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In this paper we propose a Bayesian nonparametric model for clustering
partial ranking data. We start by developing a Bayesian nonparametric exten-
sion of the popular Plackett–Luce choice model that can handle an infinite
number of choice items. Our framework is based on the theory of random
atomic measures, with the prior specified by a completely random measure.
We characterise the posterior distribution given data, and derive a simple and
effective Gibbs sampler for posterior simulation. We then develop a Dirichlet
process mixture extension of our model and apply it to investigate the clus-
tering of preferences for college degree programmes amongst Irish secondary
school graduates. The existence of clusters of applicants who have similar
preferences for degree programmes is established and we determine that sub-
ject matter and geographical location of the third level institution characterise
these clusters.

1. Introduction. In this paper we consider partial ranking data consisting of
ordered lists of the top-m items among a set of objects. Data in the form of partial
rankings arise in many contexts. For example, in this paper we shall consider data
pertaining to the top ten preferences of Irish secondary school graduates who are
applying to undergraduate degree programmes offered in Irish third level institu-
tions. The third level institutions consist of universities, institutes of technologies
and private colleges. This application is described in detail in Section 2.

The Plackett–Luce model [Luce (1959); Plackett (1975)] is a popular model
for modeling such partial rankings of a finite collection of M items. It has found
many applications, including choice modeling [Luce (1977); Chapman and Staelin
(1982)], sport ranking [Hunter (2004)] and voting [Gormley and Murphy (2008)].
Diaconis (1988), Chapter 9, provides detailed discussions on the statistical foun-
dations of this model.

In the Plackett–Luce model, each item k ∈ [M] = {1, . . . ,M} is assigned a pos-
itive rating parameter wk , which represents the desirability or rating of a prod-
uct in the case of choice modeling, or the skill of a player in sport rankings.
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The Plackett–Luce model assumes the following generative story for a top-m list
ρ = (ρ1, . . . , ρm) of items ρi ∈ [M]: at each stage i = 1, . . . ,m, an item is chosen
to be the ith item in the list from among the items that have not yet been chosen,
with the probability that ρi is selected being proportional to its desirability wρi

.
The overall probability of a given partial ranking ρ is then

P(ρ) =
m∏

i=1

wρi

(
∑M

k=1 wk) − (
∑i−1

j=1 wρj
)

(1)

with the denominator in (1) being the sum over all items not yet selected at stage i.
In many situations the collection of available items can be very large and/or po-

tentially unknown. In this case a nonparametric approach can be sensible, where
the pool of items is assumed to be infinite and the model allows for the possibility
of items not observed in previous top-m lists to appear in future ones. A naïve ap-
proach, building upon recent work on Bayesian inference for the (finite) Plackett–
Luce model and its extensions [Gormley and Murphy (2009); Guiver and Snelson
(2009); Caron and Doucet (2012)], is to first derive a Markov chain Monte Carlo
sampler for the finite model, then to “take the infinite limit” of the sampler, where
the number of available items becomes infinite, but such that all unobserved items
are grouped together for computational tractability.

Such an approach, outlined in Section 3, is reminiscent of a number of pre-
vious approaches deriving the (Gibbs sampler for the) Dirichlet process mixture
model as the infinite limit of (a Gibbs sampler for) finite mixture models [Neal
(1992); Rasmussen (2000); Ishwaran and Zarepour (2002)]. Although intuitively
appealing, this is not a satisfying approach since it is not clear what the underlying
nonparametric model actually is, as it is actually the algorithm whose infinite limit
was taken. It also does not directly lead to more general and flexible nonparametric
models with no obvious finite counterpart, nor does it lead to alternative perspec-
tives and characterisations of the same model, or resultant alternative inference
algorithms. Orbanz (2009) further investigates the approach of constructing non-
parametric Bayesian models from finite-dimensional parametric Bayesian models.

Caron and Teh (2012) recently proposed a Bayesian nonparametric Plackett–
Luce model based on a natural representation of items along with their ratings as
an atomic measure. Specifically, the model assumes the existence of an infinite
pool of items {Xk}∞k=1, each with its own rating parameter, {wk}∞k=1. The atomic
measure then consists of an atom located at each Xk with a mass of wk :

G =
∞∑

k=1

wkδXk
.(2)

The probability of a top-m list of items, say, (Xρ1, . . . ,Xρm), is then a direct ex-
tension of the finite case (1):

P(Xρ1, . . . ,Xρm |G) =
m∏

i=1

wρi

(
∑∞

k=1 wk) − (
∑i−1

j=1 wρj
)
.(3)
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Using this representation, note that the top item Xρ1 in the list is simply a draw
from the probability measure obtained by normalising G, while subsequent items
in the top-m list are draws from probability measures obtained by first removing
from G the atoms corresponding to previously picked items and normalising. De-
scribed this way, it is clear that the Plackett–Luce model is none other than a partial
size-biased permutation of the atoms in G [Patil and Taillie (1977)], and the exist-
ing machinery of random measures and exchangeable random partitions [Pitman
(2006); Lijoi and Prünster (2010)] can be brought to bear on our problem.

For example, we may use a variety of existing stochastic processes to specify
a prior over the atomic measure G. Caron and Teh (2012) considered the case,
described in Section 4, where G is a gamma process. This is a completely ran-
dom measure [Kingman (1967); Lijoi and Prünster (2010)] with gamma marginals,
such that the corresponding normalised probability measure is a Dirichlet process
[Ferguson (1973)]. They showed that with the introduction of a suitable set of aux-
iliary variables, it is possible to characterise the posterior law of G given observa-
tions of top-m lists distributed according to (3). A simple Gibbs sampler can then
be derived to simulate from the posterior distribution which corresponds to the in-
finite limit of the Gibbs sampler for finite models. In the Appendix, we show that
the construction can be extended from gamma processes to general completely
random measures, and we discuss extensions of the Gibbs sampler to this more
general case.

In Section 5 we describe a Dirichlet process mixture model [Ferguson (1973);
Lo (1984)] for heterogeneous partial ranking data, where each mixture component
is a gamma process nonparametric Plackett–Luce model. As shown in Section 2,
such a model is relevant for capturing heterogeneity in preferences for college
degree programmes. As we will see, in this model it is important to allow the
same atoms to appear across the different random measures of the mixture compo-
nents, otherwise the model becomes degenerate with all observed items that ever
appeared together in some partial ranking being assigned to the same mixture com-
ponent. To allow for this, we use a tree-structured extension of the time-varying
model of Caron and Teh (2012). In Section 6 we apply this mixture model to the
Irish college degree programme preferences data, showing that the model is able
to recover clusters of students with similar and interpretable preferences.

Finally, we conclude in Section 7 with a discussion of the important contribu-
tions of this paper and proposals for future work.

2. Irish college degree programmes. Applications to college degree pro-
grammes in Ireland are handled by a centralised applications system called the
College Application Office (CAO) (www.cao.ie); a degree programme involves
studying a specific subject (broad or focussed) in a particular third level institu-
tion. The CAO handles applications for 35 different third level institutions includ-
ing universities, institutes of technologies and private colleges. In the autumn of

http://www.cao.ie
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each year, a list of all degree programmes for the subsequent year is made avail-
able to applicants. Quite often new degree programmes are added to the list of
potential choices after the initial list has been published, thus meaning that the
potential list of degree programme choices is evolving and not always completely
known. Applications are completed early in the year in which the students plan
to enter their college degree programme. The list of available degree programmes
changes from year to year but has been generally growing in size year on year.
Many degree programmes have a specific subject area, for example, Mathematics,
History or Computer Science, but others are more general, for example, Science,
Commerce or Arts. In the year 2000, which we are examining herein, there were
533 degree programmes available to be selected by the applicants. When students
apply for degree programmes they rank up to ten degree programmes, in order
of preference, from the list of all degree programmes that are being offered. Two
examples of such applications for two different applicants are shown in Table 1.

Places in these degree programmes are allocated on the basis of the applicants’
performance in the Irish Leaving Certificate examination. Students typically take
between seven and nine subjects in the Leaving Certificate examination. Points
between zero and one hundred are awarded for each applicant’s best six subjects
in the Leaving Certificate examination and the points are totalled to give an overall
points score. The allocation of applicants to most degree programmes is solely on
the basis of the applicant’s points score and applicants with a high points score are
more likely to get their high preference choices. The minimum points score of all

TABLE 1
Two samples from the CAO preference data. Each rank observation is an ordered list of up to ten

degree programmes

Rank CAO code College Degree programme

1 DN002 University College Dublin Medicine
2 GY501 NUI-Galway Medicine
3 CK701 University College Cork Medicine
4 DN006 University College Dublin Physiotherapy
5 TR053 Trinity College Dublin Physiotherapy
6 DN004 University College Dublin Radiotherapy
7 TR007 Trinity College Dublin Clinical speech
8 FT223 Dublin IT Human nutrition
9 TR084 Trinity College Dublin Social work

10 DN007 University College Dublin Social science

1 MI005 Mary Immaculate Limerick Education-primary teaching
2 CK301 University College Cork Law
3 CK105 University College Cork European studies
4 CK107 University College Cork Language-french
5 CK101 University College Cork Arts
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applicants accepted into a degree programme is publicly available and is called the
points requirement. It is worth mentioning that even though degree programmes
may have required Leaving Certificate subjects and grades as part of the minimum
entry requirements, the subjects used in the applicant’s points score calculation can
be any six Leaving Certificate subjects.

The college applications system in Ireland is much debated in the educational
sector and it receives much attention in the Irish media. The debate has two main
parts: one part of the debate is whether the current system of allocating points to
students on the basis of a single Leaving Certificate examination is a fair method,
especially when the points can be gained from any Leaving Certificate subjects;
the other part of the debate explores the choice behaviour of the applicants and
whether students are choosing degree programmes in a coherent manner. We focus
on the applicant’s choices which are core to the second part of the debate.

Many people feel that students do not necessarily pick degree programmes on
the basis of the courses offered but that they choose on other grounds, like the per-
ceived prestige of the degree programme. However, other factors like geographical
location of the third level institution may also have an impact on the applicant’s
choice behaviour. The two example applications in Table 1 illustrate that a num-
ber of factors influence applicants choices. The first applicant has selected degree
programmes in medicine and other health sciences, so their choices appear to be
largely based on the course material. However, the second application includes a
wide variety of different degree programmes; the applicant’s first choice degree
programme leads to a career in Primary Teaching, whereas the other degree pro-
grammes are in different areas. However, the institutions that have been chosen are
geographically close (within 100 km).

In the year 1997, the Department of Education and Science commissioned a re-
view of the Irish college applications system. A report [Hyland (1999)] reviewed
the current system and made some recommendations concerning the future of the
system. In addition, four research reports were published, one of which [Tuohy
(1998)] examined the applicant’s choices. Tuohy (1998) used a number of ex-
ploratory data analysis techniques to investigate the degree programmes selected,
but without reference to the preference ordering, and he found that subject matter
was an important factor in applicant choices. More recently, Gormley and Murphy
(2006) used a finite mixture of Plackett–Luce models to find clusters of applica-
tions with similar choice profiles. They fitted their model using maximum likeli-
hood and chose the number of mixture components using the Bayesian Information
Criterion (BIC). Their results also indicated that subject matter and geographical
location were strong determinants of student choices. However, the model fitting
paradigm used in their analysis could not find small clusters of applicants because
of the manner that BIC penalises each additional mixture component. Further,
McNicholas (2007) used association rule mining to further explore college ap-
plicant choices, but he restricted his attention to degree programme choice com-
binations that were selected by at least 0.5% of the applicants; thus, that analysis
emphasised only high frequency choice behaviour.
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O’Connell, Clancy and McCoy (2006) conducted a survey of new college en-
trants (as opposed to applicants) in 2004 and found that the choice of college where
they commenced their degree programme was influenced primarily by reputation
and geographical location of the third level institution, and that the choice of de-
gree programme was influenced by intrinsic interest in the subject matter and, to a
lesser extent, future career prospects. Whilst that study only looks at students who
entered college and the degree programme that they ultimately studied, it provides
a further insight into the factors that influence choice of degree programme.

We investigate the complete degree programme choice data for the year 2000
cohort of applications to the College Application Office; these data correspond to
top-10 rankings of college degree programmes for 53,757 applicants. The model
proposed herein has a number of appealing properties because it can account for
choosing from the large number of degree programmes on offer, it allows for
small differences in preference between degree programmes, it facilitates discov-
ering large and small clusters of applicants with similar preferences, and the fitting
in the Bayesian paradigm facilitates a deep exploration of the clustering and co-
clustering of applicants.

3. An extension of the Plackett–Luce model to countably infinite choice
sets. We start this section with a review of a Bayesian approach to inference in
finite Plackett–Luce models [Gormley and Murphy (2009); Guiver and Snelson
(2009); Caron and Doucet (2012)] and take the infinite limit to arrive at a nonpara-
metric model. This will give good intuitions for how the model operates, before
we rederive the same nonparametric model more formally in the next section us-
ing gamma processes.

Recall that we have M choice items indexed by [M] = {1, . . . ,M}, with item
k ∈ [M] having a positive desirability parameter wk . We will suppose that our
data consists of L partial rankings of the M choice items, with the �th ranking
being denoted ρ� = (ρ�1, . . . , ρ�m), for � = 1, . . . ,L, where each ρ�i ∈ [M]. For
notational simplicity we assume that all the partial rankings are of length m.

3.1. Finite Plackett–Luce model with gamma prior. As noted in the Introduc-
tion, the Plackett–Luce model constructs a partial ranking ρ� = (ρ�1, . . . , ρ�m) it-
eratively. At the ith stage, with i = 1,2, . . . ,m, we pick ρ�i as the ith item from
among those not yet picked with probability proportional to wρ�i

. The probability
of the partial ranking ρ� is then as given in (1). An alternative Thurstonian inter-
pretation, which will be important in the following, is as follows: for each item k

let z�k be exponentially distributed with rate wk :

z�k ∼ Exp(wk).

Thinking of z�k as the arrival time of item k in a race, let ρ�i be the index of the ith
item to arrive [the index of the ith smallest value among (z�k)

M
k=1]. The resulting

probability of the first m items to arrive being ρ� can be shown to be the proba-
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bility (1) from before. In this interpretation (z�k) can be understood as latent vari-
ables, and the EM algorithm [Dempster, Laird and Rubin (1977)] can be applied
to derive an algorithm to find a ML setting for the parameters (wk)

M
k=1 given mul-

tiple partial rankings. Unfortunately the posterior distribution of (z�k)
M
k=1 given ρ�

is difficult to compute, so we can instead consider an alternative parameterisation:
let Z�i be the waiting time for the ith item to arrive after the i − 1th item. That is,

Z�i = zρ�i
− zρ�i−1

with zρ�0 defined to be 0. Then it is easily seen that the joint probability of the
observed partial rankings, along with the alternative latent variables (Z�i), is

P
(
(ρ�)

L
�=1,

(
(Z�i)

m
i=1

)L
�=1|(wk)

M
k=1

)
(4)

=
L∏

�=1

m∏
i=1

wρ�i
exp

(
−Z�i

(
M∑

k=1

wk −
i−1∑
j=1

wρ�j

))
.

In particular, the posterior of (Z�i)
m
i=1 is simply factorised, with

Z�i |(ρ�)
L
�=1, (wk)

M
k=1 ∼ Exp

(
M∑

k=1

wk −
i−1∑
j=1

wρ�j

)
being exponentially distributed. The M step of the EM algorithm can be easily
derived as well. The resulting algorithm was first proposed by Hunter (2004) as an
instance of the MM (majorisation–maximisation) algorithm [Lange, Hunter and
Yang (2000)] and its reinterpretation as an EM algorithm was recently given by
Caron and Doucet (2012).

Taking a further step, we note that the joint probability (4) is conjugate to a
factorised gamma prior over the parameters, say, wk ∼ Gamma( α

M
, τ) with hy-

perparameters α, τ > 0. Now Bayesian inference can be carried out, for example,
using a variational Bayesian EM algorithm or a Gibbs sampler. In this paper we
shall consider only Gibbs sampling algorithms. By regrouping the terms in the
exponential in (4), the parameter updates are derived to be [Caron and Doucet
(2012)]:

wk|ρ, (Z�i), (wk′)k′ �=k ∼ Gamma

(
α

M
+ nk, τ +

L∑
�=1

m∑
i=1

δ�ikZ�i

)
,(5)

where nk is the number of occurrences of item k among the observed partial rank-
ings and

δ�ik =
{

0, if there is a j < i with ρ�j = k,
1, otherwise.

Note that the definitions of nk and δ�ik slightly differ from those in Hunter
(2004) and Caron and Doucet (2012). In these articles, the authors consider full
m-rankings of subsets of [M], whereas we consider here partial top-m rankings of
all M items.
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3.2. Taking the infinite limit. A Gibbs sampler for a nonparametric Plackett–
Luce model can now be easily derived by taking the limit as the number of choice
items M → ∞. If item k has appeared among the observed partial rankings, the
limiting conditional distribution (5) is well defined since nk > 0. For items that
did not appear in the observations, (5) becomes degenerate at 0. Instead we can
define w∗ = ∑

k : nk=0 wk to be the total desirability among all the infinitely many
unobserved items. Making use of the fact that sums of independent gammas with
the same scale parameter is a gamma with shape parameter given by the sum of
the shape parameters,

w∗|ρ, (Z�i), (wk)k : nk>0 ∼ Gamma

(
α, τ +

L∑
�=1

m∑
i=1

Z�i

)
.

The resulting Gibbs sampler alternates between updating the latent variables (Z�i)

and updating the desirabilities of the observed items (wk)k : nk>0 and of the unob-
served ones w∗.

This nonparametric model allows us to estimate the probability of seeing new
items appearing in future partial rankings in a coherent manner. While intuitive,
the derivation is ad hoc, in the sense that it arises as the infinite limit of the Gibbs
sampler for finite Plackett–Luce models, and is unsatisfying, as it did not directly
capture the structure of the underlying infinite-dimensional object, which we will
show in the next section to be a gamma process.

4. A Bayesian nonparametric Plackett–Luce model based on the gamma
process. Let X be a measurable space of choice items. In the case of college
applications, the space X is the space of all possible Irish programme courses.
A gamma process is a completely random measure over X with gamma marginals.
Specifically, it is a random atomic measure of the form (2), such that for each
measurable subset A, the (random) mass G(A) is gamma distributed. Assuming
that G has no fixed atoms [i.e., for each element x ∈ X we have G({x}) = 0 with
probability one] and that the atom locations {Xk} are independent of their masses
{wk} (i.e., the gamma process is homogeneous), it can be shown that such a random
measure can be constructed as follows [Kingman (1967), Chapter 9]: each Xk

is i.i.d. according to a base distribution H [which we assume is nonatomic with
density h(x)], while the set of masses {wk} is distributed according to a Poisson
process over R+ with mean intensity

λ(w) = αw−1e−wτ ,

where α > 0 is the concentration parameter and τ > 0 the inverse scale. We
write this as G ∼ �(α, τ,H). Under this parametrisation, we have that G(A) ∼
Gamma(αH(A), τ ). λ(w)h(x) is known as the Lévy intensity of the homogeneous
CRM G. The jump part λ(w) of the Lévy intensity verifies the necessary condition∫ ∞

0

(
1 − exp(−w)

)
λ(w)dw < ∞(6)

and plays a significant role in characterising the properties of the gamma process.
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FIG. 1. Bayesian nonparametric Plackett–Luce model. Left: an instantiation of the atomic mea-
sure G encapsulating both the items and their ratings. Right: arrival times zk and latent variables
Zk = zρk − zρk−1 . The top 5 items are (ρ1, ρ2, . . . , ρ5).

We shall interpret each atom Xk as a choice item, with its mass wk > 0 cor-
responding to the desirability parameter. The Thurstonian view described in the
finite model can be easily extended to the nonparametric one, where a partial rank-
ing (Xρ1, . . . ,Xρm) can be generated as the first m items to arrive in a race. In
particular, for each atom Xk let zk ∼ Exp(wk) be the time of arrival of Xk and Xρi

the ith item to arrive. The first m items to arrive (Xρ1, . . . ,Xρm) then constitute
our partial ranking, with probability as given in (3). This construction is depicted
in Figure 1. The top row of Figure 2 visualises some top-5 rankings generated from
the model, with τ = 1 and different values of α. Figure 3 shows the mean number
of items appearing in L top-m rankings. For m = 1, one recovers the well-known
result on the number of clusters for a Dirichlet process model.

Again reparametrising using inter-arrival durations, let Zi = zρi
− zρi−1 for i =

1,2, . . . (with zρ0 = 0). The joint probability of an observed partial ranking of
length m along with the m associated latent variables can be derived to be

P
(
(Xρ1, . . . ,Xρm), (Z1, . . . ,Zm)|G)

= P
(
(zρ1, . . . , zρm) and zk > zρm for all k /∈ {ρ1, . . . , ρm})

(7)

=
(

m∏
i=1

wρi
exp(−wρi

zρi
)

)( ∏
k /∈{ρ1,...,ρm}

exp(−wkzρm)

)

=
m∏

i=1

wρi
exp

(
−Zi

( ∞∑
k=1

wk −
i−1∑
j=1

wρj

))
.
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FIG. 2. Visualisation of top-5 rankings with rows corresponding to different rankings and columns
to items sorted by size-biased order. A lighter shade corresponds to a higher rank. Results are shown
for a gamma process with λ(w) = αw−1 exp(−τw) with τ = 1 and different values of α. The pa-
rameter α tunes the variability in the partial rankings. The larger α, the higher the variability. As the
probability of partial rankings 3 is invariant to rescaling of the weights, the scaling parameter τ has
no effect on the partial rankings.

Marginalising out (Z1, . . . ,Zm) gives the probability of (Xρ1, . . . ,Xρm) as in (3).
Further, conditional on ρ = (ρi)

m
i=1, it is seen that the inter-arrival durations

Z1, . . . ,Zm are mutually independent, with

Zi |(Xρ1, . . . ,Xρm),G ∼ Exp

( ∞∑
k=1

wk −
i−1∑
j=1

wρj

)
.

In the next section we shall characterise the posterior distribution over G given
observed partial rankings and their associated latent variables. We end this subsec-
tion with two observations.

First, note that the jump part λ(w) of the Lévy intensity of the gamma process
satisfies the following property:∫ ∞

0
λ(w)dw = ∞.(8)

FIG. 3. Mean number of items appearing in L top-m rankings for a gamma process with
λ(w) = αw−1 exp(−τw) with τ = 1 and different values of α and m.
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This property is equivalent (via Campbell’s theorem) to the fact that there are an
infinite number of atoms in G with probability one. In other words, we are dealing
with a nonparametric model with an infinite number of choice items. It is also a
necessary and sufficient condition for the homogeneous CRM G to have finite and
strictly positive total mass 0 < G(X) < ∞ [Regazzini, Lijoi and Prünster (2003)].
It therefore ensures that the generative Plackett–Luce probability (3) is well de-
fined.

The second observation is with regard to a subtle but important difference
between the atomic measure approach described in this section and the finite
Plackett–Luce model of the previous section. In particular, here we specified the
choice items Xk as locations in a space X with a prior given by the base distri-
bution H , while in the finite Plackett–Luce model we simply index the M choice
items using 1, . . . ,M . One may wonder if it is possible to simply index the in-
finitely many choice items using the natural numbers and dispense with the atom
locations {Xk} altogether. This turns out to be impossible, if we were to make the
following reasonable assumptions: that item desirabilities are a priori mutually in-
dependent, that they are positive with probability one, and that item desirabilities
do not depend on the index of their corresponding items. With these assumptions,
along with an infinite number of choice items, it is easy to see that the sum of all
item desirabilities will be infinite with probability one, so that the Plackett–Luce
generative model becomes ill-defined. Using the atomic measure approach, it is
possible to satisfy all assumptions while making sure the Plackett–Luce generative
model is well-defined. Note that the atoms locations Xk are just used for modelling
purposes. When considering inference, they are assumed to be known and need not
to be defined explicitly so as to make inference on the item desirabilities.

4.1. Posterior characterisation. In this section we develop a characterisation
of the posterior law of G under a gamma process prior and given Plackett–Luce
observations consisting of L partial rankings. Posterior characterisation for our
model is a variation of posterior characterisation for normalised random measures
in density estimation [Prünster (2002); James (2002); James, Lijoi and Prünster
(2009); Lijoi and Prünster (2010)]. We shall denote the �th partial ranking as
Y� = (Y�1, . . . , Y�m), where each Y�i ∈ X. Note that previously our partial rank-
ings (Xρ1, . . . ,Xρm) were denoted as ordered lists of the atoms in G. Since G is
unobserved here, this is no longer possible, so we instead simply use a list of ob-
served choice items (Y�1, . . . , Y�m). Re-expressing the conditional distribution (3)
of Y� given G, we have

P(Y�|G) =
m∏

i=1

G({Y�i})
G(X \ {Y�1, . . . , Y�i−1}) .

In addition, for each �, we will also introduce a set of auxiliary variables Z� =
(Z�1, . . . ,Z�m) (the inter-arrival times) that are conditionally mutually indepen-
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dent given G and Y�, with

Z�i |Y�,G ∼ Exp
(
G

(
X \ {Y�1, . . . , Y�i−1})).(9)

The joint probability of the item lists and auxiliary variables is then [cf. (7)]

P
(
(Y�,Z�)

L
�=1|G

) =
L∏

�=1

m∏
i=1

G
({Y�i}) exp

(−Z�iG
(
X \ {Y�1, . . . , Y�i−1})).

Note that under the generative process described in Section 4, there is positive
probability that an item appearing in a list Y� appears in another list Y�′ with
�′ �= �. Denote the unique items among all L lists by X∗

1, . . . ,X∗
K , and for each

k = 1, . . . ,K let nk be the number of occurrences of X∗
k among the item lists.

Finally, define occurrence indicators

δ�ik =
{

0, if ∃j < i with Y�j = X∗
k ;

1, otherwise.
(10)

Then the joint probability under the nonparametric Plackett–Luce model is

P
(
(Y�,Z�)

L
�=1|G

)
=

K∏
k=1

G
({

X∗
k

})nk ×
L∏

�=1

m∏
i=1

exp
(−Z�iG

(
X \ {Y�1, . . . , Y�i−1}))

(11)

= exp
(
−G(X)

∑
�i

Z�i

)

×
K∏

k=1

G
({

X∗
k

})nk exp
(
−G

({
X∗

k

})∑
�i

(δ�ik − 1)Z�i

)
.

Taking expectation of (11) with respect to G gives the following:

THEOREM 1. The marginal probability of the L partial rankings and latent
variables is

P
(
(Y�,Z�)

L
�=1

) = e−ψ(
∑

�i Z�i )
K∏

k=1

h
(
X∗

k

)
κ

(
nk,

∑
�i

δ�ikZ�i

)
,(12)

where ψ(z) is the Laplace transform of λ(w),

ψ(z) = − logE
[
e−zG(X)] =

∫ ∞
0

(
1 − e−zw)

λ(w)dw = α log
(

1 + z

τ

)
and κ(n, z) is the nth moment of the exponentially tilted intensity λ(w)e−zw:

κ(n, z) =
∫ ∞

0
wne−zwλ(w)dw = α

(z + τ)n
�(n).
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The proof, using the Poisson process characterisation of completely random
measures and the Palm formula [James, Lijoi and Prünster (2009)], is given in the
Appendix.

Another application of the Palm formula [James, Lijoi and Prünster (2009)] now
allows us to derive a posterior characterisation of G. The posterior CRM can be
decomposed as the sum of a CRM with fixed atoms and a CRM whose jump part
of the Lévy intensity is updated to λ∗(w) in a conjugate fashion, similar to deriving
a conjugate posterior for a parametric distribution.

THEOREM 2. Given the observations and associated latent variables
(Y�,Z�)

L
�=1, the posterior law of G is also a gamma process, but with atoms with

both fixed and random locations. Specifically,

G|(Y�,Z�)
L
�=1 = G∗ +

K∑
k=1

w∗
k δX∗

k
,(13)

where G∗ and w∗
1, . . . ,w∗

K are mutually independent. The law of G∗ is still a
gamma process,

G∗|(X�,Z�)
L
�=1 ∼ �

(
α, τ �,H

)
, τ ∗ = τ + ∑

�i

Z�i,

while the masses have distributions,

w∗
k |(Y�,Z�)

L
�=1 ∼ Gamma

(
nk, τ + ∑

�i

δ�ikZ�i

)
.

PROOF. Let f :X → R be measurable with respect to H . Then the character-
istic functional of the posterior G is given by

E
[
e− ∫

f (x)G(dx)|(Y�,Z�)
L
�=1

] = E[e− ∫
f (x)G(dx)P ((Y�,Z�)

L
�=1|G)]

E[P((Y�,Z�)
L
�=1|G)] .(14)

The denominator is as given in Theorem 1, while the numerator is obtained using
the same Palm formula technique as Theorem 1, with the inclusion of the term
e− ∫

f (x)G(dx). Some algebra then shows that the resulting characteristic functional
of the posterior G coincides with that of (13). The proof details are given in the
Appendix. �

4.2. Gibbs sampling. Given the results of the previous section, a simple Gibbs
sampler can now be derived, where all the conditionals are of known analytic form.
In particular, we will integrate out all of G∗ except for its total mass w∗∗ = G∗(X).
This leaves the latent variables to consist of the masses w∗∗ , (w∗

k )
K
k=1 and the latent
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variables ((Z�i)
m
i=1)

L
�=1. The update for Z�i is given by (9), while those for the

masses are given in Theorem 2:

Gibbs update for Z�i : Z�i | rest ∼ Exp
(
w∗∗ + ∑

k

δ�ikw
∗
k

)
,

Gibbs update for w∗
k : w∗

k | rest ∼ Gamma
(
nk, τ + ∑

�i

δ�ikZ�i

)
,(15)

Gibbs update for w∗∗: w∗∗| rest ∼ Gamma
(
α, τ + ∑

�i

Z�i

)
.

Note that the latent variables are conditionally independent given the masses and
vice versa. Hyperparameters of the gamma process can be simply derived from
the joint distribution in Theorem 1. Since the marginal probability of the partial
rankings is invariant to rescaling of the masses, it is sufficient to keep τ fixed at 1.
As for α, if a Gamma(a, b) prior is placed on it, its conditional distribution is still
gamma:

Gibbs update for α: α| rest ∼ Gamma
(
a + K,b + log

(
1 +

∑
�i Z�i

τ

))
.

Note that this update was derived with w∗∗ marginalised out, so after an update
to α it is necessary to immediately update w∗∗ via (15) before proceeding to update
other variables.

In the Appendix C, we show that the construction can be extended from gamma
processes to general completely random measures, and we discuss extensions of
the Gibbs sampler to this more general case. In particular, we show that a simple
Gibbs sampler can still be derived for the generalised gamma class of completely
random measures.

5. Mixtures of nonparametric Plackett–Luce components. In this section
we propose a mixture model for heterogeneous ranking data consisting of nonpara-
metric Plackett–Luce components. Using the same data augmentation scheme, we
show that an efficient Gibbs sampler can be derived and apply the model to a data
set of preferences for Irish degree programmes by high school graduates.

5.1. Statistical model. Assume that we have a set of L rankings (Y�) for � ∈
[L] of top-m preferred items, and our objective is to partition these rankings into
clusters of similar preferences. We consider the following Dirichlet process (DP)
mixture model:

π ∼ GEM(γ ),

c�|π ∼ Discrete(π) for � = 1, . . . ,L,(16)

Y�|c�,Gc�
∼ PL(Gc�

),
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where GEM(γ ) denotes the Griffiths–Engen–McCloskey (GEM) distribution
[Pitman (2006)] with concentration parameter γ (also known as the stick-breaking
construction) and PL(G) denotes the nonparametric Plackett–Luce model param-
eterised by the atomic measure G described in Section 4. The j th cluster in the
mixture model is parameterised by an atomic measure Gj and has mixing propor-
tion πj .

To complete the model, we have to specify the prior on the component atomic
measures Gj . An obvious choice would be to use independent draws from a
gamma process �(α, τ,H) for each Gj . This unfortunately does not work. The
reason is because if H is smooth, then different atomic measures will never share
the same atoms. On the other hand, notice that all items appearing in some ob-
served partial ranking have to come from the same Plackett–Luce model, and thus
have to appear as atoms in the corresponding atomic measure. Putting these two
observations together, the result is that any observed pair of partial rankings that
share a common item will have to be assigned to the same component, and the
mixture model will degenerate to using a few much larger components only. In
consequence, the model will not capture the fine-scale preference structure that
may be present in the partial rankings. This is a similar problem that motivated the
hierarchical DP [Teh et al. (2006)], and the solution there, as in here, is to allow
different atomic measures to share the same set of atoms, but to allow different
atom masses.

Our solution, which is different from Teh et al. (2006), is to make use of the
Pitt–Walker [Pitt and Walker (2005)] dependence model for gamma processes.
Consider a tree-structured model where there is a single root G0 and each compo-
nent atomic measure Gj is a leaf which connects directly to G0. The Pitt–Walker
model allows us to construct the dependence structure between the root G0 and the
leaves (Gj ) such that each Gj marginally follows a gamma process �(α, τ,H).
At the root, G0 is first given a gamma process prior:

G0 ∼ �(α, τ,H).

Since G0 is atomic, we can write it in the form

G0 =
∞∑

k=1

w0kδXk
.

Now for each j , define a random measure Uj with conditional law:

Uj |G0 =
∞∑

k=1

ujkδXk
,

(17)
ujk|G0 ∼ Poisson(φw0k),

where φ > 0 is a parameter which, as we shall see, governs the strength of depen-
dence between G0 and each Gj . Note that since G0 has finite total mass, Uj con-
sists only of a finite number of atoms with positive masses; the other atoms all
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have masses equal to zero. Using the same Palm formula method as Section 4.1,
we can show the following proposition:

PROPOSITION 3. Suppose the prior law of G0 is �(α, τ,H) and Uj has con-
ditional law given by (17). The posterior law of G0 given Uj is then

G0 = G∗
0 +

∞∑
k=1

w∗
0kδXk

,

where G∗
0 and (w∗

0k)
∞
k=1 are all mutually independent. The law of G∗

0 is given by a
gamma process while the masses are conditionally gamma,

G∗
0|Uj ∼ �(α, τ + φ,H),

w∗
0k|Uj ∼ Gamma(ujk, τ + φ).

Note that if ujk = 0, we define w∗
0k to be degenerate at 0, thus, the posterior of

G0 consists of a finite number of atoms in common with Uj , along with an in-
finite number of atoms (those in G∗

0) not in common. The total mass of G∗
0 has

distribution Gamma(α, τ + φ).

The idea, inspired by Pitt and Walker (2005), is to define the conditional law of
Gj given G0 and Uj to be independent of G0 and to coincide with the conditional
law of G0 given Uj as in Proposition 3. In other words, define

Gj = G∗
j +

∞∑
k=1

w∗
jkδXk

,(18)

where G∗
j ∼ �(α, τ +φ,H) and w∗

jk ∼ Gamma(ujk, τ +φ) are mutually indepen-
dent. Note that if ujk = 0, the conditional distribution of w∗

jk will be degenerate
at 0. Hence, Gj has an atom at Xk if and only if Uj has an atom at Xk , that is, if
ujk > 0. In addition, it also has an infinite number of atoms (those in G∗

j ) which
are in neither Uj nor G0.

Since the conditional laws of Gj and G0 given Uj coincide, and G0 has prior
�(α, τ,H), it can be seen that Gj will marginally follow the same law �(α, τ,H)

as well. More compactly, we can write the dependence model as

Uj |G0 ∼ Poisson(φG0),
(19)

Gj |Uj ∼ �

(
α + Uj(X), τ + φ,

αH + Uj

α + Uj(X)

)
.

As a final observation, the parameter φ can be interpreted as controlling the
strength of dependence between G0 and each Gj . Indeed, it can be shown that

E[Gj |G0] = φ

φ + τ
G0 + τ

φ + τ
H,



BNP PLACKETT–LUCE MODELS FOR THE ANALYSIS OF PREFERENCES 1161

so that larger φ corresponds to each Gj being more similar to G0. Larger φ may
also favour a larger number of clusters, as similar partial rankings are more likely
to be clustered in different groups.

Our construction to inducing sharing of atoms has a number of qualitative dif-
ferences from that of the hierarchical DP [Teh et al. (2006)]. First, the marginal
law of each Gj is known: it is marginally a gamma process. For the hierarchical
DP the marginal laws of the individual random measures are not of simple analyti-
cal forms. Since normalising a gamma process gives a DP, our construction can be
used as an alternative method to induce sharing of atoms across multiple random
measures, each of which still has marginal DP law. Second, in our construction
only a finite number of atoms will be shared across random measures (though the
number shared can be controlled by the dependence parameter φ), while in the
hierarchical DP all infinitely many atoms are shared. In Caron and Teh (2012) we
used the Pitt–Walker construction for a different purpose: we constructed a dy-
namical nonparametric Plackett–Luce model, where at each time t , Gt is a gamma
process, with the Pitt–Walker construction used to define a Markov dependence
structure for the sequence of random measures (Gt).

The structure of (16), with a DP mixture with each component specified by a
random atomic measure, is reminiscent of the nested DP of Rodríguez, Dunson
and Gelfand (2008) as well, though our model has an additional hierarchical struc-
ture allowing the sharing of atoms among different component measures. In this
respect, it also shares similarities with the hierarchical Dirichlet process model of
Müller, Quintana and Rosner (2004).

We focused here on a DP mixture for its simplicity, with a single parameter
γ tuning the clustering structure. The model can be generalised to more flexible
random measures, such as Pitman–Yor processes [Pitman (1995)] or normalised
random measures [Regazzini, Lijoi and Prünster (2003); Lijoi, Mena and Prünster
(2007)].

5.2. Posterior characterisation and Gibbs sampling. Assume for simplicity
we have observed L top-m partial ranking Y� = (Y�1, . . . , Y�m) (the following will
trivially extend to partial rankings of differing sizes). We extend the results of
Section 4 in characterising the posterior and developing a Gibbs sampler for the
mixture model.

Let X∗ = (X∗
k )

K
k=1 be the set of unique items observed among Y1, . . . , YL. For

each cluster index j , let njk be the number of occurrences of item X∗
k among the

set of item lists Y� in cluster j , that is, where c� = j . Let ρ� = (ρ�i)
m
i=1 be defined

such as Y� = (X∗
ρ�1

, . . . ,X∗
ρ�m

) and δ�ik be occurrence indicators similar to (10).
As in Section 4, the observed items X∗ will contain the set of fixed atoms in the

posterior law of the atomic measures G0, (Gj ). We write the masses of the fixed
atoms as w0k = G0({X∗

k }), wjk = Gj({X∗
k }), while the total masses of all other

random atoms are denoted w0∗ = G0(X \ X∗) and wj∗ = Gj(X \ X∗). We also
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FIG. 4. Graphical model of the Dirichlet process mixture of nonparametric Plackett–Luce compo-
nents. The variables at the top are hyperparameters, (ρ�) are the observed partial rankings, while
the other variables are unobserved variables.

write ujk = Uj({X∗
k }) and uj∗ = Uj(X \ X∗). As before, we will introduce latent

variables for each � = 1, . . . ,L and i = 1, . . . ,m:

Z�i |Y�, c�,Gc�
∼ Exp

(
wc�∗ +

K∑
k=1

δ�ikwc�k

)
.(20)

The overall graphical model is described in Figure 4.

PROPOSITION 4. Given the partial rankings (Y�) and associated latent vari-
ables (Z�i), (ujk), (uj∗), and cluster indicators (c�), the posterior law of Gj is a
gamma process with atoms with both fixed and random locations. Specifically,

Gj |(Y�), (Z�i), (ujk), (uj∗), (c�) = G∗
j +

K∑
k=1

wjkδX∗
k
,

where G∗
j and wj1, . . . ,wjK are mutually independent. The law of G∗

j is a gamma
process,

G∗
j |(Y�), (Z�i), (ujk), (uj∗), (c�)

(21)

∼ �

(
α + uj∗, τ + φ + ∑

�|c�=j

m∑
i=1

Z�i,H

)
,

while the masses have distributions,

wjk|(Y�), (Z�i), (ujk), (uj∗), (c�)
(22)

∼ Gamma

(
njk + ujk, τ + φ + ∑

�|c�=j

m∑
i=1

δ�ikZ�i

)
.

Note that if njk + ujk = 0, then wjk = 0 and Gj will not have a fixed atom
at X∗

k . To complete the posterior characterisation, note that, conditioned on G0
and Gj , the variables uj1, . . . , ujK and uj∗ are independent, with ujk dependent
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only on w0k and wjk and similarly for uj∗. The conditional probabilities are

p(ujk|w0k,wjk) ∝ fGamma(wjk;ujk, τ + φ)fPoisson(ujk;φw0k),(23)

p(uj∗|w0∗,wj∗) ∝ fGamma(wj∗;α + uj∗, τ + φ)fPoisson(uj∗;φw0∗),(24)

where fGamma is the density of a Gamma distribution and fPoisson is the probability
mass function for a Poisson distribution. The normalising constants are available
in closed form [Mena and Walker (2009)]:

p(wjk|w0k) = exp(−φw0k)1wjk,0

+ I−1
(
2
√

wjkφw0k(τ + φ)
)(φ(τ + φ)w0k

wjk

)1/2

(25)

× exp
(−φ(wjk + w0k) − τwjk

)
,

p(wj∗|w0∗) = Iα−1
(
2
√

wj∗φw0∗(τ + φ)
)
(τ + φ)(α+1)/2

(
wj∗
φw0∗

)(α−1)/2

(26)
× exp

(−φ(wj∗ + w0∗) − τwj∗
)
,

where 1a,b = 1 if a = b, 0 otherwise, and I is the modified Bessel function of
the first kind. It is therefore possible to sample exactly from the discrete distribu-
tions (23) and (24) using standard retrospective sampling for discrete distributions;
see, for example, Papaspiliopoulos and Roberts (2008). Alternatively, we describe
in the Appendix a Metropolis–Hastings procedure that worked well in the applica-
tions.

Armed with the posterior characterisation, a Gibbs sampler can now be derived.
Each iteration of the Gibbs sampler proceeds in the following order (details are in
the Appendix):

(1) First note that the total masses Gj(X) are not likelihood identifiable, so we
introduce a step to improve mixing. We simply sample them from the prior:

G0(X) ∼ Gamma(α, τ ),

Uj (X)|G0(X) ∼ Poisson
(
φG0(X)

)
,

Gj (X)|Uj(X) ∼ Gamma
(
α + Uj(X), τ + φ

)
.

The individual atom masses (wjk,wj∗) are scaled along with the update to the total
masses. Then the Poisson masses (ujk), (uj∗) are updated using (23) and (24).

(2) The concentration parameter α and the masses w0∗, (wj∗) and (uj∗) associ-
ated with other unobserved items are updated efficiently using a forward–backward
recursion detailed in the Appendix.

(3) The masses (w0k) and w0∗ of the atoms in G0 are updated via an exten-
sion of Proposition 3. In particular, for each item k = 1, . . . ,K , the masses are
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conditionally independent with distributions

w0k|u1 : J,k, φ ∼ Gamma

(
J∑

j=1

ujk, Jφ + τ

)
,

while the total mass of the remaining atoms have conditional distribution

w0∗|u1 : J∗, φ ∼ Gamma

(
α +

J∑
j=1

uj∗, Jφ + τ

)
.

(4) The latent variables (Z�i) are updated as in (20).
(5) Conditioned on (Z�i), (ujk) and (uj∗), the masses (wjk) are updated

via (22), while the total mass of the unobserved atoms is wj∗ ∼ Gamma(α∗
j , τ ∗

j )

from (21).
(6) The mixture weights π and the allocation variables c� are updated using

a slice sampler for mixture models [Walker (2007); Kalli, Griffin and Walker
(2011)].

(7) Finally, the scale parameter γ of the Dirichlet process is updated using West
(1992) and the dependence parameter φ is updated by a Metropolis–Hastings step
using (25) and (26) with the latent (ujk) and (uj∗) marginalised out.

The resulting algorithm is a valid partially collapsed Gibbs sampler [van Dyk and
Park (2008)]. Note, however, that permutations of the above steps could result in
an invalid sampler. The computational cost scales as O(K × J × m × L), where
J is the average number of clusters. However, it is possible to parallelise over the
different items in the algorithm to obtain an algorithm that scales as O(J ×m×L).

6. Application: Irish college degree programmes. We now consider the ap-
plication of the proposed model to study the choices made by the 53,757 degree
programme applicants to the College Application Office (CAO) in the year 2000.

6.1. Model setup and implementation details. The following flat priors are
used for the hyperparameters

p(α) ∝ 1/α, p(φ) ∝ 1/φ, p(γ ) ∝ 1/γ.

We run the Gibbs sampler with N = 20,000 iterations. In order to obtain a point
estimate of the partition from the posterior distribution, we use the approach pro-
posed by Dahl (2006). Let c(i), i = 1, . . . ,N be the Monte Carlo samples. The
point estimate ĉ is obtained by

ĉ = arg min
c(i)∈{c(1),...,c(N)}

∑
k

∑
�

(δ
c
(i)
k c

(i)
�

− ζk�)
2,

where the co-clustering matrix ζ is obtained with

ζk� = 1

N

N∑
i=1

δ
c
(i)
k c

(i)
�
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TABLE 2
Description of the different clusters. The size of the clusters, the entropy and a cluster description

are provided

Cluster Size Entropy Description

1 3325 0.72 Social science/tourism
2 3214 0.71 Science
3 3183 0.64 Business/commerce
4 2994 0.58 Arts
5 2910 0.63 Business/marketing-Dublin
6 2879 0.68 Construction
7 2803 0.66 CS-outside Dublin
8 2225 0.67 CS-Dublin
9 2303 0.67 Arts/social-outside Dublin

10 2263 0.63 Business/finance-Dublin
11 2198 0.65 Arts/psychology-Dublin
12 2086 0.63 Cork
13 2029 0.64 Comm./journalism-Dublin
14 1918 0.71 Engineering
15 1835 0.48 Teaching/arts
16 1835 0.68 Art/music-Dublin
17 1740 0.71 Engineering-Dublin
18 1701 0.55 Medicine
19 1675 0.70 Arts/religion/theology
20 1631 0.76 Arts/history-Dublin
21 1627 0.66 Galway
22 1392 0.70 Limerick
23 1273 0.65 Law
24 1269 0.72 Business-Dublin
25 1225 0.79 Arts/bus./language-Dublin
26 47 0.96 Mixed

and δk� = 1 if k = �, 0 otherwise. Given this partition ĉ, we run a Gibbs sampler
with 2000 iterations to obtain the posterior mean Plackett–Luce parameters for
each cluster. Clusters are then reordered by decreasing size. Table 2 shows the
sizes of the 26 clusters which have a size larger than 10. In addition, a co-clustering
matrix was computed based on the first MCMC run which records for each pair
of students the probability of them belonging to the same cluster. Figure 5 shows
the co-clustering matrix to summarise the clustering of the 53,757 students, where
students are rearranged by their cluster membership (members of the first cluster
first, then members of the second cluster, etc.).

6.2. Results. An examination of the Plackett–Luce parameter for each cluster
reveals that the subject matter of the degree programme is a strong determinant
of the clustering of students (Table 2). For example, clusters 6, 18 and 23 are
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FIG. 5. Co-clustering matrix of the 53,757 college applicants for the CAO data. The posterior
probability that two applicants belong to the same cluster is indicated by a color between blue (0)
and red (1). Applicants are arranged by their cluster membership, and the clusters are ordered by
size. The clusters are described in Table 2.

characterised as construction, medicine and law, respectively. Besides the type of
degree, geographical location is a strong determinant of degree programme choice.
Clusters 12, 21 and 22 are, respectively, concerned with applications to college
degree programmes in Cork, Galway and Limerick. There is a lot of heterogeneity
in the subject area of the college degree programmes for these clusters, as can
be seen, for example, for the Cork cluster 12 in Table 3. A number of clusters
are also defined by a combination of both subject area and location, for example,
for clusters 7 and 8 in Tables 4 and 5, which correspond to computer science,
respectively, outside and inside Dublin.

As mentioned in Section 2, there is a common perception in the Irish society and
media that students pick degree programme based on prestige rather than subject
area. Another perception is that the points requirement for a degree programme
is a measure of prestige; in fact, the points requirement is determined by a num-
ber of factors including the number of available places, the number of applicants
who list the degree programme in their top-10 preferences and the quality of the
applicants who apply for the degree programme. Such a selection-by-prestige phe-
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TABLE 3
Cluster 12: Cork

Rank Aver. norm. weight College Degree programme

1 0.105 University College Cork Arts
2 0.072 University College Cork Computer science
3 0.072 University College Cork Commerce
4 0.067 University College Cork Business information systems
5 0.057 Cork IT Computer applications
6 0.049 Cork IT Software dev. and comp. net.
7 0.035 University College Cork Finance
8 0.031 University College Cork Law
9 0.031 University College Cork Accounting

10 0.026 University College Cork Biological and chemical sciences

TABLE 4
Cluster 7: Computer science-outside Dublin

Rank Aver. norm. weight College Degree programme

1 0.081 Cork IT Computer applications
2 0.075 Limerick IT Software development
3 0.072 University of Limerick Computer systems
4 0.064 Waterford IT Applied computing
5 0.061 Cork IT Software dev. and comp. net.
6 0.046 IT Carlow Computer networking
7 0.038 Athlone IT Computer and software engineering
8 0.036 University College Cork Computer science
9 0.033 Dublin City University Computer applications

10 0.033 University of Limerick Information technology

TABLE 5
Cluster 8: Computer science-Dublin

Rank Aver. norm. weight College Degree programme

1 0.141 Dublin City University Computer applications
2 0.054 University College Dublin Computer science
3 0.049 NUI-Maynooth Computer science
4 0.043 Dublin IT Computer science
5 0.040 National College of Ireland Software systems
6 0.038 Dublin IT Business info. systems dev.
7 0.036 Trinity College Dublin Computer science
8 0.035 Dublin IT Applied sciences/computing
9 0.030 Trinity College Dublin Information and comm. tech.

10 0.029 University College Dublin B.A. (computer science)
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nomenon should be evidenced by a cluster of students picking degree programmes
in medicine and law, both of which have very high points requirements, but no
such cluster was found. In fact, medicine and law applicants are clustered sepa-
rately into clusters 18 and 23, respectively. Therefore, the clustering suggests that
students are primarily picking degree programmes on the basis of subject area and
geographical considerations; this finding is in agreement with the results found in
Gormley and Murphy (2006); McNicholas (2007).

It is also of interest to look at the variability of the student choices within each
cluster. This can be quantified by the normalised entropy, which takes its values
between 0 and 1, and defined for each cluster j by

−∑K
k=1(ŵjk log ŵjk) − ŵj∗ log ŵj∗

log(K + 1)
,

where ŵjk are the averaged normalised weights of item k in cluster j obtained
from the second MCMC run; the normalised entropy values for each cluster are
reported in Table 2. A low value indicates low variability in the choices within
a cluster, whereas a large value indicates a lot of variability. Interestingly, cluster
15 has very low normalised entropy, where 56% of the students in that cluster are
likely to take one of the three most popular degree programmes of that cluster
(Drumcondra, Froebel or Marina) as their first choice; these degree programmes
are the main primary teacher education degree programmes in Dublin and, thus,
many members of this cluster have a strong interest in teacher education as a degree
choice. Further, there is much more variability in cluster 7, where students choices
are spread across various computing degree programmes, and only 23% of the
students are likely to take one of the three most popular degree programmes as
their first choice.

The co-clustering matrix reveals some interesting connections between clusters,
which have not been explored in previous analyses of the CAO data. For example,
the plot reveals that a number of applicants have high probability of belonging to
clusters 4 and 19 which are both in the arts. Cluster 4 is characterised by arts de-
grees which do not require the applicants to select their major in advance, whereas
cluster 19 is characterised by arts degrees where the student needs to specify their
major in advance. It is worth observing that the clusters are fairly well separated,
and very few clusters exhibit the phenomenon of sharing applicants, which is fur-
ther evidence that the applicants are only selecting degree programmes of a partic-
ular type (as described by the cluster names in Table 2).

Marginal Posterior distributions of the hyperparameters α, γ and φ are, respec-
tively, in the ranges [3,8], [2,5] and [100,200]. Correlation parameter φ is rather
high. This is due to the fact that some degree programmes, such as Arts in Univer-
sity College Dublin or Cork, often appear in the top-ten list of applicants, whatever
their main subject matter is. Parameter γ is associated to the number of clusters,
which is around 35. Parameter α relates to the variability of the weights within
clusters (and thus to the entropy of the clusters).
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7. Discussion. We have proposed a Bayesian nonparametric Plackett–Luce
model for ranked data. Our approach is based on the theory of completely ran-
dom measures, where we showed that the Plackett–Luce generative model corre-
sponds exactly to a size-biased permutation of the atoms in the random measure.
We characterised the posterior distribution and derived a simple MCMC sampling
algorithm for posterior simulation. Our approach can be seen as a multi-stage gen-
eralisation of posterior inference in normalised random measures [Regazzini, Lijoi
and Prünster (2003); James, Lijoi and Prünster (2009); Griffin and Walker (2011);
Favaro and Teh (2013)].

We also developed a nonparametric mixture model consisting of nonparamet-
ric Plackett–Luce components to model heterogeneity in partial ranking data. In
order to allow atoms to be shared across components, we made use of the Pitt–
Walker construction, which was previously only used to define Markov dynamical
models. Applying our model to a data set of preferences for Irish college degree
programmes, we find interesting clustering structure supporting the observation
that students were choosing programmes mainly based on subject area and geo-
graphical considerations.

It is worthwhile comparing our mixture model to another nonparametric mix-
ture model, DPM-GM, where each component is a generalised Mallows model
[Busse, Orbanz and Buhmann (2007); Meilă and Bao (2008); Meilă and Chen
(2010)]. In the generalised Mallows model the component distributions are charac-
terised by a (discrete) permutation parameter, whereas in the Plackett–Luce model
the component distributions are characterised by a continuous rating parameter.
Thus, the Plackett–Luce model offers greater modelling flexibility to capture the
strength of preferences for each item. On the other hand, the scale parameters in
the generalised Mallows model can accommodate varying precision in the ranking.
Additionally, inference for the generalised Mallows models can be difficult.

The mixture model established the existence of clusters of applicants with simi-
lar degree programme preferences and characterises these clusters and their coher-
ence in terms of choices. The results support the previous hypotheses that subject
matter and geographical location are the primary drivers of degree programme
choice [Gormley and Murphy (2006); McNicholas (2007)]. These factors are im-
portant because they reflect the intrinsic interest in the subject matter of the degree
programmes and the economic and practical aspects of choosing a third level insti-
tution for study. The geographical location influence is further supported by results
on acceptances to degree programmes [O’Connell, Clancy and McCoy (2006)] and
studies on how students fund their education which found that 45% of Irish univer-
sity students live in their family home [Clancy and Kehoe (1999)] and thus attend
an institution that is geographically close by.

An interesting extension of the proposed model would be to consider inhomo-
geneous completely random measures, where the preferences would depend on a
set of covariates (e.g., location).
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APPENDIX A: PROOF OF THEOREM 1

The marginal probability (12) is obtained by taking the expectation of (11) with
respect to G. Note however that (11) is a density, so to be totally precise here
we need to work with the probability of infinitesimal neighborhoods around the
observations instead, which introduces significant notational complexity. To keep
the notation simple, we will work with densities, leaving it to the careful reader to
verify that the calculations indeed carry over to the case of probabilities.

P
(
(Y�,Z�)

L
�=1

)
= E

[
P

(
(Y�,Z�)

L
�=1|G

)]
= E

[
e−G(X)

∑
�i Z�i

K∏
k=1

G
({

X∗
k

})nke−G({X∗
k })∑

�i (δ�ik−1)Z�i

]
.

The gamma prior on G = ∑∞
j=1 wjδXj

is equivalent to a Poisson process prior on
N = ∑∞

j=1 δ(wj ,Xj ) defined over the space R+ ×X with mean intensity λ(w)h(x).
Then,

= E

[
e− ∫

wN(dw,dx)
∑

�i Z�i

K∏
k=1

∞∑
j=1

w
nk

j 1
(
Xj = X∗

k

)
e−wj

∑
�i (δ�ik−1)Z�i

]
.(27)

We now recall the Palm formula [see e.g., Bertoin (2006), Lemma 2.3].

PROPOSITION 5. Palm Formula. Let N be a Poisson process on S with mean
measure ν. Let Sp denote the set of point measures on S, f :S → [0,+∞[ and
G :S ×Sp → [0,+∞[ be some measurable functional. Then we have the so-called
Palm formula

E

[∫
S
f (x)G(x,N)N(dx)

]
=

∫
S
E

[
G(x,N + dx)

]
f (x)ν(dx),(28)

where the expectation is with respect to N .

Applying the Palm formula for Poisson processes to pull the k = 1 term out of
the expectation,

=
∫

E

[
e
− ∫

w(N+δw∗
1 ,x∗

1
)(dw,dx)

∑
�i Z�i

K∏
k=2

∞∑
j=1

w
nk

j 1
(
Xj = X∗

k

)
e−wj

∑
�i (δ�ik−1)Z�i

]

× (
w∗

1
)n1h

(
X∗

1
)
e−w∗

1
∑

�i (δ�i1−1)Z�i λ
(
w∗

1
)
dw∗

1

= E

[
e− ∫

wN(dw,dx)
∑

�i Z�i

K∏
k=2

∞∑
j=1

w
nk

j 1
(
Xj = X∗

k

)
e−wj

∑
�i (δ�ik−1)Z�i

]

× h
(
X∗

1
) ∫ (

w∗
1
)n1e−w∗

1
∑

�i δ�i1Z�i λ
(
w∗

1
)
dw∗

1 .
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Now iteratively pull out terms k = 2, . . . ,K using the same idea, and we get:

= E
[
e−G(X)

∑
�i Z�i

] K∏
k=1

h
(
X∗

k

) ∫ (
w∗

k

)nke−w∗
k

∑
�i δ�ikZ�i λ

(
w∗

k

)
dw∗

k

(29)

= e−ψ(
∑

�i Z�i )
K∏

k=1

h
(
X∗

k

)
κ

(
nk,

∑
�i

δ�ikZ�i

)
.

This completes the proof of Theorem 1.

APPENDIX B: PROOF OF THEOREM 2

The proof is essentially obtained by calculating the numerator and denominator
of (14). The denominator is already given in Theorem 1. The numerator is obtained
using the same technique with the inclusion of the term e

∫
f (x)G(dx), which gives

E
[
e− ∫

f (x)G(dx)P
(
(Y�,Z�)

L
�=1|G

)]
= E

[
e− ∫

(f (x)+∑
�i Z�i )G(dx)]

×
K∏

k=1

h
(
X∗

k

) ∫ (
w∗

k

)nke−w∗
k (f (X∗

k )+∑
�i δ�ikZ�i)λ

(
w∗

k

)
dw∗

k .

By the Lévy–Khintchine theorem (using the fact that G has a Poisson process
representation N ),

= exp
(
−

∫ (
1 − e−w(f (x)+∑

�i Z�i )
)
λ(w)h(x) dw dx

)
(30)

×
K∏

k=1

h
(
X∗

k

) ∫ (
w∗

k

)nke−w∗
k (f (X∗

k )+∑
�i δ�ikZ�i)λ

(
w∗

k

)
dw∗

k .

Dividing the numerator (30) by the denominator (29), the characteristic functional
of the posterior G is

E
[
e− ∫

f (x)G(dx)|(Y�,Z�)
L
�=1

]
= exp

(
−

∫ (
1 − e−wf (x))e−∑

�i Z�i λ(w)h(x) dw dx

)

×
K∏

k=1

h
(
X∗

k

)∫
e−f (X∗

k )(w∗
k )

nke−w∗
k

∑
�i δ�ikZ�i λ(w∗

k ) dw∗
k∫

(w∗
k )

nke−w∗
k

∑
�i δ�ikZ�i λ(w∗

k ) dw∗
k

.

Since the characteristic functional is the product of K + 1 terms, we see that the
posterior G consists of K + 1 independent components, one corresponding to the
first term above (G∗), and the others corresponding to the K terms in the product
over k. Substituting the Lévy measure λ(w) for a gamma process, we note that the
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first term shows that G∗ is a gamma process with updated inverse scale τ ∗. The
kth term in the product shows that the corresponding component is an atom located
at X∗

k with density (w∗
k )

nke−w∗
k

∑
�i δ�ikZ�i λ(w∗

k ); this is the density of the gamma
distribution over w∗

k in Theorem 2. This completes the proof.

APPENDIX C: GENERALISATION TO COMPLETELY
RANDOM MEASURES

The posterior characterisation we have developed along with the Gibbs sampler
can be easily extended to completely random measures (CRM) [Kingman (1967);
Regazzini, Lijoi and Prünster (2003); Lijoi and Prünster (2010)]. To keep the expo-
sition simple, we shall consider homogeneous CRMs without fixed atoms. These
can be described, as for the gamma process before, with atom locations {Xk} i.i.d.
according to a nonatomic base distribution H , and with atom masses {wk} being
distributed according to a Poisson process over R+ with a general Lévy measure
λ(w) which satisfies the constraints (8) leading to a normalisable measure G with
infinitely many atoms. We will write G ∼ CRM(λ,H) if G follows the law of a
homogeneous CRM with Lévy intensity λ(w) and base distribution H .

Both Theorems 1 and 2 generalise naturally to homogeneous CRMs. In fact the
statements and the proofs in the appendix still hold with the more general Lévy
intensity, along with its Laplace transform ψ(z) and moment function κ(n, z):

THEOREM 1′ . The marginal probability of the L partial rankings and latent
variables is

P
(
(Y�,Z�)

L
�=1

) = e−ψ(
∑

�i Z�i )
K∏

k=1

h
(
X∗

k

)
κ

(
nk,

∑
�i

δ�ikZ�i

)
,

where ψ(z) is the Laplace transform of λ(w),

ψ(z) = − logE
[
e−zG(X)] =

∫ ∞
0

(
1 − e−zw)

λ(w)dw

and κ(n, z) is the nth moment of the exponentially tilted Lévy intensity λ(w)e−zw:

κ(n, z) =
∫ ∞

0
wne−zwλ(w)dw.

THEOREM 2′ . Given the observations and associated latent variables
(Y�,Z�)

L
�=1, the posterior law of G is also a homogeneous CRM, but with atoms

with both fixed and random locations. Specifically,

G|(Y�,Z�)
L
�=1 = G∗ +

K∑
k=1

w∗
k δX∗

k
,
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where G∗ and w∗
1, . . . ,w∗

K are mutually independent. The law of G∗ is a homoge-
neous CRM with an exponentially tilted Lévy intensity:

G∗|(X�,Z�)
L
�=1 ∼ CRM

(
λ�,H

)
, λ∗(w) = λ(w)e−w

∑
�i Z�i

while the masses have densities:

P
(
w∗

k |(Y�,Z�)
L
�=1

) = (w∗
k )

nke−w∗
k

∑
�i Z�i λ(w∗

k )

κ(nk,
∑

�i Z�i)
.

Examples of CRMs that have been explored in the literature for Bayesian non-
parametric modelling include the stable process [Kingman (1975)], the inverse
Gaussian process [Lijoi, Mena and Prünster (2005)], the generalised gamma pro-
cess [Brix (1999)], and the beta process [Hjort (1990)]. The generalised gamma
process forms the largest known simple and tractable family of CRMs, with the
gamma, stable and inverse Gaussian processes included as subfamilies. It has a
Lévy intensity of the form

λ(w) = α

�(1 − σ)
w−1−σ e−τw,

where the concentration parameter is α > 0, the inverse scale is τ ≥ 0, and the
index is 0 ≤ σ < 1. The gamma process is recovered when σ = 0, the stable when
τ = 0, and the inverse Gaussian when σ = 1/2. The Laplace transform and the
moment function of the generalised gamma process are

ψ(z) = α

σ

(
(τ + z)σ − τσ )

, κ(n, z) = α

(τ + z)n−σ

�(n − σ)

�(1 − σ)
.

The Gibbs sampler developed for the gamma process can be generalised to ho-
mogeneous CRMs as well. Recall that given the observed partial rankings, the
parameters consist of the ratings (w∗

k )
K
k=1 of the observed items and the total rat-

ings w∗∗ of the unobserved ones, while the latent variables are (Z�i). A corollary of
Theorems 1′ and 2′ which will prove useful is the joint probability of these along
with the observed partial rankings:

P
(
(Y�i,Z�i),

(
w∗

k

)
,w∗∗

)
(31)

= e−w∗∗(
∑

�i Z�i )f
(
w∗∗

) K∏
k=1

h
(
X∗

k

)(
w∗

k

)nke−w∗
k (

∑
�i δ�ikZ�i)λ

(
w∗

k

)
,

where f (w) is the density (assumed to exist) of the total mass w∗∗ under a CRM
with the prior Lévy intensity λ(w). Note that integrating out the parameters
(w∗

k ),w
∗∗ from (31) gives the marginal probability in Theorem 1′. From the joint



1174 F. CARON, Y. W. TEH AND T. B. MURPHY

probability (31), the Gibbs sampler can now be derived:

Gibbs update for Z�i : Z�i | rest ∼ Exp
(
w∗∗ + ∑

k

δ�ikw
∗
k

)
,

Gibbs update for w∗
k : P

(
w∗

k | rest
) ∝ (

w∗
k

)nke−w∗
k

∑
�i Z�i λ

(
w∗

k

)
,

Gibbs update for w∗∗: P
(
w∗∗|rest

) ∝ e−w∗∗(
∑

�i Z�i )f
(
w∗∗

)
.

To be concrete, consider the updates for a generalised gamma process. The condi-
tional distribution for w∗

k can be seen to be Gamma(nk −σ, τ +∑
�i Z�i), while the

conditional distribution for w∗∗ can be seen to be an exponentially tilted stable dis-
tribution. This is not a standard distribution (nor does it have known analytic forms
for its density), but can be effectively sampled using recent techniques [Devroye
(2009)]. Another approach is to marginalise out w∗∗ first:

P
(
(Y�i,Z�i),

(
w∗

k

)) = e−ψ(
∑

�i Z�i )
K∏

k=1

h
(
X∗

k

)(
w∗

k

)nke−w∗
k (

∑
�i δ�ikZ�i)λ

(
w∗

k

)
.

The MCMC algorithm then consists of sampling the ratings (w∗
k ) and auxiliary

variables (Z�i). Marginalising out w∗∗ introduces additional dependencies among
the latent variables Z�i . Fortunately, since the Laplace transform for a generalised
gamma process is of simple form, it is possible to update the latent variables (Z�i)

using a variety of standard techniques, including Metropolis–Hastings, Hamilto-
nian Monte Carlo, or adaptive rejection sampling. For these techniques to work
well we suggest reparametrising each Z�i using its logarithm logZ�i instead.

APPENDIX D: GIBBS SAMPLER FOR THE MIXTURE OF
NONPARAMETRIC PLACKETT–LUCE COMPONENTS

Let J be the number of different values taken by c (number of clusters). Please
note that the number of clusters is not set in advance and its value may change at
each iteration. The Gibbs sampler proceeds with each of the following updates in
turn:

1. (a) Update G0(X) given α, then for j = 1, . . . , J , update Gj(X) given
(G0(X), α,φ, c).

(b) For j = 1, . . . , J , update (uj , uj∗) given (w0,w0∗,wj ,wj∗, φ,α, c).
2. (a) Update α given (Z,φ, c).

(b) Update w0∗ given (Z,φ, c,α).
(c) For j = 1, . . . , J , update uj∗ given (Z,φ, c,α,w0∗).
(d) For j = 1, . . . , J , update wj∗ given (Z,α,uj∗, φ, c).

3. Update (w0k),w0∗ given (U1 : J , α).
4. For � = 1, . . . ,L, update Z� given (wc�

,wc�∗, c�).
5. For j = 1, . . . , J , update (wj ,wj∗) given (Z,α,uj , uj∗, φ, c).
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6. For � = 1, . . . ,L, update c� and the mixture weights π given w1 : J ,w1 : J∗.
7. Update γ given c.
8. Update φ given w0,w0∗,w1 : J ,w1 : J∗, α,φ.

The step are now fully described.

1(a) Update G0(X) given α, then for j = 1, . . . , J , update Gj(X) given
(G0(X), α,φ, c)

We have

G0(X)|α ∼ Gamma(α, τ )

and for j = 1, . . . , J

Gj (X) ∼ Gamma(α + Mj, τ + φ),

where Mj ∼ Poisson(φG0(X)).

1(b) For j = 1, . . . , J , update (uj , uj∗) given (w0,w0∗,wj ,wj∗, φ,α, c)

Consider first the sampling of uj . We have, for j = 1, . . . , J and k = 1, . . . ,K

p(ujk|w0k,wjk) ∝ p(ujk|w0k)p(wjk|ujk),

where

p(ujk|w0k) = fPoisson(ujk;φw0k)

and

p(wjk|ujk) =
{

δ0(wjk), if ujk = 0,
fGamma(wjk;ujk, τ + φ), if ujk > 0.

Hence we can have the following MH update. If wjk > 0, then we necessarily
have ujk > 0. We sample u∗

jk ∼zPoisson(φw0k) where zPoisson(φw0k) denotes
the zero-truncated Poisson distribution and accept u∗

jk with probability

min
(

1,
fGamma(wjk;u∗

jk, τ + φ)

fGamma(wjk;ujk, τ + φ)

)
.

If wjk = 0, we only have two possible moves: ujk = 0 or ujk = 1, given by the
following probabilities

P(ujk = 0|wjk = 0,w0k) = exp(−φw0k)

exp(−φw0k) + φw0k exp(−φw0k)(τ + φ)

= 1

1 + φw0k(τ + φ)
,

P (ujk = 1|wjk = 0,w0k) = φw0k exp(−φw0k)(τ + φ)

exp(−φw0k) + φw0k exp(−φw0k)(τ + φ)

= φw0k(τ + φ)

1 + φw0k(τ + φ)
.
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Note that the above Markov chain is not irreducible, as the probability is zero
to go from a state (ujk > 0,wjk > 0) to a state (ujk = 0,wjk = 0), even though
the posterior probability of this event is nonzero in the case item k does not appear
in cluster j . We can add such moves by jointly sampling (ujk,wjk). For each k

that does not appear in cluster j , sample u∗
jk ∼ Poisson(φw0k) then set w∗

jk = 0
if u∗

jk = 0 otherwise sample w∗
jk ∼ Gamma(ujk, τ + φ). Accept (u∗

jk,w
∗
jk) with

probability

min
(

1,
exp(−w∗

jk

∑
�|c�=j

∑m
i=1 Z�i)

exp(−wjk

∑
�|c�=j

∑m
i=1 Z�i)

)
.

We now consider sampling of uj∗, j = 1, . . . , J . We can use a MH step. Sample
w∗

j∗ ∼ Poisson(φw0∗) and accept with probability

min
(

1,
fGamma(uj∗;α + u∗

j∗, τ + φ)

fGamma(uj∗;α + u∗
j∗, τ + φ)

)
.

2(a) Update α given (Z,φ, c)

We can sample from the full conditional which is given by

α|(Z, γ,φ, c) ∼ Gamma
(
a + K,b + y0 + log(1 + x0)

)
,

where

x0 =
J∑

j=1

φZ̃j

1 + φ + Z̃j

,

y0 = −
J∑

j=1

log
(

1 + φ

1 + φ + Z̃j

)

with Z̃j = ∑
�|c�=j

∑m
i=1 Z�i .

2(b) Update w0∗ given (Z,φ, c,α)

We can sample from the full conditional which is given by

w0∗|(Z,φ, c,α) ∼ Gamma(α, τ + x0),

where x0 is defined above.

2(c) For j = 1, . . . , J , update uj∗ given (Z,φ, c,α,w0∗)
We can sample from the full conditional which is given, for j = 1, . . . , J by

uj∗|(Z,φ, c,α,w0∗) ∼ Poisson
(

1 + φ

1 + φ + Z̃j

φw0∗
)
,

where Z̃j is defined above.
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2(d) For j = 1, . . . , J , update wj∗ given (Z,α,uj∗, φ, c)

We can sample from the full conditional which is given, for j = 1, . . . , J by

wj∗|uj∗,Z, c,α ∼ Gamma(α + uj∗, τ + φ + Z̃j ),

where Z̃j is defined above.

3. Update (w0k),w0∗ given (U1 : J , α)

For each item k = 1, . . . ,K , sample

w0k|u1 : J,k, φ ∼ Gamma

(
J∑

j=1

ujk, Jφ + τ

)
.

Sample the remaining mass

w0∗|u1 : J∗, φ ∼ Gamma

(
α +

J∑
j=1

uj∗, Jφ + τ

)
.

4. For � = 1, . . . ,L, update Z� given (wc�
,wc�∗, c�)

For � = 1, . . . ,L and i = 1, . . . ,m, sample

Z�i |c,w,w∗ ∼ Exp

(
wc�,∗ +

K∑
k=1

δ�ikwc�,k

)
.

5. For j = 1, . . . , J , update (wjk),wj∗ given (Z,α,uj , uj∗, φ, c)

For each cluster j = 1, . . . , J

• For each item k = 1, . . . ,K , sample

wjk|ujk, {ρ�|c� = j} ∼ Gamma

(
njk + ujk, τ + φ + ∑

�|c�=j

{
m∑

i=1

δ�ikZ�i

})

if ujk + njk > 0, otherwise, set wjk = 0.
• Sample the total mass

wj∗|uj∗, {ρ�|c� = j} ∼ Gamma

(
α + uj∗, τ + φ + ∑

�|c�=j

m∑
i=1

Z�i

)
.

6. For � = 1, . . . ,L, update c� and the weights π given w1 : J ,w1 : J∗
The allocation variables (c1, . . . , cL) are updated using the slice sampling tech-

nique described in [Walker (2007); Kalli, Griffin and Walker (2011); Fall and Barat
(2012)]. It builds on the Introduction of additional latent slice variables, and does
not require to set any truncation. For completeness, we briefly recall here the de-
tails of the sampler. From equation (16), we have

f (Y�|π,G) =
∞∑

k=1

πkPL(Y�;Gk),(32)
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where the πk admit the following stick-breaking representation

π1 = v1, πk = vk

∏
j<k

(1 − vj ),(33)

where the vk are i.i.d. from Beta(1, γ ). For each observation Y�, slice sampling
introduces latent variable ω� such that the joint distribution of Y�, ω� and c� is
given by

f (Y�,ω�, c�|π,G) = 1(ω� < πc�
)PL(Y�;Gc�

).(34)

For simplicity, assume that the c� take values in {1,2, . . . , J }. Let μk be the
number of allocation variables taking value k ∈ {1, . . . , J }. The sampler samples
ω and v as a block given c, then c given v and ω.

1. (a) Sample (π1, . . . , πJ ,π∗) ∼ Dirichlet(μ1, . . . ,μJ , γ ).
(b) For � = 1, . . . ,L, sample ω� ∼ Unif([0, πc�

]).
(c) Set k = J . While

∑k
j=1 πk < (1 − min(ω1, . . . ,ωL)).

• Set k = k + 1.
• Sample vk ∼ Beta(1, γ ).
• Set πk = π∗vk

∏k−1
j=J+1(1 − vj ).

• Sample Gk given G0 using equation (19).

2. For � = 1, . . . ,L, sample c� from

p(c� = k) ∝ 1(πk > ω�)PL(Y�;Gc�
).

7. Update γ given c

The scale parameter γ of the Dirichlet process is updated using the data aug-
mentation technique of West (1992).

8. Update φ given w0,w0∗,w1 : J ,w1 : J∗, α,φ

We sample φ using a MH step. Propose φ∗ = φ exp(σε) where σ > 0 and ε ∼
N (0,1). And accept it with probability

min

(
1,

p(φ∗)
p(φ)

φ∗

φ

J∏
j=1

[
p(wj∗|φ∗,w0∗)
p(wj∗|φ,w0∗)

K∏
k=1

p(wjk|φ∗,w0k)

p(wjk|φ,w0k)

])
.
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