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The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-
randomized a program encouraging breastfeeding to new mothers in hospital
centers. The original studies indicated that this intervention successfully in-
creased duration of breastfeeding and lowered rates of gastrointestinal tract
infections in newborns. Additional scientific and popular interest lies in deter-
mining the causal effect of longer breastfeeding on gastrointestinal infection.
In this study, we estimate the expected infection count under various lengths
of breastfeeding in order to estimate the effect of breastfeeding duration on
infection. Due to the presence of baseline and time-dependent confounding,
specialized “causal” estimation methods are required. We demonstrate the
double-robust method of Targeted Maximum Likelihood Estimation (TMLE)
in the context of this application and review some related methods and the
adjustments required to account for clustering. We compare TMLE (imple-
mented both parametrically and using a data-adaptive algorithm) to other
causal methods for this example. In addition, we conduct a simulation study
to determine (1) the effectiveness of controlling for clustering indicators when
cluster-specific confounders are unmeasured and (2) the importance of using
data-adaptive TMLE.

1. Introduction. The PROmotion of Breastfeeding Intervention Trial (PRO-
BIT) [Kramer et al. (2001, 2002)] was undertaken in order to obtain randomized
control trial evidence of the health effects of longer breastfeeding. This was done
by cluster randomizing a breastfeeding support intervention which encouraged ex-
clusivity and duration. The effect of the PROBIT intervention on gastrointestinal
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tract infection in the newborns was originally evaluated using a stratified intention-
to-treat analysis. The results indicated a significant reduction in infection incidence
for infants whose mothers had been assigned to the intervention group [Kramer
et al. (2001)]. The intervention was presumably effective because it successfully
encouraged breastfeeding, which subsequently improved infant health. However,
because breastfeeding itself was not randomized, the estimated effect obtained in
the study can at best be considered a biased assessment of the effect of breast-
feeding on infection. Due to the ethical and practical impossibility of randomizing
breastfeeding, estimation of the causal effect of breastfeeding must be obtained
through statistical methods.

Our goal is therefore to estimate the causal effect of breastfeeding duration on
the number of infections a newborn is expected to experience in their first year. One
of the challenges involved in analyzing this effect is the confounding presence of
intermediate infections (occurring at any time during the year). The presence of
an infection affects both the continuation of breastfeeding and the outcome (since
it deterministically increases the outcome by one). Therefore, intermediate infec-
tion is a time-dependent confounder. Since infection is also hypothesized to be
affected by previous breastfeeding status, standard regression methods (including
or excluding the time-dependent confounder) may produce a biased estimate of the
causal parameter [Robins (1986)]. Causal methods are therefore required to isolate
the desired effect. Additional confounding also occurs due to baseline differences
in the study group and by informative participant dropout.

Many longitudinal methods have been developed that correctly take into account
time-dependent confounders predicted by past exposure. One such method is in-
verse probability of treatment weighting (IPTW) for marginal structural models
[Hernán, Brumback and Robins (2000), Robins, Hernán and Brumback (2000)].
However, IPTW is not semiparametric efficient [Robins and Rotnitzky (1992)] and
has poor performance under certain common scenarios [Petersen et al. (2012)].
The shortcomings of simple weighting methods have since spurred the devel-
opment of new estimators with better properties. Efficient estimating equation
methodology [Bang and Robins (2005), Robins and Rotnitzky (1992), van der
Laan and Robins (2003)] produces estimators that are double robust (consistent
under partial model misspecification) and efficient when correctly specified. Tar-
geted maximum likelihood estimation (TMLE) [van der Laan and Rubin (2006)]
shares these properties, but because it is a substitution estimator, it can be made to
be stable and produce estimates bounded within the parameter space in some situa-
tions where IPTW performs poorly [Gruber and van der Laan (2010)]. In addition,
TMLE is often implemented fully nonparametrically, which avoids modeling er-
rors caused by incorrect parametric assumptions.

van der Laan (2010) established a TMLE procedure for longitudinal data based
on a binary decomposition of the intermediate variables (the time-dependent con-
founders). This method has been described and implemented by Rosenblum and
van der Laan (2010a) and Schnitzer, Moodie and Platt (2013) for two time points,
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and Stitelman, De Gruttola and van der Laan (2012) for a survival outcome. How-
ever, the implementation of this method for large numbers of time points results
in heavy computational requirements and a restriction on the form of the data
(specifically, requiring discretized intermediate covariates). More recently, van der
Laan and Gruber (2012) developed a simpler and more flexible implementation of
TMLE for longitudinal data based on the ideas of Bang and Robins (2005).

An initial causal analysis of the PROBIT study using different double-robust
causal methods was performed by Schnitzer, Moodie and Platt (2013) but was
limited to two time points. In this paper, after giving more details about the PRO-
BIT study and the scientific question of interest (Section 2), we describe several
options for potentially unbiased estimation of the effect of breastfeeding on in-
fection: (a) G-computation [Robins (1986)], (b) a variant of G-computation that
we call sequential G-computation [Bang and Robins (2005)], and (c) a longitudi-
nal TMLE based on sequential G-computation [van der Laan and Gruber (2012)]
(Section 3). The subsection on the longitudinal TMLE demonstrates a 6 time-point
implementation for estimation of the effect of breastfeeding duration on gastroin-
testinal tract infection, with modified variance estimation reflecting the clustered
design of the PROBIT. In Section 4 we present the results of analyzing the PRO-
BIT data with each of these methods in addition to IPTW. Finally, we compare this
TMLE approach to the other causal techniques for longitudinal data in a simulation
study designed to imitate the analysis of the PROBIT data.

2. The PROBIT data. The PROBIT study paired participating maternal hos-
pitals according to (1) geographic region in Belarus, (2) urban or rural status,
(3) number of deliveries per year and (4) breastfeeding rates upon discharge. One
hospital of each pair was then assigned to receive a breastfeeding support interven-
tion that involved retraining all midwives, nurses and physicians involved in labor,
delivery and the postpartum hospital stay. The control hospitals were assigned to
continue their current practice. Thirty-four hospitals were initially randomized, but
three were dropped from the study due to eventual refusal to follow the assignment
or falsification of data.

The PROBIT study enrolled healthy, full-term, singleton infants of mothers who
intended to breastfeed, weighing at least 2500 g, soon after birth. Follow-up visits
were scheduled at 1, 2, 3, 6, 9 and 12 months of age to record various measures
of health and size, including number of gastrointestinal infections over each time
interval. At each follow-up visit, it was established whether the mother continued
to breastfeed.

Within the 31 hospitals, 17,046 mother/infant pairs were recruited into the trial.
Of these, ten were missing necessary baseline information and were removed from
the analysis. The remaining 17,036 subject pairs were used in the analysis. Charac-
teristics of the complete data set (including missing data summaries) are presented
in Table 1. Within the hospitals, the number of recruited patients varied between
232 and 1180 with median 471.
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TABLE 1
Characteristics at baseline of the 17,046 mother-infant pairs in the PROBIT data set

Characteristic Summary N. missing

Numeric variables Median IQRa

Age of mother (years) 23 (21,27)

N. previous children 0 (0,1)

Gestational age (months) 40 (39,40)

Infant weight (kg) 3.4 (3.2,3.7)

Infant height (cm) 52.00 (50.00,53.00)

Apgar scoreb 9 (8,9) 5
Head circumference (cm) 35 (34,36) 3

Binary variables N. %
Smoked during pregnancy 389 2.28
History of allergy 750 4.40
Male child 8827 52
Cesarean 1974 12
Mother’s education 2

Some high school 663 4
High school 5497 32
Some university 8568 50
University 2316 14

Geographic region
East Belarus, urban 5615 33
East Belarus, rural 2706 16
West Belarus, urban 4380 26
West Belarus, rural 4343 25

aIQR: inter-quartile range.
bThe Apgar score is an assessment of newborn health (range 1–10) where 8+ is vigorous, 5–7 is
mildly depressed and 4− is severely depressed [Finster and Wood (2005)]. A range of 5–10 was
observed in PROBIT due to entry restrictions on weight and health at baseline.

Measured baseline potential confounders of the effect of breastfeeding on infec-
tion (and predictors of outcome) were chosen to be mother’s education, mother’s
smoking status during pregnancy, mother’s age, family history of allergy, number
of previous children, whether the birth was by cesarean section, gender of child,
gestational age, Apgar score for health of the newborn, geographic region, and the
weight, height, head circumference at birth, and hospital. The hospital (or clus-
ter) was included in the set of potential confounders because the conditions of the
hospital frequented by a patient can affect both their infant’s health outcome and
their decision to continue breastfeeding. In addition, since similar patients may be
clustered within a hospital, hospital may act as a proxy for unmeasured baseline
characteristics.

The hypothetical intervention of interest for this analysis was breastfeeding up
until a given time. The binary intermediate variable at a given time was whether
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TABLE 2
Censoring, number of infections and mothers still breastfeeding by time point

Time point 1 2 3 4 5 6
Month 1 2 3 6 9 12

N. censored 284 500 326 491 717 139
Cumulative N. 284 784 1110 1601 2318 2457
Cumulative % 1.66 4.60 6.52 9.40 13.61 14.42

N. with infections 171 232 230 443 518 408
N. of infections 173 235 236 472 544 439
N. breastfeeding 15,392 13,128 10,765 6893 4717 –

or not gastrointestinal infection occurred in the interval immediately preceding the
time point. The outcome is the total number of infections occurring up until 12
months of age.

A subject was defined as censored at the first visit where information required
in the analysis was missing. The number of censored subjects at each time point
is described in Table 2. Absenteeism or study drop-out are often dependent on
subject-specific characteristics and current health, which is why adjustment for
censoring was considered necessary.

At each visit, the number of gastrointestinal infections since the last visit were
counted. In addition, breastfeeding status at that time was obtained. There is there-
fore uncertainty about exact time-ordering of each infection and breastfeeding ces-
sation within a time interval. By defining the exposure as breastfeeding status at
time-point t , we can consider that this intervention point occurs after infection
counts measured over the previous interval. With six visits, and the outcome as-
sessed at the sixth visit, this means that only the first five exposure nodes are
considered in the analysis. However, we observe six censoring times (occurring
before each of the six follow-up times). Figure 1 gives a graphic display of the
time-ordering of the observed data.

Intermediate infections were considered to be an important time-varying con-
founder because mothers were less likely to continue breastfeeding when their
infant became ill. Therefore, even if breastfeeding has absolutely no effect on in-
fection, ignoring this confounding effect would make it seem like infants who
experienced infections were also breastfed for shorter periods of time. Table 2 also
shows a summary of the infection counts at each time point. Few children experi-
enced more than one infection during a given time interval, so the time-dependent
confounder was summarized as a binary indicator of infection. However, we used
the true number of infection counts for the outcome.

3. Estimation for longitudinal data. As in the PROBIT study, suppose
we observe longitudinal information from n individuals of the form O =
(W,C1,L1,A1,C2,L2, . . . ,LK−1,AK−1,CK,Y ). Let K be the total number of
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FIG. 1. Time-ordering of the variables in the PROBIT study. Data were collected at baseline and
six follow-up times. At each follow-up time point, breastfeeding status (At ) and presence of infection
over the past interval (Lt ) were noted. Censoring occurring at time t (Ct = 1) indicates that later
breastfeeding and infection status were not observed.

follow-up visits, and the subscripts on each variable indicate the visit at which that
variable was measured. The variable W is the collection of potentially confound-
ing variables at baseline. The variables Ct, t = 1, . . . ,K , indicate whether a subject
has been censored before the t th time point. Intermediate infection was represented
by Lt, t = 1, . . . ,K − 1, indicating whether the infant had any gastrointestinal in-
fections between time-points t − 1 and t . If a subject has been censored, define
their missing Lt and Y values to be zero. The variables At, t = 1, . . . ,K − 1, de-
note breastfeeding status at time-point t (At = 1 means continued breastfeeding).
The outcome Y is the total number of infections accrued up until and including
visit K . For any time-dependent variable X, we will use X̄t = (X1, . . . ,Xt) to
denote the history of X up to and including Xt .

Let ā = (a1, a2, . . . , aK−1) denote a fixed breastfeeding regimen. For instance,
breastfeeding past the first time period, then stopping before the second would
be written as (1,0,0, . . . ,0). Because breastfeeding is approximately monotone,
the regimens of interest are equivalent to a corresponding duration of breastfeed-
ing. Following the Neyman–Rubin model [Rubin (1974)], define the counterfac-
tual variable Lā

t as the observation Lt that an individual would have had if they
had followed the breastfeeding regimen ā and remained uncensored. Similarly,
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Y ā is the counterfactual number of infections that would have been observed un-
der breastfeeding regimen ā. The target of inference is the marginal mean counter-
factual outcome, denoted ψā = E(Y ā). The standard causal missing data prob-
lem arises from observing each individual under only one breastfeeding regi-
men.

3.1. The G-computation method. G-computation [Robins (1986), Snowden,
Rose and Mortimer (2011)] is a likelihood-based approach to estimating a causal
parameter. It is often described as a substitution estimator because it takes a fit
of the likelihood and substitutes it into a function to get an estimate of the pa-
rameter of interest. Suppose our observed data O consist of n independently and
identically distributed draws from a true underlying distribution f (O). This den-
sity may be decomposed corresponding to the time-dependent structure of the data
as

f (O) = QY (Y | C̄K, ĀK−1, L̄K1)

K−1∏
t=1

QLt (Lt | C̄t , Āt−1, L̄t−1,W)QW(W)

︸ ︷︷ ︸
Q

×
K−1∏
t=1

gAt (At | L̄t , C̄t , Āt−1,W)

K∏
t=1

gCt (Ct | Āt−1, L̄t−1, C̄t−1,W)

︸ ︷︷ ︸
g

,

where Q is the joint conditional distribution of the Y , Lt and W variables that
can be decomposed into conditional distributions QY , QLt , t = 1, . . . ,K , and
QW . Similarly, g is the conditional distribution of the exposure and censor-
ing variables that can be decomposed into gAt , t = 1, . . . ,K − 1, and gCt , t =
1, . . . ,K .

Given a fixed breastfeeding regimen, ā, we can define the distribution Qā of the
corresponding counterfactual variables Y ā, L̄ā

K,W (under the causal assumptions
of consistency and sequential ignorability discussed in Section 4.1) as

Qā(
Y ā, L̄ā

K,W
) = QY (Y | C̄K = 0, ĀK−1 = āK−1, L̄K−1,W)

×
K−1∏
t=1

QLt (Lt | C̄t = 0, Āt−1 = āt−1, L̄t−1,W)QW(W),

where āt = (a1, . . . , at ) is the component of the fixed regime up until time-point t .
The targeted parameter of interest, specifically the marginal mean under a fixed
breastfeeding regimen ā, can then be described as ψ̂ā = EQY ā where the expecta-
tion is taken under Qā .
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Because the intermediate variables Lt,1 ≤ t ≤ K −1, are binary, the expression
for ψā = EQY ā simplifies to

ψā =
∫
W

∑
l1={0,1}

· · · ∑
lK−1={0,1}

E(Y | CK = 0, ĀK−1 = ā, L̄K−1 = l̄K−1,W)

× Pr(LK−1 = lK−1 | C̄K−1 = 0,
(1)

ĀK−2 = āK−2, L̄K−2 = l̄K−2,W) · · ·
× Pr(L1 = l1 | C1 = 0,W)QW(W)dW.

Each component of the above expression can be estimated from the observed data.
Only the conditional mean of Y and the conditional probabilities for Lt,1 ≤ t ≤ K ,
must be fit to produce a G-computation estimate. The mean and the conditional
probabilities can be estimated using any parametric method as desired.

To obtain an estimate of the parameter using G-computation, first get a predic-
tion of each conditional expectation and probability in equation (1) for each sub-
ject, i. The QW can be estimated using the empirical density so that QW(wi) =
1/n for each subject (with baseline variables wi ). Then, the predicted values for the
conditional expectation and probabilities are combined according to equation (1),
where the integral is replaced by summation over all subjects, i.

G-computation does not rely on the full specification of the density Q. However,
it requires correct specification of the conditional models for the mean and each
of the probabilities in order to obtain unbiased estimation of the parameter ψā . No
closed form or asymptotic result is available for the G-computation standard error,
so using a nonparametric bootstrap is often suggested [Snowden, Rose and Mor-
timer (2011)]. To properly assess the variance in the clustered design, the analyst
might use the pairs clustered bootstrap [Cameron, Gelbach and Miller (2008)] by
resampling clusters instead of individuals.

3.2. Sequential G-computation formulation. As suggested by Bang and
Robins (2005) and used by van der Laan and Gruber (2012), an alternative decom-
position of the parameter of interest, and therefore an alternative to the standard
likelihood G-computation, can be constructed by taking sequential expectations of
the outcome. Their result is an application of the property of iterated expectations.

Under the causal assumptions of sequential exchangeability and consistency, the
marginal mean under breastfeeding regime ā and no censoring can be reexpressed
as

ψā = E
(
Y ā)

= E
{
E(Y | CK = 0, ĀK−1 = āK−1, L̄K−1,W)

}
(2) = E

[
E

{
E(Y | CK = 0, ĀK−1 = āK−1, L̄K−1,W) |

CK = 0, ĀK−2 = āK−2, L̄K−2,W
}]

by sequentially breaking up the expectations into nested conditional expectations.
This decomposition of the expectations is continued until the outermost expecta-



THE EFFECT OF BREASTFEEDING ON GI USING CLUSTERED TMLE 711

tion is only conditional on W .
In order to obtain an estimate of the parameter using this decomposition,

a model must be fit for each level of conditioning, beginning with the innermost
expectation. To more easily refer to each model fit, van der Laan and Gruber (2012)
described the conditional models of the counterfactuals iteratively. Let

Q̄K = E(Y | CK = 0, ĀK−1 = āK−1, L̄K−1,W)

be the outcome expectation conditional on the full history, for those who followed
the regime ā and were fully observed. The fit Q̄K is obtained using a conditional
modeling method. Then, recursively define

Q̄t = E(Q̄t+1 | Ct = 0, Āt−1 = āt−1, L̄t−1,W), t = K − 1, . . . ,2,

Q̄1 = E(Q̄2|W)

for each successive nested expectation. The overbar in Q̄t denotes a mean.
This alternative decomposition of the parameter can be used to compute an

estimate of the parameter of interest using the following algorithm. It is done by
producing model fits for each of the Q̄t ’s, obtaining predictions for each individual,
and then taking a mean of Q̄1 over all participants. Specifically, the estimation
algorithm proceeds as follows:

1. First, model the outcome Y given all of the covariate history, for only those
completely uncensored subjects with observed breastfeeding regime ĀK−1 =
āK−1. This can be done using logistic regression or any appropriate prediction
method. (Alternatively, a general conditional expectation conditional on ĀK−1 can
be fit using all uncensored subjects and then evaluated at āK−1 in order to smooth
over all observations.)

2. Then, using the model produced in (1), predict the conditional outcome for
all subjects (including those censored), resulting in the fit Q̄K,n.

Then, iteratively for t = K, . . . ,2,
3. Fit a model for Q̄t,n from the previous step conditional on covariates L̄t−1

using only subjects uncensored up until time t − 1 (i.e., subjects with Ct−1 = 0)
with observed breastfeeding status Āt−2 = āt−2. (Again, this model can be alterna-
tively fit using all uncensored subjects, conditioning on Āt−2, and then evaluating
at āt−2.)

4. For all subjects, predict a new conditional outcome from this last model,
producing the fit Q̄t−1,n.

Repeat steps 3 and 4 for each time point (going backward in time) until predictions
Q̄1,n are obtained for the outcome conditional on only the baseline covariates,
W . The parameter estimate is then obtained by taking a mean of Q̄1,n over all
observations. As in the previous G-computation method, variance estimates are
computed using bootstrap cluster resampling. Note that the above procedure does
not depend on the type or dimension of the variables Lt and W , and fits one model
per time point (where there is an intervention or censoring).
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3.3. Efficient estimation for longitudinal data. Both G-computation algo-
rithms described here require correct specification of different decompositions of
the underlying data generating form. Alternatively, efficient semiparametric esti-
mation allows for root-n consistent estimation with the added benefit of double
robustness [Tsiatis (2006), van der Laan and Robins (2003)]. Briefly, influence
curves are weighted score functions that contain all of the information about the
asymptotic variance of the related estimator. The efficient influence curve for a
given parameter is the influence curve that reaches the minimal variance bound.
One possible way of obtaining efficient semiparametric inference is to estimate
the components of the efficient influence curve and then use it as an estimating
equation by setting it equal to zero and solving for the target parameter.

Corresponding to the original G-computation factorization of the likelihood,
van der Laan (2010) derived a representation of the efficient influence curve
for a longitudinal form with binary intermediate variables. Similarly, Stitelman,
De Gruttola and van der Laan (2012) modified the corresponding theory for sur-
vival data. The alternative formulation for the efficient influence curve was devel-
oped by Bang and Robins (2005) and used by van der Laan and Gruber (2012),
allowing for a general longitudinal form and much easier estimation procedures
for higher-dimensional or more complex longitudinal data.

Let ḡt , t = 2, . . . ,K , be the probability associated with obtaining a given history
of breastfeeding ā up until time t − 1 and no censoring up until time-point t ,
conditional on the observed history L̄t−1 and W . Specifically, let

ḡt (L̄t−1,W)

= Pr(C1 = 0 | W)
(3)

×
t∏

k=2

{
Pr(Ck = 0 | Āk−1 = āk−1,Ck−1 = 0, L̄k−1,W)

× Pr(Ak−1 = ak−1 | Āk−2 = āk−2,Ck−1 = 0, L̄k−1,W)
}

for t = 2, . . . ,K , and where A0 and a0 are null sets. Further, let ḡ1(W) = Pr(C1 =
0 | W) be the probability of being uncensored at the first time point, conditional
on baseline covariates, W . These probabilities can be estimated using logistic re-
gression, for instance. As derived and explained for a general longitudinal structure
in van der Laan and Gruber (2012), the efficient influence curve D(O) for a fixed ā

can then be written recursively for the PROBIT data as the sum of the components

Dt = I (Āt−1 = āt−1,Ct = 0)

ḡt

(Q̄t+1 − Q̄t ) for t = K, . . . ,2,

D1 = I (C1 = 0)

ḡ1
(Q̄2 − Q̄1) and(4)

D0 = (Q̄1 − ψā),
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where Q̄K+1 = Y is defined for notational convenience (and the dependencies of
some components repressed). I (·) is an indicator function.

With each of the ḡt and Q̄t components estimated using any given prediction
method, the parameter ψā can be estimated by setting the sum of the K + 1 com-
ponents equal to zero and solving for ψ̂ā . In addition to being efficient, such an es-
timator is double robust: it is consistent if either the models for Q̄t , t = 1, . . . ,K ,
or the models for ḡt , t = 1, . . . ,K , contain the truth.

3.4. TMLE using the alternative G-computation formulation. The sequential
G-computation method described in Section 3.2 is a substitution estimator because
it is a function of a component of the likelihood, specifically the nested conditional
expectations, Q̄t . The general TMLE procedure begins with some choice of substi-
tution estimator, but modifies this estimator by updating the fits of the conditional
expectations in order to produce a parameter estimate that satisfies the equation of
the efficient influence curve set equal to zero. This parameter estimate is efficient
and double robust. The general TMLE procedure has been described previously,
for example, by Gruber and van der Laan (2010), Rosenblum and van der Laan
(2010b), van der Laan and Rubin (2006).

Details regarding the construction of the sequential longitudinal estimator are
given by van der Laan and Gruber (2012). The first step in the TMLE procedure
is to fit the conditional densities {Q̄t , t = 1, . . . ,K} using a method of choice. For
the update step, the logistic loss function is chosen even for our case of an integer-
valued outcome (which is reduced to proportions by shifting and scaling the vector
to [0,1]) due to the boundedness properties of the inverse of its canonical link
function. The logistic loss becomes particularly valuable when there is sparsity at
certain levels of the covariates or exposure [Gruber and van der Laan (2010)].

The next step is to fluctuate each of the initial density estimates {Q̄t,n, t =
K, . . . ,1}, starting at t = K , with respect to a new parameter, εt . A subscript n

will be used to denote a fitted value. The fluctuation function for each Q̄t (εt ) can
be described as

logit Q̄1
t (εt ) = logit Q̄t + εtGt , t = 1, . . . ,K,(5)

for some expression Gt . Again letting Q̄K+1 = Y , the estimate for εt is found by
minimizing the empirical mean of the logistic loss function

L
{
Q̄1

t (εt )
} = −[

Q̄t+1 log
{
Q̄1

t (εt )
} + (1 − Q̄t+1) log

{
1 − Q̄1

t (εt )
}]

,(6)

which is equivalent to solving the empirical mean score (or derivative of the loss
function) at zero. This requires that the function Gt be defined and estimated.

According to the general TMLE procedure, the above fluctuation function in
equation (5) is required to satisfy two conditions: (1) the fluctuation function must
reduce to the original density when εt = 0, and (2) the derivative with respect to εt

of the loss function at εt = 0 must linearly span the efficient influence curve. The
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first condition is clearly satisfied when εt = 0. Taking the derivative of the loss
function in equation (6) with respect to εt gives

dL(Q̄1
t,n(εt ))

dεt

∣∣∣∣
εt=0

= Gt × (Q̄t+1 − Q̄t ), t = 1, . . . ,K.

Therefore, the score spans the efficient influence curve when Gt is defined as

Gt(Ct , Āt−1, L̄t−1,W) = I (Ct = 0, Āt−1 = āt−1)

ḡt

.

The covariate Gt is often described as “clever” because it allows the score to span
the efficient influence curve.

The update step is carried out by minimizing the empirical mean of the loss
function, L{Q̄1

t,n(εt )}, with respect to εt . This is equivalent to running the logistic
regression in equation (5): no intercept, with offset logit(Q̄t,n) and unique covari-
ate Gt(Ct , Āt−1, L̄t−1,W). Let ε̂t be the estimate of the coefficient for Gt , which
is the maximum likelihood estimate (or, equivalently, the minimum loss-based es-
timate) for εt .

Once all of the densities have been updated to give {Q̄1
t,n, t = K, . . . ,1}, the

parameter ψā is estimated as the mean of Q̄1
1,n over all subjects, that is, ψ̂ā =

1
n

∑
i Q̄

1
1,n(W = wi) (where wi is the observed baseline vector for subject i).

This TMLE is double robust: it is consistent if either the models for Q̄t , t =
1, . . . ,K , or the models for ḡt , t = 1, . . . ,K , contain the truth. In addition, because
of the usage of the logistic loss function and the corresponding fluctuation function
in equation (5), the parameter estimates are bounded, regardless of the size of the
weights, ḡ−1

t . This makes TMLE robust to certain kinds of data sparsity that cause
large weights. A comparison of the fundamental qualities of the G-computation
estimators, TMLE and IPTW, can be found in Table 3.

TABLE 3
Comparison of methods

Required for Robust to Variance Respects parameter
Method consistency data sparsity estimate boundaries

G-comp. CE � BS �
G-comp. seq. NE � BS �
IPTW propensity ×∗ EIC/BS ×
TMLE propensity or NE � EIC �

CE: conditional expectations; NE: nested expectations; BS: bootstrap; EIF: efficient influence curve;
propensity: the conditional probabilities of intervention (e.g., breastfeeding) and censoring. *Im-
provement under weight stabilization.
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3.4.1. TMLE procedure for the PROBIT data. We observed the following
procedure in our estimation of the parameter ψā , for a given breastfeeding reg-
imen ā. As described above, our interpretation of the structure of the PROBIT
data set is O = (W,C1,L1,A1,C2,L2, . . . ,A5,C6, Y ). There are six intervention
nodes: censoring can occur at any of them and breastfeeding status is assessed at
t = 1, . . . ,5. All subjects are initially breastfeeding, so breastfeeding regimen is
equivalent to the total duration of breastfeeding. If a subject has been censored,
impute their missing Lt and Y variables with zero values:

1. Fit models predicting breastfeeding and censoring (resp.) at each time point,
conditional on all previous history. For each model, compute a predicted prob-
ability for each subject conditional on Āt = āt and Ct = 0.

• Given the monotone nature of breastfeeding, if ā = (1,0,0,0,0), for in-
stance, the predicted probability of not breastfeeding at time 3 will be one
for all participants, since it is conditional on stopping before time 2.

2. Using the predictions from step 1, calculate the propensity score ḡt,n from equa-
tion (3) for each subject.

3. Set Q̄7,n = Y , where Y is rescaled to [0,1]. Then, for t = 6, . . . ,1,

• For the subset of subjects with Āt−1 = āt−1 and Ct = 0, fit a model for
E(Q̄t+1,n | L̄t−1). Using this model, predict the conditional outcome for all
subjects and let this vector be denoted Q̄t,n.

• Construct the “clever covariate” Gt(Ct , Āt−1, L̄t−1,W) = I (Ct = 0, Āt−1 =
āt−1)/ḡt,n.

• Update the expectation by running a no-intercept logistic regression with
outcome Q̄t+1,n, the fit logit(Q̄t,n) as an offset and clever covariate Gt as
the unique covariate. Let ε̂t be the estimated coefficient of Gt .

• Update the fit of Q̄t by setting

Q̄1
t,n = expit

{
logit(Q̄t,n) + ε̂tGt (Āt−1 = āt−1,Ct = 0, L̄t−1)

}
and then obtain a predicted value of Q̄1

t,n for all subjects.
Note that the model for Q̄1 is modeled using only subjects with C1 = 0. The
resulting fit Q̄1,n is only conditional on W and is estimated for all subjects.

4. Having fit Q̄1
1,n for each subject, take the mean. Rescale the mean (do the in-

verse of the original scaling of Y ). This is the TMLE for ψā .

The standard errors can be calculated using a sandwich estimator, which uses
the influence curve to approximate the asymptotic variance. First, the value of the
influence curve D(O) is estimated for each subject. The clusters Zm are indexed
by m = 1, . . . ,M . Let ρm = E(DiDj ) for two elements in the cluster Zm and
let σ 2

m = Var(Di) = E(D2
i ) be the common variance for subjects in cluster Zm.
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Assuming independence between the clusters and common variance for elements
in a cluster, the large sample variance of the estimator is approximated using

σ 2 = 1/n2E

(
n∑

i=1

Di

)2

= 1

n2

M∑
m=1

∑
i,j∈Zm

E(DiDj )I (i �= j) + E
(
D2

i

)
I (i = j)

= 1

n2

M∑
m=1

nm(nm − 1)ρm + nmσ 2
m,

where nm is the size of cluster Zm. The supplemental article Schnitzer et al. (2014)
contains details about the form of the influence curve under clustering. The expec-
tations can be estimated by taking the empirical covariance and variance within
each of the clusters. Confidence intervals are calculated assuming Normality of
the estimator, using the estimate plus and minus 1.96 times the estimated standard
error.

4. Analysis of the PROBIT. The PROBIT data were analyzed by both G-
computation methods; TMLE with parametric modeling of the sequential condi-
tional means and conditional probabilities of breastfeeding and censoring (logistic
main terms regression for binary breastfeeding status and censoring, and for the
outcome shifted and scaled to [0,1]); TMLE with Super Learner to model the
conditional expectations and probabilities; and a stabilized IPTW estimator. All
models were implemented directly in R Statistical Software [R Development Core
Team (2011)] with the exception of Super Learner which we fit using the R library
SuperLearner [Polley and van der Laan (2011)]. Super Learner calculates pre-
dictions using each method in a library, and then estimates the ideal combination
of these results based on the k-fold cross-validated error. The library we chose
included main terms logistic regression, generalized additive modeling [Hastie
(2011)], the mean estimate, a nearest neighbor algorithm [Peters and Hothorn
(2011)], multivariate adaptive regression spline models [Milborrow (2011)] and
a stepwise AIC procedure [stepAIC from Venables and Ripley (2002)].

A stabilized IPTW estimator was computed by obtaining the solution of the
empirical mean of

(
Y − ψ̂ IPTW

ā

)I (Ā5 = ā,C6 = 0)(1/n)
∑

ḡ6,n

ḡ6,n

set equal to zero. To be consistent, IPTW relies on correct modeling of the breast-
feeding and censoring probabilities in ḡ6. IPTW was implemented using logistic
regressions to fit each of these conditional probabilities.

The standard errors for all methods except the G-computations were calculated
using the sandwich estimator, adjusting for clustering as described in Section 3.4.1.
The standard errors for the G-computation methods were estimated using pairs
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cluster bootstrap [Cameron, Gelbach and Miller (2008)] by resampling the 31 clus-
ters with replacement, repeating 200 times, recalculating the estimates, and taking
the standard error of the estimates. Confidence intervals were calculated by taking
the 2.5th and 97.5th quantiles of the resampled estimates.

Both G-computations were found to be sensitive to modeling choices when
fitting the conditional expectations. In particular, we implemented both G-
computations with Poisson regressions and with logistic regressions using a
rescaled outcome. For the standard G-computation, both parametric specifications
produced very similar point estimates, but the Poisson model was found to be
highly unstable through the cluster bootstrapping while the logistic model was
more stable. For the sequential G-computation, the Poisson model produced un-
interpretable point estimates that deviated substantially from the other models,
while the point estimates of the logistic model conformed more or less to the other
results. Only the logistic results are therefore presented in the table.

The estimates of three comparisons of interest are presented in Table 4. The first
parameter of interest is the difference between the marginal expected number of
infections (in the first year or life) for infants who were breastfed for between 3 and
6 months compared to infants who were breastfed for between 1 and 2 months. The

TABLE 4
Differences in marginal expected number of infections under different breastfeeding durations

Method Estimate S.E. 95% C.I.

3–6 months vs 1–2 months
G-comp. (likelihood) −0.032 0.008 (−0.046,−0.019)

G-comp. (sequential) −0.039 0.013 (−0.062,−0.016)

IPTW −0.021 0.011 (−0.042,0.000)

Parametric TMLE −0.027 0.010 (−0.045,−0.008)

TMLE with SL −0.039 0.010 (−0.058,−0.020)

9+ months vs 3–6 months
G-comp. (likelihood) −0.013 0.004 (−0.020,−0.005)

G-comp. (sequential) −0.014 0.013 (−0.027,0.004)

IPTW −0.013 0.010 (−0.032,0.007)

Parametric TMLE −0.021 0.013 (−0.047,0.004)

TMLE with SL −0.024 0.007 (−0.038,−0.010)

9+ months vs 1–2 months
G-comp. (likelihood) −0.045 0.010 (−0.065,−0.027)

G-comp. (sequential) −0.053 0.018 (−0.084,−0.020)

IPTW −0.034 0.014 (−0.061,−0.007)

Parametric TMLE −0.048 0.018 (−0.084,−0.012)

TMLE with SL −0.063 0.013 (−0.088,−0.038)

G-comp.: G-computation, using both methods described in the text, likelihood in Section 3.1 and se-
quential in Section 3.2; TMLE: targeted maximum likelihood estimation; SL: Super Learner; IPTW:
inverse probability of treatment weighting (stabilized).
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second parameter compares infants who were breastfed for greater than 9 months
to those breastfed for 3 to 6 months. The third parameter compares greater than
9 months to between 1 and 2. The table presents the estimates, standard errors
and 95% confidence intervals for each parameter of interest as calculated by each
method.

All of the methods estimated a negative parameter value for the difference, cor-
responding with the interpretation that longer durations of breastfeeding reduce
the expected number of gastrointestinal infections. TMLE with Super Learner and
likelihood G-computation found a statistically significant difference for each com-
parison. Only IPTW found an insignificant estimate for the first comparison. Se-
quential G-computation, IPTW and parametric TMLE found an insignificant esti-
mate for the second comparison. All methods determined that there is a true differ-
ence between the marginal mean infection counts for breastfeeding for over nine
months versus between one and two months.

The estimates of the difference parameters varies substantially between meth-
ods. In two of the comparisons, TMLE with Super Learner produced higher es-
timates than all of the other methods (almost twice the size of the smallest es-
timates). IPTW gave the smallest estimates of the differences. Likelihood G-
computation consistently produced the smallest standard errors and TMLE with
Super Learner produced the second smallest.

4.1. The validity of a causal interpretation. A causal interpretation of the anal-
ysis of the PROBIT data requires several important but untestable assumptions, in-
cluding the sequential randomization assumption. In other words, all confounders
are assumed to have been measured and included in W , including all prognostic
factors of infection that also predict censoring. The complexities of the substantive
matter make it challenging to believe that we identified all the common causes of
breastfeeding cessation and infections [Kramer et al. (2011)]. However, we argue
that by controlling for cluster as a baseline variable, much of this confounding
effect may have been alleviated (this is investigated in Section 5).

In addition, we must assume no interference between study units (mother/infant
pairs) and that only one version of the treatment (i.e., breastfeeding) is applied
to all units [together referred to as the stable unit treatment variable assumption,
or SUTVA; Rubin (1978)]. The assumption of no interference requires that the
breastfeeding status of one mother does not influence the outcome of another’s
child. We believe this to be very plausible because mothers spent short periods of
time in the hospital which limited their interaction. For the second assumption,
due to the discretization of the study design, different durations of breastfeeding
are grouped together. We must assume that it does not matter when a mother ceases
to breastfeed within an interval.

5. Simulation study. A simulation study was performed where data were
generated as a simplified version of the PROBIT data set. Five hundred subjects
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were generated in each of 31 clusters. The baseline covariates W and U were
generated as Gaussian variables with cluster-specific means drawn from separate
Gaussian distributions. The time-dependent variables (C1,L1,A1,C2,L2,A2,C3,

L3) were generated independently for each subject conditional on the subject’s
history, including baseline variables W and U (and not otherwise clustered). Bi-
nary variables At, t = 1,2, indicate continued breastfeeding, Ct, t = 1,2,3, are
censoring indicators, and Lt, t = 1,2,3, indicate the presence of infections. The
outcome Y = ∑3

t=1 Lt is a count variable. Breastfeeding status was generated as
conditional on the baseline variables and immediate preceding covariates at every
time point. In particular, breastfeeding was specifically made to be less likely to
continue when infection was indicated at the current time point. Breastfeeding (like
censoring) is a monotone process, and so A2 = 1 is only possible if A1 = 1. The
probability of censoring was conditional on baseline covariates and most recent
infection status; censoring was less likely if breastfeeding continued at the previ-
ous time point and more likely if an infection occurred at the previous time point.
Infections were generated conditional on baseline variables and breastfeeding for
the past two visits, so that longer duration of breastfeeding decreased the proba-
bility of infection. The strengths of the associations between exposure/censoring
and intermediate infections were designed to reflect the true PROBIT results. De-
tails of the data generation can be found in the supplemental article Schnitzer et al.
(2014).

The parameter ψā = E(Yā) was estimated for ā = (0,0) and ā = (1,1). The
parameter of interest, reflecting the first parameter of interest in the PROBIT study,
was δ = ψ(1,1) − ψ(0,0).

A concern we had during the planning of the PROBIT study was that we may
be missing some important confounders of the effect of breastfeeding on infection.
Therefore, we attempt to explore this issue in the simulation study by omitting
the variable U from the modeling. In a second modeling scenario, we illustrate
how adjusting for the cluster like a baseline confounder can successfully adjust for
unmeasured confounding that is characterized by the cluster itself. In addition, we
test the scenario where U is included in the modeling so that the results could be
compared. Finally, we test a scenario where we suppose that the analyst is given
transformed versions of W and U [using two of the transformations in Kang and
Schafer (2007)] and the models are run using these transformed variables.

One thousand data sets of 500 × 31 = 15,500 observations were generated. Un-
der each of the four modeling scenarios (unmeasured U , adjusting for cluster, ad-
justing for U and transformed confounders), the performance of the TMLE was
compared to G-computation, the sequential formulation of the G-computation for-
mula and a stabilized IPTW estimator. TMLE was implemented in two ways: with
main terms logistic regressions to estimate all probabilities and with Super Leaner,
using only main terms logistic regression and a nearest neighbors algorithm in its
library (a small subset of the library used in the PROBIT analysis). Standard errors
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TABLE 5
Difference between marginal expected outcomes, by scenario. True value = −0.030

Method δ̂ % bias SE(δ̂) rMSE(δ̂) Coveragea

Unmeasured confounder
G-comp. (likelihood) −0.060 −99 0.017 0.035 49
G-comp. (sequential) −0.062 −105 0.018 0.037 44
IPTW −0.054 −77 0.021 0.023 100
Parametric TMLE −0.058 −90 0.017 0.027 63
SL TMLE −0.054 −79 0.019 0.024 78

Unmeasured confounder, adjusting for cluster
G-comp. (likelihood) −0.033 −11 0.008 0.009 92
G-comp. (sequential) −0.035 −16 0.009 0.011 94
IPTW −0.032 −6 0.010 0.009 94
Parametric TMLE −0.032 −7 0.009 0.009 94
SL TMLE −0.030 1 0.008 0.009 90

Adjusting for all confounders
G-comp. (likelihood) −0.032 −4 0.008 0.009 91
G-comp. (sequential) −0.034 −12 0.018 0.010 43
IPTW −0.031 −1 0.010 0.009 93
Parametric TMLE −0.031 −1 0.009 0.009 92
SL TMLE −0.029 5 0.009 0.010 88

Transformed confounders
G-comp. (likelihood) −0.068 −125 0.017 0.042 29
G-comp. (sequential) −0.075 −147 0.023 0.050 20
IPTW −0.062 −106 0.109 0.125 55
Parametric TMLE −0.067 −121 0.041 0.045 36
SL TMLE −0.033 −9 0.032 0.013 95

SE(δ): the average standard error is the square-root of the mean of the variances, with each vari-

ance calculated using the influence curve for TMLE and IPTW and the nonparametric boostrapb

for G-comp. (likelihood) and G-comp. (sequential); rMSE: root mean squared error calculated over
the simulated data sets; Coverage: mean coverage; TMLE: targeted maximum likelihood estimator;
G-comp.: G-computation; IPTW: (stabilized) inverse probability of treatment weighting. aThe es-
timated coverage is the % of data sets where the true value falls between (i) the estimate plus and
minus 1.96 times the standard error of the estimate for TMLE and IPTW or (ii) the 2.5th and 97.5th
bootstrap percentiles for the G-computation methods; bThe bootstrap standard error was computed
using 200 resamples from the data set of size n = 15,500.

were computed using influence curve inference where available and nonparamet-
ric bootstrap resampling otherwise (details in the footnote of Table 5). Due to the
way the data were generated, the sequential G-computation was always incorrectly
specified (in the model form), as were the outcome models for the TMLE.

As a small departure from the real data, the simulated data allowed only one
infection at each time interval (as opposed to more than one event). The G-
computation used the information that the outcome was a sum of the first two
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binary infection variables and the additional binary variable, L3, measured at time
t = 3. Thus, Y = ∑2

t=1 Lt + L3, so that the G-computation simplified to the em-
pirical mean of

∑
l1={0,1}

· · · ∑
lK={0,1}

[{ 2∑
t=1

Lt + E(L3 | C3 = 0, Ā2 = ā2, L̄2 = l̄2,W)

}

× {
p(L2 = l2 | C2 = 0, Ā1 = ā1, L̄1 = l̄1,W)

}
× p(L1 = l1|C1 = 0,W)

]
.

Note that using the information regarding the number of infections at each time
interval for the PROBIT data analysis would have required fitting multinomial
models in the likelihood G-computation. With so few subjects having more than
one infection at any given time, we did not feel that substantial information could
be added by increasing the complexity of the model for the applied example using
a similar approach.

5.1. Simulation results. The results of each of the models under each model-
ing scenario are displayed in Table 5. With an unmeasured confounder related to
cluster, both G-computation models performed the most poorly in terms of bias,
root mean-squared error (rMSE) and coverage. TMLE produced an improvement
in these measures, and adding Super Learner improved all measures of perfor-
mance except for the standard error. IPTW had the lowest bias, but higher stan-
dard errors, resulting in overcoverage. When cluster was used as a surrogate for
the unmeasured confounder, all of the methods produced results with much lower
bias and standard errors. When all confounders were measured and adjusted for,
G-computation, parametric TMLE and IPTW all had a reduction in bias compared
to the previous scenario and performed ideally, despite parametric TMLE being
model-misspecified in the outcome models. TMLE with Super Learner produced
slight undercoverage. The sequential G-computation was model-misspecified and
produced high bias and standard error, leading to poor coverage (since it is not dou-
ble robust). When the confounders were transformed, all of the parametric models
were incorrectly specified, leading to high bias and low coverage. Among the para-
metric models, IPTW had the lowest bias and the highest root mean-squared error.
TMLE with Super Learner (using only one data adaptive algorithm in its library)
was essentially unbiased with ideal coverage.

6. Discussion. In this article we applied five different causal methods to the
PROBIT data to obtain estimates of the differences in the marginal expected num-
ber of infection counts for different breastfeeding durations. All methods agreed
that extending the duration of breastfeeding significantly lowers the expected
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number of gastrointestinal infections. TMLE with Super Learner produced much
larger effect estimates, for example, its estimate was almost double the IPTW es-
timate for the comparison between 1–2 and 9+ months of breastfeeding. This
represents a clinically important difference in the estimated effect. Super Learner
also reduced the higher standard error of the TMLE procedure to a level com-
parable to that of the G-computation (which is an efficient parametric estima-
tor).

Using the mean estimate from TMLE with Super Learner, altering the breast-
feeding durations of 16 mothers from between one and two months to over nine
months will avoid one infant infection (i.e., the Number Needed to Treat or NNT)
on average in this population. This can roughly be compared with the intention-
to-treat result in the original PROBIT study [Kramer et al. (2001)], where they
obtained a NNT of 24 for the presence of any gastrointestinal infection over the
first year when contrasting subjects who did and did not receive the breastfeed-
ing intervention. We have therefore shown that breastfeeding itself might have
a larger impact on childhood infections than suggested by the original PROBIT
analysis.

In the simulation study we generated baseline confounders from a distribution
with a cluster-specific mean. The simulation results demonstrated that bias (and in-
flated standard error) incurred by cluster-specific unmeasured confounders can be
adjusted for using the cluster indicators themselves as baseline covariates. We also
showed that under the plausible scenario of being given transformed versions of
the confounders, only TMLE with Super Learner was able to unbiasedly estimate
the parameter of interest.

TMLE is a double-robust method, as it only requires correct specification of the
conditional probabilities of the intervention (here, breastfeeding and censoring) or
of the nested conditional expectations of the outcome (the Q̄t ’s) to be consistent.
Contrastingly, IPTW relies on correct specification of the probabilities of the inter-
vention, and the G-computations rely on correct specification of the outcome mod-
els. When the probabilities of intervention are modeled in the same way for IPTW
and TMLE, in absence of data sparsity, and when the outcome models are incor-
rectly specified, these two methods are expected to perform similarly (as seen in
the simulation study and possibly in the PROBIT results). In many other contexts,
advantages of longitudinal TMLE over IPTW and G-computation have been estab-
lished through simulation study in van der Laan and Gruber (2012), Petersen et al.
(2014), Stitelman, De Gruttola and van der Laan (2012), and Schnitzer, Moodie
and Platt (2013).

It is important to note that for longitudinal data with time-dependent confound-
ing, there may not exist a data generating distribution that corresponds to the way
the outcome is modeled in the TMLE (i.e., in the sequential G-computation).
Therefore, we recommend that data adaptive methods like Super Learner al-
ways be used with TMLE in the longitudinal setting. Because TMLE with Su-
per Learner is arguably the most reliable estimator (assessed through theory and
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simulation studies), we have reason to believe that the magnitude of the effect of
breastfeeding is actually larger than suggested by the methods that use paramet-
ric modeling and larger than the effect reported in the original PROBIT analy-
sis.
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SUPPLEMENTARY MATERIAL

The efficient influence curve for clustered data and data generation for the
simulation study (DOI: 10.1214/14-AOAS727SUPP; .pdf). Derivation of the ef-
ficient influence curve used in the TMLE analysis. Full description (with R code)
of the data generation used in the simulation study.
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