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A STATISTICAL APPROACH TO THE INVERSE PROBLEM
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Magnetoencephalography (MEG) is an imaging technique used to mea-
sure the magnetic field outside the human head produced by the electrical
activity inside the brain. The MEG inverse problem, identifying the location
of the electrical sources from the magnetic signal measurements, is ill-posed,
that is, there are an infinite number of mathematically correct solutions. Com-
mon source localization methods assume the source does not vary with time
and do not provide estimates of the variability of the fitted model. Here, we
reformulate the MEG inverse problem by considering time-varying locations
for the sources and their electrical moments and we model their time evo-
lution using a state space model. Based on our predictive model, we investi-
gate the inverse problem by finding the posterior source distribution given the
multiple channels of observations at each time rather than fitting fixed source
parameters. Our new model is more realistic than common models and al-
lows us to estimate the variation of the strength, orientation and position. We
propose two new Monte Carlo methods based on sequential importance sam-
pling. Unlike the usual MCMC sampling scheme, our new methods work in
this situation without needing to tune a high-dimensional transition kernel
which has a very high cost. The dimensionality of the unknown parameters is
extremely large and the size of the data is even larger. We use Parallel Virtual
Machine (PVM) to speed up the computation.

1. Introduction.

1.1. The basics of magnetoencephalography (MEG). The anatomy of the
brain has been studied intensively for millennia, yet how the brain functions is
still not well understood. The neurons in the brain produce macroscopic electrical
currents when the brain functions, and those synchronized neuronal currents in the
gray matter of the brain induce extremely weak magnetic fields (10–100 femto-
Tesla) outside the head. The comparatively recent development of the Supercon-
ducting Quantum Interference Device (SQUID) makes it possible to detect those
magnetic signals. MEG is an imaging technique using SQUIDs to measure the
magnetic signals outside of the head produced by the electrical activity inside
the brain [Cohen (1968)]. The primary sources are electric currents within the
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dendrites of the large pyramidal cells of activated neurons in the human cortex,
generally formulated as a mathematical point current dipole. Such focal brain ac-
tivation can be observed in epilepsy, or it can be induced by a stimulus in neu-
rophysiological or neuropsychological experiments. Due to its noninvasiveness (it
is a completely passive measurement method) and its impressive temporal reso-
lution (better than 1 millisecond, compared to 1 second for functional magnetic
resonance imaging, or to 1 minute for positron emission tomography), and due to
the fact that the signal it measures is a direct consequence of neural activity, MEG
is a near optimal tool for studying brain activity, such as assisting surgeons in
localizing a pathology, assisting researchers in determining brain function, neuro-
feedback and others. The skull and the tissue surrounding the brain affect the mag-
netic fields measured by MEG much less than the electrical impulses measured
by electroencephalography (EEG). This means that MEG has higher localization
accuracy than the EEG and it allows for a more reliable localization of brain func-
tion [Hämäläinen et al. (1993), Okada, Lähteenmäki and Xu (1999)]. MEG has
recently been used in the evaluation of epilepsy, where it reveals the exact loca-
tion of the abnormalities, which may then allow physicians to find the cause of the
seizures [Barkley and Baumgartner (2003)]. MEG is also reference free, so that
the localization of sources with a given precision is easier for MEG than it is for
EEG [Kristeva-Feige et al. (1997)]. The computation associated with estimating
the electric source from the magnetic measurement is a challenging problem that
needs to be solved to allow high temporal and spatial resolution imaging of the
dynamic activity of the human brain.

1.2. Forward and inverse MEG problem. The MEG signals derive from the
primary current (the net effect of ionic currents flowing in the dendrites of neurons)
and the volume current (i.e., the additive ohmic current set up in the surrounding
medium to complete the electrical circuit). If the electrical source is known and
the head model [Kybic et al. (2006)] is specified (e.g., a sphere with homogeneous
conductivity), then the “forward problem” is to compute the electric field E and
the magnetic field B from the source current J. The calculation uses Maxwell’s
equations [see, e.g., Griffiths (1999)],

∇ · E = ρ/ε0,

∇ × E = −∂B/∂t,

∇ · B = 0,

∇ × B = μ0(J + ε0 ∂E/∂t),

where ε0 and μ0 are the permittivity and permeability of a vacuum, respectively,
and ρ is the charge density. The total current J consists of the primary current JP

plus the volume current JV. The source activity in the brain corresponds to the pri-
mary current. Under reasonable assumptions [see Hämäläinen et al. (1993)], the
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volume current JV is not included in the analysis because of its diffuse nature. The
terms ∂B/∂t and ∂E/∂t in Maxwell’s equations can be ignored by assuming that
the magnetic field varies relatively slowly in time. Rather than working with con-
tinuous electric current, the most frequently used computational model assumes
that the electric current can be thought of as an electric dipole; this model is called
an equivalent current dipole (ECD); see, for example, Hämäläinen et al. (1993).
From the perspective of an ECD, a dipole has location, orientation and magnitude;
the magnetic field generated by this dipole can explain the MEG measurements.
In addition, there is a version of an ECD model assuming multiple dipoles; from
Maxwell’s equations it is easy to see that this model is simply the sum of the mod-
els for each ECD. Such an ECD models a large number of dipoles located at fixed
places over the cortical surface. In neuroscience, it is believed that typical MEG
data should be explained by only a few dipoles (less than 10), and different cri-
teria or algorithms are used to minimize the number of dipoles in various ECD
models; we discuss some of these models in Section 1.3. We assume that E is gen-
erated by JP, which in turn comes from the sum of N localized current dipoles at
locations rn,

JP
n(r) = Qnδ(r − rn), n = 1, . . . ,N,

where δ(·) is the Dirac delta function. The Qn is a charged dipole at the point rn in
the brain volume �. Using the quasi-static approximation to Maxwell’s equations
(i.e., ignoring the partial derivatives with respect to time) given in Sarvas (1984),
the magnetic field B at location r of a current dipole at rn can be calculated by the
Biot–Savart equation,

Bn(r) = μ0

4π

∫
�

JP(rn) × (r − rn)

|r − rn|3 drn.

In the case of multiple current dipoles, the induced magnetic fields simply add up.
The “inverse problem” comes from the forward model; we want to estimate the

dipole parameters from the observed magnetic signal. The difficulty is that there is
not a unique solution; there are infinitely many different sources within the skull
that produce the same observed data. The goal is to find a meaningful solution
among the many mathematically correct solutions. There are three key steps to any
source localization algorithm in MEG. First, define the solution space and the pa-
rameter space of the electric source. Second, calculate the magnetic field given the
information about the head model. Third, according to what criterion the solution
must satisfy, perform an extensive search for the solution. Methods of finding the
source from the observed MEG signal have been extensively exploited during the
past two decades, mostly centered on finding a single estimate of the source. Some
of these methods are briefly described in the next subsection. However, finding
the distribution of the source in space and (particularly) in time is still a problem
requiring investigation.
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1.3. Existing source localization methods. Most methods for localizing elec-
trical sources in MEG assume that the electrical sources in the brain do not in-
clude a temporal component. The data are used to estimate the source parameters
at each time point; there is no relation to the estimates for the previous time. This
is not the same as assuming the quasi-static approximation to Maxwell’s equa-
tions. Therefore, those existing methods are restricted to fixed dipole assumptions
and are also not able to provide estimates of the variability of source activity. The
minimum norm estimate (MNE) [Hämäläinen and Ilmoniemi (1994)] is a regu-
larization method based on the L2 norm. The L1 norm regularization yields the
minimum current estimates (MCE) [Uutela, Hämäläinen and Somersalo (1999)].
The LORETA approach [Mattout et al. (2006)] is a special case of weighted MNE.
The Multiple Signal Classification method (MUSIC) [Mosher, Lewis and Leahy
(1992)] searches for a single-dipole model through a three-dimensional head vol-
ume and computes projections onto an estimated signal subspace. The source lo-
cations are then found as the 3-D locations where the source model gives the best
projections onto the subspace. The beamformer methods [Van Veen, Joseph and
Hecox (1992)] ignore the ill-posed inverse problem and instead only estimate the
current at several fixed locations. Bayesian approaches to the MEG inverse prob-
lem try to find the posterior distribution of the dipole parameters [Bertrand et al.
(2001), Schmidt, George and Wood (1999)].

The methods mentioned briefly above (MNE, MCE, etc.) have been widely used
and produce apparently meaningful solutions; however they have overly restrictive
assumptions and lack estimates of the variability of source estimates. By assuming
a static localized dipole, these methods are limited in their ability to incorporate
problem-specific anatomical or physiological information. It is quite reasonable to
consider that the source is time-varying rather than fixed, in which case the noise
reduction obtained by averaging over consecutive observations in time is problem-
atic. By utilizing a time-varying source model, we will be able to investigate the
distribution of the source at each time point and provide estimates of the variabil-
ity. Following this idea, the time evolution of the source is modeled by a state space
model. Our goal is to find the posterior distribution of the source parameters. Our
reformulation of the inverse problem leads to a predictive model of the dipole. It
turns out that the posterior source distribution from our predictive model can be
interpreted as a statistical solution to the MEG inverse problem.

1.4. Outline of this paper. In Section 2 we develop a time-varying source
model for the MEG inverse problem. Rather than attempting to “solve” the in-
verse problem we try to develop estimates of the dipole parameters using a spatio-
temporal model. In Section 3 the difficulty of using Markov chain Monte Carlo
(MCMC) methods for generating samples from the time-varying model is ex-
plained. Then, we introduce the standard Sequential Importance Sampling (SIS)
technique. Next, two further Monte Carlo methods are described: (1) the regular
SIS method with rejection, and (2) the improved SIS method with resampling.
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A simulation study is described in Section 4. We describe our use of the Parallel
Virtual Machine (PVM) software to speed up the computations in Section 4.2. We
believe this is the first application of parallel computational methods to the prob-
lem. In Section 5 a real data application is presented. Section 6 contains a short
discussion and conclusion.

2. A probablistic rime-varying source model. Assume that the magnetic
field data is measured from the kth sensor at time t as

Yk,t = Bk

(
JP
t

) + Uk,t , 1 ≤ t ≤ T ,1 ≤ k ≤ L,

where Uk,t ∼ N(0, σ 2
1 ) denotes the observation noise that is assumed, for simplic-

ity, to be Gaussian, additive and homogeneous for all the sensors, and uncorrelated
between every pair of sensors. The assumption of normality is preferred due to
the fact that Gaussian sensor noise is present at the MEG sensors themselves, and
sensor noise is typically substantially smaller than signals from spontaneous brain
activity [Hämäläinen et al. (1993)]. Although correlated sensor noise is more real-
istic than “homogeneous” sensors, it complicates the problem. Background noise
and biological noise can also drown out the brain activity of interest, but these are
all very difficult to incorporate. Besides some variation coming from solving the
inverse problem, most of the variation of the source localization in MEG is due to
the propagation of errors through Maxwell’s equations when solving the forward
problem. In order to control variation, we only work with a simple sensor structure.
Therefore, we write

Yt = B
(
JP
t

) + Ut , 1 ≤ t ≤ T ,

where Yt = (Y1,t , . . . , YL,t )
T , B(JP

t ) = (B1(JP
t ), . . . ,BL(JP

t ))
T and Ut = (U1,t ,

. . . ,UL,t )
T . Here, Ut ∼N (0,�1), where �1 = diag[σ 2

1 , . . . , σ 2
1 ].

The Bk(JP
t ), a function of the dipole with parameter vector JP

t , is the physical
approximation of the Biot–Savart law in Section 1.2. We consider a current dipole
located within a horizontally layered conductor [Hämäläinen et al. (1993)]. The
noiseless magnetic field at the kth sensor, Bk , is computed from the source JP

t =
(pt ,qt ) at time t . The vector pt = (p1t , p2t , p3t ) contains the location parameters
of the source and the vector qt = (q1t , q2t , q3t ) contains the moments and strength.
Thus,

Bk

(
JP
t

) = μ0

4π

qt × (rk − pt ) · e
|rk − pt |3 .(1)

Here, rk is the location of the kth sensor. Because the magnetometers measure
only the z direction of the magnetic field B, e = (0,0,1), a unit vector, is used to
find the z component of B. Conventionally, z is perpendicular to the surface of the
skull.

To specify the prior, the time evolution of the current dipole JP
t is modeled by a

state space model. A number of other authors have also proposed stating the MEG
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inverse problem as a Bayesian dynamic model; see Somersalo, Voutilainen and
Kaipio (2003); Campi et al. (2008, 2011); Sorrentino et al. (2009, 2013); Miao
et al. (2013). We could choose any of a large variety of state space models but,
for theoretical and computational simplicity, we have chosen a six-dimensional
first-order autoregression:

JP
t = mcom + ρ

(
JP
t−1 − mcom

) + Vt , 1 ≤ t ≤ T ,

where Vt ∼ N (0,�2) denotes the state evolution noise. We note that three of
the parameters give the spatial location, so this is implicitly a space–time model.
Previous work using a space–time model [Ou, Hämäläinen and Golland (2009)]
used a novel mixed L1L2-norm estimate for the dipole parameters based on a
linear regression model. Jun et al. (2005) have also used MCMC methods for sam-
pling from the posterior of a spatiotemporal Bayesian dynamic model. To reduce
the number of parameters, and hence the amount of variation in our estimates,
we assume the dipole parameters are uncorrelated. That is, we assume that �2 =
diag[σ 2

11, σ
2
22, . . . , σ

2
66] is a known 6 by 6 diagonal matrix and σ 2

ii is the variance
of the ith source parameter. The parameter vector mcom is a constant associated
with the source JP

t for 1 ≤ t ≤ T . The initial state is chosen as JP
0 ∼ N (mini,�2),

where mini is also a constant parameter vector. Both mini and mcom are speci-
fied in advance. The known diagonal matrix ρ = diag[ρ1, ρ2, . . . , ρ6] is 6 by 6.
Its main diagonal represents the autoregressive coefficients. Hence, at any time t ,
JP
t or (pt ,qt ) contains the parameters of interest and Yt = (Y1,t , . . . , YL,t ) is the

(very noisy) data collected from all sensors. Both {JP
t }Tt=0 and {Yk,t }Tt=1 are as-

sumed to have the following Markov properties:

(i) The JP is a first order Markov process. The distribution of each state JP
t

only depends on its own previous state JP
t−1,

p
(
JP
t |JP

0,JP
1, . . . ,JP

t−1
) = p

(
JP
t |JP

t−1
)

(2)

(we are using p as a generic symbol for a probability distribution; the two p’s in
this equation are not the same function).

(ii) The process Yk,t (for any 1 ≤ k ≤ L) is also a Markov process with respect
to the history of JP. The density of Yk,t conditioned on {JP

t }t0 satisfies

f
(
Yk,t |JP

0,JP
1, . . . ,JP

t

) = f
(
Yk,t |JP

t

)
(again f is a generic symbol, in this case, for a joint density function).

(iii) When conditioned on its own history, the unknown JP
t does not depend on

past measurements. The distribution of JP
t based on Yk = (Yk,1, . . . , Yk,t−1) and

JP
t−1 is

g
(
JP
t |JP

t−1,Yk) = p
(
JP
t |JP

t−1
)
, t > 0(3)

[the right-hand side of equation (3) in (iii) is the same as the right-hand side of
equation (2) in (i)]. The transition kernel, p(JP

t |JP
t−1), is defined here as a first
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order Markov process in the state space model above. For a more complex model
it could be a higher order Markov process. The choice of more realistic models
for this process [e.g., in the situation where the magnetic signal is a response to a
stimulus, the source variance might change much more rapidly immediately after
the stimulus than before it; the joint density f (Yk,t |JP

t ) for any 1 ≤ k ≤ L may also
vary in time since not all the measurements can be carried out simultaneously] is
not the aim of this paper.

Of interest at any time t is the posterior distribution of J P
t = (JP

0, . . . ,JP
t ). Let

Y t
obs = (Y1, . . . ,YL) = (Y1,1, . . . , Y1,t , . . . , YL,1, . . . , YL,t ) be the magnetic mea-

surements, accordingly. By taking all the previous prior information and the three
assumptions [(i), (ii), (iii)] above into account, our problem can be stated as finding
the target distribution, p(J P

t |Y t
obs), given Y t

obs. By Bayes’ theorem, we have

p
(
J P

t |Y t
obs

) ∝ f
(
Y t

obs|J P
t

)
p

(
J P

t

)
(4)

=
[

t∏
s=1

L∏
k=1

f
(
Yk,s |JP

s

)][
t∏

s=1

p
(
JP
s |JP

s−1
)]

p
(
JP

0
)
.

This framework is based on a one-source model (N = 1). It can be easily extended
to a multiple-source model because the fields generated by distinct sources simply
add up. Because it is a high-dimensional distribution (1 ≤ t ≤ T , T is very large)
and inherently complicated, sampling from the posterior is difficult. We have cho-
sen to use MCMC methods but they are also complex and are very hard to imple-
ment. As we will show later, obtaining p(J P

t |Y t
obs) can be achieved dynamically

by computing the p(JP
u|Yu

obs) at each time point 1 ≤ u ≤ t . These calculations have
to be repeated for each t ≤ T .

3. Solving the MEG inverse problem.

3.1. The difficulty of solving the time-varying model. A problem with MCMC
methods (e.g., Metropolis–Hastings) for getting joint posterior samples from
p(J P

t |Y t
obs) occurs when there are a large number of states because it is difficult to

find a joint transition kernel which could be used in an MCMC sampler. However,
the goal of getting p(J P

t |Y t
obs) can be achieved by sampling from the distribution

p(JP
s |Ys

obs) for each state s (1 ≤ s ≤ t) separately and the entire outcome could
be regarded as the sample from the joint distribution. Gibbs sampling can be used
for this restricted goal, but because of the nonlinearity of the model [equation (1)],
it is not easy to sample from p(JP

t |JP
s �=t ,Y t

obs). One way to alleviate the difficulty
is to insert some kind of Metropolis sampler into a Gibbs sampling scheme for
each conditional distribution. When we insert a random-walk Metropolis algo-
rithm, where the move depends only on its own state, into the Gibbs sampler, we
call it a random-walk MCMC within Gibbs sampler, and when we insert a hybrid
Metropolis algorithm, where the move may depend on other states, into the Gibbs
sampler, we call it a hybrid MCMC within Gibbs sampler.
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The key to random-walk MCMC within Gibbs is to propose a candidate JP∗
t ∼

N (JP
t ,�3) for each t (1 ≤ t ≤ T ), where �3 = diag[τ 2

1 , τ 2
2 , . . . , τ 2

6 ] is a 6 by 6
diagonal matrix, and accept JP∗

t if the acceptance ratio

αt =
∏L

k=1 f (Yk,t |JP∗
t )p(JP∗

t |JP
t−1)p(JP

t+1|JP∗
t )∏L

k=1 f (Yk,t |JP
t )p(JP

t |JP
t−1)p(JP

t+1|JP
t )

≥ U(0,1),

where U(0,1) is the uniform distribution. The problem is that N (JP
t ,�3) is not a

good proposal for JP∗
t (i.e., we almost always reject the proposal) and this can not

be solved by extensively tuning �3 = diag[τ 2
1 , τ 2

2 , . . . , τ 2
6 ] in most practical cases

if the dimension of the states is very high. A local linear approximation might be
considered, such as performing a Taylor expansion on the joint density function
f (Yk,t |JP

t ) and truncating high order terms. The resultant can then be incorporated
into the proposal distribution. However, such linearization is not easy due to the
highly complex function f (Yk,t |JP

t ); moreover, the extra work of a Taylor expan-
sion might be unnecessary if we only need an efficient sampling scheme in high
dimensions.

The hybrid MCMC within Gibbs improves upon the random-walk MCMC
within Gibbs when the target distribution is not able to be captured by a simple
random walk. In Gelman, Roberts and Gilks (1996), a full conditional prior (hy-
brid MCMC) was proposed. Similar work can also be found in Carter and Kohn
(1994), where a single move blocking strategy was developed but bad conver-
gence behavior was discovered. Gamerman (1998) suggested a reparameterization
of the model to a prior independent system of disturbances and built a proposal
by a weighted least squares algorithm, however, the reparameterization resulted
in quadratic computational time. Knorr-Held (1999) suggested an autoregressive
prior where the “conditional prior” is drawn independently of the current state
but, in general, depends on other states. Here, our hybrid MCMC within Gibbs is
built on a single move proposal, that is, JP∗

t is proposed from the distribution of
p(JP

t |JP
s �=t ) which can be further reduced to p(JP

t |JP
t−1,JP

t+1) due to the Markov
property. One way to update JP

t is to use a proposal

JP∗
t ∼ N

(
ρ

(
JP
t−1 − JP

t+1
) + (

I − ρρ′)(I + ρρ′)−1mcom,�2
(
I + ρρ′)−1)

.

The acceptance ratio then reduces to

αt =
∏L

k=1 f (Yk,t |JP∗
t )∏L

k=1 f (Yk,t |JP
t )

.

The performance of a single move could be extended to a block move by
sampling a block of states at the same time based on other states. Similarly, the
JP∗
r , . . . ,JP∗

s come from the conditional proposal

p
(
JP
r , . . . ,JP

s |JP
1,...,T /

(
JP
r , . . . ,JP

s

))
,
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where r < s and JP
1,...,T /(JP

r , . . . ,JP
s ) means a collection of JP

1, . . . ,JP
r−1,

JP
s+1, . . . ,JP

T . Thus, the acceptance ratio becomes

αt =
∏L

k=1
∏s

t=r f (Yk,t |JP∗
t )∏L

k=1
∏s

t=r f (Yk,t |JP
t )

.

Although the block move provides a considerable improvement in the situation
where a single move has poor mixing behavior, Carter and Kohn (1994) observed
bad mixing and convergence behavior in the blocking strategy.

Recently developed adaptive samplers [Andrieu and Thoms (2008), Roberts
and Rosenthal (2009)] might help find the transition kernel within a Gibbs sam-
pler, but these methods are computationally inefficient in high dimension. In ad-
dition, although parallel tempering [Srinivasan (2002)] seems reasonable, finding
the temperature is not straightforward and significantly increases the computa-
tional cost. Again, the MEG data set is extremely large; in particular, we collect
hundreds of channels of data at each time and we collect data for hundreds of thou-
sands of time points. It is quite difficult to implement these methods since even a
simple model has an extremely large number of states. The computational burden
is even more substantial in the multiple-dipole case.

3.2. Sequential importance sampling (SIS). Sequential importance sampling
(SIS) [Liu and Chen (1998)] is advocated as a more practical tool for a dynamic
system. As we mentioned briefly in Section 2, computing p(JP

u|Yu
obs) sequentially

in u for 1 ≤ u ≤ t can lead to p(J P
t |Y t

obs). Consider πt(JP
t ) = p(JP

t |Y t
obs); cal-

culating p(J P
t |Y t

obs) or, equivalently, πt(J P
t ) can be achieved by performing the

following two processes in sequential order:

πt

(
JP
t

) = f (Yt |JP
t )πt−1(JP

t )

πt−1(Yt )
,(5)

πt

(
JP
t+1

) =
∫

p
(
JP
t+1|JP

t

)
πt

(
JP
t

)
dJP

t ,(6)

where f (Yt |JP
t ) = ∏L

k=1 f (Yk,t |JP
t ) and Yt is defined in Section 2. The denom-

inator πt−1(Yt ) in equation (5) is a constant,
∫

f (Yt |JP
t )πt−1(JP

t ) dJP
t . Equa-

tion (5) computes the posterior density πt(JP
t ) and equation (6) is the well-known

Chapman–Kolmogorov equation, which allows us to compute the next prior den-
sity based on p(JP

t+1|JP
t ) [the initial p(JP

0) is known]. For each t , most of the
MCMC samples are either obtained from sampling the joint πt(J P

t ) or some other
distribution gt (J P

t ) and applying an acceptance criterion. However, the random
draws of πt(J P

t ) are never used again when the system proceeds from πt to πt+1
[Carlin, Polson and Stoffer (1992)]. In high dimensions, the posterior samples for
each state will have larger variation between iterations and, hence, both conver-
gence and computation problems arise. In contrast, the SIS is able to reuse the
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current samples and help create the samples for the next iteration; that improves
the computational efficiency and reduces the variation between iterations. For non-
linear problems [e.g., nonlinearity of equation (1)] or non-Gaussian densities, SIS
requires the use of numerical approximation techniques where the key idea is to
represent an approximation to the target posterior distribution by a set of samples
and their associated weights.

In practice, suppose a stream St = {(J P
t )(j), j = 1, . . . ,m} (m by t) is a set

of random samples properly weighted by the set of weights {w(j)
t , j = 1, . . . ,m}

(m by 1) with respect to πt(J P
t ) [this can be viewed as approximate posterior

samples of J P
t = (JP

1, . . . ,JP
t )]. Define gt+1(JP

t+1|(J P
t )(j)) as a trial function for

JP
t+1; the recursive SIS procedure produces a new stream St+1 by drawing a new

sample JP
t+1 and updating its associated weight. This is summarized as follows:

Algorithm 1: SIS

(i) Sample a new (JP
t+1)

(j) from the trial distribution gt+1(JP
t+1|(J P

t )(j))

and form (J P
t+1)

(j) = ((J P
t )(j), (JP

t+1)
(j)).

(ii) Compute the incremental weight u
(j)
t+1 = πt+1((J P

t+1)
(j))

πt ((J P
t )(j))gt+1(JP

t+1|(J P
t )(j))

and

update the weight w
(j)
t+1 = u

(j)
t+1w

(j)
t .

(ii*) Sample a new stream S′
t+1 from the stream St+1 based on the updated

weights w
(j)
t+1.

(iii) Assign equal weights to the samples in S′
t+1.

It has been proved that the new samples and weights ((J P
t+1)

(j),w
(j)
t+1) are

properly weighted samples from πt+1 [Liu and Chen (1998)]. As time t in-
creases, a resampling scheme is inserted between adjacent times or one can just
resample after the last time. This step is summarized in steps (ii*) and (iii).
Shephard and Pitt (1997) showed that resampling [step (ii*)] is only neces-
sary when the weights are very skewed; resampling reduces m and thus re-
duces the computational burden. A schedule for the resampling scheme in SIS
is proposed in Gordon, Salmond and Smith (1993), Kitagawa (1996) and Liu
(1996). The choice of trial distribution gt+1(JP

t+1|(J P
t )(j)) is crucial in SIS.

Choosing gt+1(JP
t+1|(J P

t )(j)) = πt(JP
t+1|(JP

t )
(j)) is much easier to implement, al-

though it might bring greater variation [see Berzuini et al. (1997)]. This procedure
ends up getting gt+1(JP

t+1|(J P
t )(j)) = p(JP

t+1|(JP
t )

(j)) and incremental weights

f (Yt+1|(JP
t+1)

(j)) = ∏L
k=1 f (Yk,t+1|(JP

t+1)
(j)). There exist in the literature sev-

eral kinds of local Monte Carlo methods which could be embedded into SIS to get
the weights or even approximate weights no matter what gt+1 function we choose.
This strategy provides the opportunity to find relatively good weights that could
be used in SIS so we can limit our attention to the choice of trial function when
we apply SIS. The SIS procedure (Algorithm 1) was initially used in the analysis
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of state-space models and is similar to sequential Monte Carlo (SMC) which has
recently been applied as an alternative to MCMC for standard Bayesian inference
problems [Neal (2001), Del Moral, Doucet and Jasra (2006), Fearnhead (2008)].

3.3. Regular SIS method with rejection. This algorithm [Liu and Chen (1998)]
inserts the standard rejection method as a local Monte Carlo scheme into the
SIS procedure. At step t , the rejection method is constructed based on sam-
pling the joint distribution of (J,JP

t+1). To do this, we draw J = j with proba-

bility proportional to w
(j)
t . Given J = j , sample (JP

t+1)
(j) from p(JP

t+1|(JP
t )

(j)).
Next, compute the constant ct+1 = supj

∏L
k=1 f (Yk,t+1|(JP

t+1)
(j)). Then, accept

(j, (JP
t+1)

(j)) with probability
∏L

k=1 f (Yk,t+1|(JP
t+1)

(j))/ct+1. Based on the local
samples from the rejection method, the estimates of the associated weights of the
samples for each state are computed by the following procedure:

(i) Estimate the weight w
(j)
t+1 by f̂j = frequency of {J = j} in the sample.

(ii) Update the sample (J P
t+1)

(j) = ((JP
t )

(j), (JP
t+1)

∗) if f̂j �= 0, where (JP
t+1)

∗

is any value of JP
t+1 if the associated f̂j �= 0, or take a random draw from those

with f̂j �= 0 if the associated f̂j = 0.

Resample m′ out of m rows from J P
t+1 without replacement based on the

weights {w(j)
t+1, j = 1, . . . ,m}. In order to improve the efficiency of SIS, the re-

sampling scheme is used when the SIS arrives at the last time step rather than
resampling after every step.

3.4. Improved SIS method with resampling. The disadvantage of the regular
SIS with rejection method is that it requires computing the constant ct+1 within the
embedded rejection method and re-estimation of the weights for the SIS procedure
from the samples {J(l), (JP

t+1)
(l)}m′

l=1. Both of these computations could be quite in-
efficient in the state space model with high dimension. However, an improvement
could be made when the local importance resampling takes place so that the sam-
ples are not collected by the accept/reject ratio, but instead by assigning a weight to
each sample. Specifically, calculating the constant ct+1 or estimating the weights
by counting f̂j is no longer necessary; instead we simply assign to the samples

(JP
t+1)

(j) the weights w
(j)
t+1 = ∏L

k=1 f (Yk,t+1|(JP
t+1)

(j)). It has been proved [Liu
and Chen (1998)] that the samples from the local importance resampling method
would automatically achieve the resampling effect. Thus, we could just keep those
weights from any of the local Monte Carlo methods and iterate the SIS.

4. Simulation study.

4.1. MEG data generation. In a typical MEG experiment, time is measured in
milliseconds (the sampling rate is 1 kHz). However, for better understanding, from
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now on, we will use timesteps rather than milliseconds. We ran two simulated cases
to verify that the methods work. First, we present some preliminary results for the
single dipole case with a few parameters and low dimension in time. Second, an
extension to the single dipole case with six parameters and high dimension in time
is given. We used 40 radially oriented magnetometers in one case, and 100 radially
oriented magnetometers in the other. The dipole was restricted to move inside the
brain. In order to focus on the source parameters, we fixed several parameters
(source noise parameters, measurement noise parameters, etc.) in the model.

Simulated case 1. Before running our algorithms for a long time, we tested a
simplified case where the simulation was run for only 15 timesteps with only one
of the six parameters allowed to vary. In this very simple example, the dipole only
moves in the z dimension in the brain and both the strength and moments of the
dipole remain constant. The parameters of the simulated dipole are summarized
in Table 1. The regular SIS method with rejection and the improved SIS method
with resampling were tested. The random-walk MCMC within Gibbs and the hy-
brid MCMC within Gibbs were also run for comparison. We randomly generated
25 data sets and tested them under each scenario. Figure 1 shows the trace plots
(only 5 overlay plots are shown) for 4 selected timesteps from all the methods.
We observe that both the random-walk MCMC within Gibbs and hybrid MCMC
within Gibbs do not provide a stable estimate for each timepoint and their samples
are highly correlated. Both of our methods produce much nicer samples which os-
cillate around the true values. To have a quantitative comparison, we conducted
a detailed convergence diagnosis for each approach: the sample autocorrelation
function of the chain at a selected timestep was computed for each approach (see
Figure 2); the effective sample size of the averaged chain from each approach was
calculated; Gelman–Rubin’s method was used for evaluating convergence; simi-
lar methods such as Geweke, Heidelberger–Welch and Raftery–Lewis were also

TABLE 1
Dipole simulation: the location parameters of the dipole are expressed
in terms of Cartesian coordinates [x (cm), y (cm), z (cm)], m1 and m2

are the dipole moment parameters. s (mA) is the strength parameter of a
dipole. Only the z component of the dipole is allowed to vary. The other
five components are held fixed by setting the diagonal components of the

covariance matrix to zero

mint = (x, y, z,m1,m2, s) (1,1,5,3,3,3)

mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, . . . , ρ6] diag[1,1,0.9,1,1,1]
�1 = diag[σ 2

1 , σ 2
1 , . . . , σ 2

1 ] diag[0.0625,0.0625, . . . ,0.0625]
�2 = diag[σ 2

11, σ 2
22, . . . , σ 2

66] diag[0,0,0.0225,0,0,0]
Number of timesteps 15
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FIG. 1. A simple test case where only one source parameter z is allowed to vary. Top left: trace
plots of location parameter z at four selected timesteps (9th, 10th, 11th and 12th) by the random-walk
MCMC within Gibbs. Similar plots are also shown for the hybrid MCMC within Gibbs (top right),
regular SIS method with rejection (bottom left) and improved SIS method with resampling (bottom
right).

FIG. 2. Autocorrelation plots for the four methods. Top left: random-walk MCMC within Gibbs;
top right: hybrid MCMC within Gibbs; bottom left: SIS method with rejection; bottom right: SIS with
resampling.
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TABLE 2
Convergence diagnosis by effective sample size (ESS), Gelman–Rubin (GR) [Gelman and Rubin

(1992)]: value near 1 suggests convergence, Geweke (GE) [Geweke (1992)]: z-score for stationary
test, Heidelberger–Welch (HW) [Heidelberger and Welch (1983)]: p value for stationary test,
Raftery–Lewis (RL) [Raftery and Lewis (1992)]: large value suggests strong autocorrelation

Method ESS GR GE HW RL

Random-walk MCMC within Gibbs 26.7 1.29 −14.968 0.05 18.2
Hybrid MCMC within Gibbs 553.5 1.06 −4.985 0.116 1.6
Regular SIS with rejection 1946.9 1.013 −0.64 0.25 1.0
Improved SIS with resampling 2000.0 1.005 −0.28 0.81 1.0

employed for diagnosis (see Table 2). Both Figures 1, 2 and Table 2 show strong
evidence that our approaches outperform the MCMC methods.

Simulated case 2. In addition to case 1, a case of multiple-source parameters
(three location parameters and three moment and strength parameters) was per-
formed. In this simulation, the source was modeled as a moving dipole following
a multivariate autoregressive time series. The dipole moves in the three coordinate
directions x, y and z, and both strength and moments of the dipole change as well.
The total length of simulation is 100 timesteps (we will run 2000 timesteps for data
in Section 4.3). To control the movement of the simulated dipole (to not move out-
side of the brain when the number of timepoints are large), we restricted the range
of each parameter for the dipole. In order to do this, we set boundary values for
each parameter (i.e., maximum and minimum). The autoregressive model for JP

t in
Section 2 occurred only at certain timepoints when specified in advanced. In other
words, the dipole had two types of moves: one is a move based on the autoregres-
sive model, and the other is a random-walk move. The dipole moved according to
the autoregressive model at certain specified timesteps whereas the random walk
was applied to the dipole at the rest of the timepoints. We had similar restrictions
on the other parameters of the dipole. The parameters setup is given in Table 3.
The plots (histogram) for each dipole location parameter and pairwise plots for the
location parameters are shown in Figure 3. These side by side histograms show the
distribution of each location parameter at six selected timepoints. Similar plots for
the other three moment and strength parameters are also shown in Figure 4. We
can see that the distributions (non-Gaussian) of each parameter of the source are
varying at each timestep as we expected.

4.2. Parallel virtual machine (PVM) for high dimension in time. In practice,
the MEG data set we have from an experiment is very large (e.g., hundreds of
thousands of timesteps). The same algorithms (Sections 3.3 and 3.4) need to
be run for a much longer time. To be exact, if we run for 5000 timesteps with



MEG INVERSE PROBLEM 1133

TABLE 3
Dipole simulation: the location parameters of the dipole are expressed in

terms of Cartesian coordinates [x (cm), y (cm), z (cm)], m1 and m2 are the
dipole moment parameters. s (mA) is the strength parameter of a dipole. The
diagonal elements of �1 and �2 are 0.0625 fT2 and 0.01 cm2, respectively

Initial timepoint
mint = (x, y, z,m1,m2, s) (6,7,8,3,5,5)

mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, . . . , ρ6] diag[0.65,0.7,0.75,0.8,0.85,0.9]
Random-walk move

(x, y, z,m1,m2, s) Based on previous value
Number of timesteps 10

Autoregressive move
(x, y, z,m1,m2, s) Based on previous value
mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, . . . , ρ6] diag[0.65,0.7,0.75,0.8,0.85,0.9]
Random-walk move

(x, y, z,m1,m2, s) Based on previous value
Number of timesteps 10

· · · · · ·
Repeat until 100th timepoint

FIG. 3. Source location parameters at six timesteps (a total of six 2 × 2 subplots). Top left: in this
2 × 2 subplot, there are three pairwise plots of the source location parameters (x and y, x and z,
y and z) at 1st timestep and one side by side histogram plot for the source location parameters
(x, y and z) at 1st timestep. The rest of the five subplots give the same information for different
timesteps: 20th timestep (top middle), 40th timestep (top right), 60th timestep (bottom left), 80th
timestep (bottom middle) and 100th timestep (bottom right).
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FIG. 4. Source moment and strength parameters at six timesteps (a total of six 2 × 2 subplots). Top
left: in this 2×2 subplot, there are three pairwise plots of the source moment and strength parameters
(m1 and m2, m1 and s and m2 and s) at 1st timestep and one side by side histogram plot for the
moment and strength parameters (m1, m2 and s) at 1st timestep. The rest of the five subplots give the
same information for different timesteps: 20th timestep (top middle), 40th timestep (top right), 60th
timestep (bottom left), 80th timestep (bottom middle) and 100th timestep (bottom right).

1500 replications (sample paths) for each JP
t , we are supposed to get a stream of

S5000 = {(J P
5000)

(j), j = 1, . . . ,1500} (St is defined in Section 3.2). Because of
the sequential character of our algorithms, sample paths [(JP

t )
(j), j = 1, . . . ,m]

for each time are computed in a sequential fashion and the weights updated at each
time. Therefore, it is very inefficient to get the sample paths for a longer time.

Note that we always need the sample path from the previous time (JP
t−1) when

we work on the current time (JP
t ) and they are not independent, therefore, it is

not possible to improve the speed in the direction of time [e.g., (JP
t )

(j) sequen-
tially depends on (JP

t−1)
(j)]. However, the sample paths are independent within

each timestep; this is to say, at time t , (JP
t )

(j) is independent (JP
t )

(j ′), so they
can be computed in a separate fashion. In other words, it is always possible for
us to compute several sample paths (several chunks) for the same timestep (at
time t) simultaneously. This simultaneous computation for sample paths up to the
final timestep (5000) could be achieved by parallel computing where each parallel
thread would contain a sequential calculation for all the time t (1 ≤ t ≤ 5000) with
fewer samples, so that our sequential problem can be solved in parallel. The Par-
allel Virtual Machine (PVM) [Geist et al. (1994)], a parallel computing paradigm,
is used to speed up the computation. It is designed to allow a network of heteroge-
neous machines to be used as a single distributed parallel processor, so that a large
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scale computing problem can be solved more cost effectively. The PVM structure
we use is a Master–Worker model where there are several worker programs per-
forming tasks in parallel and a master program collecting the outcomes from each
worker. Each task is to separately compute a subset of the sample paths for all
timesteps. The resampling scheme is included in the worker program and there
is no parallelism in time. To be exact, if there are three worker programs in the
Master–Worker model to generate a steam ST = {(J P

T )(j), j = 1, . . . ,m}, the way
of running PVM is as follows:

Algorithm 2: PVM schedule
(i) Initialize each worker program and let each worker run for a substream
S′

T = {(J P
T )(j), j = 1, . . . , m

3 }.
(ii) Stack each S′

T and get a complete ST .

The size of S′
T can be adjusted according to the size of ST and the number of

worker programs that are in use. The speed is mainly influenced by hardware and
software components of network and I/O systems. It also depends on the num-
ber of worker programs, for example, adding too many parallel workers does not
enhance the speed when most of the time is spent on master–worker communi-
cation. In practice, deciding on the number of workers requires experience and
it varies for different machines. Because the magnetic fields generated by inde-
pendent dipoles add up, there is no additional complexity (other than increased
computation) brought by multiple dipoles.

Since our PVM program involves randomness and a resampling scheme, sev-
eral issues still need to be resolved. First, if our algorithms were implemented in a
single program without parallelism, all samples generated before resampling from
this program should be simply related to the random number generator. However,
when there are several workers, each of them doing the same thing as a single
program but in parallel, the unique randomness within each worker will eventu-
ally come up with different but similar samples before resampling. To be exact, in
order to have the two programs generate the same results, in the PVM structure
we need to explicitly and precisely choose different workers according to a pre-
defined random sequence. This random sequence can be obtained from a single
program without parallelism. Unfortunately, this needs a lot of work in program-
ming and would surely slow down the computation. Second, in a single program
without parallelism, we would only have one resampling procedure. The samples
would be generated from the resampling procedure. However, there would be one
resampling procedure within each of our worker programs in PVM. The samples
would be generated from each of these workers and should eventually be pooled
together. In principle, the weights from each worker should be pooled first and then
we would perform the resampling procedure. The reason is that each worker might
generate different weights so that the normalizing constants might be different. If
the resampling happens only one time (at the end of all timesteps), a reasonable
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way to solve this problem is that we can do the resampling scheme in the master
program after normalizing all the weights when pooled. If there were several re-
sampling schemes before the end, we could still return to the master program when
necessary. Again, this needs extensive programming and, again, it would surely
slow down the computations. In our current program, sums of weights within each
worker were almost the same (normalizing constants were almost the same), so we
retained the resampling procedure in each worker program. Because the random
number generation will not produce the same numbers in a parallel program as in a
sequential program without extensive interprocess communication and because re-
sampling within each parallel worker program will produce different results than
would resampling in the master, we do not expect the identical samples in the
parallel version of our sequential program. We do expect the distribution of the
samples from the parallel program to be indistinguishable from the distribution of
the samples from the sequential version.

4.3. Numerical results for running PVM for MEG model. The PVM was first
run on a single Linux workstation (Intel Pentium 4 CPU 3.80 GHz, Memory 2 GB)
for different configurations. The data size was 2000 MEG timesteps with 1500
sample paths for each timestep. We split the computation into a number of tasks: 1
(without PVM), 3, 5, 10 and 15 workers, respectively, and run for 100, 500, 1000,
1500 and 2000 timesteps. The user CPU time (total number of CPU-seconds for
master and worker programs) is used to measure the time spent by each PVM run.
The real time elapsed (minutes) is also shown in parentheses beside the user CPU
time. The result is shown in Table 4.

We can see that the user CPU time increases roughly linearly in the number
of timesteps from 0.008 second to 0.146 second on average. The linear relation-
ship of user CPU time on experiment time is almost the same for each of these
PVM configurations as we expected. This can be clearly observed from Figure 5:
in Figure 5(a), these lines (user CPU time/Task) are nearly equally distant and stay

TABLE 4
PVM application on a single workstation. Five different PVM configurations were run. The number
of workers in PVM is denoted “number of tasks.” The number of sample paths within each worker is

denoted “load per task.” Each PVM run eventually generates 1500 sample paths

Number Load Time 1 Time 2 Time 3 Time 4 Time 5
of tasks per task (100) (500) (1000) (1500) (2000)

1 1500 0.008 (1.00) 0.032 (5.12) 0.064 (10.35) 0.120 (16.47) 0.136 (22.08)
3 500 0.008 (0.24) 0.032 (2.05) 0.060 (4.12) 0.096 (6.23) 0.148 (8.40)
5 300 0.008 (0.17) 0.036 (1.27) 0.064 (3.17) 0.104 (4.25) 0.148 (6.47)

10 150 0.008 (0.11) 0.040 (0.59) 0.072 (1.59) 0.096 (3.00) 0.136 (4.51)
15 100 0.008 (0.10) 0.036 (0.50) 0.064 (1.43) 0.124 (2.33) 0.164 (3.24)
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(a) CPU time with tasks (b) CPU time with timesteps

FIG. 5. PVM Performance: user CPU time (seconds) for number of tasks and different time run.
(a) Each line (with a specific timestep) is a plot of user CPU time for different number of tasks.
(b) Each line (with a specific number of tasks) is a plot of user CPU time for different timesteps.

roughly constant for different tasks within the samesteps time run; in Figure 5(b),
the slope of each line (user CPU time/Timesteps) is almost the same. Note that
there is a significant difference in real time elapsed for different PVM configura-
tions. This should not be considered a contradiction with user CPU time because
real time elapsed is mostly affected by other programs and it includes time spent
in memory, I/O and other resources.

The performance can still be improved when extra machines are included. Ta-
ble 5 lists the PVM performance of 1–4 machines with 1500 timesteps. First, since
user CPU time is the sum of the CPU time for master and worker programs, it is ex-
pected that the user CPU time for each of these PVM runs is roughly 0.120 second.
Second, the real elapsed time of each PVM run is cut to 50%–70% if one machine
is added. It then goes down to 40%–50% when three computers are employed. The
real time elapsed decreases to 10%–30% when four computers are added. These
performances are based on our public cluster with heterogeneous CPU speed and
cache size. The theoretical reduction in execution time of PVM is not necessarily

TABLE 5
PVM application on multiple workstations. This table shows the user CPU time (seconds) for each
PVM run and real time elapsed (minutes) in parentheses using one, two, three and four machines.

The length of each PVM run was 1500 timesteps

Number Load Time 1 Time 2 Time 3 Time 4
of tasks per task (1500) (1500) (1500) (1500)

3 500 0.084 (7.56) 0.128 (5.46) 0.108 (3.39) 0.096 (2.34)
5 300 0.100 (4.55) 0.084 (3.10) 0.124 (2.23) 0.108 (1.29)

10 150 0.100 (3.19) 0.096 (1.51) 0.104 (1.39) 0.116 (1.03)
15 100 0.124 (2.34) 0.112 (1.31) 0.104 (1.00) 0.112 (0.44)
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(a) Real time for PVM run (b) Total user CPU time for PVM run

FIG. 6. PVM Performance: real time elapsed (minutes) and user CPU time (seconds) graph for
number of machines for 1500 timesteps PVM run. (a) Each line (with a specific number of tasks) is
a plot of real time elapsed for a different number of machines. (b) Each line (with a specific number
of tasks) is a plot of total user CPU time of master and worker programs for different number of
machines.

achieved. Finally, to get better time execution by PVM, we suggest to adjust the
number of CPUs and the number of tasks, and to use relatively similar machines.
To summarize, Figure 6 is a graphic illustration of both real time elapsed and user
CPU time for our PVM run.

5. A real data application. Data was collected by a 306-channel system
(Elekta-Neuromag) at the Center for Advanced Brain Magnetic Source Imaging
(CABMSI) at UPMC Presbyterian Hospital in Pittsburgh in an experiment related
to Brain-controlled interfaces (BCI). A BCI expresses motor commands via neural
signals directly from the brain. The experiment involves two parts (see Figure 7):
in the first part the subjects were asked to imagine performing the “center-out”
task using the wrist (imagined movement task) and in the second part the subjects
controlled a 2-D cursor using the wrist to perform the center-out task following a
visual target (overt movement task).

The data consists of one trial recording 37,000 milliseconds at 102 MEG sen-
sors (magnetometers). We used this data for testing our model along with our PVM
scheme. Instead of analyzing the whole trial of data, we only analyzed about 400
milliseconds (dashed box in Figure 8) after movement onset (12,000 milliseconds–
12,400 milliseconds in the original data) from all the channels. To simplify our
calculation for the real data, we were only estimating the location of the source
(x, y, z). The moment and strength parameters (m1,m2, s) were not of our in-
terest (not varying too much by assumption). The choice of prior for real data
is an open question; we used almost the same prior as we did in Section 4 for
simplification. We set the mean mini of the initial state JP

0 as (−4,−4,11) moti-
vated by the minimum norm estimate [Hämäläinen and Ilmoniemi (1994)], which
is (−2,−2,10). We further assumed a unit moment and strength for the dipole
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FIG. 7. The subject controls the 2-D cursor position using wrist movements. The cursor needs to
go to the center and stay there for a hold period until the peripheral target appears. Then the cursor
moves from the center out to the target and stays there for another hold period to complete the trial
successfully. The target changes color when hit by the cursor and disappears when the holding period
has finished. The bottom trace shows the speed profile of the cursor from a representative trial, and
the dotted lines delimit the pre-movement/planning period. Figure and explanation were obtained
from Wang et al. (2010).

in the data. The starting values for the initial state (x, y, z,m1,m2, s) were set to
(−4.06,−3.77,13.13,1.11,0.98,1.12). The empirical density plots of the dipole
location parameter (x, y, z) at two selected timesteps are shown in Figure 9. Using
the density plots of the location parameters, we were able to find the dipole dis-
tribution at different timesteps. Figure 10 shows several snapshots of dipole distri-
bution at six timesteps, that is, the data cloud in each plot tells where the dipole
might be located at a given timestep. A full movie of the dipole distribution for
100 milliseconds can be found at http://smat.epfl.ch/~zyao/3dplot_animation.gif.

FIG. 8. The MEG signal of a typical trial at a magnetometer. The horizontal axis is time (ms) and
the vertical axis is the magnitude of the signal (fT).

http://smat.epfl.ch/~zyao/3dplot_animation.gif
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FIG. 9. Empirical density for source location parameter (x, y, z). Left: density plot for 1st mil-
lisecond; right: density plot for 101st millisecond.

Different initial values might have different performance due to the complexity of
the problem and the real data, thus, a more realistic prior needs to be investigated
in our future work. We ran PVM for 1500 milliseconds (12,000 milliseconds–
13,500 milliseconds in the original data) with the same PVM configuration as our
simulation; the time spent was very close to that from our previous simulation
results.

A typical MEG analysis would report the estimated movement of the dipole
at each time step. We can do the same. Additionally, because we have samples
from a probability distribution we can provide estimates of the variation of the
estimated movement and other source parameters. Other methods cannot provide
appropriate estimates of variation. In clinical applications, estimates of variation
may provide neurosurgeons a much better basis for their decisions. We still need
to overcome the computational burden to make our method feasible for a complete
application.

FIG. 10. Time variation of the dipole distribution. Upper row: dipole distribution at 1st, 21st and
41st millisecond (left to right); lower row: dipole distribution at 61st, 81st and 101st millisecond.
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6. Conclusion and discussion. We have introduced a general state-space for-
mulation for the time dependency of the parameters of a current dipole which gen-
erates the MEG signals. In this paper we have only considered the simplest sort of
model, a first order autoregression for the time dependency. However, the frame-
work allows for much more complex models. And, because three of the parameters
are spatial coordinates, the model automatically incorporates space–time depen-
dencies. The time dependency in the model has greatly expanded the parameter
space. That fact together with the nonlinearity of the model means that more typi-
cal MCMC methods converge extremely slowly. The benefit of sequential methods
is that we do not attempt to estimate the entire target distribution at once but rather
attempt to estimate samples for each time point sequentially. Because of the ex-
panded parameter space, the need for parallel computational methods is obvious.
Our initial attempt utilized PVM and provided the expected reduction in running
time.

The results so far are mainly based on a one-source model where we assumed
there was only one dipole in the data. The extension from one source to multi-
ple sources is natural and only the computational complexity increases. Our algo-
rithms will still work in this multiple-source model case. However, to determine
the number of sources in the MEG data is still an open question. In general, there
are three ways of finding the number of sources for the advanced model. The first
one, which is relatively easy, is to use a predefined number of sources for the data.
The second one is to estimate the number of sources from the data in advance
[Waldorp et al. (2005), Bai and He (2006), Yao and Eddy (2012)]. The third one
is to model the number of the sources using a prior distribution [Bertrand et al.
(2001)].

We fixed several parameters when we compared our algorithms with other
MCMC methods. In fact, those parameters could be estimated along with the
source distribution. The natural way of implementing this is to include the esti-
mation of those parameters and the source distribution in the iterations until all of
them become stable. Furthermore, the skewness of weights that arises in sequen-
tial importance sampling could be a trade-off between the efficiency of the algo-
rithm and the quality of the source distribution. Naturally, we have observed some
skewness in the weights; we do not have enough experience to evaluate whether
this skewness should be considered excessive or unusual. Residual sampling [Liu
and Chen (1998)] or stratified sampling [Kitagawa (1996)] could replace regular
weight sampling and might address excessive skewness.

To summarize, due to its nonuniqueness, finding a good estimate of the MEG
source is a challenging problem which is still open. We have proposed a predic-
tive model for finding a distribution for the MEG source and we have applied our
methods on both simulated data and real data. In practice, the MEG data sets from
different experimental settings are much more complicated. Our methods can be
used as a reference with other source localization methods. Driven by the desire
of looking at the brain activity in real time, we plan to implement a computing



1142 Z. YAO AND W. F. EDDY

environment to study the brain activity under the real MEG temporal resolution
(1/1000 sec). The computational challenge arises due to the extremely large di-
mensionality of the problem (high resolution); there is no common computing ar-
chitecture that could help. We are exploring the use of more advanced forms of
parallelism such as CUDA (Compute Unified Device Architecture) and OPENCL
to further reduce the running time in the future.
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