions
being (1.81 Å, 2.05 Å)] is insignificant. This example clearly shows that incorpo-
ration of sequence information can refine structural alignments in areas where the
structure alignment is ambiguous.

Figure 9 shows the joint posterior distribution over PAM matrices and discount
factors for this example. Relative to the previous example, there is more uncer-
tainty in both the evolutionary distance and the discount factor. The diagonal pat-
tern in the plot suggests an obvious dependence between these two parameters.
This is to be expected, as both η and evolutionary distance increase the entropy
of the joint amino acid distribution. Nevertheless, the results point toward a rela-
tively large divergence time (recall one is a plant protein and the other is an animal
protein), with the mode of the distance at 210.

To avoid confounding of PAM and tempering parameters, one parameter may be
chosen in advance and fixed. For example, the substitution matrix may be chosen to
reflect prior information about evolutionary distance and inference performed only
on the discount factor or vice-versa. When 1MOL_A and 1CEW_I are aligned us-
ing PAM250 as the fixed substitution matrix, the resulting distribution for discount
factor is very similar: the mode is located at η = 0.6 with a posterior probabil-

TABLE 5
Simple amino acid classification based on chemical properties
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FIG. 9. Heat map representation of the joint posterior distribution over discount factors and PAM
matrices for 1MOL_A and 1CEW_I.

ity of 0.32, and most of the remaining mass concentrates in η = 0.5 and η = 0.7,
both with posterior probability of 0.24. Differences in the actual alignments are
not obvious from the marginal distribution plot (not shown). However, a more de-
tailed look at the values shows that fixing the PAM matrix further decreases the
probability of the CE-like alignment below 10%.

The examples discussed in this section show that simultaneous estimation of
PAM distance and discount factor may be difficult. Since larger evolutionary dis-
tances increase sequence divergence/decrease sequence conservation, both low
discount values and high PAM distances imply more tolerance to substitutions.
One way to measure substitution tolerance is via the Shannon entropy of the joint
distributions (Figure 10). Although increasing η and k both increase this entropy,
they do so in slightly different ways. We observe that PAM100 with a temper-
ature of 0.8 has roughly equivalent entropy to untempered PAM200. However,
PAM100/0.8 assign a much larger probability of match than does PAM200/1.0,
as seen by the darker diagonal. In addition, temperature increases treat all com-
binations of amino acids in the same way, and thus low probability regions tend
to disappear quickly. This is not so for increases in the evolutionary distances. In
the limit of k, the PAM joint distribution will converge to the product of indepen-
dent marginal distributions given by the stationary distribution of the underlying
Markov chain (estimated as overall population frequencies). In contrast, as the dis-
count factor approaches 0, the joint distribution and thus the marginal distributions
converge to uniform. Figure 10(a) also shows that differences between PAM matri-
ces grow weaker as the discount factor decreases. In the extreme case when η = 0,
all matrices are equivalent.



BAYESIAN PROTEIN STRUCTURE ALIGNMENT 2091

FIG. 10. (a) Entropies of the joint distribution induced by different evolutionary distances and
tempering parameters. (b) Heat map plots of the joint distributions. Amino acids are ordered alpha-
betically, starting with Alanine in the lower left.

Finally, it is important to mention that we have not found alternative methodolo-
gies in the literature capable of this type of information synthesis, against which
to compare our results. One of the few methods available is an extension of the
combinatorial extension (CE) method Shindyalov and Bourne (1998), accessible
via http://cl.sdsc.edu/ce.html. However, in this implementation there is little con-
trol on the choice of substitution matrices and, for the examples we have studied,
the sequences seems to have little practical influence in the final results.

7. Conclusions. We have presented a unifying probabilistic framework for
protein structure alignment based on Bayesian hierarchical modeling. Computa-
tionally efficient MCMC algorithms for sampling the posterior distribution enable
us to directly account for uncertainty over alignments, including identification of
alternative alignments and evaluation of their relative importance. Our model pro-
vides insights into the relations between and assumptions of standard optimization-
based alignment techniques, along with a unifying framework that facilitates com-
parisons between them. It also naturally incorporates additional information, such
as the inclusion of sequence information in structural alignments. As a byproduct
of the latter, we obtained a model which can estimate evolutionary distance directly
from structural alignment, an otherwise difficult task. The examples shown clearly
highlight how these advantages of our model aid in identification of functionally
relevant regions and in resolving ambiguities in alignments. By introducing a dis-
count parameter, we are able to control the influence of the sequence information
on the final alignment, an important characteristic missing in previous attempts

http://cl.sdsc.edu/ce.html
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to combine sequence and structure. As noted, PAM distance and discount factor
are correlated, and inference on evolutionary distance will therefore be more reli-
able if additional information is used to determine the discount factor; this is an
area for additional study. Finally, we feel that sequence–structure alignments pro-
vide the most insight when used in conjunction with structure-only alignments as
done in the examples. Comparisons between the two appear to provide more di-
rect information on conservation than do comparisons between structure-only and
sequence-only alignments.

APPENDIX: DYNAMIC PROGRAMMING
FORWARD–BACKWARD SAMPLING

As shown by Schmidler (2003), if we condition on registration parameters
(R,μ), the alignment matrix M may be sampled from its full conditional distri-
bution using a forward–backward algorithm similar to that of sequence alignment
[Liu and Lawrence (1999), Zhu, Liu and Lawrence (1998)]. Let vi,j (k) be the
probability of the alignment of the ith prefix of X and the j th prefix of Y ending
in type k, with k = 1 meaning that both final residues are aligned, k = 2 inserts a
gap in X and k = 3 inserts a gap in Y . Then

vi,j (1) =
3∑

k=1

qi,j (k,1)vi−1,j−1(k), vi,j (2) =
3∑

k=1

qi,j (k,2)vi−1,j (k),

vi,j (3) =
3∑

k=1

qi,j (k,3)vi,j−1(k)

and letting d2
ij = ‖yj − (xiR + 1μ′)‖2, the transition weights are given by

qi,j (l, k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ

(2πσ 2)3/2 exp
{
− 1

2σ 2 d2
ij

}
, k = 1,

exp{g + h}, (l, k) = (1,2) or (1,3),

exp{g}, (l, k) = (2,2) or (3,3) or (2,3),

0, (l, k) = (3,2).
In order to ensure identifiability of the alignments, we do not allow a gap in Y to
follow a gap in X, hence, q3,2 = 0. The initialization of these recursions are

v1,1(1) = λ

(2πσ 2)3/2 exp
{
− 1

2σ 2 d2
11

}
,

vi,1(1) = λ

(2πσ 2)3/2 exp
{
− 1

2σ 2 d2
1i + (i − 1)g + h

}
,

v1,j (1) = λ

(2πσ 2)3/2 exp
{
− 1

2σ 2 d2
j1 + (j − 1)g + h

}
,

v1,j (2) = exp
{
(j + 1)g + h

}
and vi,1(3) = 0.
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Note that vn,m contains the sum over all alignments and, given (g,h), the same
algorithm with qi,j (l,1) = 1 can be used to efficiently compute the normalizing
constant Z(g,h) in the gap-penalty prior (5), as required for the acceptance prob-
ability (8). Once qi,j (k) is available for all (i, j), the alignment is sampled back-
ward, starting with

un,m(k) = vn,m(k)∑3
l=1 vn,m(l)

and then conditionally adding a matched pair or a gap on one of the proteins with
probabilities:

ui,j (k, l) = qi−1,j−1(l, k)vi−1,j−1(k)∑3
k=1 qi−1,j−1(l, k)vi−1,j−1(k)

.
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