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DEGRADATION-BASED RESIDUAL LIFE PREDICTION UNDER
DIFFERENT ENVIRONMENTS

BY RENSHENG ZHOU, NICOLETA SERBAN AND NAGI GEBRAEEL

Georgia Institute of Technology

Degradation modeling has traditionally relied on historical signals to es-
timate the behavior of the underlying degradation process. Many models as-
sume that these historical signals are acquired under the same environmental
conditions and can be observed along the entire lifespan of a component. In
this paper, we relax these assumptions and present a more general statistical
framework for modeling degradation signals that may have been collected
under different types of environmental conditions. In addition, we consider
applications where the historical signals are not necessarily observed con-
tinuously, that is, historical signals are sparse or fragmented. We consider
the case where historical degradation signals are collected under known en-
vironmental states and another case where the environmental conditions are
unknown during the acquisition of these historical data. For the first case, we
use a classification algorithm to identify the environmental state of the units
operating in the field. In the second case, a clustering step is required for clus-
tering the historical degradation signals. The proposed model can provide ac-
curate predictions of the lifetime or residual life distributions of engineering
components that are still operated in the field. This is demonstrated by using
simulated degradation signals as well as vibration-based degradation signals
acquired from a rotating machinery setup.

1. Introduction. Degradation signals are signals that are correlated with
physical degradation processes that take place prior to failures of engineering sys-
tems or components. For this reason, degradation signals are commonly used as in-
dicators of the health status or the performance level of functioning components. In
degradation data analysis, an engineering component is considered to have failed
once its degradation level reaches a fixed and prespecified critical level, known as
the failure threshold.

Recent developments in degradation modeling, such as Gebraeel et al. (2005),
Liao, Zhao and Guo (2006), Zhou, Serban and Gebraeel (2011) and Zhou, Ge-
braeel and Serban (2012), have focused on utilizing degradation-based signals to
predict lifetime or residual life distributions of engineering components. Almost
all of the existing models rely on a historical database of degradation signals for
estimating model parameters specifying the behavior of the degradation process.
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FIG. 1. Examples of complete, fragmented and sparse degradation signals.

These signals can be acquired through a variety of methods. For instance, it may be
possible to acquire frequent observations through extensive monitoring of a com-
ponent over its life span, which results in a complete degradation signal. Another
alternative is to follow an intermittent monitoring strategy, which leads to incom-
plete degradation signals. For instance, the degradation signals could be sparsely
observed (i.e., sparse degradation signals) or densely observed over short time in-
tervals (i.e., fragmented degradation signals). An example of complete, sparse and
fragmented degradation signals is provided in Figure 1 available from Zhou, Ser-
ban and Gebraeel (2011).

More generally, components may be operated under different environmental
conditions, for instance, different levels of humidity, speeds, loads and temper-
atures, among others. Environmental conditions can significantly accelerate or
decelerate the degradation processes of functioning components. For example,
in Gebraeel and Pan (2008), bearings are run at different rotating rates and, as
a result, these bearings degrade at significantly different rates. However, most
existing literature on degradation modeling assumes that components are from
the same population and are operated under the same environmental conditions.
An approach that does take the environmental conditions into account is com-
monly used for modeling accelerated degradation test (ADT) data. Whitmore and
Schenkelberg (1997) propose a Wiener diffusion process with a time-scale trans-
formation that depends upon the level of stress under which the ADT signals data
are observed. Similar ideas can be found in Doksum and Hóyland (1992), Liao
and Tseng (2006), Park and Padgett (2006) and Tseng, Balakrishnan and Tsai
(2009). Other approaches that incorporate environmental data in degradation mod-
els include Kharoufeh (2003), Kharoufeh and Cox (2005), Li and Luo (2005) and
Singpurwalla (1995). One common characteristic among these existing methods is
that the dependence of the degradation processes on the environmental conditions
is specified using a parametric functional form that describes how the degradation
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processes evolve over time; see Bae and Kvam (2004), Gebraeel (2006), Lawless
and Crowder (2004), Meeker and Escobar (1998), Robinson and Crowder (2000),
Wang and Xu (2010) and Whitmore, Crowder and Lawless (1998), among others.

In some applications, the underlying physics of degradation processes indeed
may be known in advance. However, in many applications it may be difficult to
identify a parametric model that can accurately capture the underlying trend of
degradation processes. To overcome this challenge, recent research has considered
nonparametric degradation models, in which the functional form is learned from
the degradation data. Shiau and Lin (1999) applied nonparametric regression tech-
niques to characterization of degradation signals of a light emitting diode product
under different stress levels. Müller and Zhang (2005) proposed a time-varying
regression approach for predicting the remaining lifetime of flies based on the ob-
served reproductive activity. Both research works, however, assume that the degra-
dation signals are completely observed. In Liao and Sun (2011), Zhou, Serban and
Gebraeel (2011) and Zhou, Gebraeel and Serban (2012), the authors pointed out
that the challenge is even more noteworthy when there are only incomplete degra-
dation signals available. To overcome this challenge, they developed nonparamet-
ric degradation models based on functional data analysis and demonstrated that
these models are generally more flexible and more robust to model misidentifica-
tions. These nonparametric models apply to signals observed at a small number of
nonregularly sampled time points given that the number of degradation signals is
sufficiently large.

In this paper, we develop a nonparametric model that does not require the func-
tional form of mean degradation trend to be known in advance. This allows for
more flexibility in modeling as compared to parametric approaches such as Lu
and Meeker (1993) and other references mentioned above. More specifically, we
build our modeling framework based upon functional data analysis (FDA) tech-
niques. Functional data analysis is a collection of statistical techniques that focus
on analyzing data in the form of curves, surfaces or functions. Examples of FDA
methodologies include functional principal component analysis in Yao, Müller
and Wang (2005), functional regression analysis in Ramsay and Dalzell (1991),
functional time warping analysis in Telesca and Inoue (2008) etc. A comprehen-
sive review and discussions of FDA methods and applications can be found in
Ramsay and Silverman (2005). In this paper, we apply FDA techniques to differ-
ent types of degradation signals, whether they are complete or incomplete, that
specify the effects of varying environmental conditions on degradation processes
within a flexible framework not requiring prior knowledge about the behavior of
the degradation trend. Using a similar Bayesian framework as in Zhou, Serban and
Gebraeel (2011), Zhou, Gebraeel and Serban (2012) but implemented within the
model specifications in this paper, we predict and update in real time the residual
life distributions (RLD) of components operated in the field, referred to as fielded
components, by using their partially observed degradation signals. Unlike previ-
ous work by Zhou et al. (2014), the model presented in this paper allows for the
degradation signals to be observed under varying environment conditions.
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Specifically, we assume that the environmental conditions can be categorized
into discrete types, and they are time invariant. Under this assumption, we con-
sider two different scenarios. One scenario is supervised learning, in which the
environmental types for all the training signals are available. In this case, only the
new test (fielded) component’s environmental type is unknown and needs to be
predicted. Another scenario is unsupervised learning, in which the environmental
information is not available in advance. Under the second scenario, we also need
to learn the clustering of the different environments along with the estimation of
the degradation process corresponding to each group of environments. In both sce-
narios, the degradation model includes a random variable describing the cluster
membership or the type of environmental conditions. In the second scenario, this
variable is latent or missing.

Because we have two sources of missing data, one due to the fact the signals
are thresholded and the second due to the missing cluster membership or unknown
environment type, we propose using an Expectation–Maximization algorithm to
estimate and update the distribution of the degradation process. The EM-type al-
gorithm is a more flexible approach to model estimation when signals come from
different environments.

The performance of the developed degradation framework is demonstrated by
using both simulated degradation signals and a case study from a rotating machin-
ery setup. We consider extensive types of scenarios, for instance, the components
may be operated under known or unknown types of environmental conditions; the
degradation signals may be complete or incomplete; the underlying degradation
trend may or may not be expanded from the basis functions we specify. The results
indicate that the proposed framework is quite flexible and can accurately predict
the RLD of components operated in the field under all these scenarios.

The remaining paper is organized as follows. We first discuss the general model
in Section 2. We present the details of the estimation approach in Section 3 fol-
lowed by model prediction in Section 4. To assess the performance of our method-
ology, we continue with a simulation study and a case study in Sections 5 and 6,
respectively. Conclusions and some discussions are given in Section 7. Techni-
cal details are provided in the supplemental material [Zhou, Serban and Gebraeel
(2014)].

2. The model.

2.1. Model decomposition. Denote the degradation level at time t by S(t),
the failure threshold by D and the environmental type by Z. According to the
definition of failure, the lifetime of a component, denoted by T , is

T = inf
t

{
S(t) ≥ D

}
.(1)

Here, T is random and not observable due to the incompleteness and discreteness
of the observed degradation signals.
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In this paper, we consider a nonparametric decomposition of S(·), by assuming
that it can be represented by a set of basis functions B(·), with a vector coefficient
denoted by γ . We also assume that the environmental conditions are specified by
the variable Z. Based on these assumptions, we consider estimating the degrada-
tion model using a likelihood based approach. The likelihood decomposition used
in our model estimation is motivated by the fact that T is unobservable. The de-
composition is

L(S,Z,γ ) = f (Z)f (γ |Z)f (S|Z,γ ),

where Z and γ are latent variables and, thus, we need to impose a parametric
structure on both Z and γ |Z. It is natural to assume that Z follows a multino-
mial distribution, as the contribution of each environment type will be given by the
probabilities of the multinomial distribution. This assumption in turn specifies that
S(·) is a mixture process. Furthermore, the proportional parameters of the multi-
nomial distribution can be estimated by the fraction of each cluster in the historical
data set or determined by prior knowledge.

The distribution of f (γ |Z) can be approximated by, for instance, a Gaussian
distribution. This implies that, unconditionally, γ follows a mixture of Gaussian
distributions. The number of mixtures is equal to the number of different values Z

can take corresponding to the number of different environments. Other parametric
assumptions can be considered at the price of a higher computation cost.

The second step is to specify f (S|Z,γ ). In our model specification in Sec-
tion 2.2, the observed degradation signal is a sum of the underlying degradation
process, which is completely determined by the basis coefficient γ and a measure-
ment error term. Therefore, f (S|Z,γ ) is fully determined by the distributional
assumption about the measurement error. For ease of computational efficiency and
for a close form expression of the RLD predictions, we assume the error term to
follow a Gaussian distribution.

Given these specifications, we can predict the residual life of the component
operated in the field in two steps. The first step is to predict f (γ |S), the posterior
distribution of γ given the partial observations of the component still operated
in the field. At the second step, the RLD of the operated component can then be
predicted following the definition of the failure time in (1).

2.2. Modeling degradation signals. Denote the measurement (or inspection)
time by tlj , where l = 1, . . . ,L (L is the number of signals or components) and
j = 1, . . . , nl (nl is the number of observation time points for component l). We as-
sume that the time points are prespecified within a bounded interval [0,M], where
M refers to the maximum experimental time. The degradation amplitudes of the
component l are denoted by Sl = (Sl(tlj ), . . . , Sl(tlnl

)).
Note that Sl(tlj ) may not always be observable. For instance, a component may

be shut down or replaced instantaneously after its degradation level reaches the
failure threshold. In other words, no further observations can be acquired beyond
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the failure threshold. These types of signals are referred to as truncated degrada-
tion signals in Zhou, Serban and Gebraeel (2011). In these applications, Sl(tlj ) is
observable only if the component l has not failed by time tlj .

We assume that the underlying degradation process, denoted by X(·), can be
represented by a fixed number of basis functions. Based on this assumption, we
consider the following degradation model specifying the conditional distribution
f (S|Z,γ ):

Sl(t) = Xl(t) + εl(t) = B(t)γl + εl(t),(2)

where:

• Xl(·) represents the underlying degradation process.
• B(·) represents the basis functions of dimension q , defined over the time interval

[0,M]. For illustrative purposes, we use the cubic B-spline bases because of
its flexibility. A B-spline function is a function that is connected by polynomial
pieces with specified orders (“cubic” corresponds to the order 4). Cubic B-spline
bases have been widely used in the literature for modeling smooth functions
[Eilers and Marx (1996)].

• γl represents the basis coefficient for the lth signal. It is a vector of dimen-
sion zq .

• ε(·) represents the error term. We assume that ε(·) is independent and identically
distributed at different time points.

2.3. Modeling environmental clusters. In this paper we assume a component’s
environmental type is time invariant, that is, it does not change over time. Let the
environmental type for component l be Zl ∈ {1,2, . . . ,K}, where K represents the
number of environmental types or clusters (in the remaining paper, “environmen-
tal types” and “clusters” will be used interchangeably). We make the following
distributional assumptions:

• Zl follows a multinomial distribution with parameters π = (π1, . . . , πK).
• Conditional on Zl , the basis coefficient γ follows a normal distribution. The dis-

tributional means and variances are different among environmental types. More
specifically, γl,k ≡ γl|Zl = k ∼ N(μk,�k), where μk = (μk1, . . . ,μkq)

T and
�k is a q × q matrix.

• Conditional on Zl , the error terms are assumed to follow a normal distribu-
tion. The variances are different across clusters. In other words, εl(t)|Zl = k ∼
N(0, σ 2

k ).

In summary, we have the following model:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zl ∼ Multinomial(π1, . . . , πK),

γlk ≡ γl|(Zl = k) ∼ N(μk,�k),

Sl(t) = B(t)γl + εl(t),

εl(t)|(Zl = k) ∼ N
(
0, σ 2

k

)
.

(3)
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Based on the above formulation, we have Sl(t)|Zl = k ∼ N(B(t)μk ,
B(t)�kB(t)T + σ 2

k I ).

3. Estimation. As mentioned earlier, we will consider two possible scenarios,
that is, the cluster membership for the training components may or may not be
known a priori. In the machine learning context, this corresponds to classification
and clustering problems, respectively.

Let μ = (μ1, . . . ,μK), � = (�1, . . . ,�K), π = (π1, . . . , πK), σ = (σ1, . . . ,

σK). The vector θ = (μ,�,π,σ ) includes all the parameters of the model in (3).
Because of the presence of latent variables, it is intractable to maximize the com-
plete data log-likelihood directly with respect to these parameters. To address this
challenge, we apply an EM algorithm in order to obtain the maximum likelihood
estimate of θ . The estimation procedures are similar for the classification and clus-
tering scenarios, except for an extra step in the clustering case, in which we clas-
sify all the training units. Details about the estimation algorithm are provided in
the supplemental material [Zhou, Serban and Gebraeel (2014)]. In the following
subsections, we highlight the challenge of estimating the covariance matrix � and
discuss how to determine the tuning parameters.

3.1. Estimating the covariance matrix. To allow for more flexibility, we as-
sume that �k are different across clusters. This implies that we need to estimate
Kq(q+1)

2 parameters for the covariance matrix. If we do not have a sufficiently large
historical data set for training, then the covariance matrix estimate will be unsta-
ble and inaccurate. To overcome this challenge, we follow the idea of regularized
discriminant analysis (RDA) proposed in Friedman (1989). More specifically, we
regularize the raw covariance matrix estimates in two steps:

Step 1. Shrink the individual sample covariance matrix estimate (�̂k) toward
the population sample covariance matrix estimate (�̂) with a parameter 0 ≤ λ ≤ 1:

�̂k(λ) = (1 − λ)�̂k + λ�̂.

Step 2. Shrink �̂k(λ) toward a multiple of the identity matrix with a parameter
0 ≤ ζ ≤ 1:

�̂k(λ, ζ ) = (1 − ζ )�̂k(λ) + ζ
tr(�̂k(λ))

p
I.

Friedman (1989) demonstrates through numerous case studies that �̂k(λ, ζ )

is generally more stable and more accurate than the raw covariance matrix esti-
mate �̂k , especially when the sample size of certain clusters is not large enough.

3.2. Choice of tuning parameters. The degradation model presented above
depends on a series of tuning parameters: the basis dimension q , the shrinkage
parameters λ and ζ , and possibly the number of clusters K (for the clustering
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scenario). With larger values of q and K , we have more parameters to estimate,
resulting in smaller estimation bias but higher estimation variance. Thus, we need
to select these parameters in order to optimize the bias-variance trade-off in the
model.

To reduce the computational burden, we determine the turning parameters in
two steps. We first select q and possibly K from a set of candidate values by
following a cross-validation procedure. Cross-validation is a model validation
technique for assessing how accurately a predictive model will perform in an in-
dependent data set. A detailed explanation of the cross-validation procedures can
be found in Hastie, Tibshirani and Friedman (2009).

In our context, we compute the RLD prediction error for each combination of
the candidate values in the cross-validation process. Based on the error results, we
choose the combination of q and K that yields the smallest error. In the second
step, we follow a similar cross-validation procedure to determine the optimal val-
ues of λ and ζ . The number of candidate values for these parameters determines
the computation time for finding the optimal values. It is common to start with
a rough set of candidate values that would provide an approximate range for the
optimal values and then refine it with sample points within that range.

4. Prediction. Given the degradation signal S∗ of a new component operated
in the file observed up to time t∗, our goal is to predict its residual life RL∗, that is,
the time left for the signal to reach the failure threshold D. In other words, we need
to derive the density function f (RL∗|S∗). We approach this in two steps according
to the following equation:

f
(
RL∗|S∗) =

∫
γ

f
(
RL∗|γ,S∗)

f
(
γ |S∗)

dγ.

Step 1. Compute f (γ |S∗) :

f
(
γ |S∗) =

K∑
k=1

f
(
γ |Z∗ = k, S∗)

P
(
Z∗ = k|S∗)

.

(1) γ |Z∗ = k, S∗ follows a Gaussian distribution. Its mean vector and covari-
ance matrix can be computed based on the general Bayesian linear theory. Details
can be found in the supplemental material [Zhou, Serban and Gebraeel (2014)].

(2) Z∗ = k|S∗ follows a multinomial distribution with its proportional parame-
ters derived as follows. Since S∗|Z∗ = k ∼ N(Bμk,B�kB

T + σ 2
k I ), we have

P
(
Z∗ = k|S∗)

= f (S∗|Z∗ = k)πk∑K
j=1 f (S∗|Z∗ = j)πj

(4)
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=
(∣∣B�kB

T + σ 2
k I

∣∣−1/2

× exp

(
−1

2

(
S∗ − Bμk

)T (
B�kB

T + σ 2
k I

)−1(
S∗ − Bμk

))
πk

)

/(
K∑

j=1

∣∣B�jB
T + σ 2

j I
∣∣−1/2

× exp
(
−1

2

(
S∗ − Bμj

)T (
B�jB

T + σ 2
j I

)−1(
S∗ − Bμj

))
πj

)
.

Step 2. Compute f (RL∗|S∗): since f (RL∗|S∗) does not have a closed-form
expression, we suggest using a parametric bootstrap [Efron and Tibshirani (1993)]
to generate samples from f (RL∗|S∗) as follows:

(1) Generate a random sample γ from f (γ |S∗) according to the density func-
tion given in step 1 (both γ |Z∗ = k, S∗ and Z∗ = k|S∗ follow a well-defined dis-
tribution that can be generated from existing statistical packages).

(2) Generate the corresponding signal Sb :Sb(t) = B(t)γ .
(3) Get the residual life RLb for the generated signal according to the failure

time definition: RLb = inft {Sb(t) > D} − t∗.
(4) If RLb > 0, then proceed to the next step; otherwise, repeat the above steps

until RLb > 0.
(5) Repeat the above steps for Nb times and get Nb values of RL∗ : RL =

(RL1,RL2, . . . ,RLNb
).

RL can then be used for the estimation of any statistics related to RL∗, such as
quantiles and prediction intervals.

5. Simulation study.

5.1. Simulation setting. In this study, we assume that components are from
two different clusters, that is, they are operated under two different environmental
types. We first simulate the cluster membership Zl from a Binomial distribution
with equal parameters, that is, Zl ∼ Binomial(π1 = 0.5, π2 = 0.5). Next, we gen-
erate signals from each cluster based on the following model settings:

• In cluster 1, Sl(t) = μ(t) + Xl(t) + εl(t), where:
– μ(t) = 4t2et/25, which represents the overall mean degradation trend for

components within this cluster.
– Xl(t) = βlt

2, which is introduced to account for the unit to unit heterogeneity
in degradation. Here, βl ∼ N(0,1.52).

– ε(t)|(Zl = 2) ∼ N(0,602).
• In cluster 2, Sl(t) = B(t)γl + ε(t), where:
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– B(·) represents the cubic B-spline basis with its dimension q = 5.
– γl ∼ N(μ1,�1), where μ1 = (0,500,1500,2500,3000) and

�−1
1 = �1/5600; �1 =

⎛
⎜⎜⎜⎜⎝

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠

5×5

.

The value of μ1 ensures that the overall mean degradation trend of this cluster
is linear. The underlying degradation process of each component can still
be nonlinear. A covariance matrix of similar structure to �1 is frequently
used as a prior for the basis coefficients under the Bayesian framework [Lang
and Brezger (2004)]. Under the frequentist framework, this corresponds to
penalized regression splines [Eilers and Marx (1996)].

– ε(t)|(Zl = 1) ∼ N(0,802).

We note that the signals in cluster 2 are generated under the general framework
proposed in equations (3), while the signals within cluster 1 are not.

Based on the above model settings, we generate 100 signals for training the
degradation model and another 100 signals for evaluating the RLD prediction per-
formance of our model. All the signals are truncated at the failure threshold, which
is D = 1000 for both clusters. We evaluate the performance of our methodology
under complete as well as sparse scenarios. For a complete signal, the measure-
ment time points are preset at an equally spaced grid c0, . . . , c80 on [0,20] with
c0 = 0, c80 = 20. For a sparse signal, we uniformly sample 12 time points from
c0, . . . , c80. Note that these time points are prespecified; due to truncation, degra-
dation signals at these time points are not always observable. In this simulation,
we have around 40 observations per complete signal and only around 6 observa-
tions per sparse signal. Examples of the generated complete and sparse degradation
signals can be found in Figure 2. In both plots, the black lines/dots represent the
signals from cluster 1 and the grey lines/dots represent the signals from cluster 2.

5.2. Estimation. Based on the generated complete or sparse signals, we can
estimate the mean degradation trend for each cluster. The results are shown in the
top and bottom plots of Figure 3. In both plots, the solid, dotted and dashed lines
represent the true mean trend, the estimated trend in the clustering scenario and
the estimated trend in the classification scenario, respectively. From Figure 3, we
observe that the estimated mean degradation trend for both classification and clus-
tering scenarios are very close to the true trend (except for a small departure in the
first cluster under the sparse case, which is mainly due to the limited data available
in that region). This indicates that the mean functions are estimated accurately for
both classification and clustering scenarios and under both complete and sparse
cases.
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FIG. 2. Examples of complete (top plot) and sparse (bottom plot) degradation signals.

In the clustering scenario, we are also interested in whether the training signals
are clustered accurately. To this purpose, we compute the Rand index measuring
the percentage of pairs of components on which two clusterings, denoted by X1
and X2, agree or disagree [Rand (1971)]. Generally, Rand(X1,X2) ranges from 0
when there are no pairs classified in the same class under X1 and X2, to 1 when
X1 and X2 give identical clustering. Here we use X1 to denote the true cluster
membership of the 100 training signals generated in one run of simulation and
X2 to denote the grouping estimated using our proposed clustering method. Under
both complete and sparse scenarios, Rand(X1,X2) = 1, which indicates that our
clustering method performs well under both scenarios for the generated 100 train-
ing signals. Accurate grouping of signals results in a better prediction of RLD for
fielded components.

The clustering performance is dependent upon many factors, for instance, the
mixing level of signals from different clusters. For illustrative purposes, we per-
form a sensitivity analysis provided in the supplemental material [Zhou, Serban
and Gebraeel (2014)].
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FIG. 3. Estimated (true, classification, clustering) mean function for the complete and sparse sce-
narios, respectively.

5.3. Prediction. Our next step is to evaluate the performance of our model in
terms of residual life prediction. To assess the prediction accuracy, we use the mean
squared prediction error criteria because the posterior mean (i.e., the expectation
of the posterior predictive distribution) is used as the point prediction. For each
testing component, we compute the prediction errors at the following percentiles
of its entire life: 10%, 30%, . . . ,90% (90% implies that 90% of the component’s
life has passed). The results based on complete and sparse signals are illustrated
in Figures 4 and 5, respectively. In both figures, the top left and top right plots are
for the classification and clustering cases. For comparative purposes, we also use a
benchmark method, which is based on our proposed framework (including the es-
timation and prediction approaches). In the benchmark method all the components
are assumed to come from the same population and, therefore, it does not account
for the two different environmental types. We refer to this benchmark method as
“no clustering.” The results of “no clustering” are reported in the bottom plots of
Figures 4 and 5. For ease of comparison, we also summarize the results in Table 1,
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FIG. 4. Mean squared prediction errors for “classification,” “clustering” and “no clustering”
based on complete degradation signals.

which gives the mean and the variance of prediction errors for different methods
based on complete and sparse degradation signals.

One consistent observation from the figures and tables is that the prediction
results are very similar for the classification and clustering scenarios. This again
demonstrates that, at least in this simulation, our proposed clustering algorithm
can accurately classify signals of similar patterns into the same group and sepa-
rate signals of distinct patterns into different groups. Furthermore, the benchmark
method provides less accurate predictions of the residual life of components oper-
ated in the field. This is because the assumption that all components are from the
same population does not hold in this simulation. The difference in performance
between our methods and the benchmark method “no clustering” is more signifi-
cant at smaller life percentiles, when the prior distribution plays a relatively more
important role in the RLD predictions.

6. Bearing case study. Bearings play an important role in a wide range of
engineering applications, particularly in rotating machinery. Failures of bearings
can lead to unexpected shutdown or failure of the entire engineering system. In this
study, we conduct an experiment to monitor the degradation processes of rolling



1684 R. ZHOU, N. SERBAN AND N. GEBRAEEL

FIG. 5. Mean squared prediction errors for “classification,” “clustering” and “no clustering”
based on sparse degradation signals.

bearings. Each bearing is operated under one of the following two rotational levels:
2200 r.p.m. and 2600 r.p.m. (r.p.m. is shorted for “revolutions per minute”). The
sample size of each cluster is 16 and 18, respectively. For all bearings, we collect
vibration-based degradation signals up to their failures. The failure threshold is
prespecified as D = 0.02 v.r.m.s. (v.r.m.s. is shorted for “vibrational root mean

TABLE 1
Lifetime prediction results of “classification,” “clustering” and “no clustering” under complete

and sparse scenarios

Lifetime percentiles 10% 30% 50% 70% 90%

Complete: classification 3.24 0.58 0.21 0.10 0.06
Complete: clustering 3.24 0.58 0.21 0.10 0.06
Complete: no clustering 4.58 1.08 0.45 0.18 0.08

Sparse: classification 6.18 1.09 0.62 0.53 0.34
Sparse: clustering 6.41 1.11 0.64 0.54 0.34
Sparse: no clustering 7.52 1.67 1.33 0.65 0.33
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FIG. 6. Examples of bearing degradation signals.

square”). Examples of the resulting degradation signals are in Figure 6. In this
figure, the solid lines represent the degradation signals from cluster 1 (2200 r.p.m.)
and the dashed lines represent those from cluster 2 (2600 r.p.m.).

To evaluate the performance of our proposed degradation model, we repeat the
following study for 50 times. Each time we randomly select 5 signals from each
cluster as the testing signals. For these testing signals, we assume that their clus-
ter membership, or rotational speed, is unknown and needs to be predicted. They
are used to assess the prediction performance. The rest of the 24 degradation sig-
nals (11 of them are from cluster 1 and the rest of the 13 signals are from clus-
ter 2) form a historical data set and they are used to train the proposed degradation
model and estimate the parameters. Depending on the scenario we are interested in,
whether it is “classification” or “clustering,” the cluster membership of the train-
ing components may or may not be known. In Figure 7, we show the estimated
mean degradation trend (up to the failure threshold) for both clusters. Apparently,
the degradation processes in cluster 2 with a rotational speed of 2600 r.p.m. are

FIG. 7. Estimated mean degradation trend under the classification and clustering scenarios.
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relatively faster than those from cluster 1 with a rotational speed of 2200 r.p.m.
Another observation is that the estimated mean degradation trend under the classi-
fication and clustering scenarios is similar.

To mimic and illustrate the real-time updating process, we also assess the pre-
diction performance progressively. More specifically, for each test bearing, we
predict its residual life by using the partially observed signal at the following per-
centiles of its lifetime: 10%, 30%, . . . ,90%. As the percentile gets larger, we have
more degradation observations available and, therefore, we expect to see more
accurate and more precise predictions of the RLD. This is demonstrated in the
boxplots of Figure 8, in which we consider both the classification and clustering
scenarios. In these boxplots, the x-axis represents the lifetime percentiles and the
y-axis records the mean squared prediction errors. We observe that both the median
and variance of the prediction errors decrease as the lifetime percentile increases,
and this is consistent with our observations from the simulation study. Another
observation from Figure 8 is that the prediction performance for the classification

FIG. 8. Prediction errors under the classification and clustering scenarios.
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and clustering scenarios is very similar. This, once again, demonstrates that our
proposed clustering algorithm can classify degradation signals quite accurately.

7. Summary. In this paper we propose a nonparametric model for character-
izing the evolution of degradation signals under varying experimental or environ-
mental conditions. This model can be used for predicting the lifetime or residual
life distributions of engineering components that are still operated in the field. Our
proposed framework relies on a series of assumptions as follows:

(1) The underlying degradation process is smooth.
(2) The degradation signals follow a Gaussian process with nonparametric

mean and covariance.
(3) The environmental conditions can be categorized into a discrete number of

groups.
(4) The environmental conditions are constant over time.

In this paper we use the cubic B-spline basis due to its flexibility. Other choices
of basis functions can also be used depending on specific assumptions on the
smoothness of the degradation process. In our simulation study, we observe that
the estimation and prediction performance of our model is robust to the departures
from this assumption (degradation signals from the first cluster cannot be linearly
expanded by the cubic B-spline basis functions). Nonetheless, the use of cubic
B-splines implies that the degradation is smooth over time, which may not hold in
all applications.

Our proposed model is nonparametric in the sense that the mean and covari-
ance of the Gaussian process specifying the conditional distribution S(·)|Z are as-
sumed not to have a predefined parametric structure. This is a common approach
in functional data analysis. We have investigated the impact of departures from the
Gaussian assumption in a sensitivity study (not reported in the paper but available
from the authors). According to our sensitivity analysis, the RLD prediction errors
are more sensitive to the accuracy of the estimated degradation trend functions
compared to these distributional assumptions.

The third assumption mentioned above may not always hold in real world ap-
plications. In such cases, it may be more appropriate to consider the environmental
condition as a continuous covariate rather than discrete clusters. We may still fol-
low the general decomposition of the degradation process in equation (2), but the
classification or clustering framework in equation (3) will not be applicable. One
possible approach is to follow similar ideas used in modeling the ADT data, that
is, by assuming certain functional, either linear or nonlinear, relationships between
the basis coefficient γl and the environmental variable Zl .

In certain applications, the environmental conditions could be time varying
[Bian and Gebraeel (2013); Gebraeel and Pan (2008)]. For instance, the cluster
membership Zl may change at certain deterministic or random time epochs. At
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these transitional epochs, the observed degradation signals may be subject to sud-
den shocks, and the rate at which the degradation progresses may also change.
A further extension of the present framework to incorporate such time-varying
environmental conditions will be of interest in our future research.

Acknowledgements. We are thankful to the Editor and the reviewers for their
helpful comments and suggestions.

SUPPLEMENTARY MATERIAL

Supplemental Meterial: Proofs and Derivations (DOI: 10.1214/14-
AOAS749SUPP; .pdf). The supplemental material consists of two parts. In Ap-
pendix A, we present an available lemma that will be frequently used in our
estimation and prediction algorithms. In Appendix B, we provide details about
our proposed EM algorithm for estimating the model parameters.
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