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Abstract. Under full Hörmander’s conditions, we prove the strong Feller property of the semigroup determined by an SDE driven
by additive subordinate Brownian motions, where the drift is allowed to be arbitrary growth. For this, we extend a criterion due to
Malicet and Poly (J. Funct. Anal. 264 (2013) 2077–2096) and Bally and Caramellino (Electron. J. Probab. 19 (2014) 1–33) about
the convergence of the laws of Wiener functionals in total variation. Moreover, the example of a chain of coupled oscillators is
verified.

Résumé. Sous des conditions de Hörmander fortes, nous prouvons la propriété forte de Feller pour le semi-groupe déterminé par
une SDE dirigée par des mouvements browniens subordonnés additifs, où la dérive est autorisée à être arbitrairement croissante.
Pour cela, nous étendons un critère dû à Malicet et Poly (J. Funct. Anal. 264 (2013) 2077–2096) et à Bally et Caramellino (Electron.
J. Probab. 19 (2014) 1–33) sur la convergence, en variation totale, des lois de fonctionnelles de Wiener. Ce résultat couvre le cas
d’une chaîne d’oscillateurs couplés.
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1. Introduction

Let W be the space of all continuous functions from R+ := [0,∞) to R
m vanishing at the starting point 0, which is

endowed with the locally uniform convergence topology and the Wiener measure μW so that the coordinate process
Wt(ω) = ωt is a standard m-dimensional Brownian motion. Let H ⊂ W be the Cameron–Martin space consisting of
all absolutely continuous functions with square integrable derivatives. The inner product in H is denoted by

〈h1, h2〉H :=
m∑

i=1

∫ ∞

0
ḣi

1(s)ḣ
i
2(s)ds.

The triple (W,H,μW) is also called the classical Wiener space.
Let D be the Malliavin derivative operator. For k ∈ N and p ≥ 1, let Dk,p be the associated Wiener–Sobolev space

with the norm:

‖F‖k,p := ‖F‖p + ‖DF‖p + · · · + ∥∥DkF
∥∥

p
,

where ‖ · ‖p is the usual Lp-norm. Let X : W → R
d be a smooth Wiener functional in

⋂
k,p D

k,p . Let ΣX
ij :=

〈DXi,DXj 〉H be the Malliavin covariance matrix. The classical Malliavin calculus studies the problem that under

1Corresponding author.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/14-AIHP658
mailto:pengxuhui@amss.ac.cn
mailto:dzhao@amt.ac.cn
mailto:songyl@amss.ac.cn
mailto:XichengZhang@gmail.com


Strong Feller properties for degenerate SDEs with jumps 889

what conditions on X, the law of X has a smooth density with respect to the Lebesgue measure. In particular, as
application, Malliavin gave a probabilistic proof for the celebrated Hörmander’s hypoellipticity theorem (cf. [16,17]).
Nowadays, the Malliavin calculus, as a kind of infinite dimensional analysis, has been extensively used in many fields
such as heat kernel estimates, large deviation theory, financial mathematics, numerical calculations, and so on (cf.
[6,12,14]).

On the other hand, in the studies of the ergodicity of stochastic dynamical systems, the notion of strong Feller
property plays a crucial role (cf. [9]), which relates to the following problem: Let Λ be a metric space and (Xλ)λ∈Λ

a random field. We want to seek conditions on Xλ so that for any f ∈ Bb(R
d) (the space of bounded measurable

functions),

λ 
→ Ef (Xλ) is continuous.

In many cases, it is difficult to verify. As we know, if Xt(x) is the solution of an SDE, there are many ways to derive the
strong Feller property of Ptf (x) := Ef (Xt (x)). For examples, Bismut–Elworthy–Li’s formula provides an explicit
formula for ∇Ptf (x) (cf. [11]). Moreover, F. Y. Wang’s Hanarck inequality, which gives some quantitive estimate of
Ptf (x) for finite and infinite dimensional systems, can also be used to derive the strong Feller property (cf. [22]).

In the framework of the Malliavin calculus, the above problem can be introduced as follows. The celebrated
Bouleau–Hirsch’s criterion says that if Xλ ∈ D

1,p for some p > 1 and the Malliavin covariance matrix ΣX
λ := ΣXλ is

invertible almost surely, then the law of Xλ is absolutely continuous with respect to the Lebesgue measure (cf. [17]).
But we have no information about the regularity of the density ρλ. In order to obtain such information, one usually
needs a strong hypothesis (ΣX

λ )−1 ∈ ⋂
p≥1 Lp . If this is true and we work with a diffusion process, then the semi-

group of the diffusion has a “regularization effect.” The question is: is it possible to emphasize a regularization effect
under a weaker hypothesis “det(ΣX

λ ) > 0 almost surely”? The answer is yes. In fact, Bogachev [3], Corollary 9.6.12,
has already shown the following result: Let Xn and X be d-dimensional random variables in D

1,p so that Xn → X in
D

1,p . If p ≥ d and for almost all ω,{
DhX(ω),h ∈H

} =R
d,

then the laws of Xn converge to the law of X in total variation. Notice that det(ΣX(ω)) > 0 implies the above
condition, which can be seen as follows: Suppose that {DhX(ω),h ∈ H} �= R

d , then there is a non-zero vector v =
(v1, . . . , vd) ∈ Rd such that〈

DhX(ω), v
〉
Rd = 0, ∀h ∈ H ⇒

∑
i

viDXi(ω) = 0 ⇒ ΣX(ω)v = 0 ⇒ det
(
ΣX(ω)

) = 0.

This criterion recently was reproven by Malicet and Poly in [15], Corollary 2.2, by using another argument (see also
Bally and Caramellino [2], Corollary 2.16). We also mention that the convergence of the densities of random variables
has been studied by Ren and Watanabe in [20] under stronger assumptions.

The first aim of this work is to extend Bogachev’s result as follows.

Theorem 1.1. Let (Xλ)λ∈Λ be a family of Rd -valued Wiener functionals over W. Suppose that for some p > 1,

(H1) Xλ ∈ D
2,p for each λ ∈ Λ, and λ 
→ ‖Xλ‖2,p is locally bounded.

(H2) λ 
→ Xλ is continuous in probability, i.e., for any ε > 0 and λ0 ∈ Λ,

lim
λ→λ0

P
(|Xλ − Xλ0 | ≥ ε

) = 0.

(H3) For each λ ∈ Λ, the Malliavin covariance matrix ΣX
λ of Xλ is invertible almost surely.

Then the law of Xλ in R
d admits a density ρλ(x) so that λ 
→ ρλ is continuous in L1(Rd).

Remark 1.2. Our proof is different from [2,3,15] and based on the Sobolev’s compact embedding. Compared with
[3], our result requires less integrability and continuity assumptions, while more differentiability condition is needed.
This can be considered as the case that the differentiability index can compensate the integrability index in infinite
dimensional calculus.
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Our another aim of this work is to apply the above criterion to the SDE driven by degenerate jump noises. Let S
be the space of all càdlàg functions from R+ to R

m+ with 	0 = 0 and each component being increasing and pure jump.
Suppose that S is endowed with the Skorohod metric and the probability measure μS so that the coordinate process

St (	) := 	t = (
	1
t , . . . , 	

m
t

)
is an m-dimensional Lévy process with Laplace transform

E
μS

(
e−z·St

) = exp

{∫
R

m+

(
e−z·u − 1

)
νS(du)

}
. (1.1)

Consider the following product probability space

(Ω,F ,P) := (
W× S,B(W) × B(S),μW × μS

)
.

If we define Wt and St on this probability space, then Wt and St are independent, and the subordinate Brownian
motion

WSt := (
W 1

S1
t
, . . . ,Wm

Sm
t

)
is an m-dimensional Lévy process. Below we assume

P
(
ω ∈ Ω : ∃j = 1, . . . ,m and ∃t > 0 such that S

j
t (ω) = 0

) = 0, (1.2)

which means that St is nondegenerate along each direction.
Consider the following SDE driven by WSt :

dXt = b(Xt )dt + AdWSt , X0 = x, (1.3)

where b : Rd → R
d is a smooth function, A = (aij ) is a d × m constant matrix. Let H : Rd → R

+ be a C∞-function
with lim|x|→∞ H(x) = ∞, which is called a Lyapunov function. We assume that for some Lyapunov function H and
κ1, κ2, κ3 ≥ 0,

b(x) · ∇H(x) ≤ κ1H(x), (1.4)

and for all k = 1, . . . ,m,∣∣∣∣∑
i

∂iH(x)aik

∣∣∣∣
2

≤ κ2H(x),
∑
ij

∂i∂jH(x)aikajk ≤ κ3. (1.5)

Under (1.4)–(1.5), X. Zhang in [27], Theorem 3.1, has already proved that SDE (1.3) has a unique solution Xt(x),
which defines a Markov process. The associated Markov semigroup is defined by

Ptf (x) := Ef
(
Xt(x)

)
.

We say that (b,A) satisfies a Hörmander’s condition at one point x ∈R
d if for some n = n(x) ∈N,

Rank
[
A,B1(x)A,B2(x)A, . . . ,Bn(x)A

] = d, (1.6)

where B1(x) := (∇b)ij (x) = (∂j b
i(x))ij , and for n ≥ 2,

Bn(x) := (b · ∇)Bn−1(x) − (∇b · Bn−1)(x).

Now we can give our main result, which will be proven in Section 3.
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Theorem 1.3. Assume that (b,A) satisfies (1.4)–(1.5) and Hörmander’s condition (1.6) at each point x ∈ Rd . Then
for any t > 0, the law of Xt(x) is continuous in variable x with respect to the total variation distance. In particular,
the semigroup (Pt )t>0 has the strong Feller property, i.e., for any t > 0 and f ∈ Bb(R

d),

x 
→ Ef
(
Xt(x)

)
is continuous.

Remark 1.4. If Rank(A) = d , then we can take H(x) := |x|2 + 1 so that (1.4) becomes

x · b(x) ≤ κ1
(|x|2 + 1

)
.

In this case, the strong Feller property holds for SDE (1.3) (cf. [23,25]).

The topic about the smoothness of the distributional densities of SDEs with jumps has been studied for a long time
since the work of Malliavin [16]. We mention the following results:

• By using Girsanov’s transformation, Bismut in [5] established an integration by parts formula for Poisson function-
als and then used it to study the smoothness of the distributional densities of nondegenerate SDEs with jumps. His
idea was systematically developed in the monograph [4].

• In [18], Picard introduced a difference operator argument and derive a new criterion about the smoothness of the
distributional densities of Poisson functionals, which is also used to SDEs with jumps. Recently, Ishikawa and
Kunita in [13] extended Picard’s result to the Wiener–Poisson functional cases. Moreover, Cass [8] studied the
SDEs driven by Browian motions and Poisson point processes under Hörmander’s conditions. However, the result
in [8] does not cover the cases of (1.6) and α-stable noises.

• If b(x) = Bx, condition (1.6) is also called Kalman’s condition. In this case, Priola and Zabczyk [19] proved
the existence of smooth density for the corresponding Ornstein–Uhlenbeck process. In [26], X. Zhang proved the
existence of density for SDE (1.3) when b is smooth and Lipschitz continuous. In a special degenerate case, the
smoothness of the density is also obtained (cf. [26,27]).

To the best of the authors’ knowledge, Theorem 1.3 is the first result about the regularization effect of Lévy noises
under full Hörmander’s conditions. One motivation of our studies comes from the following stochastic oscillators
studied in [7,10,21] etc.:⎧⎨

⎩
dzi(t) = ui(t)dt, i = 1, . . . , d ,
dui(t) = −∂zi

H(z(t), u(t))dt, i = 2, . . . , d − 1,
dui(t) = −[∂zi

H(z(t), u(t)) + γiui(t)]dt + √
Ti dWi

Si
t

, i = 1, d ,
(1.7)

where d ≥ 3, γ1, γd ∈R, T1, Td > 0, and

H(z,u) :=
d∑

i=1

(
1

2
|ui |2 + V (zi)

)
+

d−1∑
i=1

U(zi+1 − zi).

The typical examples of V and U are

V (z) = |z|2
2

, U(z) = |z|2
2

+ |z|4
4

.

The Hamiltonian H describes a chain of particles with nearest-neighbor interaction. We have

Proposition 1.5. Assume that V,U ∈ C∞(R) are nonnegative and lim|z|→∞ V (z) = ∞ so that H is a Lyapunov
function. If U is strictly convex, then (1.4), (1.5) and (1.6) hold.

This proposition will be proven in Section 4.
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2. Proof of Theorem 1.1

Below, we fix a point λ0 ∈ Λ and a neighbourhood Eλ0 of λ0. We divide the proof into three steps.
(1) Let GL(d) �Rd ⊗Rd be the set of all (d × d)-matrix. Define

Kn := {
A ∈ GL(d) : ‖A‖ ≤ n,det(A) ≥ 1/n

}
.

Then Kn is a compact subset of GL(d). Let Φn ∈ C∞(Rd ⊗R
d) be a smooth function so that

Φn|Kn = 1, Φn|Kc
n+1

= 0, 0 ≤ Φn ≤ 1.

For each λ ∈ Λ and n ∈N, let us define a finite measure μλ,n(dx) by

μλ,n(A) := E
[
1A(Xλ)Φn

(
ΣX

λ

)]
, A ∈ B

(
R

d
)
.

Then for each ϕ ∈ C∞
b (Rd), by [17], Proposition 2.1.4 of p. 100, we have∫

Rd

∇ϕ(x)μλ,n(dx) = E
[∇ϕ(Xλ)Φn

(
ΣX

λ

)] = E
[
ϕ(Xλ)δ

(
Φn

(
ΣX

λ

)(
ΣX

λ

)−1
DXλ

)]
,

where ∇ = (∂1, . . . , ∂d) and δ is the dual operator of D (also called divergence operator). From this, by (H1) and
Hölder’s inequality, we derive that∣∣∣∣

∫
Rd

∇ϕ(x)μλ,n(dx)

∣∣∣∣ ≤ ‖ϕ‖∞C(λ,n),

where C(λ,n) is locally bounded in λ. Hence, μλ,n is absolutely continuous with respect to the Lebesgue measure
(cf. [17]), and in particular, the density pλ,n satisfies∫

Rd

∣∣∇pλ,n(x)
∣∣dx ≤ C(λ,n),

which implies that pλ,n is locally bounded in W
1,1(Rd) with respect to λ. By Rellich–Kondrachov’s compact em-

bedding theorem (cf. [1], Theorem 6.3 of p. 168), {pλ,n}λ∈Eλ0
is compact in L1

loc(R
d), and by Fréchet–Kolmogorov’s

theorem (cf. [24], Ch. 10), we have

lim|y|→0
sup

λ∈Eλ0

∫
BM

∣∣pλ,n(x) − pλ,n(x + y)
∣∣dx = 0, (2.1)

where BM := {x ∈ R
d : |x| ≤ M} and M > 0.

(2) Let φ ∈ C∞
c (B1) be a nonnegative smooth function with

∫
φ = 1. For ε > 0, let

φε(x) := ε−dφ
(
ε−1x

)
.

For f ∈ Bb(R
d) with support in BM , let

fε(x) :=
∫
Rd

f (y)φε(x − y)dy.

Noticing that

E
[(

f (Xλ) − fε(Xλ)
)
Φn

(
ΣX

λ

)] =
∫
Rd

(
f (y) − fε(y)

)
pλ,n(y)dy

=
∫
Rd

f (y)

∫
Rd

(
pλ,n(y) − pλ,n(y − x)

)
φε(x)dx dy,
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and in view of f |Bc
M

= 0, we have

∣∣E[(
f (Xλ) − fε(Xλ)

)
Φn

(
ΣX

λ

)]∣∣ ≤ ‖f ‖∞
∫

BM

∫
Rd

∣∣pλ,n(y) − pλ,n(y − x)
∣∣φε(x)dx dy

≤ ‖f ‖∞ sup
x∈Bε

∫
BM

∣∣pλ,n(y) − pλ,n(y − x)
∣∣dy. (2.2)

On the other hand, since D
k,q = (I −L)−k(Lq) for any q > 1 (Meyer’s inequality), where L = −δD is the Ornstein–

Uhlenbeck operator, by the interpolation inequality, we have

‖DXλ − DXλ0‖q ≤ C‖Xλ − Xλ0‖1/2
q ‖Xλ − Xλ0‖1/2

2,q ,

which together with (H1) and (H2) implies that for any q ∈ (1,p),

lim
λ→λ0

‖DXλ − DXλ0‖q = 0.

Hence,

λ → ΣX
λ is continuous in probability. (2.3)

Observe that∣∣E(
f (Xλ) − f (Xλ0)

)∣∣ ≤ ∣∣E(
f (Xλ) − fε(Xλ)

)∣∣ + ∣∣E(
f (Xλ0) − fε(Xλ0)

)∣∣ +E
∣∣fε(Xλ) − fε(Xλ0)

∣∣
≤ ∣∣E[(

f (Xλ) − fε(Xλ)
)
Φn

(
ΣX

λ

)]∣∣ + 2‖f ‖∞E
∣∣1 − Φn

(
ΣX

λ

)∣∣
+ ∣∣E[(

f (Xλ0) − fε(Xλ0)
)
Φn

(
ΣX

λ0

)]∣∣ + 2‖f ‖∞E
∣∣1 − Φn

(
ΣX

λ0

)∣∣
+ ‖f ‖∞

∫
BM

E
∣∣φε(Xλ − y) − φε(Xλ0 − y)

∣∣dy.

By (2.1), (2.2), (2.3) and taking limits in order λ → λ0, ε → 0 and n → ∞, we obtain

lim
λ→λ0

sup
‖f ‖∞≤1,f |Bc

M
=0

∣∣E(
f (Xλ) − f (Xλ0)

)∣∣ ≤ 4 lim
n→∞P

(
ΣX

λ0
/∈ Kn

) (H3)= 0. (2.4)

(3) Lastly, noticing that for any M > 0,

sup
‖f ‖∞≤1

∣∣E(
f (Xλ) − f (Xλ0)

)∣∣ ≤ sup
‖f ‖∞≤1,f |Bc

M
=0

∣∣E(
f (Xλ) − f (Xλ0)

)∣∣ + P
(|Xλ| > M

) + P
(|Xλ0 | > M

)
,

by (2.4), Chebyshev’s inequality and (H1), we get

lim
λ→λ0

sup
‖f ‖∞≤1

∣∣E(
f (Xλ) − f (Xλ0)

)∣∣ = 0.

The proof is thus completed by (H1), (H3) and [17], Theorem 2.1.1 of p. 92.

3. Proof of Theorem 1.3

The following lemma is proven in [26], Lemma 2.1.

Lemma 3.1. For s > 0, set �	
j
s := 	

j
s − 	

j
s− and

S0 := {
	 ∈ S : {s : �	

j
s > 0

}
is dense in [0,∞),∀j = 1, . . . ,m

}
.

Under (1.2), we have μS(S0) = 1.
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Fix 	 ∈ S0 and consider the following SDE:

dX	
t (x) = b

(
X	

t (x)
)

dt + AdW	t , X	
0 = x. (3.1)

The following result is proven in [27], Theorem 3.1.

Theorem 3.2. Under (1.4)–(1.5), there exists a unique solution to SDE (3.1) so that for all t > 0,

E

[
exp

{
2 sups∈[0,t] H(X	

s (x))

eκ1t (κ2|	t | + 1)

}]
≤ Cκ2,κ3eH(x), (3.2)

where Cκ2,κ3 ≥ 1. In particular, we have

Ef
(
Xt(x)

) = E
(
Ef

(
X	

t (x)
)|	=S

)
.

For proving the conclusion of Theorem 1.3, by Lemma 3.1, it suffices to show that for each 	 ∈ S0 and t > 0,

the law of X	
t (x) is continuous in x with respect to the total variation distance. (3.3)

For any n ∈N, let χn(x) be a cut-off function on [0,∞) with

χn|Bn = 1, χn|Bc
n+1

= 0, 0 ≤ χn ≤ 1,

and set

bn(x) = b(x)χn

(
H(x)

)
.

Since H ∈ C∞(Rd ;R+) and lim|x|→∞ H(x) = ∞, we have

bn ∈ C∞
b

(
R

d
)
.

Consider the following SDE:

dXn
t (x) = bn

(
Xn

t (x)
)

dt + AdW	t , Xn
0 = x. (3.4)

For fixed t > 0 and n ∈ N, it is easy to see that (H1) and (H2) hold for x 
→ Xn
t (x). On the other hand, the Malliavin

covariance matrix of Xn
t (x) has the following representation (cf. [27], Lemma 4.5):

Σ
Xn

t
x = J n

t (x)

(
m∑

k=1

∫ t

0
Kn

s (x)a·k
(
Kn

s (x)a·k
)∗ d	k

s

)(
Jn

t (x)
)∗

,

where Jn
t (x) and Kn

t (x) solve the following matrix valued ODEs:

J n
t (x) = I +

∫ t

0
∇bn

(
Xn

s (x)
) · J n

s (x)ds

and

Kn
t (x) = I −

∫ t

0
Kn

s (x) · ∇bn

(
Xn

s (x)
)

ds.

Define

BH
n := {

x ∈R
d : H(x) < n

}
.
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If (b,A) satisfies Hörmander’s condition (1.6) at one point x ∈ BH
n , then it is easy to see that (bn,A) also satisfies

Hörmander’s condition (1.6) at the point x ∈ BH
n . Thus, from the proof of [26], Theorem 1.1, one sees that Σ

Xn
t

x is
invertible almost surely for x ∈ BH

n . Using Theorem 1.1, for any y ∈ BH
n , we have

lim
x→y

sup
‖f ‖∞≤1

∣∣E[
f

(
Xn

t (x)
) − f

(
Xn

t (y)
)]∣∣ = 0. (3.5)

Now, for any x ∈ BH
n , define a stopping time

τn(x) := inf
{
t ≥ 0 : H (

X	
t (x)

) ≥ n
}
.

By the uniqueness of solutions to SDE, we have

Xn
t (x) = X	

t (x), ∀t < τn(x), a.s.

Let f be a bounded nonnegative measurable function. For any x, y ∈ BH
n , we have∣∣E[

f
(
X	

t (x)
) − f

(
X	

t (y)
)]∣∣ ≤ ∣∣E[

f
(
X	

t (x)
)
1t<τn(x) − f

(
X	

t (y)
)
1t<τn(y)

]∣∣
+ ‖f ‖∞P

(
t ≥ τn(x)

) + ‖f ‖∞P
(
t ≥ τn(y)

)
= ∣∣E[

f
(
Xn

t (x)
)
1t<τn(x) − f

(
Xn

t (y)
)
1t<τn(y)

]∣∣
+ ‖f ‖∞P

(
t ≥ τn(x)

) + ‖f ‖∞P
(
t ≥ τn(y)

)
≤ ∣∣E[

f
(
Xn

t (x)
) − f

(
Xn

t (y)
)]∣∣

+ 2‖f ‖∞P
(
t ≥ τn(x)

) + 2‖f ‖∞P
(
t ≥ τn(y)

)
.

Hence, by (3.5) and (3.2), we obtain

lim
x→y

sup
‖f ‖∞≤1

∣∣E[
f

(
X	

t (x)
) − f

(
X	

t (y)
)]∣∣ ≤ 4 lim

n→∞ sup
|x−y|≤1

P
(
t ≥ τn(x)

)

≤ 4 lim
n→∞ sup

|x−y|≤1
P

(
sup

s∈[0,t]
H

(
X	

s (x)
) ≥ n

)

≤ 4 lim
n→∞

1

n
sup

|x−y|≤1
E

(
sup

s∈[0,t]
H

(
X	

s (x)
)) = 0.

The proof is complete.

4. Proof of Proposition 1.5

Let x = (z1, . . . , zd , u1, . . . , ud) ∈ R
d ×R

d and define

b(x) := b(z,u) := (
u1, . . . , ud,−[∂z1H + γ1u1], . . . ,−∂zi

H, . . . ,−[∂zd
H + γdud ])

and

A = (ai,j ) with ad+1,d+1 = √
T1, a2d,2d = √

Td, ai,j = 0 for other i, j.

Clearly,

b(x) · ∇H(x) = −γ 2
1 u2

1 − γ 2
d u2

d ≤ 0.

Moreover,∑
i

∂iH(x)ai,d+1 = √
T1u1,

∑
i

∂iH(x)ai,2d = √
Tdud
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and ∑
ij

∂i∂jH(x)ai,d+1aj,d+1 = T1,
∑
ij

∂i∂jH(x)ai,2daj,2d = Td.

Hence, (1.4) and (1.5) hold.
Let us now check (1.6). Let V(x) be a vector field defined by

V(x) := V(z, u) :=
d∑

i=1

bi(z, u)∂zi
+

d∑
i=1

bi+d(z, u)∂ui

=
d∑

i=1

ui∂zi
− (

γ1u1 + V ′(z1) − U ′(z2 − z1)
)
∂u1

−
d−1∑
i=2

(
V ′(zi) − U ′(zi+1 − zi) + U ′(zi − zi−1)

)
∂ui

− (
γdud + V ′(zd) + U ′(zd − zd−1)

)
∂ud

.

Here the prime denotes the differential. Set U0 := ∂u1 and define recursively

Un := [Un−1,V] = Un−1V − VUn−1, n ∈ N.

By direct calculations, we have

U1 = ∂z1 − γ1∂u1,

U2 = U ′′(z2 − z1)∂u2 + (
γ 2

1 − V ′′(z1) − U ′′(z2 − z1)
)
∂u1 − γ1∂z1

and

U3 = U ′′(z2 − z1)∂z2 + (
γ 2

1 − V ′′(z1) − U ′′(z2 − z1)
)
∂z1

+ (
γ1V

′′(z1) + γ1U
′′(z2 − z1) + u1V

(3)(z1) + (u2 − u1)U
(3)(z2 − z1)

)
∂u1

+ (
(u1 − u2)U

(3)(z2 − z1) − γ1U
′′(z2 − z1)

)
∂u2 .

By induction, it is easy to see that for any k = 1, . . . , d − 2,{
U2k = U ′′(zk+1 − zk) · · ·U ′′(z2 − z1)∂uk+1 + ∑k

i=1(fki(x)∂zi
+ gki(x)∂ui

),

U2k+1 = U ′′(zk+1 − zk) · · ·U ′′(z2 − z1)∂zk+1 + ∑k
i=1(f̃ki(x)∂zi

+ g̃ki(x)∂ui
) + hk(x)∂uk+1 ,

where fki, gki , f̃ki , g̃ki , hk are smooth functions. Since U ′′ > 0, we have

∂u1 , ∂z1 , . . . , ∂ud−1 , ∂zd−1 ∈ span{U0,U1, . . . ,U2d−3}. (4.1)

On the other hand, since

[∂ud
,V] = ∂zd

− γd∂ud
,

by (4.1) we further have

∂u1 , ∂z1 , . . . , ∂ud
, ∂zd

∈ Span
{
U0,U1, . . . ,U2d−3, ∂ud

, [∂ud
,V]},

which means that (1.6) holds.
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