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Abstract. We establish the anomalous mean dissipation rate of energy in the inviscid limit for a stochastic shell model of turbulent
fluid flow. The proof relies on viscosity independent bounds for stationary solutions and on establishing ergodic and mixing
properties for the viscous model. The shell model is subject to a degenerate stochastic forcing in the sense that noise acts directly
only through one wavenumber. We show that it is hypo-elliptic (in the sense of Hörmander) and use this property to prove a gradient
bound on the Markov semigroup.

Résumé. Nous étudions le taux anormal de la dissipation moyenne de l’énergie dans la limite non visqueuse d’un modèle en
couche de fluide turbulent. La preuve se base sur des estimations indépendantes de la viscosité pour des solutions stationnaires,
ainsi que sur des propriétés ergodiques et de mélange pour le modèle visqueux. Le modèle en couche subit un forçage aléatoire
dégénéré, c’est à dire que le bruit n’agit seulement que sur un mode. Nous montrons que le système est hypoelliptique au sens
d’Hörmander et utilisons cette propriété pour prouver une borne sur le gradient du semigroupe de Markov.
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1. Introduction

Although there is a vast body of literature on Kolmogorov’s theory of turbulence, the dissipation anomaly, and the
inviscid limit, at present there is no rigorous mathematical proof that solutions to the Navier–Stokes equations yield
Kolmogorov’s laws. On the other hand, considering these questions from a numerical perspective is costly and indeed
in many situations lies beyond capacity of the most sophisticated computers. For this reason researchers have exten-
sively investigated certain toy models, called shell or dyadic models, which are much simpler than the Navier–Stokes
equations but which retain certain features of the nonlinear structure. One such model was introduced by Desnianskii
and Novikov [25], to simulate the cascade process of energy transmission in turbulent flows. See also [2,3,8,9,19,34,
43,44,49,55,57].

In this article we analyze statistically invariant states for the following stochastically driven shell model of fluid
turbulence. For j = 0 we take

du0 + (νu0 + u0u1) dt = σ dW, (1.1)

where W is a 1D Brownian motion and σ ∈R measures the intensity of the noise. For j ≥ 1

d

dt
uj + ν22j uj + (2cj ujuj+1 − 2c(j−1)u2

j−1

)= 0. (1.2)
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Here ν ≥ 0 and c lies in the range [1,3].
The main goal of the work is to establish that in the context of the stochastic dyadic model (1.1)–(1.2) some primary

features of the Kolmogorov 1941 theory of turbulence [45,46] hold. More precisely:

(I) In Theorem 4.2 we prove that for c ∈ [1,3], statistically stationary solutions ūν of the viscous shell model
(1.1)–(1.2) converge as ν → 0 to statistically stationary solutions ū of the inviscid shell model. Moreover, the
stationary inviscid solutions ū experience an anomalous (or turbulent) dissipation of energy: for any N ≥ 0 we
have a constant mean energy flux (cf. (2.12) below)

E
(
ΠN(ū)

) := E
(
2cN ū2

NūN+1
)= σ 2

2
= ε > 0. (1.3)

Moreover, we obtain that supN≥0 22cN/3
E|ūN |2 ≤ Cε2/3, where C is a universal constant. This upper bound is

consistent with the Kolmogorov spectrum, as described in Remark 4.3 below.
(II) In Theorem 5.1 we show that for c ∈ [1,2), and any ν > 0, there exists a unique invariant measure for the Markov

semigroup induced by (1.1)–(1.2) on the phase space H = �2, which is ergodic and exponentially mixing. Since
(1.1)–(1.2) corresponds to a degenerate parabolic system, the main step in the proof relies on establishing that
(1.1)–(1.2) is hypoelliptic in the sense of Hörmander. Here, the locality of the energy transfer in the nonlinear
term complicates the bracket computations, and leads to a combinatorial problem.

(III) In Theorem 6.1 we prove that for c ∈ [1,2), the mean dissipation rate of energy is bounded from below indepen-
dently of viscosity. More precisely there exists ε > 0 such that

lim
ν→0

lim
T →∞

ν

T

∫ T

0

∣∣u(t)
∣∣2
H 1 dt = σ 2

2
= ε > 0 (1.4)

for every initial data {uj (0)}j≥0 of finite energy, where the convergence occurs in an almost sure (pathwise)
sense. In particular, the dissipation anomaly σ 2/2 matches the inviscid anomalous energy dissipation rate.

The manuscript is organized as follows. We begin our exposition with some further background from turbulence
theory that motivate the rigorous results established in Sections 3–6. In Section 3 we briefly recall the mathematical
setting of the stochastic shell model (1.1)–(1.2) and fix various mathematical notations used throughout. Section 4
is concerned with establishing ν-independent bounds on statistically stationary solution of (1.1)–(1.2). We then use
these bounds to pass to a limit as ν → 0 and establish the existence of stationary solutions of the inviscid model.
We then show that these solutions exhibit a form of turbulent dissipation. As we already alluded to above, the results
in Section 4 are valid over the entire range of c. In Section 5 we tackle the question of uniqueness, mixing and
other attraction properties for invariant measures of the viscous model in the more restricted range of c ∈ [1,2).
The restriction c < 2 implies that the equations are morally speaking semilinear, which allows us to obtain Foias–
Prodi-type bounds. The section concludes by demonstrating that (1.1)–(1.2) satisfies a form of the Hörmander bracket
condition. With this condition in hand the rest of the proof largely follows by using arguments similar to [33,37–39].
Finally, Section 6 is devoted to proving the dissipation anomaly (1.4). Appendices detail how a gradient bound on
the Markov semigroup associated to (1.1)–(1.2) can be derived from the Hörmander bracket condition. We then show
how various attraction properties for invariant measures may be established from these gradient bounds.

2. Physical motivation

In this section we describe some further background concerning the Kolmogorov and Onsager theories of turbulence
which motivate the analysis of (1.1)–(1.2) carried out in this work.

2.1. The energy flux, dissipation anomaly, and anomalous dissipation

The motion of an inviscid, incompressible fluid is typically described by the Euler equations

∂tu + (u · ∇)u = −∇p + f, ∇ · u = 0, (2.1)
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where u is the velocity field p is the scalar pressure. The viscous analogue of (2.1), the Navier–Stokes equations, are
given by

∂tuν + (uν · ∇)uν = −∇pν + ν�uν + f, ∇ · uν = 0. (2.2)

Here f is a (deterministic or random) force which is frequency localized to act only at large scales of motion and ν is
the kinematic viscosity coefficient of the fluid. The fluid domain D is either R3 or T3.

Onsager [52] conjectured that every weak solution u to the Euler equations with Hölder exponent h > 1/3 does not
dissipate the kinetic energy

∫
D |u|2 dx. On the other hand, the conjecture states that there exist weak solutions with

smoothness less h ≤ 1/3 which dissipate energy. Such energy dissipation due to the roughness of the flow is called
anomalous (or turbulent) dissipation.

The presence of energy dissipation in a viscous fluid with ν > 0 is clear. The mean energy dissipation rate per unit
mass for an ensemble of solutions uν to the Navier–Stokes equations (2.2) is defined by

εν := ν
〈∥∥∇uν

∥∥2
L2

〉
(2.3)

where the brackets 〈·〉 denote a suitable average of the putative statistically steady state of (2.2).1 It is a basic assump-
tion of the classical theory of homogeneous, isotropic turbulence proposed by Kolmogorov [45,46] in 1941 that

lim inf
ν→0

εν = ε > 0. (2.4)

The positivity of the energy dissipation rate in the limit of vanishing viscosity is called the dissipation anomaly. It is
consistent with turbulence theory that the limiting value of ε is the dissipation rate due to anomalous dissipation in the
Euler equations. There is an extensive literature on these subjects and the connection between Onsager’s conjecture
and Kolmogorov’s hypothesis. Several informative reviews are given by [30,35,53], which contain abundant references
to the development of the topic over more than half a century.

The fundamental object of study in both the Onsager and Kolmogorov theories is the energy flux. Formally, one
may define the energy flux through the sphere of radius 2j in frequency space as

Πj :=
∫
D

u · ∇S2
j u · udx, (2.5)

where Ŝj u = ûψ(·2−j ), and ψ is a radial, smooth cut-off function centered at the origin. The total energy flux is then
given by

Π :=
∫
D

(u · ∇)u · udx = lim
j→∞Πj . (2.6)

The energy equation derived from (2.1) is

1

2

d

dt

∫
D

|u|2 dx = −Π +
∫
D

u · f dx. (2.7)

If u is sufficiently smooth, then since u is divergence free one may show that the energy flux vanishes. See [18] and
more recently [15] for the sharper condition u ∈ B

1/3
3,c0

which ensures that Π = 0.2 We note that to date there is no

example of a weak solution to the Euler equations in the Onsager critical space B
1/3
3,∞ for which the energy flux Π 
= 0

and hence produces anomalous dissipation.3

1This operation 〈·〉 is commonly defined as a long time average made of the observable, which may be seen as an implicit invocation of an ergodic
hypothesis: long-time averages and averages against an invariant measure associated to the equations yield the same statistics. While significant
progress has been made on providing rigorous justification for this hypothesis for the 2D stochastic NSEs it is completely open in the three
dimensional case.
2Here the Besov space B

1/3
3,c0

consists of functions such that limj→∞ 2j ‖uj ‖3
L3 = 0.

3For a discussion of results concerning the existence of weak solutions to the Euler equations, which experience anomalous dissipation see [10,22,
42], and references therein.
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An upshot of the proof in [15] is that

|Πj | ≤ C

∞∑
i=1

2−2/3|j−i|2i‖ui‖3
L3 , (2.8)

where ui = (Si+1 − Si)u is the ith Littlewood–Paley piece of u. The estimate (2.8) shows that energy transfer from
one scale to another is controlled mainly by local interactions, which is one of the main motivations for considering
the shell model (1.1)–(1.2), as we shall discuss below.

We now turn to the energy flux through wavenumber 2j in the Navier–Stokes equations (2.2), labeled Πν
j . As in

Kolmogorov’s theory of turbulence, assume that the solutions uν tend to a statistically steady state, i.e. the statistical
properties are independent of time and the solutions have bounded mean energy, independently of ν. In this case the
average energy flux 〈Πν

j 〉 satisfies

〈
Πν

j

〉= −ν
〈∥∥∇Sj uν

∥∥2
L2

〉+ 〈∫
D

f · Sj uν dx

〉
. (2.9)

In view of (2.9), upon passing j → ∞ we obtain

ν
〈∥∥∇uν

∥∥2
L2

〉= lim
j→∞ν

〈∥∥∇Sj uν
∥∥2

L2

〉= lim
j→∞

〈∫
D

f · Sj uν dx

〉
− lim

j→∞
〈
Πν

j

〉= 〈∫
D

f · uν dx

〉
(2.10)

since uν is sufficiently smooth for each fixed ν. Thus, assuming that the Euler solution u is stationary in time, one
would obtain as ν → 0

ε = lim
ν→0

εν = lim
ν→0

ν
〈∥∥∇uν

∥∥2
L2

〉= 〈∫
D

f · udx

〉
= 〈Π〉. (2.11)

Here it is implicitly assumed that the turbulent statistically stationary solutions converge uν → u in a certain averaged
L2(D) sense. The energy flux thus provides the putative connection between the Kolmogorov and Onsager theories:
the mean energy dissipation rate of turbulent stationary Euler solutions should match the vanishing viscosity limit of
the mean energy dissipation rate in a turbulent stationary solution of the Navier–Stokes equation. For further discussion
of the connection between the Euler equations and turbulence see, for example [32,35], the recent articles [12,13,56],
and references therein.

2.2. Dyadic models of turbulent flow

Motivated by the Littlewood–Paley decomposition of the velocity field u =∑j≥0 uj , where uj = (Sj+1 − Sj )u, one

may define the energy in the wavenumber shell 2j ≤ k ≤ 2j+1 as u2
j = ‖uj‖2

L2 . In view of the locality of the energy

transfer iterations implied by (2.8) one may thus define the flux through the shell at wavenumber k = 2j as

Πj := 2cju2
j uj+1 (2.12)

where c is an “intermittency parameter” such that 1 ≤ c ≤ 5/2. The model energy balance equation that mimics the
Littlewood–Paley decomposition of the Navier–Stokes equation thus becomes

1

2

d

dt
u2

j = −Πj + Πj−1 − ν22j u2
j + fjuj (2.13)

which upon substituting for Πj the formula (2.12), and setting the force to act only at the lowest wavenumbers, we
obtain our dyadic model given by the coupled system of ODEs for {uj }j≥0

d

dt
u0 + νu0 + u0u1 = f0, (2.14)

d

dt
uj + ν22j uj + (2cj ujuj+1 − 2c(j−1)u2

j−1

)= 0, j ≥ 1. (2.15)

For a detailed discussion regarding the derivation of the shell model (2.14)–(2.15), we refer the reader to [11,14,16].
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At this stage we would like to briefly comment on the intermittency parameter c. The 1941-Kolmogorov theory of
turbulence produces a power law for the energy density spectrum given by

E(k) ∼ ε2/3k−5/3, (2.16)

in the inertial range. This power law requires that velocity fluctuations are uniformly distributed over the three dimen-
sional domain D. When taking into account that some spatial regions are more intensely turbulent than others, the
power laws become

E(k) ∼ ε2/3k−(8−D)/3, (2.17)

where D is the Hausdorff dimension of the region of turbulent activity, and ε is redefined in terms of D, to have
consistent units. This phenomenon is referred to as spatial intermittency (see, for example [13,35] and references
therein). On the other hand, the energy density spectrum E(2j ) associated with the Onsager critical norm Hc/3 norm
is consistent with

2−j
〈
u2

j

〉∼ E
(
2j
)∼ ε2/32−j 2−(2c/3)j (2.18)

which yields, upon identifying k = 2j that

c = 5 − D

2
. (2.19)

In particular, the range 1 ≤ c < 2 corresponds to 1 < D ≤ 3 with the end point c = 1 corresponding to D = 3 and the
classical k−5/3 power spectrum. The range 2 ≤ c ≤ 5/2 corresponds to 0 ≤ D ≤ 1 where the regions of turbulence are
concentrated on thin sets that degenerate to points at the extreme value D = 0, c = 5/2. The analysis of the stochastic
forced model that we will present in this paper is strongly sensitive to the range of the parameter c, as we will discuss
in detail in the following sections.

The properties of the system with a constant force f = (f0,0, . . .) and L2 initial data were established in [11,14,
16]. It was shown that both in the inviscid and the viscous model there is a unique fixed point which is an exponential
global attractor. In the inviscid case this is achieved via anomalous dissipation. Onsager’s conjecture is verified in full
with Hc/3 being the critical space. It is proved that as ν → 0 the viscous global attractor converges to the inviscid
fixed point. Thus the average dissipation rate of the viscous system converges to the anomalous dissipation rate ε of
the inviscid system. Kolmogorov’s theory is thus validated for the dyadic model (2.14)–(2.15) with a constant in time
deterministic force.

In this article we further adapt the dyadic model to the context of turbulence by studying a stochastically forced
version. Stochastic shell models have also been considered in a number of recent works, see e.g. [2,3,7–9,55] and
references therein. However, the model (1.1)–(1.2) considered here is perturbed by a highly degenerate frequency
localized additive noise. This degenerate situation has so far been addressed only for linear shell models [49]. The
current work may therefore be seen as a continuation of [49] to a nonlinear context, inspired by some aspects of the
Kolmogorov 1941 theory, which we describe next.

2.3. Towards K41 for stochastic shell models

As discussed above, the basic elements of the Komogorov 1941 theory are:

(i) For each ν > 0 and any initial data uν
0, as t → ∞ the corresponding solution uν(t) approaches a unique statisti-

cally steady state ūν .
(ii) There exists ε > 0 such that the statistically stationary solutions ūν obey limν→0 ν〈|∇ūν |2〉 ≥ ε.

(iii) The family {ūν}ν>0 is compact in the associated class of probability measures, and along subsequences it con-
verges to a statistically stationary solution ū of the forced Euler equations. These stationary Euler solutions
experience a constant mean energy dissipation rate which is the same as for the viscous equations, namely ε > 0.

Proving (i)–(iii) directly from the Navier–Stokes equations, remains an outstanding open problem.
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One common setting for studying (i)–(iii) is to consider a wave-number localized, gaussian and white in time forc-
ing to the governing equations. This serves as a proxy for generic large scale processes driving turbulent cascades. The
stochastic framework has been used extensively both theoretically and numerically [6,29,30,37,50,59] and references
therein. Here one may take advantage of the tools and techniques of stochastic analysis in a regime where the injection
of noise does not wash out the intricate underlying deterministic dynamics of the Navier–Stokes and Euler equations.
In this setting invariant measures, i.e. statistically invariant states, are expected to encode the statistics of turbulent
flow at high Reynolds number.

Progress towards establishing (i) and (ii) has so far occurred in settings which are far from the 3D Navier–Stokes
equations. The uniqueness and attracting properties of the invariant measure for the 2D stochastic Navier–Stokes
equations on the torus has recently been established e.g. in [37,39].4 We emphasize however that if the amplitude of
the noise does not vanish in the inviscid limit, the sequence of Navier–Stokes stationary solutions does not converge as
ν → 0, in any norm whatsoever [48]. In particular, (iii) does not hold here.5 This is one of the main differences between
the main conclusions (Theorems 4.2, 5.1, and 6.1) of our work and the results for the 2D stochastic Navier–Stokes
equations: not only do our viscous solutions obey a ν-independent energy dissipation rate, but they also converge as
ν → 0 to the solutions of the corresponding inviscid model. Moreover the inviscid stationary solutions experience
turbulent dissipation due to a non-vanishing energy flux.6

3. Mathematical setting and preliminaries

In this section we set the mathematical framework that will be used throughout the manuscript.

3.1. Functional setting

We begin by recalling various sequence space based analogues of the classical Sobolev spaces. We denote the �2-type
sequence spaces by

Hα :=
{
(un)n≥0 : |u|2Hα =

∑
j≥0

22αju2
j < ∞

}

and define �∞-based sequence spaces (the replacement of the usual Lipschitz classes) by

Wα,∞ :=
{
(un)n≥0 : |u|Wα,∞ = sup

j≥0
2αj |uj | < ∞

}
, Wα,∞

c0
:=
{
u ∈ Wα,∞ : lim

j→∞ 2αj |uj | = 0
}
.

Observe that H 1 ⊂ Wα,∞ with continuous embedding for α ≤ 1. We shall denote H 0 simply by H , and the norm
associated to α = 0 by | · |. Finally, since we will often restrict our attention to solutions which are “positive” (away
from the directly forced zeroth component), we take

H+ = {(un)n≥0 : uj ≥ 0, j ≥ 1
}

(3.1)

and note that H+ is a closed subset of H .
We define the operators

Au = (22j uj

)
j≥0, B(u, v) = (2cj uj vj+1 − 2c(j−1)uj−1vj−1

)
j≥0. (3.2)

4Note that in the two-dimensional case, instead of ε, in (ii) one should consider η the mean enstrophy dissipation rate.
5The tightness of the Navier–Stokes invariant measures when the noise scales as

√
ν has been addressed e.g. in [36,48]. These solutions however

do not obey the Batchelor–Kraichnan spectrum. On the other hand the convergence (iii), has been proven in the setting of the 1D stochastic Burgers
equations [28]. This work makes fundamental use of explicit representations of solutions through the Lax–Oleinik formula.
6Another situation where an inviscid stochastic dyadic model has been shown to evidence dissipative behavior is developed in [2,3]. However, here
randomness enters the equations as a formally conservative multiplicative Stratonovich noise.
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Here and throughout the paper we use the convention that u−1 = v−1 = 0. We denote by PNu the projection of u

onto its first N + 1 coordinates, i.e. PNu = (uj )0≤j≤N . Regarding the bilinear operator B observe that for u ∈ Hc−1,
v ∈ H 1 and w ∈ H∣∣〈B(u, v),w

〉∣∣ =∑
j≥0

(
2cj |ujvj+1wj | + 2c(j−1)|uj−1vj−1wj |

)

≤ C
(

sup
j≥0

2j |vj |
)(∑

j≥0

22(c−1)j u2
j

)1/2(∑
j≥0

w2
j

)1/2

≤ C|u|Hc−1 |v|H 1 |w|. (3.3)

As such, we have the cancelation property for u,v ∈ Hc−1,〈
B(u, v), v

〉=∑
j≥0

(
2cj uj vj+1vj − 2c(j−1)uj−1vjvj−1

)= 0. (3.4)

In fact this can be improved to u,v ∈ W
c/3,∞
c0 ⊃ H 1 when c ≤ 3. With this formalism we may now rewrite (1.1)–(1.2)

in the more abstract notation which will sometimes serve as a useful shorthand:

du + (νAu + B(u,u)
)
dt = e0 dW, u(0) = u, (3.5)

where e0 = (1,0, . . .). To make the notion of solution rigorous, we next recall some well-posedness properties.

3.2. Existence and uniqueness of solutions

The existence and uniqueness of solutions of (1.1)–(1.2) is recalled in the following proposition which is essentially
due to [55] and follows along the lines of [1] (see also the related works [2,4,19]).

Proposition 3.1 (Existence and uniqueness of solutions, statistically steady states). Fix ν > 0 and any u ∈ H .

(i) When c ∈ [1,3] there exists a martingale solution (u,S) solving (1.1)–(1.2) relative to the initial condition u

with the regularity

u ∈ L2(Ω;L∞([0, T ];H )∩ L2([0, T ];H 1)), for every T > 0,
(3.6)

uj ∈ C
([0,∞)) a.s. for each j ≥ 0.

Here S = (Ω,F, {Ft },P,W) is a stochastic basis which is considered as an unknown in the problem.
(ii) If u ∈ H+ then, for any martingale solution (u,S), u(t) ∈ H+ for every t ≥ 0. Moreover, the solution (u,S) can

be chosen in such a way that the following moment bounds hold

E
∣∣u(t)

∣∣2 + 2ν

∫ t

0
E
∣∣u(s)

∣∣2
H 1 ds ≤ |u|2 + tσ 2, (3.7)

and for any κ < ν

8σ 2

E exp

(
κ

(∣∣u(t)
∣∣2 + exp

(
−νt

2

)∫ t

0

∣∣u(s)
∣∣2
H 1 ds

))
≤ exp

(
1

4
+ κe−νt/2|u|2

)
. (3.8)

(iii) For every ν > 0, c ∈ [1,3] there exists a stationary martingale solution (ūν,S) of the dyadic model; there exist
a stochastic basis S and time stationary process ūν with the regularity (3.7) and solving (1.1)–(1.2). Moreover
(ūν,S) can be chosen so that

ūν ∈ H+, a.s. (3.9)
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to so as to satisfy the moment bound

E exp
(
κ
∣∣ūν
∣∣2)≤ exp(1/4) (3.10)

valid for any κ < ν

8σ 2 .
(iv) In the case when c ∈ [1,2] we may fix a stochastic basis S = (Ω,F, {Ft },P,W). Then, there exists a

unique (pathwise) solution u = u(·, u0,W) satisfying (1.1)–(1.2) and which has the regularity (3.7). Moreover
u(t, u0,W) satisfies (3.7) with an equality and depends continuously on both u0 in H and on W ∈ C([0, T ]).

The proof of Proposition 3.1 is somewhat technical but represents a standard application of existing techniques.
For brevity we omit complete details, sketching only the main points. For the existence of Martingale solutions,
(i) the proof follows precisely along the line of [1] using compactness arguments around a Galerkin approximation
of (1.1)–(1.2) and variants of the Aubin–Lions and Arzela–Ascoli compactness theorems. Passage to the limit is
facilitated Skorokhod embedding and by a Martingale representation theorem from [21], or alternatively by including
the driving noise in the compact sequence (see [5] or more recently [24]).

For the desired properties in (ii) observe that for u ∈ H+ applying the Duhamel principle to (1.2) for each j ≥ 1,
gives

uj (t) = exp

(
−ν22j t + 2cj

∫ t

0
uj+1 ds

)
uj

+ 2c(j−1)

∫ t

0
exp

(
−ν22j (t − s) + 2cj

∫ t

s

uj+1 dr

)
u2

j−1 ds. (3.11)

The moment estimates (3.7), (3.8) are formally identical to well known moment estimates for the stochastic Navier–
Stokes equations (cf. [23,37,48]).

The existence of stationary solutions in (iii) follows from a Krylov–Bogolyubov averaging procedure, imple-
mented at the level of Galerkin approximations. Regarding the positivity of ū, (3.9), by choosing u ∈ H+ for
the Krylov–Bogolyubov averaged measure μT we infer from (3.11) that μT (H+) = 1. Then since H+ is closed
μ(H+) ≥ lim supj μTj

(H+) = 1. The moment bounds, (3.10) are inferred from (3.8) via standard argument making
use of invariance and decay of initial conditions evident in (3.8). See, for instance, [23,48].

Regarding (iv) and the existence and uniqueness of pathwise solutions, since we are in the case of an additive noise,
we can transform (1.1) to a random process as follows: Consider the Ornstein–Uhlenbeck process dz0 + νz0 = σ dW ,
z(0) = 0 and take ũ = u − ze0. Then ũ solves

d

dt
ũ0 + νũ0 + (̃u0 + z0)u1 = 0, (3.12)

d

dt
ũ1 + ν22ũ1 + 2cũ1ũ2 − ũ2

0 = 2z0ũ0 + z2
0, (3.13)

d

dt
ũj + ν22j ũj + 2cj ũj ũj+1 − 2c(j−1)ũ2

j−1 = 0, j ≥ 2. (3.14)

With this transformation in hand we can then implement a Galerkin approximation procedure for the associated
transformed system. The necessary compactness to pass to the limit can then be treated pathwise. To show that
the limiting object u = ũ + z is suitably adapted to the given filtration one also shows that (3.12)–(3.14) depends
continuously on z.

The continuous dependence of solutions on data can be established for c ∈ [1,2] in a direct fashion as follows:
Suppose that u(1), u(2) are solutions of (3.7) (relative to the same stochastic basis) and let v = u(1) − u(2). We have
that v satisfies d

dt
v + Av + B(v,u(1)) + B(u(2), v) = 0. Since v ∈ L2(Ω;L2

loc([0,∞);H 1)) we can make use of (3.4)
and (3.3) to infer 1

2
d
dt

|v|2 + |v|2
H 1 ≤ C|u(1)|H 1 |v||v|H 1 . With ε-Young and the Grönwall inequality we infer

∣∣v(t)
∣∣2 ≤ |v|2 exp

(
C

∫ t

0

∣∣u(1)
∣∣2
H 1

)
. (3.15)
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Uniqueness of solutions and continuous dependence on initial conditions follows. When c > 2, the equation is quasi-
linear and establishing the continuous dependence on data in the topology of H seems out of reach.

4. Uniform moment bounds and inviscid limits

In this section we establish a series of ν-independent moment bounds for statistically stationary states of (1.1)–(1.2).
Note carefully that the forthcoming bounds are valid for c ∈ [1,3]. These bounds allow us to pass to inviscid limit
in this class of statistically invariant states and hence to establish the existence of stationary solutions of the inviscid
model, that is (1.1)–(1.2) with ν = 0. Such solutions are evidence of a form of turbulent dissipation as we detail below.
The ν independent moment bounds we establish are:

Proposition 4.1 (ν-Independent moment bounds). For each ν > 0 consider a stationary martingale solution (ūν,S)

as in Proposition 3.1, satisfying the positivity condition (3.9), and moment bound (3.10). Then

sup
ν∈(0,1]

sup
j≥0

2(c−1)j
E
((

ūν
j

)2)
< ∞ (4.1)

and moreover we have

sup
ν∈(0,1]

E
∣∣ūν
∣∣2
Ha < ∞ (4.2)

for each −1 ≤ a < (c − 1)/2, when c ∈ [1,3]. In particular,

sup
ν∈(0,1]

E
∣∣ūν
∣∣2
H−1/2 < ∞ (4.3)

for any c ∈ [1,3].

We establish Proposition 4.1 immediately below in Section 4.1.
Working from the uniform bounds (4.3) we are able to derive the existence of stationary solutions ū of the inviscid

counterpart of the dyadic model (1.1)–(1.2) namely

dū0 + ū0ū1 dt = σ dW (4.4)

dūj

dt
+ (2cj ūj ūj+1 − 2c(j−1)ū2

j−1

)= 0, j ≥ 1. (4.5)

Motivated by the discussion in Section 2, we define the energy flux through the N th shell by

ΠN(u) := 〈PNB(u,u),PNu
〉= 2cNu2

NuN+1 (4.6)

for any u ∈ H . We will see that statistically stationary solutions of (4.5) must exhibit a constant average flux indepen-
dent of N . Our results concerning (4.4)–(4.5) are summarized as follows:

Theorem 4.2 (Stationary solutions of the Inviscid dyadic model). There exists a stationary martingale solution
(ū,S) of (4.4)–(4.5) which satisfies the regularity

ū ∈ L∞
loc

([0,∞);Ha
)
, ūN ∈ C

([0,∞)
)

for each N ≥ 0, a.s.

for any a < c/3. Also, we have that the moment estimate

sup
N≥0

22cN/3
E
(
ū2

N

)≤ Cσ 4/3 (4.7)

holds, where C > 0 is a universal constant. Furthermore,
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(i) Such solutions ū may be obtained as an inviscid limit, namely, there exists Borel probability measures {μνj
} and

μ0 on H such that

μνj
⇀ μ0 in H−1/2 as νj → 0, (4.8)

where μνj
(·) = P(ūνj ∈ ·) with ūν stationary solutions of (1.1)–(1.2) and μ0(·) = P(ū ∈ ·).

(ii) These inviscid stationary solutions ū have a constant mean energy flux, i.e.

E
(
2cN ū2

NūN+1
)= EΠN(ū) = σ 2

2
(4.9)

holds for any N ≥ 0. In particular we infer that

lim
N→∞ 2cN

E|ūN |3 > 0. (4.10)

Theorem 4.2 is proven in Sections 4.2–4.4 below.

Remark 4.3 (Consistency with Kolmogorov and Onsager). In view of (4.9) the constant mean energy flux is ε = σ 2/2,
so that ε2/3 ∼ σ 4/3. As such, the estimate (4.7) is an upper bound consistent with the Kolmogorov power spectrum,
in the case c = 1, as described in (2.18) above. Additionally, (4.10) indicates that the inviscid steady state ū has
regularity below the Onsager critical space.

4.1. Uniform in ν bounds

Take {ūν}ν>0 to be statistically stationary solutions of (1.1)–(1.2) whose existence follows from the Krylov–
Bogolyubov and a possible usage of Galerkin approximations with an appropriate limiting procedure.7 As we explain
in Section 3, we can choose these elements ūν so that ūν ∈ H+. We will make crucial use of this positivity condition
in the forthcoming computations.

Working from (1.1)–(1.2) and using stationarity we immediately have that,

ν22j
E
(
ūν

j

)+ 2cj
E
(
ūν

j ū
ν
j+1

)= 2c(j−1)
E
((

ūν
j−1

)2)
, (4.11)

which holds for each j ≥ 0. Here we are maintaining the convention that ūν
−1 ≡ 0. Applying the Itō lemma to (1.1)–

(1.2) we again infer from stationarity:

ν22j
E
((

ūν
j

)2)+ 2cj
E
((

ūν
j

)2
ūν

j+1

)= 2c(j−1)
E
((

ūν
j−1

)2
ūν

j

)+ σ 2

2
δj−0, (4.12)

for each j ≥ 0. Summing (4.12) from j = 0, . . . ,N we observe that

ν

N∑
j=0

22j
E
((

ūν
j

)2)+ 2cN
E
((

ūν
N

)2
ūν

N+1

)= σ 2

2
. (4.13)

In particular we infer that

E
((

ūν
N

)2
ūν

N+1

)≤ σ 22−cN−1. (4.14)

We can also deduce from (4.13) and the fact that ūν ∈ H+ that E|ūν |2
H 1 ≤ σ 2/(2ν) < ∞ and thus that

limj→∞ 22j
E|ūν

j |2 = 0. This implies with c/3 ≤ 1 that

ν

∞∑
j=0

22j
E
((

ūν
j

)2)= νE
∣∣ūν
∣∣2
H 1 ≤ σ 2

2
. (4.15)

7In the case that c ∈ [1,2] these stationary solutions are unique and correspond to the (mixing) invariant measures {μν }ν>0 studied below in
Section 5. These additional uniqueness properties will have no bearing for the results in this section.
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Rearranging in (4.11) and using (4.14)

E
((

ūν
j−1

)2) = ν2c2(2−c)j
E
(
ūν

j

)+ 2c
E
(
ūν

j ū
ν
j+1

)
≤ ν2c2(2−c)j

E
(
ūν

j

)+ 2c
(
E
((

ūν
j

)2
ūν

j+1

))1/2(
E
((

ūν
j+1

)2))1/4

≤ 1

32
E
((

ūν
j+1

)2)+ ν2c2(2−c)j
E
(
ūν

j

)+ Cσ 4/32−2cj/3. (4.16)

Note that the second inequality in this computation was justified by the fact that ūν ∈ H+. Multiplying (4.16) by
2(c−1)j and taking the supremum for 1 ≤ j ≤ N + 1, we arrive at(

2c−1 − 2−c−6) sup
0≤j≤N

2(c−1)j
E
((

ūν
j

)2)
≤ ν2c sup

0≤j≤N+1

(
22j

E
((

ūν
j

)2))1/2 + Cσ 4/3 sup
0≤j≤N+1

2(c−1−2c/3)j + 2−c−6 sup
N+1≤j≤N+2

2(c−1)j
E
((

ūν
j

)2)
≤ Cν1/2(νE∣∣ūν

∣∣2
H 1

)1/2 + Cσ 4/3 sup
0≤j≤N+1

2(c−1−2c/3)j + C2(c−3)N
(

sup
N+1≤j≤N+2

22j
E
((

ūν
j

)2))
.

For 1 ≤ c ≤ 3 we have c − 1 ≤ 2c/3 and thus arrive at

sup
0≤j≤N

2(c−1)j
E
((

ūν
j

)2)≤ Cν1/2σ + Cσ 4/3 + C
(

sup
N+1≤j≤N+2

22j
E
((

ūν
j

)2))
. (4.17)

By (4.15) we have that limN→∞ 22N
E((ūν

N )2) = 0, and upon passing N → ∞ in (4.17) we obtain

sup
j≥0

2(c−1)j
E
((

ūν
j

)2)≤ Cν1/2σ + Cσ 4/3 (4.18)

which proves (4.1). Now, for −1 ≤ a < (c − 1)/2, the above estimate implies

N∑
j=0

22aj
E
((

ūν
j

)2)≤ C
(
ν1/2σ + σ 4/3) N∑

j=0

2(2a−c+1)j (4.19)

which proves (4.2) upon passing N → ∞.

4.2. Convergence to the inviscid model

Fix any c ∈ [1,3] and let {ūν}ν>0 be a family of statistically stationary Martingale solutions of (1.1)–(1.2) satisfying
(3.9)–(3.10). We obtain from the estimates in the previous section the ν-independent bound (4.2). Since we wish to
consider the entire range c ∈ [1,3], we henceforth fix a = −1/2 in (4.2).

Fix any T > 0 and consider the measures

μν
E = P

(
ūν ∈ A

)
A ∈ B

(
C
([0, T ];H−5)).

To obtain sufficient compactness to pass to a limit we would like to show that

ūν is uniformly bounded in L2(Ω;L∞([0, T ];H−1/2)). (4.20)

For this we borrow a trick from [4]. Working from (1.1)–(1.2) and using that ūν ∈ H+ we infer

d
(
ūν

0

)2 + 2ν
(
ūν

0

)2
dt = −(ūν

0

)2
ūν

1 dt + σ 2 dt + 2σ ūν
0 dW,

d

dt

1

2j

(
ūν

j

)2 + 2ν2j
(
ūν

j

)2 = −2 · 2(c−1)j
(
ūν

j

)2
ūν

j+1 + 2(c−1)(j−1)
(
ūν

j−1

)2
ūν

j

≤ −2(c−1)j
(
ūν

j

)2
ūν

j+1 + 2(c−1)(j−1)
(
ūν

j−1

)2
ūν

j .
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Summing over j = 0, . . . ,N we obtain:

N∑
j=0

1

2j

(
ūν

j

)2
(t) ≤ ∣∣ūν(0)

∣∣2
H−1/2 + tσ 2 + 2

∫ t

0
σ ūν

0 dW.

With Doob’s inequality, we now conclude (4.20).
In view of the compact embeddings

L2([0, T ];H−1/2)∩ W 1/4,2([0, T ];H−4)⊂ L2([0, T ];H−1),
W 1/4,8([0, T ];H−4)+ W 1,2([0, T ];H−4)⊂ C

([0, T ];H−5),
and using the estimate

P

(∣∣∣∣∫ ·

0

(
νAūν + B

(
ūν
))

dt

∣∣∣∣2
W 1,2([0,T ];H−4)

≥ R

8

)
≤ P

(
C sup

t∈[0,T ]
(∣∣ūν

∣∣2
H−1/2 + 1

)≥ √
R
)

≤ C√
R
E

(
sup

t∈[0,T ]
∣∣ūν
∣∣2
H−1/2 + 1

)
(4.21)

along with P(|σW |W 1/4,8([0,T ];H−4) ≥ R) ≤ C
R

and (4.20) we one may deduce that{
μν

E

}
ν>0 is tight on L2([0, T ];H−1)∩ C

([0, T ];H−5).
See [24] for further details. We can infer with the Skorokhod representation theorem as in [5] that there exists a
probability space (Ω̃, F̃, P̃) and sequence of stationary martingale solutions (̃uν,Sν) with Sν = (Ω̃, F̃, P̃, F̃ν

t , W̃ ν)

such that ũν → ū almost surely in L2([0, T ];H−1) ∩ C([0, T ];H−5) and W̃ ν → W almost surely in C([0, T ]).
These convergences are sufficient to show that limiting process (ū, S̃) is a stationary martingale solutions of the

inviscid shell model

dūj + (2cj ūj ūj+1 − 2c(j−1)(ūj−1)
2)dt = σδj,0 dW (4.22)

with the convention ū−1 = 0. Moreover, we infer from ūν that

ū(t) ∈ H+ and E|ū|2
H−1/2 ≤ C.

In fact, a simple argument shows that the uniform in ν bound (4.1) is carried to the limiting stationary solutions ū,
namely we have

sup
j≥0

2(c−1)j
E
(
ū2

j

)
< ∞. (4.23)

To see this, fix any R > 0. Observe that by (4.1) there exists C < ∞, independent of ν and j and R, such that

2j (c−1)
E
((

ūν
j

)2 ∧ R
)≤ C.

From the Skhorokhod representation we have ūν
j → ūj a.s. for each j as ν → 0, and therefore

2j (c−1)
E
(
(ūj )

2 ∧ R
)≤ C

via dominated convergence. The monotone convergence theorem and the fact that E(ū2
j ) < ∞ for any j proves (4.23),

upon sending R → ∞. Similarly arguing from uniform in ν bound (4.14) we obtain that

E
(
2cj ū2

j ūj+1
)≤ σ 2

2
, (4.24)

which holds for every j ≥ 0.
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4.3. Enhanced moment bounds for the inviscid model

In this section we establish improved regularity, (4.7), for the stationary solutions ū of (4.4)–(4.5).
Fix η > 0 to be determined later. For j ≥ 1, since ū ∈ H+, upon multiplying (4.22) by 1/(ūj + η) we obtain,

2c(j−1)
E
(
ū2

j−1(ūj + η)−1)= 2cj
E
(
ūj+1ūj (ūj + η)−1)≤ 2cj

E(ūj+1). (4.25)

Now, for j ≥ 2, since ūj−1 ≥ 0 we may use the Cauchy–Schwarz inequality in the above identity. With (4.24) and
(4.23) to obtain

E
(
ū2

j−1

) ≤ (E(ū2
j−1(ūj + η)

))1/2(
E
(
ū2

j−1(ūj + η)−1))1/2

≤ C
(
σ2−cj/2 + [ηE(ū2

j−1

)]1/2)(
E(ūj+1)

)1/2

≤ C0σ2−cj/2(
E
(
ū2

j+1

))1/4
, (4.26)

where we obtain the last inequality by setting η = σ 22−j . Note that the constant C0 is independent of j and σ .
Working from (4.26) we may now apply the following iterative argument. Let b ≥ 0, and assume we know that

sup
j≥0

2jb
E
(
ū2

j

)≤ Cb < ∞. (4.27)

Let a ≥ 0. Using (4.26) and (4.27) we conclude

2ja
E
(
ū2

j

)≤ C0σ2(a−c/2−b/4)j
(
2b(j+2)

E
(
ū2

j+2

))1/4 ≤ C0σ2(a−c/2−b/4)jC
1/4
b ,

and therefore, if a ≤ c/2 + b/4, we arrive at

sup
j≥0

2ja
E
(
ū2

j

)≤ Ca =: C0σC
1/4
b . (4.28)

When b < 2c/3 in (4.28) we have gained decay with respect to j in comparison to (4.27). This represents an induction
step. The base step of the induction argument is given by (4.23) above, for b = c − 1. To conclude, we define

a1 = c − 1 and ak+1 = c

2
+ ak

4
,

let C1 > 0 be the constant for which (4.23) holds, and define the iteration

Ck+1 = C0σC
1/4
k ,

where C0 is fixed and independent of σ . By induction, it follows by (4.27) and (4.28) that

sup
j≥0

2akjE
(
ū2

j

)≤ Ck (4.29)

for all k ≥ 1. But note that

ak+1 = (c − 1)4−k + c

2

k−1∑
j=0

4−j = 2c

3
− 3 − c

3 · 4k
→ 2c

3
as k → ∞.

Moreover, we have that

Ck+1 = C4−k

1 (C0σ)
∑k−1

j=0 4−j → (C0σ)4/3 as k → ∞.

Thus, passing k → ∞ in (4.29) we arrive at the desired estimate (4.7).
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4.4. Anomalous/turbulent dissipation

We finally establish the claims concerning turbulent dissipation stated in item (ii) of Theorem 4.2. Observe that, for
any solution of (4.4)–(4.5), we infer from the Itō lemma that

d

dt
E
(|PNu|2)= σ 2 − 2E

(
ΠN(u)

)
(4.30)

holds for each N . Given any stationary solutions ū of (4.4)–(4.5) we immediately infer (4.9) from (4.30) and station-
arity. We see moreover that ū satisfies the low regularity bound (4.10) since otherwise

lim
N→∞E

(
ΠN(ū)

)
ds = lim

N→∞E
(
2cNu2

NuN+1
)
ds = 0, (4.31)

in contradiction to (4.9). This shows that stationary solutions cannot be smooth and must exhibit anomalous/turbulent
dissipation of energy; the flux cannot vanish as N → ∞, and the energy balance d

dt
E(|u|2) = σ 2 is violated.

5. Unique ergodicity and attraction properties

In this section we address the question of unique ergodicity and attraction properties for the invariant measure asso-
ciated with (1.1)–(1.2) when ν > 0 and c lies in the range [1,2). While the existence of an invariant measure follows
from the Krylov–Bogolyubov averaging procedure (see item (iv) in Proposition 3.1), the uniqueness of statistically
steady states is a more delicate issue. It requires a detailed understanding of the interaction between the nonlinear and
stochastic terms in (1.1)–(1.2) as well as a number of more involved moment estimates. In Section 6 we make use of
these results to establish the anomalous dissipation of energy in the inviscid limit, for c ∈ [1,2).

Our analysis is carried out in a Markovian framework and makes essential use of the continuous dependence on
data (in the topology of H ), which insofar is valid only for c ∈ [1,2].8 As described in Section 5.2 below, the main
step in the proof is to establish a smoothing condition for the Markov semigroup associated to (1.1)–(1.2), which leads
to estimates reminiscent of those needed to bound the dimension of the attractor for dissipative dynamical systems
[17,58]. Here the restriction 1 ≤ c < 2 plays an important role; the equations are semilinear in this range.

In comparison to previous works on the uniqueness of invariant measures for (semilinear) infinite dimensional
systems, [33,37–39], a new mathematical challenge arrises in verifying an algebraic condition, the so called Hör-
mander bracket condition. This condition describes the interaction between the nonlinear and stochastic terms and its
verification, depending on the structure of the equations, can require an involved analysis. It turns out that previous
related works, [27,33,37,39,54], make significant use of non-local wave number interactions in verifying Hörmander’s
condition. As such the approach taken in these works can not be repeated here.

After reviewing a few standard preliminaries we introduce the main result Theorem 5.1. In Section 5.2 we briefly
recall some generalities which explain the connection between smoothing in the Markovian dynamics, Hörmander’s
condition and question of unique ergodicity. Section 5.3 is then devoted to the verification of Hörmander’s condition.
The remainder of the proof of Theorem 5.1, while highly nontrivial, is quite similar to previous works [33,37–39].
Further details are postponed to the Appendix.

5.1. Markovian setting; summary of uniqueness and attraction properties of invariant measures

Before stating Theorem 5.1 we first recall some generalities and notations for the Markovian framework associated to
(1.1)–(1.2). For each ν > 0 and any c ∈ [1,2] we define the Markov transition function

Pt (u,A) = P
(
u(t, u) ∈ A

)
, u ∈ H,A ∈ B(H),

where u(t, u) is the unique pathwise solution of (1.1)–(1.2) and B(H) are the Borel subsets of H . We then we define
the Markov semigroup

Ptφ(u) = Eφ
(
u(t, u)

)= ∫
H

φ(u)Pt (u, du), (5.1)

8See however the generalized framework [55] which builds on [31].
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for any φ ∈ Mb(H). Here Mb(H) denotes the collection of real valued, measurable and bounded function on H . We
take P ∗

t (which is the dual of Pt ) according to

P ∗
t μ(A) =

∫
H

Pt (u,A)dμ(u)

for elements μ ∈ Pr(H), the collection of Borealian probability measures on H . An element μ ∈ Pr(H) is an in-
variant measure of the Markovian semigroup if it is a fixed point of P ∗

t for every t ≥ 0. Such elements represent
statistically steady states of (1.1)–(1.2).

Take Cb(H) to be the collection of real valued continuous bounded functions mapping from H . Recall that Pt is
said to be Feller if Pt : Cb(H) → Cb(H) for every t ≥ 0. This property is needed for all that follows and indeed some
form of the Feller property is required even to prove the existence of an invariant measure of (1.1)–(1.2). With this
in mind, we now specialize to case c ∈ [1,2]. In this situation observe that if un → u in H then, in view of (3.15),
u(t, un) → u(t, u) a.s. in H . It follows from the dominated convergence theorem that Ptφ(un) → Ptφ(u) which
establishes that Pt is Feller when c ∈ [1,2].

Beyond Mb(H) and Cb(H) we will make use of several further classes of test functions on H . Define

‖φ‖γ := sup
u∈H

exp
(−γ |u|2)(∣∣φ(u)

∣∣+ ∣∣∇φ(u)
∣∣2)

and take

Bγ := {φ ∈ C1(H) : ‖φ‖γ < ∞}, G := {φ ∈ C1(H) : ‖φ‖γ < ∞, for each γ > 0
}
. (5.2)

We also consider the classes acting on higher regularity space with at most polynomial growth at infinity namely

Pm,p :=
{
φ ∈ C1(Hm

) : sup
u∈Hm

|φ(u)| + |∇φ(u)|
1 + |u|pHm

< ∞
}

for any m ≥ 0 and any p ≥ 2.
With these preliminaries in hand we state main results concerning the uniqueness and attraction properties of

invariant measures for Pt as follows:

Theorem 5.1. Suppose that c ∈ [1,2), ν > 0 and consider solutions u(t, u) of the stochastic dyadic shell model
(1.1)–(1.2) corresponding to any initial condition u ∈ H . Then there exists a unique invariant measure μν of the
corresponding Markov semigroup which is ergodic. More precisely, for any t > 0, Pt is ergodic with respect the
probability space (H,B,μν) and this implies that, for any φ ∈ L2(H ;μν),

1

T
E

∫ T

0
φ
(
u(t, u)

)
dt →

∫
H

φ(u)dμν(u), (5.3)

for μν almost every u. Additionally, the invariant measures μν obey the attraction properties

(i) (Mixing) For any η > 0 there exists positive constants γ1, γ2 > 0 (depending on ν, c, η) such that∣∣∣∣Eφ
(
u(t, u)

)− ∫
H

φ(u)dμν(u)

∣∣∣∣≤ C exp
(−γ1t + η|u|2)‖φ‖γ2 (5.4)

holds every φ ∈ Bγ2 and any u ∈ H . Moreover for any m ≥ 0, p ≥ 2 and φ ∈Pm,p

lim
T →∞Eφ

(
u(T ,u)

)= ∫ φ(u)dμν(u). (5.5)

(ii) (Strong law of large numbers) For every φ ∈ G and any u ∈ H ,

1

T

∫ T

0
φ
(
u(t, u)

)
dt →

∫
H

φ(u)dμν(u) almost surely. (5.6)
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(iii) (Central limit theorem) For each φ ∈ C1
b(H), u ∈ H define

mφ :=
∫

H

φ(u)dμν(u), vφ := lim
T →∞

1

T
E

(∫ T

0

(
φ
(
u(t, u)

)− mφ

)
dt

)2

,

and let Fφ be the distribution function of a normal random variable with mean 0 and variance vφ . Then, for any
x ∈ R

lim
T →∞P

(
1√
T

∫ T

0

(
φ
(
U(t,U0)

)− mφ

)
dt < x

)
= Fφ(x). (5.7)

In other words 1√
T

∫ T

0 (φ(U(t,U0)) − mφ)dt converges in distribution to normal random variable with mean 0
and variance vφ .

5.2. Smoothing of the Markovian semigroup in infinite dimensions

We turn next to describe the key ingredients that we use to prove the Theorem 5.1. We follow a strategy going
back to Doob [26] and Khasminskii [40]. These results identify that uniqueness and attraction properties similar
to Theorem 5.1 hold when Pt is strong Feller meaning that Pt maps bounded measurable functions to continuous
functions and irreducible which says that from any starting point in the phase space there is a non-zero probability of
ending up in any other part of the phase space after a finite time.

Both the strong Feller property and irreducibility condition are too stringent for infinite dimensional systems where
the stochastic forcing acts directly in only a few directions in phase space, as is the case with our model (1.1)–(1.2).
Inspired by the insights of recent works [37–39] Theorem 5.1 can be shown to follow from the following two weaker
properties. The first condition, replacing classical irreducibility, requires that only one point is universally reachable
in phase space.

Proposition 5.2. For any ε > 0, R > 0 there exist a time t∗ = t∗(ε,R) such that

sup
u∈H,|u|≤R

P
(∣∣u(t, u)

∣∣< ε
)
> 0 (5.8)

for every t > t∗.

The second estimate immediately implies a form of infinite time smoothing à la the asymptotic strong Feller
condition introduced in [37].

Proposition 5.3. For any γ,η > 0∥∥∇Ptφ(u)
∥∥≤ C exp

(
γ |u|)(√Pt

(|φ|2)(u) + exp(−ηt)

√
Pt

(‖∇φ‖2
)
(u)
)

(5.9)

for every φ ∈ C1
b(H), u ∈ H where the constant C = C(γ,η) is independent of t and φ and u.

Proposition 5.2 is an expression of the triviality of the long term dynamics of the unforced version of (1.1)–(1.2).
This may be demonstrated precisely as in [20,27]. Thus, the main step to establish Theorem 5.1 is to prove the gradient
estimate Proposition 5.3 on the Markovian semigroup {Pt }t≥0 associated to (1.1)–(1.2) via (5.1).

The estimate (5.9) establishes a form of smoothing for Pt . Observe that ψ(u) = Ptφ(u) formally solves the Kol-
mogorov backward equation

∂tψ(u, t) = σ 2

2
∂2

0 ψ(u, t) −
∑
j

〈
νA(u) + B(u), ej

〉
∂jψ(u, t); ψ(0, u) = φ(u), (5.10)
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which is a degenerately parabolic system. Following the analysis in [37,39] which generalizes the classical hypo-
elliptic theory [41] we will therefore need to establish a form of the Hörmander bracket condition in order to expect
the (asymptotic) smoothing required by (5.9).

In the next section we recall in our notations and framework the form of this condition introduced in [37,39]. The
verification of this condition is the main mathematical novelty in the proof of Proposition 5.3. Having established this
condition the rest of the analysis leading to (5.9) and hence Theorem 5.1 follows closely previous works [33,37–39].
We therefore postpone the rest of the proof of Theorem 5.1 for the Appendix.

5.3. The Hörmander condition

We introduce the infinite dimensional version of the Hörmander bracket condition as follows. If G1 and G2 are Frechet
differentiable maps on H we define the Lie bracket of G1 and G2 according to

[G1,G2](u) = ∇G2(u)G1(u) − ∇G1(u)G2(u). (5.11)

Take ej = (δi−j )i≥0 and let

F(u) = νAu + B(u,u)

where we have symmetrized the bilinear form B so that

B(u, v)j = 2cj−1uj+1vj + 2cj−1vj+1uj − 2c(j−1)vj−1uj−1. (5.12)

In our context the Hörmander condition states that we can approximate the phase space H with a sequence of allowable
Lie brackets staring from e0. We may then proceed to fill H by then taking successive brackets involving either F or
e0 with previously obtained vector fields. More precisely we make the following definitions

Definition 5.4 (Hörmander’s condition). Let �0 := span{e0} and iteratively define

�
m

:= span
{[

G(u), e0
]
,
[
G(u),F (u)

]
,G(u) : G ∈ �

m−1

}
. (5.13)

We say elements E ∈⋃m �
m

are admissible vector fields which have been produced by an admissible sequence of Lie
Brackets. The system (1.1)–(1.2) is said to satisfy the Hörmander bracket condition if

for every N , there exists m = m(N) such that �
m

⊃ HN. (5.14)

Compared to previous analogous results which have been obtained for the Navier–Stokes nonlinearity in [27,37,
39,54] it would seem at first glance that the analysis of nonlinear structure in B , cf. (5.5), leading to (5.14) would be
easier to address. Indeed, observe that

B(ej , ek) =
⎧⎨⎩−2cj ej+1, when k = j ,

2cj−1ej , when k = j + 1,
0, when |k − j | ≥ 2.

(5.15)

Actually, it is this nearest neighbor only interaction that leads to new difficulties in comparison to these previous
works. Naively we may fill the phase space by iteratively taking Lie brackets of the form[[

F(u), ek

]
, ek

]= 2B(ek, ek) = −2ck+1ek+1.

Unfortunately, it is not clear that such brackets are admissible in the sense of Definition 5.4 and a more careful analysis
of the interaction between F and e0 is needed to ensure that (5.14) is satisfied.9

9For comparison in [27] brackets of the form [[B(u), ej ], e0] are used to generate the phase space. As such this work actually makes use significant
use of the long range interactions (in wave space) present in the nonlinear terms.
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To overcome this complication, we consider the polynomials of the form

S0(v1, v2) = B(v1, v2),

S1(v1, v2, v3, v4) = S0
(
B(v1, v2),B(v3, v4)

)
,

S2(v1, . . . , v8) = S1
(
B(v1, v2),B(v3, v4),B(v5, v6),B(v7, v8)

)
, (5.16)

...

Sm(v1, . . . , v2m+1) = Sm−1
(
B(v1, v2), . . . ,B(v2m+1−1, v2m+1)

)
.

By bracketing [F,em+1] repeatedly against F , 2m times we will show that the resulting admissible vector fields have
the form

Sm+1(u) := [. . . [[F,em+1],F
]
, . . . ,F

]
(u) = CmB

(
em+1, Sm(u, . . . , u)

)+ Em(u), (5.17)

where Cm 
= 0 and Em has an involved structure. Bracketing Sm+1(u) repeatedly against e0 yields further admissible
vector fields and as we will see, Sm(e0, . . . , e0) ∼ em+1. On the other hand one we will show that Em(e0, . . . , e0) ∈
span{e0, . . . , em+1} in order to avoid possible cancelations with CmB(em+1, Sm(e0, . . . , e0)) preventing the generation
of new directions in H with this strategy.

With these motivating discussions in mind the rest of the section is devoted to proving:

Theorem 5.5. The dyadic model (1.1)–(1.2) satisfies the Hörmander bracket condition (5.14).

We begin by introducing some further notations. Let M1 = {Aku : k ≥ 0}, and take

M2 = {AjB
(
Alu,Amu

) : j, l,m ≥ 0, l ≥ m
}
,

and for k ≥ 2 define iteratively:

Mk = {B̃(E(u, . . . , u), u
)
, B̃
(
u,E(u, . . . , u)

)
,E
(
B̃(u), u, . . . , u

)
, . . . ,E

(
u, . . . , u, B̃(u)

) :
B̃ ∈M2,E ∈ Mk−1

}
. (5.18)

Note carefully that Mk consists of k linear forms. Moreover, for any E ∈ Mk , a simple induction shows that E has
the form

E(u) = B̃
(
E1(u),E2(u)

)
where E1 ∈Ml1,E2 ∈ Ml2, B̃ ∈ M2 and l1 + l2 = k. (5.19)

We also take S0 =M2 and for m ≥ 1 define

Sm = {S̃m−1
(
B̃1(u), . . . , B̃2m

(u)
) : S̃m−1 ∈ Sm−1, B̃

i ∈ S0
}
. (5.20)

Observe that Sm ⊂M2m and that S̃m ∈ Sm. Also note that we can equivalently build

Sm = {B̃(S̃1
m−1, S̃

2
m−1

) : B̃ ∈ S0, S̃
i
m−1 ∈ Sm−1

}
. (5.21)

We have the following lemma.

Lemma 5.6. For every m ≥ 0 and each S̃m ∈ Sm

S̃m(e0) = CS̃m
em+1, (5.22)

where CS̃m
is a suitable non-zero constant. Moreover, for every k ≥ 2 and every E ∈ Mk such that Ek /∈ Sm for

some m

E(e0) = CEel for some l ≤ ⌈log2(k)
⌉
, (5.23)

for a constant CE depending on E which may be zero.
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Proof. The first identity (5.22) follows from (5.15) and (5.21) with an induction argument on m.
The proof of (5.23) is an induction on m ≥ 1 making use of (5.15), (5.19), (5.22). The inductive hypothesis is

that the condition (5.23) holds for each k ≤ 2m. The base case follows from (5.15) by inspection. Suppose then
that (5.23) holds for all k ≤ 2m and consider any 2m < k ≤ 2m+1 and any E ∈ Mk with E /∈ Sm+1. By (5.19),
E(u) = B̃(E1(u),E2(u)), B̃ ∈ M2 where, without loss of generality E1 ∈ Mk̃ with k̃ ≤ 2m. Two situations may
arise. Firstly we may have that k̃ = 2m and E1 ∈ Sm. In this case E2 ∈ Mk−2m and moreover it cannot lie in Sm (or
else we would contradict that E /∈ Sm+1). We infer, by the inductive hypothesis, that E2(e0) = cej for some j ≤ m and
hence with (5.15) conclude E(e0) = C′B(em+1, ej ) = Cej (where C′, C may be zero). The second possibility is that
E1 /∈ Sm in which case, again with the inductive hypothesis E1(e0) = Cej where j ≤ m and E2(e0) = Cel (where l

may indeed by greater than m). Combining these two observations we finally infer E(e0) = C′E(ej , el) = Cej̃ where

j̃ ≤ m + 1. This completes the induction and hence the proof of Lemma 5.6. �

With these preliminaries in hand we now show that (5.14) is satisfied as follows.

Proof of Theorem 5.5. Observe that, for any m ≥ 0,

[F,em+1] = νAem+1 + 2B(em+1, u).

So that bracketing by [F,em+1] repeatedly against F , 2m times we obtain a vector field Sm+1(u) of the form (5.17)
where the constant Cm is non-zero, and Em is a polynomial which has the form

Em(u) =
2m−1∑
k=1

∑
E∈Mk

CEB
(
em+1,E(u)

)+ ∑
E∈M2m\Sm

CEB
(
em+1,E(u)

)
+

∑
k1+k2=2m+1

k1≥2

∑
E1∈MI

k1
,E2∈Mk2

CE1,E2B
(
E1(em+1, u),E2(u)

)

+
∑

k1+k2≤2m

k1≥1

∑
E1∈MI

k1
,E2∈Mk2

B̃∈M2

CE1,E2,B̃
B̃
(
E1(em+1, u),E2(u)

)
, (5.24)

where

MI
k := {E(v,u) : H × H → H :

E ∈ Mk,E(v,u) = E(v,u, . . . , u),E(u, v,u, . . . , u), . . . ,E(u, . . . , u, v)
}
.

With (5.23), (5.15) and a careful inspection of (5.24) we find that

Em(e0) ∈ span{e0, . . . , em+1}. (5.25)

Observing that taking Lie brackets of Sm+1 with e0, 2m times we obtain[
. . .
[
Sm(u), e0

]
, . . . , e0

]=Sm(e0) = C̃mem+2 + Em(e0), (5.26)

where C̃m is a non-zero constant. Arguing inductively we see that C̃mem+2 + Em(e0) is produced by an admissible
sequence of Lie brackets. Thus with (5.25) and (5.26) we see that the Hörmander bracket condition of the form given
in (5.4) is satisfied, completing the proof of Theorem 5.5. �

6. Dissipation anomaly in the inviscid limit

In this final section we establish the dissipation anomaly in the inviscid limit. We prove the following:



1236 S. Friedlander, N. Glatt-Holtz and V. Vicol

Theorem 6.1. Fix any c ∈ [1,2) and let uν(·, u) be the unique solution of (1.1)–(1.2) for any u ∈ H . Then

lim
ν→0

lim
T →∞νE

∣∣uν(T ,u)
∣∣2
H 1 = σ 2

2
. (6.1)

Moreover, for any such u ∈ H

lim
ν→0

lim
T →∞

ν

T

∫ T

0

∣∣uν(t, u)
∣∣2
H 1 dt = σ 2

2
, (6.2)

almost surely.

Proof. We immediately infer (6.1) from (5.5) and energy balance in (1.1)–(1.2). Indeed let ūν be the stationary
solution corresponding to μν . Then νE|ūν |2

H 1 = σ 2/2 so, making use of (5.5) we conclude that

νE
∣∣uν(T ,u)

∣∣2
H 1 → ν

∫
|u|2

H 1 dμ(u) = σ 2

2

for any u ∈ H .
For the second item, (6.2) take

ψN(u) = ν

N∑
j=0

22j u2
j = ν|PNu|2

H 1

and notice that ψN is in the set G is defined in (5.2). We infer from (5.6) that for any u ∈ H

lim inf
T →∞

ν

T

∫ T

0

∣∣uν(t, u)
∣∣2
H 1 dt ≥ lim inf

T →∞
1

T

∫ T

0
ψN

(
uν(t, u)

)
dt =

∫
ψN(u)dμ(u).

Now, by the monotone convergence theorem

lim
N→∞

∫
ψN(u)dμ(u) = lim

N→∞νE
∣∣PNūν

∣∣2
H 1 = νE

∣∣ūν
∣∣2
H 1 = σ 2

2
,

so that

lim inf
T →∞

ν

T

∫ T

0

∣∣uν(t, u)
∣∣2
H 1 ≥ σ 2

2
.

For a suitable upper bound observe that, due to the Itō lemma,

1

T

(∣∣u(T ,u)
∣∣2 + 2ν

∫ T

0

∣∣u(t, u)
∣∣2
H 1 dt

)
= 1

T

(
|u|2 + σ 2T

2
+ 2σ

∫ T

0
u0 dW

)
.

Thus, the second item (6.2) is proven once we establish that

1

T

∫ T

0
u0 dW → 0, a.s. (6.3)

For δ ∈ (0,1) and n define

Mn :=
∫ nδ

0
u0 dW, Xk =

∫ δk

δ(k−1)

u0 dW.
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With the Itō isometry we have

EX2
k = E

∫ δk

δ(k−1)

u2
0 ds ≤

∫ δk

δ(k−1)

E
∣∣u(s,u)

∣∣2 ds.

Now, since d
dt
E|u|2 + 2νE|u|2 ≤ σ 2, we have that

E
∣∣u(t, u)

∣∣2 ≤ exp(−2νt)|u|2 + σ 2

2ν
.

With these observations we infer that

∞∑
k=1

EX2
k

(δk)2
≤ |u|2 + σ 2

2ν

δ

∑
k

k−2 < ∞.

By the Martingale SLLN (see e.g. [48, Theorem 7.21.1]) we infer thus (6.3), completing the proof of the theorem.10 �

Appendix: Gradient estimates for the Markov semigroup

In this section we sketch some further details of the proof of Theorem 5.1. The approach closely follows the recent
works [33,37–39,48] modulo the analysis establishing the Hörmander bracket condition which is carried out in Sec-
tion 5.3. In Sections A.1–A.4 we describe and solve a control problem which implies Proposition 5.3. The solution of
this problem requires a Foias–Prodi type bound for a linearization of (1.1)–(1.2) as well as an estimate on the spectrum
of an operator (the Malliavin covariance matrix) associated to this linearization. We describe how these bounds are
achieved in Section A.5 and A.6. The final section explains how one derives Theorem 5.1 from Proposition 5.3.

A.1. Smoothing as a control problem

The first step in the proof of (5.9) is to translate this bound into a control problem. For this purpose we introduce some
linearization operators around (3.5). Fix any ξ,u ∈ H , and any 0 ≤ s ≤ t ≤ T take ρ = Js,t ξ to be the solution of

d

dt
ρ + νAρ + B(u,ρ) + B(ρ,u) = 0, ρ(s) = ξ, (A.1)

where u = u(t, u) ∈ C(0, T ;H) ∩ L2(0, T ;H 1) obeys (3.5). For s < t and v ∈ L2([s, t]) we let

As,t v := σ

∫ t

s

Jr,t e0v(r) dr, (A.2)

where e0 = (1,0,0, . . .) ∈ H . The processes J0,t ξ and A0,t v represent infinitesimal perturbations of u in its initial
conditions and driving noise in the directions ξ and v respectively. Using the Malliavin chain rule and integration by
parts formulas (see [51]) one obtains that, for any ξ ∈ H and any suitable v ∈ L2(0, t)11

∇Ptφ(u)ξ = E

(
φ
(
u(t, u)

)∫ t

0
v dW

)
+E

(∇φ
(
u(t, u)

)
(J0,t ξ −A0,t v)

)
, t ≥ 0.

Notice that ρ̄(t) = J0,t ξ −A0,t v solves d
dt

ρ̄ + νAρ̄ + B(u, ρ̄)+ B(ρ̄, u) = −σe0v, where ρ̄(0) = ξ . With the Hölder
inequality we now see that the proof of (5.9) reduces to proving:

10Actually this implies the F(T ) = 1
T

∫ T
0 u0 dW goes to zero along any sequence on a dense subset of [1,∞). Since F(T ) is almost surely

continuous this implies that this convergence occurs along any sequence.
11Here we do not require that v is adapted so that

∫ t
0 v dW is in general only a Skorokhod integral. See [51].
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Proposition A.1. For every ξ ∈ H there exists a corresponding v = v(ξ) ∈ L2([0,∞)) such that

sup
ξ∈H,‖ξ‖=1

E
(∣∣J0,t ξ −A0,t v(ξ)

∣∣2)→ 0 as t → ∞, (A.3)

and such that

sup
t≥0

sup
ξ∈H,|ξ |=1

E

(∫ t

0
v(ξ) dW

)2

< ∞. (A.4)

A.2. Defining the control

A suitable choice for the control v can be obtained in terms of the Malliavin covariance matrix or control Grammian
Ms,t =As,tA∗

s,t : H → H . Here A∗
s,t : H → L2([s, t]) is the adjoint of As,t and satisfies(

A∗
s,t ξ
)
(r) = σ

〈
e0,J ∗

r,t ξ
〉
, for r ∈ [s, t], (A.5)

where J ∗
s,t is the adjoint of Js,t defined via (A.1). J ∗

s,t ξ solves the final value problem

− d

dt
ρ∗ + Aρ∗ + (∇B(u)

)∗
ρ∗ = 0, ρ∗(t) = ξ (A.6)

with the notation

∇B(u)ρ = B(u,ρ) + B(ρ,u).

A formal solution of (A.3) is obtained by taking v = A∗
0,tM

−1
0,tJ0,t ξ , for some t > 0. It is not expected however

that M0,t is invertible for many infinite-dimensional problems. This difficulty is circumvented by considering a reg-
ularization M̃0,t in place of M0,t so that the resulting control pushes ρ into small scales (high wavenumbers). We
then make use of the dissipative structure in (1.1)–(1.2) to induce a decay in ρ. Specifically, we determine v and the
resulting controlled quantity ρ according to the following iterative construction. We start from ρ(0) = ξ and, having
determined ρ and v on an interval [0,2n] for some integer n, we define

v[2n,2n+1] =A∗
2n,2n+1(M2n,2n+1 + βI)−1J2n,2n+1ρ(2n), and v[2n+1,2n+2] = 0. (A.7)

Here β is a fixed positive parameter that will be specified below according to (A.14), (A.15) and we have adopted
the notation v[s,t] as the restriction of v to the interval [s, t]. With v now defined up to the time 2n + 2 we can then
determine ρ̄ on this interval via

ρ̄(t) =
{
J2n,t ρ̄(2n) −A2n,t v for t ∈ [2n,2n + 1],
J2n+1,t ρ̄(2n + 1) for t ∈ [2n + 1,2n + 2).

(A.8)

Observe in particular that

ρ̄(2n + 2) = J2n+1,2n+2β(M2n,2n+1 + βI)−1J2n,2n+1ρ̄(2n). (A.9)

Note that v and ρ have a ‘block adapted’ structure, that is, for each t ≥ 0

ρ̄(t), v(t) are F�(t)-measurable (A.10)

where, recalling the notation �t� for the smallest integer greater than or equal to t ,

�(t) :=
{ �t� when �t� is odd,

t when �t� is even.
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A.3. Decay estimates for ρ̄

We next show how v defined by (A.7), (A.8) induces the desired decay (A.3). We start by demonstrating that for every
p > 1, n ≥ 0 and δ, η > 0,

E
(∣∣ρ̄(2n + 2)

∣∣p|F2n

)≤ δ exp
(
η
∣∣u(2n)

∣∣2)∣∣ρ̄(2n)
∣∣p (A.11)

holds for a suitably small choice of 0 < β = β(δ, η,p), independent of n. Splitting ρ into low and high modes and
using that ‖β(M2n,2n+1 + βI)−1‖ ≤ 1 for any β > 0 we have12∣∣ρ̄(2n + 2)

∣∣p ≤ C
(‖J2n+1,2n+2QN‖p + ‖J2n+1,2n+2‖p

∥∥PNβ(M2n,2n+1 + βI)−1
∥∥p)‖J2n,2n+1‖p

∣∣ρ̄(2n)
∣∣p

= (T1 + T2)
∣∣ρ̄(2n)

∣∣p
which holds for any n and every β > 0. Since

E(T1|F2n) ≤ CE
(
E
(‖J2n+1,2n+2QN‖p|F2n+1

)‖J2n,2n+1‖p|F2n

)
and

E(T2|F2n) ≤ CE
(
E
(‖J2n+1,2n+2‖p|F2n+1

)∥∥PNβ(M2n,2n+1 + βI)−1
∥∥p‖J2n,2n+1‖p|F2n

)
,

the one step decay (A.11) reduces to establishing that:

Proposition A.2. The following bounds hold:

(i) For each p > 1 and each η > 0 we have

E‖J0,1‖p ≤ C exp
(
η|u|2), (A.12)

where the constant C = C(η,p, ν).
(ii) For all q ≥ 1 and δ, η > 0 there exists an N such that

E‖J0,1QN‖q ≤ δ exp
(
η|u|2) (A.13)

where QN is the projection onto span{e0, . . . , eN }⊥.
(iii) Finally, for every q > 1, N > 0 and η, δ > 0 there exists β > 0 such that

E
(∥∥PNβ(M0,1 + βI)−1

∥∥q)≤ δ exp
(
η|u|2). (A.14)

The first bound follows directly from (A.1) and (3.8). The Foias–Prodi estimate (A.13) expresses the fact that if an
initial condition is concentrated in sufficiently high wavenumbers then the diffusive terms in (A.1) mostly dissipates
the solution after one time step. The final bound (A.14) shows that inverting M0,1 + βI approximately gives the
desired control on the low modes. This step in the analysis is delicate and would not be expected to be true in general.
It relies on the fact that the Hörmander bracket condition, Proposition 5.5 is satisfied. We postpone further details for
Sections A.5, A.6 below.

With (A.11) in hand we establish (A.3) as follows. For any q > 1 and η > 0 define

Pn :=
n∏

k=1

( |ρ̄(2n + 2)|
|ρ̄(2n)|

)q

exp
(−η/2 · ∣∣u(2n)

∣∣2) and Rn :=
n∏

k=1

exp
(
η/2 · ∣∣u(2n)

∣∣2).
Note that |ρ(2n+ 2)|q := PnRn. By making repeated use of (A.11), we have that (E(PnRn))

1/2 = E(E(P2
n|F2n)) ×

E(Rn)
2 ≤ δE(P2

n−1)E(Rn)
2 ≤ · · · ≤ δn

E(Rn)
2. On the other hand, from (3.8) we infer that ERn ≤ exp(η|u|2 +C0n)

12We use the notation ‖ · ‖ for the operator norm of bounded linear maps between the appropriate spaces (H,L2(s, t), etc.).
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which is valid for sufficiently small η = η(ν) > 0 and a constant C0 = C0(ν) > 0. By taking δ = exp(−2γ − C0) in
(A.11) and combining these two bounds we now conclude

E
(∣∣ρ(2n + 2)

∣∣q)≤ exp
(
η|u|2 − 2nγ

)
(A.15)

and hence (A.3).

A.4. Bounding the cost of control

To obtain the cost of control bounds (A.4) we observe that by using the block adapted structure in (A.10) with the
generalized Itō isometry (see [51]) we infer

E

(∫ 2n

0
v dW

)2

= E

∫ 2n

0
|v|2 dt +

n∑
k=0

E

∫ 2k+1

2k

∫ 2k+1

2k

Dsv(r)Drv(s) dr ds. (A.16)

Here D : Dp(H) ⊂ Lp(Ω,H) → Lp(Ω;L2([0, T ]) ⊗ H) is the Malliavin derivative operator. For the first term in
(A.16) observe that

E

∫ 2n

0
|v|2 ds =

n−1∑
k=0

E
∥∥A∗

2k,2k+1(M2k,2k+1 + βI)−1J2k,2k+1ρ(2k)
∥∥2

L2([2k,2k+1])

≤ 1

β

n−1∑
k=0

E
(‖J2k,2k+1‖4)1/2(

E
(∣∣ρ(2k)

∣∣4))1/2 ≤ C exp(η|u|2)
β

∞∑
k=0

exp(−2γ k). (A.17)

Here we have used that ‖A∗
2k,2k+1(M2k,2k+1 + βI)−1/2‖L(H,L2([2k,2k+1])) ≤ 1 and that ‖M2k,2k+1 + βI)−1/2‖ ≤

β−1/2.
In order to address the second term in (A.16) we use the (Malliavin) chain rule and the fact that ρ2n is F2n adapted

to compute

Dt v[2n,2n+1] = DtA∗
2n,2n+1(M2n,2n+1 + βI)−1J2n,2n+1ρ(2n)

+A∗
2n,2n+1Dt (M2n,2n+1 + βI)−1J2n,2n+1ρ(2n)

+A∗
2n,2n+1(M2n,2n+1 + βI)−1DtJ2n,2n+1ρ(2n), (A.18)

for any t ≥ 2n. On the other hand

Dt (M2n,2n+1 + βI)−1

= −(M2n,2n+1 + βI)−1(DtA2n,2n+1A∗
2n,2n+1 +A2n,2n+1DtA∗

2n,2n+1

)
(M2n,2n+1 + βI)−1. (A.19)

In view of (A.18), (A.19), we need more explicit expressions for DtJ2n,2n+1, DtA2n,2n+1, and DtA∗
2n,2n+1. For

any ξ, ξ ′ ∈ H we take ρ̃ = J (2)
s,t (ξ, ξ ′) as the solution of d

dt
ρ̃ + νAρ̃ + B(u, ρ̃) + B(ρ̃, u) + B(Js,t ξ,Js,t ξ

′) +
B(Js,t ξ

′,Js,t ξ ) = 0, ρ̃(s) = 0. Using the properties Dt one may show that (see [39])

DτJs,t ξ =
{
J (2)

τ,t (σ e0,Js,τ ξ ) when s < τ ,

J (2)
s,t (Jτ,sσ e0, ξ) when s ≥ τ .

(A.20)

By making use of (A.20) one may verify the following additional moment bounds from (3.8), (A.1), (A.2), (A.20) and
routine estimations (see [37]).
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Lemma A.3.

(i) For any T > 0, p ≥ 1, η > 0

E sup
t∈[0,T ]

‖Jt,T ‖p ≤ C exp
(
η|u|2), E sup

t∈[0,T ]

∥∥J (2)
t,T

∥∥p ≤ C exp
(
η|u|2)

for a constant C = C(T ,p, ν, η). Similarly for r < t and p ≥ 1

E‖Ar,t‖p ≤ C exp
(
η|u|2), E

∥∥A∗
r,t

∥∥p ≤ C exp
(
η|u|2).

(ii) For r ≤ s ≤ t , p ≥ 1 and η > 0 we have

E‖DsJr,t‖p ≤ C exp
(
η|u|2), E‖DsAr,t‖p ≤ C exp

(
η|u|2), E

∥∥DsA∗
r,t

∥∥p ≤ C exp
(
η|u|2),

for a constant C = C(p, t − r, ν, η).

With these bounds in mind we now return to (A.16). The second term in this expression is bounded by∑2n
k=0 E‖Dv‖2

L2([2k,2k+1]2)
. We handle each of the terms in this sum using the expression (A.18), (A.19) as

‖Dv‖2
L2([2k,2k+1]2)

≤ 1

β2

(∥∥DtA∗
2n,2n+1

∥∥2‖J2n,2n+1‖2 + ‖DtA2n,2n+1‖2‖J2n,2n+1‖2

+ ∥∥A∗
2n,2n+1

∥∥2‖DtJ2n,2n+1‖2)∣∣ρ(2n)
∣∣2 (A.21)

where we have used that ‖A∗
2k,2k+1(M2k,2k+1 + βI)−1/2‖ ≤ 1, ‖(M2k,2k+1 + βI)−1/2A2k,2k+1‖ ≤ 1, and

‖(M2k,2k+1 + βI)−1/2‖ ≤ β−1/2. Using (A.15) and Lemma A.3 with (A.21) we conclude that

n∑
k=0

E

∫ 2k+1

2k

∫ 2k+1

2k

Dsv(r)Drv(s) dr ds ≤ exp(η|u|2)
β2

n∑
k=0

exp
(−γ k|u|2). (A.22)

Combining (A.17) and (A.22) with (A.16) we conclude (A.4).

A.5. Foias–Prodi-type bounds

We turn next to establishing (A.13), and prove (A.12) along the way. The importance of having a semi-linear system,
ensured in our case by 1 ≤ c < 2, is directly apparent in the estimates of this section. Recall the notation ρ = Js,t ξ

for the linearized flow around the solution u(t, u) ∈ C(0, T ;H) ∩ L2(0, T ;H 1) of (3.5); that is, ρ solves (A.1).
From the L2 energy inequality and using (3.4), (3.3) we obtain

d

dt
|ρ|2 + 2ν|ρ|2

H 1 ≤ 2
∣∣〈B(ρ,u),ρ

〉∣∣≤ 2|ρ|Hc−1 |u|H 1 |ρ| ≤ ν|ρ|2
H 1 + ν−(c−1)/(3−c)|ρ|2|u|2/(3−c)

H 1

for all c ∈ [1,2]. After absorbing the ν|ρ|2
H 1 term in the left hand side and multiplying the resulting differential

inequality by |ρ|p−2 we infer

d

dt
|ρ|p + pν

2
|ρ|2

H 1 |ρ|p−2 ≤ p

2
|ρ|p(ν−(c−1)/(3−c)|u|2/(3−c)

H 1

)≤ |ρ|p(κ|u|2
H 1 + C

)
for any κ > 0 and p ≥ 2 and a suitable constant C = C(ν, c, κ,p) that may be computed explicitly. Note here that
the final inequality requires that 1 ≤ c < 2. Letting κ = ν

16σ 2 ∧ η, applying the Grönwall inequality, taking expected
values, and making use of (3.8) we arrive at

E
∣∣ρ(t)

∣∣p + pν

2

∫ t

0
E
(∣∣ρ(s)

∣∣2
H 1

∣∣ρ(s)
∣∣p−2)

ds ≤ |ξ |p exp
(
η|u|2 + Ct

)
(A.23)
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for any p ≥ 2, t ≥ 0 where C = C(ν,σ, c,p). The bound (A.12) follows immediately.
Recall that PN is the projection onto the first N coordinates of elements of H and QN = I − PN . We denote by

ρl = PNρ and ρh = QNρ as the low and the high components of ρ solving (A.1). Upon applying QN to (A.1) we
obtain

∂tρh + Aρh + QN

(
B(u,ρl + ρh) + B(ρl + ρh,u)

)= 0.

Multiplying with ρh, using that 22N |ρh|2 ≤ |ρh|2H 1 , the cancelation property (3.4), and estimates similar to (3.3) we
obtain

d

dt
|ρh|2 + ν22N |ρh|2 + ν|ρh|2H 1 ≤ 2

∣∣〈B(u,ρl), ρh

〉∣∣+ 2
∣∣〈B(ρl, u)ρh

〉∣∣+ 2
∣∣〈B(ρh,u), ρh

〉∣∣
≤ 4|u|H 1 |ρh||ρl |2−c|ρl |c−1

H 1 + 2|u|H 1 |ρh|c−1
H 1 |ρh|3−c.

For κ > 0 to be determined we infer that

d

dt
|ρh|2 + (ν22N − κ|u|2

H 1

)|ρh|2 + ν

2
|ρh|2H 1 ≤ C

(|ρl |2(c−1)

H 1 |ρ|2(2−c) + |ρ|2)≤ 22(c−1)NC|ρ|2, (A.24)

where C = C(ν, κ, c) but is independent of N and we have again used that 1 ≤ c < 2. For any p ≥ 2, upon multiplying
(A.24) with |ρh|p−2 and using the Grönwall and Hölder inequalities we obtain

E
∣∣ρh(t)

∣∣p ≤ |ξ |pE(μ(t,0)p/2)+ 22(c−1)NC

∫ t

0

(
Eμ(t, s)p

)1/2(
E
∣∣ρ(s)

∣∣2p)1/2
ds, (A.25)

where C = C(ν, κ, c,p), independent of N , and

μ(t, s) = exp

(
−ν22N(t − s) + κ

∫ t

s

∣∣u(τ)
∣∣2
H 1 dτ

)
.

By letting κ = p−1( ν2

16σ 2 ∧ η) and using (3.8) we have

Eμ(t, s)p ≤ 2 exp
(−νp22N(t − s)

)
exp
(
η|u|2), (A.26)

for any 0 ≤ s < t . Combining (A.23), (A.25) with (A.26) we obtain

E
∣∣ρh(t)

∣∣p ≤ exp
(
η|u|2)(|ξ |p exp

(−νp22N−1t
)+ 22(c−1)N |ξ |2p 1

νp22N

)
for a constant C = C(ν, κ, c,p, t) independent of N . By now taking t = 1 and N sufficiently large we now conclude
(A.13).

A.6. Analysis of the Malliavin covariance operator

The second crucial bound necessary to achieve Proposition A.1 is (A.14). This inequality is immediately inferred from
the following probabilistic spectral estimate on M0,1 (see [39]).

Proposition A.4. For every α,γ > 0 and every integer N there exists a δ > 0 such that

P

(
sup

ξ∈Tα,N

〈M0,1ξ, ξ 〉
|ξ |2 < ε

)
≤ Cεδ exp

(
γ |u|2) (A.27)

for every ε > 0, where Tα,N := {ξ : |PNξ | ≥ α|ξ |} and the constants C = C(α,γ,N) and δ = δ(α, γ,N) > 0 are
independent of ε and u.
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The proof of the estimate (A.27) consists in translating each of the admissible brackets leading to the condition
(5.14) into quantitive bounds. This leads to what amounts to an iterative proof by contradiction with high probability.
One begins by showing that small eigenvalue, eigenvector pairs translate to a smallness condition on linear forms
related to successive Lie brackets as follows:

Proposition A.5.

(i) There exists an ε0 > 0 and collection of measurable sets Ωε,0 defined for each ε < ε0 such that P(ΩC
ε,0) ≤

Cε exp(η|u|2) and so that on Ωε,0

〈M0,1ξ, ξ 〉 < ε|ξ |2 ⇒ sup
t∈[1/2,1]

∣∣〈J ∗
t,1ξ, e0

〉∣∣< εq |ξ |, (A.28)

for every ξ ∈ H .
(ii) Suppose that E ∈ Mk , for some k ≥ 0 where Mk is defined above in (5.18) and we take M0 = {e0}. Then there

exist ε0 = ε0(E) > 0, q = q(E) such that for every ε < ε0 there is a set Ωε,E so that P(ΩC
ε,E) < Cε exp(η|u|2)

and so that on Ωε,E

sup
t∈[1/2,1]

∣∣〈J ∗
t,1ξ,E(u)

〉∣∣< ε|ξ |

⇒
(

sup
t∈[1/2,1]

∣∣〈J ∗
t,1ξ,

[
E(u),F (u)

]〉∣∣+ sup
t∈[1/2,1]

∣∣〈J ∗
t,1ξ,

[
E(u), e0

]〉∣∣)< εq |ξ |, (A.29)

for every ξ ∈ H .

The proof of Proposition A.5 is lengthy and technical. Here we merely hint at some details. The complete proof
follows exactly as in [39] and see also [33]. One obtains new brackets of the form [E(u), e0] by expanding E(u) =
E(ū + σW) where ū = u − σW and then using a bound on Wiener polynomials from [39] to show that each of the
terms in the expansion is small if E(u) is small. Here may simplify the analysis by taking advantage of the smoothing
estimate

E sup
t∈[t0,t1]

∣∣u(t, u)
∣∣p
Hs , for any 0 < t0 < t1 < ∞.

Implications involving [E(u),A(u) + B(u)] in (A.29) are obtained by again changing variables, differentiating in the
expression 〈J ∗

t,1ξ,E(ū)〉 and making use of interpolation bounds involving Holder regularity in time.
Iterating the chain of implications (A.29) starting from (A.28) we may infer the smallness of any form associated

with a sequence of admissible bracket operations; cf. Definition 5.4. Thus Theorem 5.5 and Proposition A.5 imply:

Corollary A.6. For every N ≥ 0 there exists an q = q(N) > 0, ε0 = ε0(N) > 0 and sets Ωε defined for ε ∈ [0, ε0]
with

P
(
ΩC

ε

)≤ εC exp
(
η|u|2) (A.30)

and such that on Ωε we have the implication

〈M0,1ξ, ξ 〉 < ε|ξ |2 ⇒
N∑

k=0

〈ξ, ek〉2 ≤ εq |ξ |2 (A.31)

which holds for every ξ ∈ H .

We now infer Proposition A.4 from Corollary A.6 as follows. Observe that for ξ ∈ Tα,N := {ξ : |PNξ | ≥ α|ξ |}

α|ξ |2 ≤ |PNξ |2 =
N∑

k=0

〈ξ, ek〉2.
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Therefore combining this bound with (A.31) we infer that, on the sets Ωε given in (A.30) we have that

〈M0,1ξ, ξ 〉 ≥ ε|ξ |2

for every ε < ε1(N,α) and each ξ ∈ Tα,N . This completes the proof of Proposition A.4.

A.7. Consequences of the gradient estimates

We finally describe how Propositions 5.2, 5.3 imply Theorem 5.1. In [37,38] the authors show that in the general
setting of Markov semigroups on Banach spaces, the gradient bound in Proposition 5.3, the irreducibility condition
Proposition 5.2, and certain moment bounds satisfied by establishing (3.8) imply the ergodicity and mixing properties
of {Pt } claimed in Theorem 5.1. The central limit theorem, (iii) follows from abstract results in [47]. Details of the
application for the stochastic Navier–Stokes equations are given in these works and are precisely the same in our
situation. See also [33] where these results are shown to apply to a different concrete infinite dimensional stochastic
system.

We prove the strong law of large numbers (5.6) following the strategy taken in [48]. This requires some suitable
modifications to the proof however since mixing occurs in a weaker sense, (5.4), than in [48] where only a non-
degenerate stochastic forcing is considered.

We will consider, without loss of generality, that
∫

φ(u)dμ(u) = 0. The proof of (5.6) relies on the stochastic
process

MT =
∫ ∞

0

(
E
(
φ
(
u(t, u)

)|FT

)−Eφ
(
u(t, u)

))
dt.

Observe that, with the Markov property,

MT =
∫ T

0
φ
(
u(t, u)

)
dt +

∫ ∞

0
Ptφ

(
u(T ,u)

)
dt −

∫ ∞

0
Ptφ(u)dt

:=
∫ T

0
φ
(
u(t, u)

)
dt + R

(
u(T ,u)

)− R(u). (A.32)

We establish the convergence (5.6) using MT in two steps. Firstly we show

R(u(T ,u)) − R(u)

T
= 1

T

(∫ T

0
φ
(
u(t, u)

)
dt − MT

)
→ 0 a.s. (A.33)

and then we establish that

MT

T
→ 0 a.s. (A.34)

For the first convergence, (A.33), we infer from (5.4) that

R(u(T ,u))

T
≤ C exp(η/2|u(T ,u)|2)

T
.

To show that the later quantity goes to zero fix any δ > 0, and observe that∑
N≥1

P

(
exp(η/2|u(δN,u)|2)

δN
≥ N−1/4

)
≤ 1

ε2δ2

∑
N≥1

E exp(η|u(δN,u)|2)
N3/2

.

With the Borel–Cantelli lemma we infer that,

∞⋃
M=1

{
exp(η/2|u(δN,u)|2)

δN
<

1

N1/4
, for every N ≥ M

}
has measure one. Since this holds for all δ > 0 we infer the first convergence (A.33).
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We turn to the second convergence (A.34) which we address with the strong law of large numbers for Martingales.
Making use of (5.4) we observe, for suitable γ1, γ2 that

ER
(
u(T ,u)

)2 ≤ CE

(∫ ∞

0
exp
(−γ1t + η/2

∣∣u(T ,u)
∣∣2)‖φ‖γ2 dt

)2

≤ CE exp
(
η
∣∣u(T ,u)

∣∣2)
≤ C exp

(
η|u|2) (A.35)

where C does not depend on T and where we have used (3.8) for the final bound. Similar bounds apply for R(u)

for the same reasons. With this bound in hand it is direct to verify that {MT }T ≥0 is a square integrable, mean zero
martingale. It is therefore sufficient to show that for δ > 0,

∑
N≥1

E(MδN − Mδ(N−1))
2

N2
< ∞, (A.36)

see e.g. [48]. Using the bound (A.35) we have

E(MδN − Mδ(N−1))
2 = E

(∫ δN

δ(N−1)

φ
(
u(t, u)

)
dt + R

(
u(δN,u)

)− R
(
u
(
δ(N − 1), u

)))2

≤ C

(
δ

∫ δN

δ(N−1)

Eφ
(
u(t, u)

)2
dt + exp

(
η|u|2)), (A.37)

for a constant C independent of δ, N . Now, since φ ∈ G it is easy to see that φ2 ∈ G; cf. (5.2). We there infer from

Eφ2(u(t, u)
)≤ C +

∫
φ2(u) dμ(u), (A.38)

where the constant C = C(η, c, σ,φ) is independent of t . Combining (A.37) and (A.38) we infer (A.36) and hence,
since δ > 0 is arbitrary, (A.34) follows.
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[34] S. Friedlander and N. Pavlović. Blowup in a three-dimensional vector model for the Euler equations. Comm. Pure Appl. Math. 57 (6) (2004)

705–725. MR2038114
[35] U. Frisch. Turbulence: The Legacy A. N. Kolmogorov. Cambridge Univ. Press, Cambridge, MA, 1995. MR1428905
[36] N. Glatt-Holtz, V. Sverak and V. Vicol. On inviscid limits for the stochastic Navier–Stokes equations and related models. Arch. Ration. Mech.

Anal. 217 (2015) 619–649. MR3355006
[37] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (3)

(2006) 993–1032. MR2259251
[38] M. Hairer and J. C. Mattingly. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36 (6)

(2008) 2050–2091. MR2478676
[39] M. Hairer and J. C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16 (23)

(2011) 658–738. MR2786645
[40] R. Z. Has’minskiı̆. Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic

equations. Theory Probab. Appl. 5 (2) (1960) 179–196. MR0133871
[41] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. MR0222474
[42] P. Isett. Hölder continuous euler flows in three dimensions with compact support in time. Preprint, 2012. Available at arXiv:1211.4065.
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