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Climate change is expected to alter the distribution of ambient ozone lev-
els and temperatures which, in turn, may impact public health. Much research
has focused on the effect of short-term ozone exposures on mortality and mor-
bidity while controlling for temperature as a confounder, but less is known
about the joint effects of ozone and temperature. The extent of the health
effects of changing ozone levels and temperatures will depend on whether
these effects are additive or synergistic. In this paper we propose a spa-
tial, semi-parametric model to estimate the joint ozone-temperature risk sur-
faces in 95 US urban areas. Our methodology restricts the ozone-temperature
risk surfaces to be monotone in ozone and allows for both nonadditive and
nonlinear effects of ozone and temperature. We use data from the National
Mortality and Morbidity Air Pollution Study (NMMAPS) and show that the
proposed model fits the data better than additive linear and nonlinear mod-
els. We then examine the synergistic effect of ozone and temperature both
nationally and locally and find evidence of a nonlinear ozone effect and an
ozone-temperature interaction at higher temperatures and ozone concentra-
tions.

The US Environmental Protection Agency (EPA) has concluded that current
scientific evidence supports a “causal relationship” between ozone and respiratory
health effects and a “likely to be causal” relationship between ozone and cardio-
vascular health effects and mortality [US EPA (2013)]. Extreme temperatures, es-
pecially heat waves, have also shown adverse associations with respiratory and
cardiovascular health [Bhaskaran et al. (2009), Turner et al. (2012)]. As a photo-
chemical air pollutant, ozone and temperature are both driven by solar radiation
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and their association is enhanced by the temperature dependence of other ozone
precursors [Bloomer et al. (2009)]. Both ambient temperatures and ground-level
ozone are expected to increase in the near future [US EPA (2009)] in response to
anticipated climate changes [IPCC (2007)]. Under these circumstances, a better
understanding of the joint effects of temperature and ozone on human health is
essential for public health.

Most multi-city, time-series studies of ozone have focused on a main ozone
effect while controlling for potential confounding variables in a generalized addi-
tive model. The highly influential analysis of Bell et al. (2004) estimated a 0.25%
(0.12%–0.39%) increase in mortality associated with a 10 ppb increase in same-
day mean ozone at the national level while controlling for confounders such as
temperature and weather conditions. Recent studies have found evidence that the
joint effects of ozone and temperature may not be additive [Bell, Peng and Do-
minici (2006), Chen et al. (2013), Smith, Xu and Switzer (2009)]. Future climate
change scenarios predict increases in the high ends of the distributions of both the
ozone and temperature. Under these future conditions, the disease burden of high
ozone and temperature days may be different if the joint ozone-temperature effect
is synergistic instead of additive.

Estimating the existence and nature of an interactive effect is nontrivial as tem-
perature and ozone are both correlated with health outcomes and with each other.
In multi-city, time-series studies the analysis is further complicated by the dif-
ferent ozone and temperature ranges observed in each city, which makes pooling
estimates across cities challenging. Several studies of ozone-related daily mor-
tality have used a stratified model to examine the potential differences in ozone
effect by temperature and found a larger average ozone effect on high tempera-
ture days compared to moderate temperature days [Bell and Dominici (2008), Ren
et al. (2008a), Smith, Xu and Switzer (2009)]. However, average ozone levels are
higher on high temperature days (see Figure 1, e.g., and Figure 1 in the supple-
mentary material for additional details [Wilson et al. (2014)]) and the ozone effect
may be larger at higher ozone concentrations [Smith, Xu and Switzer (2009)]. This
makes it unclear if the larger average ozone effect on high temperature days is due
to the higher ozone on those days or an ozone-temperature interaction.

To estimate interaction, the concentration-response gradient for ozone must be
evaluated at different temperature ranges for the same ozone range. Matching on
ozone isolates interaction from the potential confounding caused by higher ozone
levels at higher temperatures and nonlinear ozone effects. One way to do this is
to estimate the full ozone-temperature risk surface and evaluate the rate of change
of the risk surface in the ozone direction at different temperatures for a constant
ozone value. The gradient of the risk surface with respect to ozone describes the
ozone effect for each temperature and ozone concentration. A changing gradient
as a function of temperature for a fixed ozone value signifies interaction between
ozone and temperature. We will refer to the gradient in the ozone direction as the
log relative risk (log RR) of ozone throughout, which approximates excess RR.
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FIG. 1. Ozone-temperature distribution for selected cities. The upper and lower boxes contain
data for high temperature days and moderate temperature days, respectively, over the observed ozone
range. The purple subsections highlight the common ozone range, the intersection of the ozone ranges
for high and moderate temperature days. Details on the definition used to identify these days are in
Section 3.3. Seattle is the only city in the data set that does not have a common ozone range. (a) Los
Angeles, (b) Miami, (c) New York, (d) Seattle.

Recent studies have estimated the ozone-temperature risk surface in single-city
and independently in multi-city analyses [Chen et al. (2013), Ren et al. (2008a)].
The risk surfaces appear to be nonlinear and nonadditive, but inference was lim-
ited to visual inspection. Instead, these studies resorted to a stratified model with
different linear effects in each temperature stratum for a formal analysis instead
of making quantitative inference from the risk surfaces. In addition, the multi-city
approach used by Ren et al. (2008a) estimates the risk surfaces independently in
each city, not allowing for sharing of information between cities. The resulting risk
surface estimates are highly variable and do not allow for combining city-specific
surfaces to estimate a national risk surface.
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In this paper, we propose a spatial monotone surface model to estimate the
ozone-temperature risk and log RR surfaces in multi-city time-series studies. We
model the ozone-temperature risk surface with the outer-product of Bernstein poly-
nomial basis functions and restrict the surfaces to be monotone in ozone. The
Bernstein polynomial formulation enables closed-form representation of the risk
surfaces and log RR surfaces and facilitates comparisons between cites. It also al-
lows for sharing strength between nearby cities with a spatial model for the basis
coefficients.

We also present a two-stage approach to this model that reduces its computa-
tional burden for large data [following the framework of Dominici et al. (2002)]. In
the two-stage approach, we introduce a transformation that allows a different local
basis expansion to be used in each city that adapts to the city-specific ozone and
temperature ranges. This allows for the first-stage surface estimates to be estimated
with a basis expansion specifically tailored to the ozone-temperature distribution
in each city. However, the second stage surfaces use a common basis expansion
spanning the national ozone-temperature distribution.

We use the proposed spatial monotone surface model to estimate the national
and city-specific log RR surfaces in 95 US urban areas using data from the Na-
tional Morbidity and Mortality Air Pollution Study [NMMAPS; Samet et al.
(2000a, 2000b)]. Our results show evidence of a synergistic ozone-temperature
effect. At higher temperatures and ozone values, the log RR of ozone tends to
increase with temperature. We find the ozone-temperature interaction increases
estimates of excess mortality at higher temperatures.

1. Spatial monotone surface model. We assume the mortality count Yct in
city c at time t is Poisson with log mean

log E(Yct ) = fc(ozonect , tempct ) + gc(confoundersct ),(1)

where fc is the city-specific ozone-temperature risk surface and gc controls for
potential confounding variables. The model for daily mortality is adopted from
Bell et al. (2004) by moving daily mean temperature from the confounder model gc

to the risk model fc and relaxing the assumptions on fc to include interaction and
nonlinear effects. The bivariate risk surface fc is modeled with a spatial prior that
imposes monotonicity in the ozone direction. The confounder model gc includes
linear and nonlinear functions of potential confounders. In the subsections below
we specify models for the components of (1).

1.1. Ozone-temperature surface model. We model fc as the outer-product of
Bernstein polynomial basis expansions of ozone and temperature [Lorentz (1986),
Tenbusch (1997)]. This allows for a flexible regression surface including nonlin-
ear and nonadditive effects, but includes additive linear or polynomial effects as
special cases. When making inference on a potentially nonlinear and nonadditive
risk function the log of the expected change in risk at each concentration of ozone
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and temperature is expressed by the derivative of the log risk surface fc. Both the
Bernstein polynomial regression function (the log risk surface fc) and its deriva-
tives (the log RR surface) can be expressed in closed form, facilitating analysis of
the log RR of ozone.

The kth Bernstein polynomial basis function of order M is bk(x,M) =(M
k

)
xk(1 − x)M−k for x ∈ [0,1]. Denote ozone as x1, temperature as x2 and

x = (x1, x2)
T . To scale the data to the unit interval, we define the basis func-

tion Bl,k(xl,M) = bk[(xl −minct xl,ct )/rl,M], where rl = maxct xl,ct −minct xl,ct

and l = 1,2 indicates ozone and temperature, respectively. For notational simplic-
ity let Bj,k(x,M1,M2) = B1,j (x1,M1) × B2,k(x2,M2). The bivariate regression
function is

fc(x) =
M1∑
j=0

M2∑
k=0

ψj,k,cBj,k(x,M1,M2),(2)

where j and k index the ozone and temperature basis expansions, respectively. The
first derivative of (2) with respect to ozone is

∂fc(x)

∂x1
= M1

M1−1∑
j=0

M2∑
k=0

(ψj+1,k,c − ψj,k,c)Bj,k(x,M1 − 1,M2),(3)

the log RR of ozone. This is the change in log expected mortality associated with
a small increase in ozone.

For simplicity, we write the (M1 + 1)(M2 + 1)-vector of unknown coefficients
as

ψc = (ψ0,0,c, . . . ,ψM1,0,c,ψ0,1,c, . . . ,ψM1,M2,c )T .(4)

Also, denote the nc × (M1 +1)(M2 +1) basis expansion of ozone and temperature
in city c over days t = 1, . . . , nc as

B(Xc) = [
B0,0(Xc,M1,M2), . . . ,BM1,M2(Xc,M1,M2)

]T
.(5)

1.2. Hierarchical model for monotonicity and spatial smoothing. We evalu-
ate the bivariate association of current day’s ambient temperature and ozone with
mortality based on the prior hypothesis of a monotonic, but nonlinear, effect of
ozone and a nonlinear effect of temperature. The adverse health effects of short-
term exposures to ozone have been well established and described as causal to
respiratory effects and likely to be causal to mortality [US EPA (2006, 2013)].
Previous studies have estimated a monotone concentration-response function us-
ing the same data without imposing specific shape restrictions [Bell, Peng and Do-
minici (2006), Smith, Xu and Switzer (2009)]. A monotone relationship has also
been found in observational [Korrick et al. (1998), Ostro (1993)] and controlled
exposure [Horstman et al. (1990), McDonnell et al. (2012)] human studies of pul-
monary function. Temperature effect has been described to have “inverted J” or
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“U-shaped” risk function [Curriero et al. (2002)]. To reflect this prior knowledge,
we constrain the ozone effect to be monotone, but leave the temperature effect
unconstrained.

Bernstein polynomials are well suited for shape-restricted regression [see Chang
et al. (2007), Curtis and Ghosh (2011), Wang and Ghosh (2012)]. From (3), a suf-
ficient condition for monotonicity in the ozone direction is ψj+1,k,c ≥ ψj,k,c for
all j and k. We reparameterize the coefficients as θ0,k,c = ψ0,k,c and θj,k,c =
ψj+1,k,c − ψj,k,c for j > 0 using the matrix

T = IM2+1 ⊗

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠

(M1+1)×(M1+1)

.(6)

With this parameterization θc = Tψc and f (x; θc) is monotone in x1 if θj,k ≥ 0
for j > 0.

The ozone-temperature surface can vary across cities. To borrow strength across
nearby cities while ensuring a monotone risk surface, we model the basis coeffi-
cients with a truncated multivariate Gaussian process (GP). To do this, we define
the latent vector θ∗

c and let θ0,k,c = θ∗
0,k,c and θj,k,c = max(0, θ∗

j,k,c) if j > 0 for
all k.

The prior on θ∗
c is a multivariate Gaussian process with mean E(θ∗

c) = μ and
separable covariance function

cov
(
θ∗

c , θ
∗
c′

) = exp
[
−d(c, c′)

ρ

]
× S2 ⊗ S1,(7)

where S1 is a (M1 +1)× (M1 +1) matrix capturing covariance in the ozone direc-
tion, S2 is a (M2 +1)×(M2 +1) matrix capturing the covariance in the temperature
direction, and the exponential function captures spatial dependence. The distance
function d(c, c′) is the great circle distance between the centers of cities c and c′
in kilometers. In applications where the spatial units are all neighboring, a condi-
tional autoregressive model [CAR; Banerjee, Gelfand and Carlin (2004), Gelfand
et al. (2010), Lawson (2006)] may be a reasonable alternative to the distance-
based GP. However, there are very few neighboring cities with observed data in
the NMMAPS data analyzed in Section 3, so we chose the distance-based GP
over the neighbor-based CAR. The mean vector μ has prior N(1μ0, τS2 ⊗ S1).
While each component of the separable covariance is not identifiable on its own,
the product is identifiable.

In many two-stage normal–normal models, μ is often interpreted as the estimate
of the national average risk [e.g., Bell et al. (2004)]; however, in this model μ rep-
resents the mean of the latent process θ∗

c and not the process defining the shape
restricted surfaces of interest and thus does not have the same interpretation. To
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obtain the estimate of the national average log RR surface presented in Section 3,
we use the precision weighted average of the city-specific log RR surfaces which
are realizations of a truncated process θ c defining the modeled shape restricted sur-
faces. The precision weighted estimate gives more weight in the tails to cities with
data extending to those regions of the surface, whereas the population weighted
and unweighted cities do not reflect the different ozone-temperature distribution in
each city.

1.3. Confounder model. We define gc as a generalized additive model that
includes linear and nonlinear effects for potential confounders. This is the con-
founder model used by Bell et al. (2004), with the same degrees of freedom,
excluding daily mean temperature which is now in fc. The confounder model in-
cludes an age-specific intercept (<65, 65–74, ≥75), categorical variables for day
of week, and smooth functions of time interacted with age group with seven de-
grees of freedom per year (natural splines). We control for additional effects of
weather with natural cubic spline of the 3-day running mean of temperature with
six degrees of freedom, natural cubic spline of dewpoint with 3 degrees of freedom
and of the 3-day running mean of dewpoint with 3 degrees of freedom. The con-
founder model can be represented as the linear model gc(Zc) = Zcγ c. The prior
for the confounder regression coefficients is π(γ c) ∝ 1. While the prior for the
risk surface fc includes a spatial component, the prior on the confounder model is
independent between cities.

2. A two-stage approach for large data sets. For large data sets, estimating
the ozone-temperature risk surfaces is computationally intensive. To ease com-
putation, we break the model into two stages, similar to the approach used by
Dominici et al. (2002) and Bell et al. (2004). The two-stage approach approxi-
mates the spatial monotone model presented in Section 1 but with reduced com-
putational burden. In the first stage, we estimate (1) separately in each city with
no monotonicity constraint or spatial smoothing using computationally efficient
quasi-likelihood estimation. Then, we use the first-stage parameter estimates as
data for a Bayesian hierarchical model that spatially smooths the risk surfaces and
constrains each city’s risk surface to be monotone in ozone. The results given in
Section 3 are produced using this two-stage approach.

A natural approach for the city-specific estimates is to use the same basis ex-
pansion in each city. However, the observed ozone and temperature ranges vary
dramatically from city to city. As a result, some basis functions are well supported
at the national level but not supported in some cities individually. This can yield
unstable first-stage estimates. To extract as much information as possible from
each city in the first stage, we use a local basis expansion in each city that spans
only the observed ozone and temperature ranges in that city. In the second stage
a common basis expansion is used for all cities to approximate the full model de-
scribed in Section 1. Figure 2 in the supplementary material shows the first and
second stage basis expansions for six cities [Wilson et al. (2014)].
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2.1. Stage 1: City-specific GLM regression. The first-stage basis expansions
are scaled to the city-specific ozone and temperature ranges. In city c the first-
stage basis functions are bc

l,k(xl,M
c) = bk[(xl − mint xl,ct )/rc

l ,M
c], where rc

l =
maxt xl,ct − mint xl,ct , for l = 1,2. The first-stage estimates can also vary in the
order of the basis expansion, allowing for smaller Mc

1 and Mc
2 in cities with smaller

ozone and temperature ranges, respectively. Using this basis expansion, the first-
stage model of fc is

fc(x) =
Mc

1∑
j=0

Mc
2∑

k=0

βc,j,kb
c
1,j

(
x1,M

c
1
)
bc

2,k

(
x2,M

c
2
)
,(8)

with unknown first-stage parameters βc,j,k , j = 0, . . . ,Mc
1 and k = 0, . . . ,Mc

2 .
The confounder model remains as specified in Section 1.3. Denote the first-stage
estimate as (β̂T

c , γ̂ T
c )T and cov[(β̂T

c , γ̂ T
c )T ] = Vc, where Vc can be partitioned as

Vc =
(

Vc,11 Vc,12
Vc,21 Vc,22

)
,(9)

and bc(Xc) is the nc × (Mc
1 + 1)(Mc

2 + 1) matrix of first-stage basis expansions.
We assume that nc > (Mc

1 + 1)(Mc
2 + 1) in all cities.

The first-stage parameters βc correspond to different basis functions than those
used in other cities and in the global expansion in (2). Hence, βc are not directly
comparable across cities or with ψc. This difference is resolved in the second stage
(Section 2.2).

2.2. Stage 2: Bayesian model for stage 1 output. In the second stage, we repa-
rameterize the first-stage risk surface estimates in terms of the global basis expan-
sion (2). This provides a common set of parameters θc to estimate fc, c = 1, . . . , n,
with our spatial monotone model described in Section 1.2. Setting the first-stage
parameterization of the risk function fc(Xc) = bc(Xc)βc equal to the second-stage
parameterization fc(Xc) = B(Xc)T−1θc and solving for βc yields βc = Acθc,
where

Ac = [
bT

c (Xc)bc(Xc)
]−1bT

c (Xc)B(Xc)T−1.(10)

The quantity Acθc is the projection of the second-stage log risk surface onto the
column space of the first-stage basis expansion.

Most two-stage approaches use the likelihood β̂c ∼ N(βc, V̂c,11) in the second
stage, where β̂c and V̂c are the first-stage estimates of βc and Vc [e.g., Bell et al.
(2004), Dominici et al. (2002)]. For our model βc does not have the same meaning
in each city. We instead replace βc with Acθc and use the second-stage likelihood(

β̂c

γ̂ c

) ∣∣∣θc,γ c, V̂c ∼ N
[(

Acθc

γ c

)
, V̂c

]
.(11)

To complete the second-stage model, we put a flat prior on γ and use the prior
model described in Section 1.2 for θ∗ (and thus for θ ).
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2.3. Priors and computational details. We estimate (1) with quasi-likelihood
methods and the glm function in R to obtain the first-stage parameter estimates
β̂c, γ̂ c and V̂c, for c = 1, . . . ,N , where V̂c is the covariance matrix based on
the Fisher’s information matrix returned from the glm package. We use an off-
set proportional to the log population to account for different population sizes. To
complete the Bayesian specification of the second-stage model, we use the hyper-
priors:

μ0 ∼ N
(
0, τ 2

0
)
,

S2 ∼ IW(M2 + 2, I),

S1 ∼ IW(M1 + 2, I),(12)

τ ∼ Ga(aτ , bτ ) and

log(ρ) ∼ N
(
μρ,σ 2

ρ

)
.

We are interested in the posterior of (θT
c ,γ T

c )T . To expedite computation, we
perform MCMC sampling on the marginal posterior of θc, marginalizing over γ c

which is immediate from (11).
The parameters μ, μ0, τ , S1 and S2 have simple conjugate forms and are up-

dated with Gibbs sampling. The latent θ∗
c are sampled with a Gibbs sampler using

a mixture of truncated normals. The range does not have a closed-form full condi-
tional. We sample log(ρ) with a random-walk Metropolis–Hastings sampler. The
full conditional for all parameters, acceptance ratio for ρ and MCMC algorithm
are provided in supplementary material, Appendix D [Wilson et al. (2014)].

To get the predicted values used for cross-validation in Section 3.1, we need the
posterior mean of γ c,

E(γ c|θc, β̂c, γ̂ c,Vc) = γ̂ c + Vc,21V−1
c,11(Acθ̄c − β̂c),(13)

where θ̄c is the posterior mean of θc. Hence, no MCMC is required to get the
posterior mean of γ c, rather, it can be computed in closed form using the marginal
posterior estimate.

3. Analysis of the ozone-temperature log RR surfaces. In this section we
estimate the city-specific and national average log RR surfaces using the two-stage
approach presented in Section 2 and examine the nature of the ozone effect at
different temperatures and ozone levels. We use the NMMAPS data and estimate
the risk surfaces using same-day 1-hour maximum ozone and mean temperature,
and estimate the surfaces for the same 95 US urban areas used in Bell et al. (2004).
The NMMAPS data contains time-series data for 1987 through 2000 with daily
mortality counts by age group and daily measurements of ozone, meteorological
conditions and co-pollutants. We limit the analysis to April through October, or
ozone season.
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3.1. Cross-validation. We performed cross-validation to determine if the spa-
tial monotone risk surface model fits the data better than alternative models and to
determine the order of polynomials to use. For each city we used 80% of the data
as a training set and fit each model to those data. We compared models with the de-
viance of the 20% holdout sample using the predicted values. The cross-validation
deviance is 2[Ŷct − Yct log(Ŷct ) − log(Yct !)], where Ŷct is the predicted mortality
count on holdout sample day t in city c.

The comparison models are as follows:

(1) A nonspatial monotone risk surface model that replaces the multivariate
Gaussian process on θ∗

c with an independent multivariate normal model at each
site. Hence, θ∗

c are independent N(μ,S2 ⊗ S1).
(2) A spatial unconstrained risk surface version that models f (x; θc) directly

with a (nontruncated) multivariate Gaussian process prior for θ c, hence removing
the monotonicity constraint.

(3) A nonspatial unconstrained model that combines the two previously de-
scribed simplifications of the monotone risk surface model.

(4) The NMMAPS model presented in Bell et al. (2004) with a linear ozone
effect and natural spline for temperature.

(5) An additive model that replaces the linear ozone effect in the NMMAPS
model with an unconstrained spline.

For the risk surface models we use the noninformative hyperparameters τ0 =
100, aτ = 0.001 and bτ = 0.001. For the range parameter we let μρ = 7 and σρ =
10 to provide a diffuse prior centered around 1000 km, which is about the range
estimate reported in Smith, Xu and Switzer (2009). For the additive model we
use the same priors formulation as the nonspatial, unconstrained model, but only
use a basis expansion of ozone in fc since temperature is accounted for in the
confounder model. The second-stage model was run for 500,000 iterations and the
first half were discarded as burn-in. We thinned the posterior sample, keeping every
50th draw due to high autocorrelation, primarily in the range parameter. Figures 4
and 5 in the supplementary material show trace plots of the posterior sample used
for analysis [Wilson et al. (2014)].

Table 1 shows the difference in cross-validation deviance from the NMMAPS
model for the other five models. For the spatial monotone model the best per-
forming model had second-stage expansion of order M1 = 7 and M2 = 9 and
first-stage city-specific expansion orders Mc

1 = max(rc
1M1/r1,6) and Mc

2 =
max(rc

2M2/r2,4). Hence, the first-stage expansions are smaller and proportional
to the ratio of the city-specific range (rc

l ) to the national range (rl) down to a mini-
mum order. CV results for this order are presented in Table 1. Additional results for
other order expansions are provided in Appendix B in the supplementary material
[Wilson et al. (2014)].

Overall, the spatial monotone model has the smallest cross-validation deviance.
All four risk surface models have deviances well below those of the linear and
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TABLE 1
Difference in cross-validation deviance from the linear additive model (NMMAPS model)

Above 95th percentile

Overall Ozone Temperature Both

Spatial monotone −473.2 −42.3 −38.7 −21.1
Nonspatial monotone −459.9 −40.2 −38.5 −20.7
Spatial unconstrained −461.4 −38.0 −35.7 −18.9
Nonspatial unconstrained −447.9 −38.0 −39.5 −21.4

Additive (M1 = 4) −353.9 −24.6 −28.7 −16.5

nonlinear additive models. Hence, the data support using a nonadditive, nonlinear
model. About one-third of the difference between the spatial monotone and spatial
unconstrained risk surface models is in the high ozone area where there is less data
and the signal can be weak. The monotonicity constraint helps inform the model
and reduces variance in the tails while making a relatively smaller difference over
the areas with richer data. In addition, the monotonicity constraint smooths the
risk surfaces because there cannot be mini peaks and valleys in the surface. This
too helps improve fit in the holdout data set and it seems reasonable to assume the
exposure response relationship should be fairly smooth. Because we are interested
in the tail behavior, we compare the deviance on holdout sample days with ozone
above each city’s 95th percentile, days with temperature above the 95th percentile
and the intersection of the two. The spatial monotone model had the lowest de-
viance for higher ozone, but the nonspatial unconstrained model fit slightly better
for high temperature and the intersection. We proceed to analyze the data with the
spatial monotone model with M1 = 7 and M2 = 9.

3.2. Analysis of the national average log RR surface. The national ozone-
temperature log RR surface (the derivative of f with respect to ozone) shows an
association between daily 1-hour maximum ozone and mortality with posterior
probability greater than 0.99. The ozone effect is greater at higher ozone concen-
trations and at higher temperatures. Hence, a one ppb increase in ozone is asso-
ciated with a larger increase in mortality on high temperature days and days with
higher ozone levels. Figure 2(a) shows the national log RR surface plotted over
the range of observed data. This is the pointwise average over the city-specific log
RR surfaces weighted by the pointwise city-specific precision. Figure 2(c) and (d)
show the log RR of ozone at 50 ppb and 100 ppb, respectively, as functions of
temperature, along with 95% posterior intervals. All results for log RR are the
gradient (3) multiplied by 1000. This can be interpreted as the expected percent
change in mortality associated with a 10 ppb increase in ozone, where 10 ppb was
chosen to be consistent with other publications.
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FIG. 2. Panels (a) and (b) show the pointwise mean and standard deviation of the national log RR
surfaces. Panels (c) and (d) show a cross section of the log RR surface with ozone fixed at 50 and
100 ppb, respectively, along with 95% posterior intervals. Log RR is in percent change in mortality
per one ppb increase in ozone.

At higher ozone concentrations, temperature has a larger modifying effect. Fig-
ure 3 shows the log RR at the 50th, 75th, 95th, and 99th percentiles of temper-
ature as a function of ozone. For each temperature, log RR increases at higher
ozone concentrations. As temperature increases from the median, the log RR in-
creases monotonically for all ozone values, however, the difference between the
cross-sections at low ozone values is very small. The posterior probability that
RR is greater at the 99th percentile than the 50th percentile is about 0.92 [Fig-
ure 3(b)].

The cross-derivative of the risk surface provides a more complete picture of a
departure from additivity. The cross-derivative surface is

∂2fc(x)

∂x1 ∂x2
= M1M2

M1−1∑
j=0

M2−1∑
k=0

(θj,k+1,c − θj,k,c)Bj,k(x,M1 − 1,M2 − 1).(14)

We refer to (14) as the interaction surface, as it is the rate of change in the log RR
surface with respect to temperature. With an additive model the cross-derivative is
zero. Figure 4 shows the national interaction surface and the pointwise posterior
probability that the interaction is greater than zero. The national interaction surface
shows a synergistic effect at higher ozone and temperatures. This synergism occurs



1740 WILSON, RAPPOLD, NEAS AND REICH

FIG. 3. Comparison of the log RR at the 50th, 75th, 95th and 99th percentiles of temperature. The
estimates are plotted over the range of ozone values observed at that temperature in at least 5 cities.
(a) Shows the mean log RR for each cross section and (b) shows the pointwise posterior probability
that log RR is greater at the high temperature. Log RR is in percent change in mortality per one
ppb increase in ozone. (a) Mean log RR at four percentiles of temperature (50th, 75th, 95th, 99th),
(b) posterior probability that RR is greater at higher temperatures than median temperatures for
each ozone value.

with a posterior probability greater than 0.95 over the part of the surface with
temperature equal to 90◦F. At lower temperatures, the mean interaction is negative,
although not with a high posterior probability in this summer-only analysis.

3.3. Analysis of the city-specific log RR surfaces. We now examine the city-
specific surfaces and interaction at the city level. Figure 5 shows examples of four

FIG. 4. National interaction surface and pointwise posterior probability of positive interaction.
(a) Shows the national interaction surface which is the cross-derivative of the log risk surface or the
derivative of the log RR surface with respect to temperature. This shows how log RR changes with
temperature and quantifies the interaction at each point. (b) Shows the posterior probability that the
national interaction surface is greater than 0.
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FIG. 5. Log RR surfaces for selected cities (left) and their pointwise standard deviations (right).
Surfaces are plotted only over the range of data observed data for that city. The cities were selected
for being geographically diverse and having varied ozone and temperature ranges. (a) Los Angeles
log RR surface, (b) Los Angeles SD, (c) Miami log RR surface, (d) Miami SD, (e) New York log RR
surface, (f) New York SD, (g) Seattle log RR surface, (h) Seattle SD.



1742 WILSON, RAPPOLD, NEAS AND REICH

city-specific log RR surfaces and their pointwise standard deviations. While the
national log RR surface shows a high posterior probability of a positive ozone
effect, the city-specific ozone effect, averaged over the observed days in each city,
is positive with posterior probability greater than 0.95 in six cities (Los Angeles,
CA; Dallas/Ft. Worth, TX; Houston, TX; San Jose, CA; Oakland, CA; and St.
Louis, MO).

To evaluate the interaction effect, we compare high and moderate temperature
days in each city. We define high temperature days as those with temperatures be-
tween the 95th and 99th city-specific temperature percentiles and moderate tem-
perature days to have temperatures between the 50th and 75th percentiles. Within
each range we include only days between the 10th and 90th percentiles of ozone
in order to minimize the influence of days with extreme ozone values in either di-
rection. Figure 1 outlines these days in black for four cities. By using city-specific
percentiles this definition of high and moderate temperature days adapts to each
city’s weather; however, like previous studies that used a stratified model to com-
pare log RR at different temperatures, it does not account for the different ozone
distributions of high and moderate temperature days. To remove the effect of differ-
ent ozone ranges, we limit the high and moderate temperature regions to a common
ozone range, indicated by the purple box in Figure 1.

On high temperature days the log RR is larger than on moderate temperature
days over the observed ozone range in most cities, but the difference is greatly
reduced when comparing only over the common ozone range. Figure 6 compares
the ratio of mean log RR on high temperature days to mean log RR on moderate
temperature days for both ozone ranges. The large reduction in the ratio when
limiting to a common ozone range suggests that much of the difference in log RR
between high and moderate temperature days is due to the higher ozone levels on
high temperature days in conjunction with the nonlinearity of the ozone effect.
Over the common ozone range, the ratio ranged from about 1 to 2.5. Most of the
cities with larger levels of interaction over the common ozone range are in the north
where there is a larger difference between the temperatures on high and moderate
temperature days (Figure 7 and Table 2).

These results are similar to many previous studies that find statistical signifi-
cance at the national level but in only a handful of cities [see Bell et al. (2004),
e.g.]. The motivation of hierarchical modeling and sharing information between
cities in our study is to increase the power to estimate effects. While the posterior
probabilities in most cities do not strongly support interaction at the city level, the
city-specific point estimates imply interaction in many cities, a result consistent
with the national results presented in Section 3.2.

3.4. Analysis of excess mortality. Overall we see a trend of a synergistic
ozone-temperature effect, both in the national log RR surface and interaction sur-
face, and in the city-specific estimates. This interaction at higher ozone levels and
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FIG. 6. Comparison of the log RR at high temperatures and moderate temperatures as defined in
Section 3.3. The ratio of log RR over the observed ozone range is shown in black and common ozone
range is in blue. The posterior mean and 95% interval are shown.
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FIG. 7. Map of the ratio of log RR at high temperatures and moderate temperatures over the com-
mon ozone range as defined in Section 3.3. The RR at higher temperatures is greater than the RR at
moderate temperatures with posterior probability at least 0.8 in the cities outlined in black (Dallas/Ft
Worth, Los Angeles, and St. Louis).

temperatures leads to a larger estimate of excess mortality. Table 3 compares the
expected change in mortality associated with an increase from median ozone and
temperature to the 95th percentile of ozone and temperature for the additive lin-
ear model (NMMAPS), the additive nonlinear model and the monotone, spatial
risk surface model by region. The general trends are the same, with the largest

TABLE 2
Mean log RR on high and moderate temperature days over the observed and common ozone rates

by region (in percent change in mortality per 10 ppb increase in ozone)

Observed ozone range Common ozone range

High temp. Moderate temp. High temp. Moderate temp.

Indust. midwest 0.25 (0.10) 0.17 (0.06) 0.24 (0.09) 0.19 (0.07)
Northeast 0.12 (0.09) 0.06 (0.05) 0.11 (0.09) 0.07 (0.05)
Northwest 0.14 (0.06) 0.07 (0.03) 0.12 (0.05) 0.09 (0.04)
Southern CA 0.13 (0.07) 0.08 (0.05) 0.11 (0.06) 0.09 (0.06)
Southeast 0.17 (0.39) 0.14 (0.33) 0.17 (0.39) 0.15 (0.33)
Southwest 0.14 (0.08) 0.08 (0.05) 0.13 (0.08) 0.08 (0.05)
Upper midwest 0.10 (0.07) 0.06 (0.04) 0.09 (0.07) 0.06 (0.04)

National 0.15 (0.04) 0.09 (0.02) 0.13 (0.04) 0.10 (0.03)

Note: The regions from the NMMAPS data are used [see Samet et al. (2000a, 2000b)].
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TABLE 3
Percent increase in mortality associated with an increase from the medians of ozone and

temperature to the 95th percentiles of ozone and temperature using different models

Additive linear Additive nonlinear Surface

Indust. midwest 4.57 (0.77) 3.27 (1.65) 4.13 (0.42)
Northeast 5.61 (0.94) 5.88 (1.92) 5.31 (0.48)
Northwest 3.92 (0.82) 0.90 (1.84) 2.42 (0.58)
Southern CA 2.77 (0.80) 3.89 (2.57) 3.88 (0.77)
Southeast 0.70 (0.52) 3.15 (1.20) 3.23 (0.38)
Southwest 2.89 (0.84) 4.71 (2.04) 4.49 (0.64)
Upper midwest 1.33 (1.21) 2.91 (2.08) 4.82 (0.62)

National 3.06 (0.30) 3.54 (0.75) 3.98 (0.24)

effects observed in the industrial midwest, but the risk surface estimates are more
homogeneous across regions.

4. Discussion. In this paper we propose a two-stage procedure to estimate
city-specific ozone-temperature risk surfaces. To accommodate different temper-
ature and ozone ranges in different cities, we use local basis expansions in the
first stage. The first-stage results are combined in the second-stage model using
a global basis expansion and spatially-varying coefficients to allow for different
ozone-temperature effects by city.

We evaluated the model fit with respect to the modeling assumptions using
cross-validation and the results indicated that monotonically nondecreasing shape-
restricted ozone effect in a spatial model was best supported by the data. These
results suggest that the monotonic constraint helps inform the model where data
is sparse while allowing the constraints of linearity of the association to be re-
laxed. Previous attempts to analyze the bivariate effect of temperature and ozone
on mortality have either over-smoothed with loss of information on potential in-
teraction or under-smoothed, resulting in biologically implausible scenarios where
increasing doses of ozone may alternate between being beneficial and detrimental
to health [Burkart et al. (2013), Cheng and Kan (2012), Ren et al. (2008a, 2008b)].

Our analysis of the data in 95 US cities provides additional evidence that the
effects of ozone and temperature are nonlinear, and depart from simple additivity
between ozone and temperature. Specifically, the national average log RR surface
indicates that the RR of ozone is higher on high temperature days and this interac-
tion is most pronounced in the northern US, where summer temperatures have the
most variability.

The results of this study have important implications toward understanding the
nature of the joint effects of ozone and temperature on mortality. To compare the
ozone effect between different temperature strata, it is important that the distribu-
tions of ozone be similar within each strata. High correlation between temperature
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and ozone violate this requirement and thus call for careful consideration and in-
terpretation of methods. Indeed, the results suggest that the higher ozone estimates
at high temperatures in stratified studies are primarily due to the nonlinear effect of
ozone coupled with higher concentrations of ozone formed at high temperatures.
However, the results also suggest that modification of risk is present at higher tem-
perature levels.

IPCC (2007) raised concerns about whether current air quality management
practices can adequately protect public health under the future climate regimes.
Climate projections show increases in extreme ozone and temperature days over a
significant portion of the US [Hogrefe et al. (2004), Kunkel et al. (2008), Tagaris
et al. (2007), Wu et al. (2008)]. The synergistic ozone-temperature effect estimated
in this paper implies that the disease burden of these extreme weather days is
greater than would be estimated with additive models. This is despite the rela-
tively small size of the interaction effect compared to the nonlinear main effect at
higher ozone levels.

In our paper we have developed methodology to capture nonlinear interactions
between temperature and ozone effects. This methodology could be used in other
health effects analyses and potentially beyond. For example, there is increasing in-
terest in identifying joint effects of multiple pollutants [National Research Coun-
cil (2004)]. Recent work on multiple-pollutant modeling include Kalendra (2010)
and Bobb, Dominici and Peng (2013), who study the joint effect of ozone and
fine particulate matter. Another application is studying cumulative effects using
various lagged pollution or temperature variables [Heaton and Peng (2012, 2014),
Schwartz (2000), Welty and Zeger (2005)]. Bell et al. (2004) found that the current
day ozone exposures (lag 0), the same measure analyzed in this paper, have the
largest effect on total mortality and cardiovascular and respiratory deaths. How-
ever, previous day exposures (lags 1 and 2) were also significantly associated with
daily mortality, as was the cumulative effect of exposures of the previous week
(lags 0–6). For any two predictors our method would apply directly; extending the
model to include a high-dimensional surface for the joint effect of several predic-
tors will be challenging. To accommodate several predictors, our approach could
be modified to have an additive structure [Hastie and Tibshirani (1990)] with main
effect curves for each predictor and two-dimensional interaction surfaces for pairs
of variables thought to interact.

SUPPLEMENTARY MATERIAL

Appendices (DOI: 10.1214/14-AOAS754SUPP; .pdf). Appendices referenced
in the text are provided in the supplementary appendix file [Wilson et al. (2014)].
Appendix A: additional figures. Appendix B: cross-validation results. Appendix C:
full conditional distributions. Appendix D: MCMC algorithm. Appendix E: trace
plots.

http://dx.doi.org/10.1214/14-AOAS754SUPP
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