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NONSTATIONARY ETAS MODELS FOR
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The conditional intensity function of a point process is a useful tool
for generating probability forecasts of earthquakes. The epidemic-type
aftershock sequence (ETAS) model is defined by a conditional intensity
function, and the corresponding point process is equivalent to a branching
process, assuming that an earthquake generates a cluster of offspring earth-
quakes (triggered earthquakes or so-called aftershocks). Further, the size of
the first-generation cluster depends on the magnitude of the triggering (par-
ent) earthquake. The ETAS model provides a good fit to standard earthquake
occurrences. However, there are nonstandard earthquake series that appear
under transient stress changes caused by aseismic forces such as volcanic
magma or fluid intrusions. These events trigger transient nonstandard earth-
quake swarms, and they are poorly fitted by the stationary ETAS model. In
this study, we examine nonstationary extensions of the ETAS model that
cover nonstandard cases. These models allow the parameters to be time-
dependent and can be estimated by the empirical Bayes method. The best
model is selected among the competing models to provide the inversion so-
lutions of nonstationary changes. To address issues of the uniqueness and
robustness of the inversion procedure, this method is demonstrated on an in-
land swarm activity induced by the 2011 Tohoku-Oki, Japan earthquake of
magnitude 9.0.

1. Introduction. The epidemic-type aftershock sequence (ETAS) model
[Ogata (1985, 1986, 1988, 1989)] is one of the earliest point-process models cre-
ated for clustered events. It is defined in terms of a conditional intensity [Hawkes
(1971), Hawkes and Adamopoulos (1973), Ogata (1978, 1981)], is equivalent to
epidemic branching processes [Kendall (1949), Hawkes and Oakes (1974)], and
allows each earthquake to generate (or trigger) offspring earthquakes. Besides be-
ing used in seismology, the ETAS model has been applied to various fields in the
social and natural sciences [e.g., Balderama et al. (2012), Chavez-Demoulina and
Mcgillb (2012), Hassan Zadeh and Sharda (2012), Herrera and Schipp (2009),
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Mohler et al. (2011), Peng, Schoenberg and Woods (2005), Schoenberg, Peng and
Woods (2003)].

Similar magnitude-dependent point-process models have been applied to seis-
mological studies [Vere-Jones and Davies (1966), Lomnitz (1974), Kagan and
Knopoff (1987)] and statistical studies [Vere-Jones (1970)]. The ETAS model is
stationary if the immigration rate (background seismicity rate) of an earthquake
remains constant and the branching ratio is subcritical [Hawkes (1971), Hawkes
and Oakes (1974), Zhuang and Ogata (2006)].

The history-dependent form of the ETAS model on occurrence times and
sizes (magnitudes) lends itself to the accumulated empirical studies by Utsu
(1961, 1962, 1969, 1970, 1971, 1972) and Utsu and Seki (1955), and its estab-
lishing history is detailed by Utsu, Ogata and Matsu’ura (1995). ETAS model pa-
rameters can be estimated from earthquake occurrence data by maximizing the
log-likelihood function to provide estimates for predicting seismic activity (i.e.,
number of earthquakes per unit time). The model has been frequently used and
cited in seismological studies, especially to compare the features of simulated
seismicity with those of real seismicity data. The model is also recommended
for use in short-term predictions [Jordan, Chen and Gasparini (2012)] in the re-
port of the International Commission on Earthquake Forecasting for Civil Pro-
tection. It is planned to be adopted for operational forecasts of earthquakes in
California (The Uniform California Earthquake Rupture Forecast, Version 3, URL:
http://www.wgcep.org/sites/wgcep.org/files/UCERF3_Project_Plan_v55.pdf).

The ETAS model has also been used to detect anomalies such as quiescence
in seismicity. Methods and applications are detailed in Ogata (1988, 1989, 1992,
1999, 2005, 2006a, 2007, 2010, 2011a, 2012), Ogata, Jones and Toda (2003),
Kumazawa, Ogata and Toda (2010), and Bansal and Ogata (2013). A change-
point analysis examines a simple hypothesis that specific parameters change af-
ter a certain time. The misfit of occurrence rate prediction after a change point
is then preliminarily shown by the deviation of the empirical cumulative counts
of the earthquake occurrences from the predicted cumulative function. The pre-
dicted function is the extrapolation of the model fitted before the change point.
A downward and upward deviation corresponds to relative quiescence and activa-
tion, respectively.

This study considers a number of nonstationary extensions of the ETAS model
to examine more detailed nonstandard transient features of earthquake series. The
extended models take various forms for comparison with the reference ETAS
model, which represents the preceding normal activity in a given focal region. Be-
cause changing stresses in the crust are not directly observable, it is necessary to
infer relevant quantitative characteristics from seismic activity data. For example,
Hainzl and Ogata (2005) and Lombardi, Cocco and Marzocchi (2010) estimated
time-dependent background rates (immigration rates) in a moving time window by
removing the triggering effect in the ETAS model.

http://www.wgcep.org/sites/wgcep.org/files/UCERF3_Project_Plan_v55.pdf
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In Section 2, time-dependent parameters for both background rates and pro-
ductive rates are simultaneously estimated. There, the penalized log-likelihood is
considered for the trade-off between a better fit of the nonstationary models and the
roughness penalties against overfitting. Then, not only is an optimal strength ad-
justed for each penalty but also a better penalty function form is selected using the
Akaike Bayesian Information Criterion (ABIC) [Akaike (1980)]. These parameter
constraints together with the existence of a change point are further examined to
determine if they improve the model fit. One benefit of this model is that it allows
varying parameters to have sharp changes or discontinuous jumps at the change
point while sustaining the smoothness constraints in the rest of the period.

In Section 3, the methods are demonstrated by applying the model to a swarm
activity. The target activity started after the March 11, 2011 Tohoku-Oki earth-
quake of magnitude (M) 9.0, induced at a distance from the M9.0 rupture source.
Section 4 concludes and discusses the models and methods. The reproducibility of
the inversion results is demonstrated in the Appendix by synthesizing the data and
re-estimating it using the same procedure.

2. Methods.

2.1. The ETAS model. A conditional intensity function characterizes a point
(or counting) process N(t) [Daley and Vere-Jones (2003)]. The conditional inten-
sity λ(t |Ht) is defined as follows:

Pr
{
N(t, t + dt) = 1|Ht

} = λ(t |Ht)dt + o(dt),(1)

where Ht represents the history of occurrence times of marked events up to time t .
The conditional intensity function is useful for the probability forecasting of earth-
quakes, which is obtained by integrating over a time interval.

The ETAS model, developed by Ogata (1985, 1986, 1988, 1989), is a special
case of the marked Hawkes-type self-exciting process, and has the following spe-
cific expression for conditional intensity:

λθ (t |Ht) = μ + ∑
{i : S<ti<t}

K0e
α(Mi−Mz)

(t − ti + c)p
,(2)

where S is the starting time of earthquake observation and Mz represents the small-
est magnitude (threshold magnitude) of earthquakes to be treated in the data set.
Mi and ti represent the magnitude and the occurrence time of the ith earthquake,
respectively, and Ht represents the occurrence series of the set (ti , Mi) before
time t . The parameter set θ thus consists of five elements (μ, K0, c, α,p). In fact,
the second term of equation (2) is a weighted superposition of the Omori–Utsu
empirical function [Utsu (1961)] for aftershock decay rates,

λθ (t) = K

(t + c)p
,(3)
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where t is the elapsed time since the main shock. It is important to note that, while
the concept of a main shock and its aftershocks is intuitively classified by seismol-
ogists sometime after the largest earthquake occurs, there is no clear discrimination
between them in equation (2). That is, each earthquake can trigger aftershocks, and
the expected cluster size depends on the magnitude of the triggering earthquake
with the parameter α.

The parameter K0 (earthquakes/day) is sometimes called the “aftershock pro-
ductivity.” As the name explains, the parameter controls the overall triggering
intensity. The factor c (day) is a scaling time to establish the power-law decay
rate and allows a finite number of aftershocks at the origin time of a triggering
earthquake (a main shock). In practice, the fitted values for c are more likely to
be caused by the under-reporting of small earthquakes hidden in the overlapping
wave trains of large earthquakes [Utsu, Ogata and Matsu’ura (1995)]. The expo-
nent p is the power-law decay rate of the earthquake rate in equation (3). The
magnitude sensitivity parameter α (magnitude −1) accounts for the efficiency of
an earthquake of a given magnitude in generating aftershocks. A small α value
allows a small earthquake to trigger a larger earthquake more often. Finally, the
background (spontaneous) seismicity rate μ represents sustaining external effects
and superposed occurrence rates of long-range decays from unobserved past large
earthquakes. It also accounts for the triggering effects by external earthquakes.

The FORTRAN program package associated with manuals regarding ETAS
analysis is available to calculate the maximum likelihood estimates (MLEs) of θ

and to visualize model performances [Ogata (2006b)]. See also http://www.ism.
ac.jp/~ogata/Ssg/ssg_softwaresE.html.

2.2. Theoretical cumulative intensity function and time transformation. Sup-
pose that the parameter values θ = (μ,K, c,α,p) of the ETAS, equation (2), are
given. The integral of the conditional intensity function,

�θ(t |Ht) =
∫ t

S
λθ (u|Hu)du,(4)

provides the expected cumulative number of earthquakes in the time interval [0, t].
The time transformation from t to τ is based on the cumulative intensity,

τ = �(t |Ht),(5)

which transforms the original earthquake occurrence time (t1, t2, . . . , tN) into the
sequence (τ1, τ2, . . . , τN) in the time interval [0,�(T )]. If the model represents a
good approximation of the real seismicity, it is expected that the integrated function
[equation (4)] and the empirical cumulative counts N(t) of the observed earth-
quakes are similar. This implies that the transformed sequence appears to be a
stationary Poisson process (uniformly distributed occurrence times) if the model
is sufficiently correct, and appears to be heterogeneous otherwise.

http://www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html
http://www.ism.ac.jp/~ogata/Ssg/ssg_softwaresE.html
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2.3. Two-stage ETAS model and the change-point problem. In change-point
analysis, the whole period is divided into two disjointed periods to fit the ETAS
models separately, and is therefore called a two-stage ETAS model. This is one
of the easiest ways to treat nonstationary data, and is best applied to cases in
which parameters are suspected to change at a specific time. Such a change point
is observed when a notably large earthquake or slow slip event (regardless of ob-
served or unobserved) occurs in or near a focal region. Many preceding studies
[e.g., Ogata, Jones and Toda (2003), Ogata (2005, 2006a, 2007, 2010), Kumazawa,
Ogata and Toda (2010)] have adopted this method to their case studies, and details
can be found therein.

The question of whether the seismicity changes at some time T0 in a given
period [S,T ] is reduced to a problem of model selection. In this analysis, the
ETAS models are separately fitted to the divided periods [S,T0] and [T0, T ], and
their total performance is compared to an ETAS model fitted over the whole period
[S,T ] by the Akaike Information Criterion (AIC) [Akaike (1973, 1974, 1977)].
The AIC is described as follows:

AIC = −2 max logL(θ) + 2k,(6)

where ln L(θ) represents the log-likelihood of the ETAS model,

logL(θ) = ∑
{i : S<ti<T }

logλθ (ti |Hti ) −
∫ T

S
logλθ (t |Ht)dt,(7)

and k is the number of parameters to be estimated. The variables ti and Hti are
the same as those in equation (2). Under this criterion, the model with a smaller
AIC value performs better. It is useful to keep in mind that exp{−�AIC/2} can be
interpreted as the relative probability of how a model with a smaller AIC value is
superior to others [e.g., Akaike (1980)].

Let AIC0 be the AIC of the ETAS model estimated for the whole period [S,T ],
AIC1 be that of the first period [S,T0], and AIC2 be that of the second period
[T0, T ], therefore,

AIC0 = −2 max
θ0

logL(θ0;S,T ) + 2k0,

AIC1 = −2 max
θ1

logL(θ1;S,T0) + 2k1,(8)

AIC2 = −2 max
θ2

logL(θ2;T0, T ) + 2k2.

Let AIC12 represent the total AIC from the divided periods, such that

AIC12 = AIC1 + AIC2 + 2q,(9)

with q being the degrees of freedom to search for the best change-point candi-
date T0. Next, AIC12 is compared against AIC0. If AIC12 is smaller, the two-stage
ETAS model with the change point T0 fits better than the ETAS model applied to
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the whole interval. The quantity q monotonically depends on sample size (num-
ber of earthquakes in the whole period [S,T ]) when searching for the maximum
likelihood estimate of the change point [Ogata (1992, 1999), Kumazawa, Ogata
and Toda (2010), Bansal and Ogata (2013)]. This penalty term q , as well as an
increased number of estimated parameters, imposes a hurdle for a change point
to be significant, and it is usually rejected when the one-stage ETAS model fits
sufficiently well. If the change point T0 is predetermined from some information
other than the data, then q = 0. This is often the case when a conspicuously large
earthquake occurs within swarm activity, and will be discussed below. Also, even
in this case, the overfitting by the change point is avoided by the AIC12 of a two-
stage ETAS model, which has two times as many parameters of a single stationary
ETAS model throughout the whole period.

2.4. Anomaly factor functions for nonstationary ETAS models. Assume that
the ETAS model fits the data well for a period of ordinary seismic activity. Then,
the concern is whether this model shows a good fit to the seismicity in a for-
ward extended period. If there are misfits, time-dependent compensating factors
are introduced to the parameters to be made time-dependent. These factors are
termed “anomaly factor functions” and, thus, the transient changes in parameters
are tracked. If earthquake activity is very low in and near a target region preceding
the transient activity, data from a wider region, such as the polygonal region in
Figure 1, is used to obtain a reference stationary ETAS model (Figure 2). Such a
model is stable against small local anomalies, and is therefore a good reference
model. The reference ETAS model, coupled with the corresponding anomaly fac-
tor functions, becomes the nonstationary ETAS model in this study.

Among the parameters of the ETAS model, the background rate μ and the after-
shock productivity K0 are sensitive to nonstationarity. We therefore introduce the
anomaly factor functions as the nonstationary components to modify the reference
stationary ETAS model in such a way that

λθ (t |Ht) = μqμ(t) + ∑
{i : S<ti<t}

K0qK(ti)e
α(Mi−Mz)

(t − ti + c)p
.(10)

Here kμ(t) and qK(t) are referred to as anomaly factor functions of the param-
eters μ and K0, respectively. Because of technical reasons to avoid further model
complexity, we did not consider the case in which the other three parameters c, α

and p in equation (2) also are time-varying. One structural problem of the ETAS
model is that K0 is correlated with the parameter α. The trade-off is not negligible,
especially when the range of magnitudes in the data set is small. See Section 4 for
additional discussion of this issue.

We use the first-order spline function of the ordinary time t . This is a broken
line interpolated by the coordinates {(ti , qi); i = 0,1,2, . . . ,N +1}, where ti is the
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FIG. 1. Epicenters of earthquakes of magnitude (M) ≥ 3.0 in the Northern Honshu region, Japan,
with depths shallower than 40 km, from 1997 to 2012, selected from the JMA Hypocenter catalog. The
gray and black dots represent the earthquakes that occurred before and after the M9.0 Tohoku-Oki
earthquake, respectively. The rectangular regions A and B include the aftershocks of the 2008 Iwa-
te-Miyagi Prefectures Inland Earthquake of M7.2 and the swarm near Lake Inawashiro, respectively.
Their inset panels magnify the epicenter distribution with M ≥ 2.0 and M ≥ 2.5, respectively. The
polygonal region indicates the Tohoku inland and its western offshore region; the earthquakes in this
region are used in the reference stationary ETAS model. The closed star represents the epicenter of
the 2004 Chuetsu earthquake of M6.8, and the open star represents the 2007 Chuetsu-Oki earthquake
of M6.8.

occurrence time of the ith earthquake, and t0 and tN+1 are the start and end of the
period, respectively. Then, the spline functions are defined as follows:

qμ(t) =
N∑

i=1

I(ti ,ti+1)(t)

{
qμ,i+1 − qμ,i

ti+1 − ti
(t − ti) + qμ,i

}
=

N∑
i=1

qμ,iFi(t)(11)

and

qK(t) =
N∑

i=1

I(ti ,ti+1)(t)

{
qK,i+1 − qK,i

ti+1 − ti
(t − ti) + qK,i

}
=

N∑
i=1

qK,iFi(t),(12)

where I(ti ,ti+1)(t) is the indicator function, with the explicit form of Fi(t) given as

Fi(t) = t − ti−1

ti − ti−1
I(ti−1,ti )(t) + ti+1 − t

ti+1 − ti
I(ti ,ti+1)(t).(13)
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FIG. 2. Cumulative number and magnitude of earthquakes of M ≥ 3 against the ordinary time and
transformed time by the ETAS model from the polygonal region in Figure 1. The fitted period of the
model is from October 1997 to the M9.0 March 2011 Tohoku-Oki earthquake (indicated by vertical
dashed lines). Red curves in the top and bottom panels represent the theoretical cumulative num-
bers against the ordinary time (4) and the transformed time, respectively. The dashed black ellipses
and dashed rectangles highlight the anomalies around 2008 and after the Tohoku-Oki earthquake,
respectively.

The log-likelihood function of the nonstationary point process can be written as
follows:

logL(q) = ∑
{i;S<ti<T }

logλq(ti |Hti ) −
∫ T

S
λq(t |Ht)dt,(14)

where q = (qμ, qK).

2.5. Penalties against rough anomaly factor functions. Since these anomaly
functions have many coefficients representing flexible variations, coefficients are
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estimated under an imposed smoothness constraint to avoid their overfitting. This
study uses the penalized log-likelihood [Good and Gaskins (1971)] described be-
low. With the roughness penalty functions,

�μ =
N∑

i=0

(
qμ,i+1 − qμ,i

ti+1 − ti

)2

(ti+1 − ti) and

(15)

�K =
N∑

i=0

(
qK,i+1 − qK,i

ti+1 − ti

)2

(ti+1 − ti),

and the penalized log-likelihood against the roughness becomes

Q(q|wμ,wK) = logL(q) − wμ�μ − wK�K,(16)

where each “w” represents weight parameters that tune the smoothness constraints
of the anomaly factors. The roughness penalty, equation (15), imposes penalties to
the log-likelihood according to parameter differentials at successive event occur-
rence times.

Furthermore, the degree of the smoothness constraints may not be homogeneous
in ordinary time because earthquake series are often highly clustered. In other
words, it is expected that more detailed or rapid changes of the anomaly factors
appear during dense event periods rather than during sparse periods [Ogata (1989),
Adelfio and Ogata (2010)]. Hence, for the same model, alternative constraints are
considered by replacing {ti} in equation (15) with {τi} on the transformed time τ

in equation (5) of the reference ETAS model.
The following restricted cases of the nonstationary model in equation (10), to-

gether with different types of the aforementioned parameter constraints, are exam-
ined and summarized in Table 1. Model 1 restricts the parameter K0 to be constant
and unchanged from the reference model, leaving qμ(t) to be unrestricted. Model 2
restricts the parameters μ and K0 to have the same factor. In other words, model 2
estimates the anomaly factor for the total intensity λθ (t |Ht) in equation (10). This
restriction is assumed in Adelfio and Ogata (2010). Model 3 has no restriction.

Here, from a statistical modeling viewpoint, it should be noted that μ and K0
are linearly parameterized regarding the conditional intensity [equation (2)], and

TABLE 1
Summary of the competing nonstationary ETAS models. The numbers index the models. The row
headers explain the model restrictions of anomaly factors qμ(t) and qK(t). The first column (a)

uses smoothing on ordinary time, the second column (b) on the transformed time

Restrictions (a) Smoothing on ordinary time (b) Smoothing on transformed time

qK(t) = 1 Model 1(a) Model 1(b)
qμ(t) = qK(t) Model 2(a) Model 2(b)
No restriction Model 3(a) Model 3(b)
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likewise the linearly parameterized coefficients of the functions qμ and qK in
equation (10). Together, they force the penalized log-likelihood function [equa-
tion (16)] to be strictly concave regardless of the dimensions of the coefficients’
space [Ogata (1978, 2001), Ogata and Katsura (1993)]. Therefore, the maximiz-
ing solutions of the penalized log-likelihood function can be obtained uniquely
and stably under a suitable numerical optimization algorithm [e.g., appendices
of Ogata (2004, 2011b)]. The reproducibility of the inversion results of μ(t) and
K0(t) are demonstrated in the Appendix.

2.6. Tuning smoothness constraints, model selection and error evaluation. In
a Bayesian context, given the weights, the solution of the parameters q that min-
imize the penalized log-likelihood Q in (16) is termed the maximum a posteri-
ori (MAP) estimate. In the following section, we describe how to determine the
optimal MAP (OMAP) estimate. To obtain the optimal weights in the penalty
functions in equation (16), this study uses a Bayesian interpretation of penalized
log-likelihood as suggested by Akaike (1980). Specifically, the exponential of each
penalty function is proportional to a prior Gaussian distribution of the forms

π(qμ|wμ) ∝ e−wμqμ
μqt
μ/2 and π(qK |wK) ∝ e−wKqK
Kqt

K/2,(17)

since the coefficients of the function q.(·) in the penalty term � take a quadratic
form with a symmetric (N + 1) × (N + 1) nonnegative definite matrix 
. Since
each matrix 
 is degenerate and has rank(
) = N , above each prior distribution
becomes improper [Ogata and Katsura (1993)]. To avoid such improper priors, we
divide each of the vectors q into (qc, q(N+1)) so that each of the priors becomes a
probability density function with respect to qc:

π
(
qc|w,qN+1

) = (wN det
c)1/2

√
2π

N
exp

(
−1

2
wNqc
ctqc

)
,(18)

where 
c is the cofactor of the last diagonal element of 
, and w and q(N+1) are
considered hyperparameters to maximize the integral of the posterior distribution
with respect to qc,

�
(
wμ,wK;q(N+1)

μ , q
(N+1)
K

)
(19)

=
∫

L(qμ, qK)π(qμ|wμ)π(qK |wK)dqc
μ dqc

K,

which refers to the likelihood of a Bayesian model. Good (1965) suggests the
maximization of equation (19) with respect to the hyperparameters and termed
this the Type II maximum likelihood procedure.

By applying Laplace’s method [Laplace (1774), pages 366–367], the posterior
distribution is approximated by a Gaussian distribution, by which the integral in
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equation (19) becomes

�
(
wμ,wK;q(N+1)

μ , q
(N+1)
K

)

= Q
(
q̂c
μ, q̂c

K |wμ,wK;q(N+1)
μ , q

(N+1)
K

)
(20)

− 1
2 log(detHμ) − 1

2 log(detHK) + MN log 2π,

where q̂ is the maximum of the penalized log-likelihood Q in equation (16) and

H
(
q̂c|w,q(N+1)) = ∂2 logL(q̂c|w,q(N+1))

∂qc ∂(qc)t
− 
c(w,q(N+1)),(21)

for a fixed weight w for either wμ or wK .
Thus, maximizing equation (16) with respect to qc and equation (20) with re-

spect to (wμ,wK;q(N+1)
μ , q

(N+1)
K ), in turn, achieves our objective. In the former

maximization, a quasi-Newton method using the gradients ∂ logL(q)/∂q and the
Newton method making use of the Hessian matrices, equation (21), endure a fast
convergence regardless of high dimensions. For the latter maximization, a direct
search such as the simplex method is used. A flowchart of numerical algorithms is
described in the appendices of Ogata (2004, 2011b).

Anomaly factor functions under the optimal roughness penalty result in suitably
smooth curves throughout the period. Furthermore, there may be a change point
that results in sudden changes in parameters μ or K . To examine such a discon-
tinuity, a sufficiently small weight is put into the interval that includes a change
point (e.g., w = 10−5), and the goodness-of-fit by ABIC is compared with that of
the smooth model with the optimal weights for all intervals.

It is useful to obtain the estimation error bounds of the MAP estimate q̂ at
each time of an observed earthquake. The joint error distribution of the parameters
at q̂ is nearly a 2N -dimensional normal distribution N(0,H−1), where H−1 =
(hi,j ), and H = (hi,j ) is the Hessian matrix in equation (21). Hence, the covariance
function of the error process becomes

c(u, v) =
2N∑
i=1

2N∑
j=1

Fi(u)hi,jFj (v),(22)

where Fi = FN+i for i = 1,2, . . . ,N , which is defined in equation (13). Thus, the
standard error of q is provided by

ε(t) = [
εμ(t), εK(t)

] = √
C(t, t).(23)

2.7. Bayesian model comparison. It is necessary to compare the goodness of
fit among the competing models. From equation (20), the ABIC [Akaike (1980)]
can be obtained as

ABIC = (−2) max
wμ,wK ;q(N+1)

μ ,q
(N+1)
K

log�
(
wμ,wK;q(N+1)

μ , q
(N+1)
K

)
(24)

+ 2 × (#hyperparameter).
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Specifically, models 1 and 2 [1(a) and (b), 2(a) and (b) in Table 1] have four hy-
perparameters, and model 3 [3(a) and (b)] has eight. A Bayesian model with the
smallest ABIC value provides the best fit to the data.

Since there are various constraints in the different setups, the resulting ABIC
values cannot be simply compared because of unknown different constants, mainly
due to the approximations in equation (20). Alternatively, the difference of ABIC
values relative to those corresponding to the reference model are used. In other
words, the reduction amount of the ABIC value from a very heavily constrained
case,

�ABIC = ABIC − ABIC0,(25)

where ABIC is that of equation (24) and ABIC0 is the ABIC value with very
heavy fixed weights, which constrain the function to be almost constant. Therefore,
the �ABIC approximates the ABIC improvement from the flat anomaly functions
[q(t) = 1 for all t] to the optimal functions.

Likewise in AIC, it is useful to keep in mind that exp{−�ABIC/2} can be inter-
preted as the relative probability of how the model with the smallest ABIC value is
superior to others [e.g., Akaike (1980)].

3. Applications.

3.1. The stationary ETAS model versus the two-stage ETAS model. First, we
estimate the stationary ETAS model that has been applied to a series of earthquakes
of magnitude (M) 3.0 and larger contained in the polygonal region highlighted in
Figure 1, from October 1997 to the M9.0 Tohoku-Oki earthquake on March 11,
2011. Specifically, the MLE has been obtained for the stationary ETAS model
[equation (2)] by applying a normal activity for earthquakes of M3.0 and larger
from October 1997 to March 10, 2011 (Figure 2). According to the estimated the-
oretical cumulative curve in ordinary time [equation (4)] and transformed time
[equation(5)] in Figure 2, the ETAS model appears to fit very well except for a
period near 2008 and a period after the Tohoku-Oki earthquake, which is in good
accordance with Ogata (2012). These anomalies are highlighted by dashed ellipses
and dashed rectangles in Figure 2.

The former is the apparent lowering due to substantially small productivity in
the aftershock activity of the 2007 Chuetsu-Oki earthquake (open star in Fig-
ure 1). Interestingly enough, the 2004 Chuetsu earthquake (closed star) and the
2007 Chuetsu-Oki earthquake, which are about 40 km apart, have the same mag-
nitude (M6.8), but the number of aftershocks of M ≥ 4.0 differs by 6–7 times
[Japan Meteorological Agency (2009)].

The latter is due to the activation relative to the predicted ETAS model. The
March 11, 2011 M9.0 Tohoku-Oki earthquake induces this activation. On the other
hand, a series of aftershocks (located in region A, Figure 1) of the 2008 M7.2
Iwate-Miyagi Prefecture inland earthquake is quiet relative to the occurrence rate
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FIG. 3. Cumulative number and magnitude of the aftershock sequence with M ≥ 1.5, following
the 2008 Iwate-Miyagi earthquake of M7.2, from the region A against ordinary time. The ETAS
model is fitted to the sequence for the period from one day after the main shock (S = 1.0 day) to the
Tohoku-Oki earthquake (March 11, 2011; dashed line). The almost overlapping red curve indicates
the theoretical ETAS cumulative function, equation (4), and the extension to the rest of the period
until April 2012. The inset rectangle magnifies the cumulative curve for the extrapolated period.

predicted by the ETAS model estimated from the aftershock data before the M9.0
earthquake.

An analysis of the 2008 earthquake aftershock sequence is shown in Figure 3.
Here the ETAS model is fitted to the period from one day after the main shock
until the M9.0 earthquake. The estimated intensity is then extrapolated to span an
additional year. The change point at the M9.0 earthquake is substantial, decreasing
the total AIC by 28.5, showing a relative quiescence afterward. The penalty quan-
tity q in the AIC12 of equation (9) equals zero because the change point is given by
the information outside of the aftershock data, hence, �AIC = −28.5. Therefore,
the occurrence of the Tohoku-Oki earthquake is a significant change point.

Hereafter, the data set becomes very difficult for conventional ETAS analysis.
The earthquake swarm near Lake Inawashiro began March 18, 2011, a week after
the M9.0 earthquake in region B (Figure 1). Seismic activity in this area was very
low before the M9.0 event. The swarm mostly consisted of small earthquakes with
magnitudes less than 3.0. The largest earthquake in this cluster, an earthquake
of M4.6, occurred 50 days after the M9.0 earthquake, and its aftershock sequence
seemed to decay normally.

First, the stationary ETAS model is applied to the whole period. The theoreti-
cal cumulative function (solid light blue curves, Figure 4) is biased below from the
empirical cumulative function, indicating a substantial misfit. Hence, the two-stage
ETAS model is applied to the data to search the MLE for a change point. Table 2
lists the estimated parameters and AIC values. The change-point analysis (cf. Sec-
tion 2.2) implies that the MLE of the change point is at t = 49.8 days from the
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FIG. 4. Stationary and two-stage ETAS models fitted to region B. The ETAS model is fitted to the
entire period from March 18, 2011, to the end of 2012 with the preliminary period of the first 0.1
days (blue line), the period before the M4.6 event (t = 49.8 days) (green solid line) then extrapolated
forward (green dashed line), and the period after the M4.6 event (red solid line) then extrapolated
backward (red dashed line). The black curve shows the cumulative number of observed earthquakes.
The left panel plots these against ordinary time, whereas the right panel plots these against the
number of earthquakes.

beginning of this cluster, which coincides with the time just before the M4.6 earth-
quake occurred. The two-stage ETAS model with this change point improves the
AIC by 138.2 (see Table 2). The first-stage ETAS model before the change point,
with a fixed parameter p = 1.0, still displays a large deviation from the ideal fit
(cf. the solid green curve in Figure 4). The magnitude sensitivity parameter α be-
comes very small relative to that of the second-stage ETAS model. Such a small
value implies that almost all earthquakes in the first stage occurred independently
to preceding magnitudes (i.e., close to a Poisson process), and can be mostly at-
tributed to the average μ rate of the background seismicity. The first stage μ rate
is two orders of magnitude higher than the second stage rate.

If p is not fixed, the estimated K0, c and p have extremely large values for a
normal earthquake sequence while α approaches zero. Consequently, the model is
again approximate to a nonstationary Poisson process, characterizing the sequence
as a swarm, with an AIC smaller than that of the p = 1.0 scenario. The large dis-
crepancies between the estimated parameter values between (b) and (c) in Table 2
suggest that the stationary ETAS model is not well defined for this particular earth-
quake sequence in the first period before the change point. The standard errors for
the parameter α are multiple orders of magnitude greater than those of the esti-
mates themselves. The narrow magnitude range makes it difficult for the model
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TABLE 2
The ETAS parameters of region B fitted to (a) the entire period, (b) and (c) before the change point,

and (d) after the change point. Their standard errors are in parentheses. The improvement of the
two-stage ETAS model relative to the stationary ETAS model is

�AIC = (422.9 − 118.3) − 442.8 = −138.2. The MLE for the change point is t = 49.8, which
coincides with the time just before the M4.6. The threshold magnitude is Mz = 2.5. Numbers are

rounded to three significant digits

Period μ K0 c α p AIC

(a) The whole 9.77 × 10−2 6.54 × 10−2 9.64 × 10−4 0.215 0.900 442.8
period (7.81×10−2) (2.37×10−2) (6.35×10−4) (9.77×10−2) (9.84×10−3)

(b) Before 1.41 1.05 × 10−1 8.52 × 10−2 3.06×10−15 1.00 −103.0
change point (3.39×10−1) (6.99×10−2) (1.09×10−1) (9.35×10−1)

with fixed
p = 1.0

(c) Before 1.27 2.12×10+11 1.04 × 10+1 2.25×10−12 1.13 × 10+1 −118.3
change point (5.52×10−1) (4.71) (3.81×10−1) (1.03) (2.31×10−1)

without
fixed p

(d) After 6.58 × 10−2 3.58 × 10−2 7.11 × 10−5 0.912 0.945 422.9
change point (1.43×10−1) (1.90×10−2) (1.01×10−3) (1.10×10−1) (1.87×10−1)

to distinguish the effects of K0 and α, causing a trade-off between these two pa-
rameters, thus providing inaccurate estimations. For the case without a fixed p,
the aftershock productivity K0 becomes extremely small in compensation for the
small α estimate.

After the change-point time of the M4.6 earthquake, the ETAS model fits con-
siderably well for several months. Then, a deviation becomes noticeable relative
to the solid red cumulative curve in Figure 4. From these observations, it is con-
cluded that the M4.6 earthquake has reduced swarm activity and that decaying
normal aftershock type activity has dominated.

3.2. Comparison of the nonstationary models. In this section the proposed
nonstationary models and methods outlined in Sections 2.4–2.6 are applied to the
same data from region B near Lake Inawashiro. To replicate the transient nonsta-
tionary activities in this particular region, we use the seismic activity in the larger
polygonal region in Figure 1 for the period before the M9.0 earthquake (MLEs are
shown in Figure 2). Such a reference model represents a typical seismicity pat-
tern over a wide region throughout the period, and therefore represents a robust
estimate against the inclusion of local and transient anomalies.

By fixing the reference parameters c,α and p, both in the stationary and two-
stage ETAS models, μ and K0 are estimated for events from region B after the
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TABLE 3
Reference parameters adjusted to the data from region B and the parameters of the present

two-stage ETAS model (standard errors in parentheses) with fixed c, α and p of the reference model
(standard errors in brackets), with their AIC values. The improvement of the two-stage ETAS model
relative to the present stationary ETAS model is �AIC = 434.7 − 95.4 − 465.5 = −126.2. Also, the
improvement of the present two-stage ETAS model relative to the stationary ETAS model in Table 2

is as follows: �AIC = 434.7 − 95.4 − 442.8 = −103.5. The change point is at t = 49.8,
corresponding to the time just before the M4.6 earthquake. The threshold magnitude Mz = 2.5.

Numbers are rounded to three significant digits

Period μ K0 c α p AIC

(a) The whole 1.92 × 10−1 2.49 × 10−2 6.02 × 10−3 2.03 1.11 465.5
period (3.58×10−2) (5.82×10−3) [2.50×10−3] [1.27×10−2] [5.44×10−3]
(b) Before the 3.31 6.77 × 10−3 602 × 10−3 2.03 1.11 −95.4
change point (1.04×10−1) (3.27×10−3)

(c) After the 1.95 × 10−1 1.56 × 10−2 6.02 × 10−3 2.03 1.11 434.7
change point (2.99×10−2) (6.41×10−3)

M9.0 event, with a magnitude M ≥ 2.5. Table 3 summarizes the re-estimated pa-
rameters, together with the corresponding AIC values. The AIC improvement of
the two-stage ETAS model is 126.2.

Next, we have applied the nonstationary ETAS models listed in Table 1, with
and without a change point taken into consideration, using the reference parame-
ters in the first row of Table 3. Here, if a change point of M4.6 at the time t = 49.8
days occurs, we propose a very small fixed value such as that described in Sec-
tion 2.5.

Figure 5 shows all of the inversion results (maximum posterior estimates) for a
total of 12 models. The �ABIC values of the corresponding models are given in
Table 4. Models with the change point outperform corresponding models without
the change point. This highlights the significance of jumps at the change point.
Such improvements via jumps are smaller between corresponding models with
constraints on the transformed time. This is because those models already present
jumps or sharp changes to some extent in the target parameters even without set-
ting change points, due to the expanded transformed time during the dense event
period after the M4.6 event in ordinary time. Results also show that models with
constraints on ordinary time yield better results than those with the transformed
time. This is probably because the data set only contains gradually changing pa-
rameters except at the change point.

The smallest �ABIC is achieved by model 3(a′) in which both qμ(t) and qK(t)

are nonstationary on the smoothness constraints under ordinary time, with a jump
at the time of the M4.6 earthquake. Figure 6 shows variations of the background
and productivity rates in the selected nonstationary model. These variations sug-
gest that the intensity of aftershock productivity K0(t)(= K0qK(t)) is extremely
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FIG. 5. Various inversion results of all considered models for the data from region B. The model
numbers correspond to those of Table 1, and the models with prime (′) correspond to those that
include a change point. The background rates μ(t) are shown in red connected lines, and the pro-
ductivity K0(t) is shown in blue dots at earthquake occurrence times. The gray spiky curves represent
the conditional intensity rates λ(t |Ht ). The above three functions are plotted on a logarithmic scale.
The upper and lower gray horizontal lines represent the reference parameters μ and K0, respec-
tively (see Table 2). The vertical dashed line shows the change-point time, t = 4 days elapsed from
March 18, 2011. The horizontal axis indicates days elapsed.

low during early periods of earthquake swarms until the M4.6 earthquake oc-
curs; meanwhile, the background seismicity μ(t)(= μqμ(t)) changes at a high
rate. Therefore, the total seismicity λθ(t |Ht) in that period is similar to a nonsta-
tionary Poisson process with intensity rates μ(t) of the background activity. Af-

TABLE 4
�ABIC value of each model defined in equation (25). The underlined model has the smallest value.
The prime (′) indicates the models that further assume a change point at t = 49.8, the time when the

M4.6 earthquake occurred

Models a a′ b b′

1 −170.0 −177.2 −132.4 −134.1
2 −175.3 −180.1 −136.1 −137.2
3 −250.1 −260.8 −148.1 −151.5
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FIG. 6. The selected best-fitted model 3(a′) and errors of the inversion solutions. The background
rate μ(t) is shown in solid red, with one −σ error bounds in red dashed lines. K0(t) is shown in blue
dots with one − σ error bars at the occurrence times. The gray spiky curve represents the variation
of the intensity rates λ(t |Ht ). All of the above estimates are plotted on a logarithmic scale. The solid
gray horizontal line represents the reference μ value, and the horizontal dashed line represents the
reference K0 value (see Table 2). The horizontal axis is the elapsed days from March 18, 2011. The
vertical dashed line shows the change point t = 49.8 elapsed days. The middle panel displays the
longitudes versus the elapsed times of the earthquake occurrences in region B. The diameters of
the circles are proportional to the earthquake magnitudes. The bottom panel shows magnitudes of
earthquakes versus the ordinary elapsed times in days.

ter the M4.6 earthquake occurred, the μ(t) rate gradually decreased while K0(t)

increased. These changes are roughly approximated by the estimated two-stage
ETAS model in Table 3, in which μ before the change point is higher, while K0 is
lower than those after the change point.

If the �ABIC of model 3(a′) in Table 4 and �AIC of the two-stage ETAS models
in Tables 2 and 3 are compared [Akaike (1985, 1987)], the former model displays a
much better fit, with a difference of more than 130. This indicates that the specific
details of transient variations in model 3(a′) appear to be substantial. Model 3(a′)
further shows that the background μ(t) rate decreased after about t = 400 days,
indicating that the swarm component of the seismicity decreased. To demonstrate
the reproducibility of the detailed variations with the similar data sets, Figure 7
shows the re-estimated model 3(a′) utilizing the same optimization procedure from
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FIG. 7. The maximum a posteriori (MAP) solution of a synthesized data set by the estimated
model 3(a′) (shown in Figure 6) with the same reference parameters in Table 2. The re-estimated pa-
rameters μ(t) and K0(t) are shown in red and blue curves, respectively, with two-fold error bounds.
The upper and lower dashed black curves represent the true μ(t) and K0(t) (same as those in Fig-
ure 6), respectively.

simulated data in the estimated model 3(a′) in Figure 6. See the Appendix for more
details.

The model’s performance is graphically examined by plotting the estimated cu-
mulative number of events (4) to compare with the observed events in Figure 8,
which shows that the observed events become almost a stationary Poisson process,
although a few clustering features remain.

It is worthwhile to discuss why model 3(b′) with constraints under the trans-
formed time has a poorer fit than model 3(a′) with constraints under ordinary time.
The MAP estimate of model 3(b′) is shown in Figure 9, where the transformed
time τ in this case is defined in equations (4) and (5) using the reference ETAS
model, the parameter value of which is listed in the first row of Table 3. Parameter
variations in the period after the change point are similar to those of the overall
best model 3(a′). Variations during the period before the change point are differ-
ent with higher K0(t) and lower μ(t). However, in this particular application, the
performance of model 3(b′) on the whole is inferior in terms of �ABIC by a dif-
ference of greater than 100. This may be because the above mentioned reference
ETAS-based transformed time of the former period worked poorly, unlike during
the latter period.

Although the goodness of fit of model 3(b′) over the whole period (particularly
during the former period) is not quite satisfactory, it is worthwhile to examine
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FIG. 8. Estimated cumulative number of events by model 3(a′) (red curves) and the observed num-
ber of events (black curve) for the ordinary time (top panel) and residual time (bottom panel). Gray
circles show the depths of the swarm events versus the corresponding time.

the changes of μ(τ) and K0(τ ) during the latter period in Figure 9. The condi-
tional intensity rate λθ(t |Ht), background rate μ(τ) and aftershock productivity
rate K0(τ ) rapidly decrease not only after the M4.6 earthquake but also after rel-
atively large earthquakes. On such sharp drops, there is a technical but simple
explanation. Models in Table 4 with smoothness constraints on the transformed
time are sensitive to catalog incompleteness during small time intervals after large
earthquakes. In other words, a substantial number of small earthquakes that oc-
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FIG. 9. Variations of conditional intensity rates λ(τ |Hτ ), background rate μ(τ) and aftershock
productivity K0(τ ) of model 3(b′) versus the transformed time τ of the reference ETAS model (the
first row of Table 3). The other details are the same as those in Figure 6.

cur immediately after a large earthquake are missing in the earthquake catalog
[e.g., Ogata and Katsura (2006); Omi et al. (2013)]. Present results suggest that
the smoothing on the transformed time can be used as a supplemental tool to check
catalog completeness. The time transformation stretches out ordinary time where
the intensity rate is high and, hence, transforming the smoothed parameters back
to ordinary time can result in sharp changes. This type of constraint can be useful
for different applications in which occasional rapid changes are expected.

3.3. Seismological complements and implications of the results. Used as a ref-
erence model, the polygonal region in Figure 1 is known to have a similar seis-
micity pattern with similar focal mechanisms under the west–east compressional
tectonic field, as described in Terakawa and Matsu’uara (2010) and Toda, Lian and
Ross (2011, 2011). For example, earthquakes have mostly north–south strike an-
gles and west–east directional thrust faults in this region. This pattern can also be
seen in the configurations of active fault systems on the surface.

In the above sections, the estimation procedures of the models presented here
have been illustrated with a data set that includes a cluster of swarm earthquakes



1846 T. KUMAZAWA AND Y. OGATA

triggered by the March 11, 2011 M9.0 Tohoku-Oki earthquake. Swarm activity
in this region seems to be triggered by surface waves emitted from the M9.0
source, and has been studied by Terakawa, Hashimoto and Matsu’ura (2013) using
the seismological theory and methods used in Terakawa, Miller and Deichmann
(2012). Here they attribute swarm activity to the weakening of the fault via an in-
crease of pore fluid pressure caused by the dynamic triggering effect due to surface
waves of the Tohoku-Oki rapture. Thus, the initially very high and then decreasing
rate of μ(t) reflects changes in fault strength, probably due to the intrusion and de-
crease in pore fluid pressure. The analyses presented here support the quantitative,
phenomenological evidence of fault weakening via the intrusion of water into the
fault system in earlier periods [Terakawa, Miller and Deichmann (2012, 2013)].
Similarly, by monitoring swarm activity, this nonstationary model can be expected
to make quantitative inferences of magma intrusions and draining during volcanic
activity.

The background seismicity parameter in the ETAS model is sensitive to tran-
sient aseismic phenomena such as slow slips (quiet earthquakes) on and around
tectonic plate boundaries [Llenos, Mcguire and Ogata (2009), Okutani and Ide
(2011)]. This could possibly link a given swarm activity to the weakening of inter-
faces. Changes in the pore fluid pressure, for example, alter the friction rate of fault
interfaces, thereby changing the fault strength. Hence, monitoring the changes in
background seismicity has the potential to detect such aseismic events.

Changes in the aftershock productivity K0, on the other hand, appear to depend
on the locations of earthquake clusters and appear to vary among clusters where
secondary aftershocks are conspicuous. The aftershock productivity K0 therefore
reflects the geology around faults rather than the changes in stress rate. The appli-
cation of the space–time ETAS model with location-dependent parameters [e.g.,
Ogata, Katsura and Tanemura (2003), Ogata (2004, 2011b)] reveals that the K0
function varies (i.e., location sensitive) unlike other parameters. Still, the task re-
mains to confirm the link between the changes in ETAS parameters and physical
processes happening on and around faults.

4. Conclusions and discussion. There are many examples in seismology in
which different authors have obtained differing inversion results for the same sci-
entific phenomenon. These differences are attributed to the adoption of different
priors for the parameters of a given model. Scenarios in this study have the same
problem and are highlighted in Figure 5. Model parameters in this study are esti-
mated by maximizing the penalized log likelihood, which is intrinsically nonlinear.
Besides adjusting the weights in the penalty (namely, hyperparameters of a prior
distribution), it is necessary to compare the adequacy of different penalties (prior
distributions) associated with the same likelihood function. For these purposes, we
have proposed the objective procedure using �ABIC and �AIC.

A suitable ETAS model [equation (2)] is first established with MLE as the ref-
erence predictive model to monitor future seismic activity and to detect anomalous
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seismic activity. Sometimes, transient activity starts in a region with very low seis-
micity. In such a case, it is both practical and applicable to use a data set from
a wider region to estimate the stable and robust parameter values of c, α and
p in the ETAS model [equation (2)]. Then, the competing nonstationary ETAS
models in equation (10) are fitted together with constraint functions in equations
(11) and (12) using either ordinary time or transformed time to penalize the time-
dependent parameters in the models. The corresponding Bayesian models include
a different prior distribution of the anomaly factor coefficients qμ(·) and qK(·),
which are functions of either the ordinary time t [models 1(a)–3(a) in Table 1]
or the transformed time τ in the reference ETAS model [models 1(b)–3(b)]. Fur-
thermore, models in which the anomaly functions involve a discontinuity [models
1(a′)–3(a′) and 1(b′)–3(b′)] are considered. Using the �ABIC value, the goodness-
of-fit performances of all of the different models are summarized in Table 4.
Among the competing models, model 3(a′) attained the smallest �ABIC value,
and it is therefore concluded that this model provides the best inversion result for
this particular data set.

Thus, changes in background seismicity μ and/or aftershock productivity K0 of
the ETAS model can be monitored. The background seismicity rate in the ETAS
models represents a portion of the occurrence rate due to external effects that are
not included in the observed earthquake occurrence history in the focal region of
interest. Therefore, changes in the background rate have been attracting the interest
of many researchers because such changes are sometimes precursors to large earth-
quakes. The declustering algorithms [e.g., Reasenberg (1985), Zhuang, Ogata and
Vere-Jones (2002, 2004)] have been adopted to determine the background seis-
micity by stochastically removing the clustering components depending on the
ratio of the background rate to the whole intensity at each occurrence time. The
change-point analysis and nonstationary models presented in this study, however,
objectively serve a more quantitatively explicit way to approach this task.

The case where the other three parameters c,α and p in equation (2) also vary
with time was not examined in this study. For example, in Figure 8, we have seen
that the best model in our framework does not capture all of the clustering events
but misses a few small clusters, which suggests the time dependency of the param-
eters. For another example, we have seen the effect of missing earthquakes in Fig-
ure 7, suggesting that parameter c may depend on the magnitude of the earthquake,
leading to a significant correlation between c and p. Furthermore, in Section 2.3,
it is mentioned that K0 is correlated with the parameter α. Unstable estimations of
K0 and the α value in the swarm period before the M4.6 earthquake can be seen in
Table 2, during which period most of the magnitudes are between 2.5 and 3. This is
another reason why the α value is fixed by the corresponding reference parameter
α when the nonstationary models are applied. Owing to the linearly parameterized
coefficients of the functions qμ and qK in equation (10), the maximizing solutions
of the penalized log-likelihood function [equation (16)], in spite of the high di-
mension, can be obtained uniquely and stably by fixing the three parameters c,α

and p.
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APPENDIX: SYNTHETIC TEST OF REPRODUCIBILITY OF
NONSTATIONARY PATTERNS

We tested our method with synthetic data sets to check if both μ(t) and K0(t)

can be reproduced by simulated data sets that are similar to observed data sets. We
used the reference parameter set (Table 2) with the best estimated μ(t) and K0(t)

of model 3(a′).
The magnitude sequence of the synthetic data was generated on the basis of the

Gutenberg–Richter law with a b-value of the original data set (b = 1.273). In other
words, the magnitude of each earthquake will independently obey an exponential
distribution such that f (M) = β exp{−β(M − Mc), M ≥ Mc, where β = b ln 10,
and Mc = 2.5 is the magnitude value above which all earthquakes are detected.

The thinning method [Ogata (1981, 1998)] is adopted for data simulation. A to-
tal of 470 events were simulated with a threshold magnitude of 2.5. Model 3(a′)
was then fitted to the simulated data sets, with a change point at the same time as
the original data (between the 182nd and 183rd event). Results are shown in Fig-
ure 7; the estimated μ(t) and K0(t) appear to be similar to the original μ(t) and
K0(t) in Figure 6, respectively, within a 2σ error.
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