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Abstract. In the present paper, we prove that with probability one, the Stratonovich signatures of a multidimensional diffusion
process (possibly degenerate) over [0,1], which is the collection of all iterated Stratonovich’s integrals of the diffusion process
over [0,1], determine the diffusion sample paths.

Résumé. Dans ce papier, nous prouvons qu’avec probabilité égale à 1, les trajectoires d’un processus de diffusion multi-
dimensionnel (éventuellement dégénéré) sur [0,1] sont déterminées par ses signatures de Stratonovich, i.e. par la famille de toutes
les intégrales itérées de Stratonovich du processus.
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1. Introduction

Let Xt be an R
d -valued continuous path over [0,1] with bounded variation (d ≥ 2). According to [8,9], for 0 ≤ s <

t ≤ 1, we can define the sequence of iterated integrals

Xs,t = (
1,X1

s,t ,X
2
s,t , . . . ,X

n
s,t , . . .

)
,

where

Xn
s,t =

∫
s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun, n ≥ 1. (1.1)

Xn
s,t is regarded as an element in the tensor space (Rd)⊗n ∼=R

nd and Xs,t is hence an element in the tensor algebra

T (∞)
(
R

d
) =

∞⊕
n=0

R
nd .

Xs,t is multiplicative in the sense that it satisfies the following Chen’s identity:

Xs,t = Xs,u ⊗ Xu,t , 0 ≤ s < u < t ≤ 1.
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Xs,t is uniquely determined by the original path Xt ; or intuitively speaking, the original path Xt contains all informa-
tion about its differential dXt . A remarkable consequence is that a theory of integration along Xt can be established
in the sense of Riemann–Stieltjes, which leads to a theory of differential equations driven by Xt . Such a theory for
paths with bounded variation is classical and well-studied.

If the path Xt is less regular, for example, Xt has finite p-variation for some p > 1, it may not be possible to
establish an integration theory along Xt by using the information of the original path only. The fundamental reason
is that the path Xt itself does not reveal enough information on its differential dXt , which is essential to be fully
understood if we want to develop an integration theory along Xt . As pointed out by T. Lyons in [7], for this purpose,
together with the path itself, a finite sequence of iterated integrals up to level [p] satisfying Chen’s identity should be
specified in advance. Such a finite sequence of iterated integrals

Xs,t = (
1,X1

s,t , . . . ,X
[p]
s,t

)
is regarded as a multiplicative functional X from the simplex � = {(s, t) : 0 ≤ s ≤ t ≤ 1} to the truncated tensor
algebra

T ([p])(
R

d
) =

[p]⊕
n=0

R
nd .

X is called a rough path with roughness p. According to [7], X extends uniquely to a multiplicative functional from
� to T (∞)(Rd). In the founding work of T. Lyons in [7], a general theory of integration and differential equations for
rough paths was established.

For a rough path X with roughness p, the signature of X is defined as the formal sequence

S(X) = X0,1 = (
1,X1

0,1, . . . ,X
[p]
0,1, . . .

)
,

where for n > [p], Xn
s,t is the unique extension of X as mentioned before. The signature S(X), proposed by K. T.

Chen in [2] and T. Lyons in [7], can be regarded as the collection of overall information of any arbitrary level n about
the rough path X. It is of central interest and conjectured in the theory of rough paths that the signature S(X) contains
sufficient information to recover the path X completely. In the groundbreaking paper [3] by B. Hambly and T. Lyons,
they proved that for a path Xt with bounded variation, the signature of Xt uniquely determines the path up to a tree-
like equivalence. However, for paths with unbounded variation, very few results are available and it remains a lot of
work to do.

In the work [6] by Y. Le Jan and Z. Qian, they considered the case of multidimensional Brownian motion and
proved that for almost surely, the Brownian paths can be recovered by using the so-called Stratonovich’s signature,
which is defined via iterated Stratonovich’s integrals of arbitrary orders. Since the Brownian paths are of unbounded
variation and can be regarded as rough paths with roughness p ∈ (2,3), we may need to specify the second level in
order to make sense in terms of rough paths. However, according to [5,10], there is a canonical lifting of the Brownian
paths to the second level by using dyadic approximations, which is called the Lévy’s stochastic area process and it
coincides exactly with the iterated Stratonovich’s integral defined in the same way as (1.1). Such lifting is determined
by the Brownian paths itself, and in [6] when regarding the Brownian motion as rough paths such lifting was used by
the authors. Therefore, the recovery of Brownian motion as rough paths is essentially the recovery of the Brownian
paths in terms of Stratonovich’s signature.

In the present paper, we are going to generalize the result of Y. Le Jan and Z. Qian in [6] to the case of multidi-
mensional diffusion processes (possibly degenerate). The main idea of the proof is similar to the case of Brownian
motion, in which the authors used a specially designed approximation scheme and chose special differential 1-forms
to define the so-called extended Stratonovich’s signatures to recover the Brownian paths. However, there are several
difficulties in the case of diffusion processes. Firstly, we need quantitative estimates for rare events of diffusion pro-
cesses to prove a convergence result similar to the case of Brownian motion. In [6], the authors used the symmetry and
explicit distribution of Brownian motion, which are not available in the case of diffusion processes and hence we need
to proceed in a different way. Secondly, to construct special differential 1-forms, a quite special case of Hörmander’s
theorem was used to ensure the existence of density, in which the so-called Hörmander’s condition was easily verified.
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In the case of diffusion processes, the construction of differential 1-forms is more complicated to ensure similar kind
of hypoellipticity. Lastly, in the Brownian motion case, the Laplace operator is well-posed so that PDE methods could
be applied to obtain a crucial estimate which enables us to relate the extended Stratonovich’s signatures to the Brow-
nian paths. However, for a general diffusion process, the generator L may not be well-posed any more (we do not
impose uniform ellipticity assumption on L) and PDE methods may no longer apply (in fact, to ensure the application
of PDE methods, rather technical assumptions should be imposed on the differential operator L and the domain if
without uniform ellipticity). Therefore, we need a different approach to recover the diffusion paths by using extended
Stratonovich’s signatures.

2. Main result and idea of the proof

In this section, we are going to state our main result and illustrate the idea of the proof.
Let (Ω,F ,P ) be a complete probability space and let Wt be a d-dimensional Brownian motion on Ω . Consider

an N -dimensional (N ≥ 2) diffusion process Xt defined by the following SDE (possibly degenerate):

dXt =
d∑

α=1

Vα(Xt ) ◦ dWα
t + V0(Xt )dt (2.1)

with X0 = 0.
We are going to make the following three assumptions on the generating vector fields {V1, . . . , Vd ;V0}.

(A) V0,V1, . . . , Vd ∈ C∞
b (RN).

(B) For any x ∈R
N , Hörmander’s condition (see [4]) holds at x in the sense that

V1, . . . , Vd, [Vα,Vβ ], 0 ≤ α,β ≤ d,
[
Vα, [Vβ,Vγ ]], 0 ≤ α,β, γ ≤ d, . . .

generate the tangent space TxR
N ∼=R

N , where [·, ·] denotes the Lie bracket.
(C) There exists a positive orthonormal basis {e1, . . . , eN } of R

N , such that for any x ∈ R
N and i = 1,2, . . . ,N ,

Vα(x) is not perpendicular to ei for some α = 1,2, . . . , d .

Remark 2.1. Assumptions (A) and (B) are made to ensure the hypoellipticity of the generator

L = 1

2

d∑
α=1

V 2
α + V0

of the diffusion process (2.1). Assumption (C) is made to ensure the escape condition and the non-tangential condition
proposed in [1] hold on some domain of interest which is relatively small. Under these assumptions, we are able to
apply results in [1] to obtain the existence of a continuous density function of the Poisson kernel for some domain of
interest and a quantitative estimate on the density function, which are both crucial in the proof of our main result.

It should be pointed out that if the diffusion process (2.1) is nondegenerate, that is, if {V1(x), . . . , Vd(x)} generate
the tangent space TxR

N ∼=R
N at each point x ∈R

N , then assumptions (A), (B), (C) are all verified.

For n ≥ 1, j1, . . . , jn ∈ {1,2, . . . ,N}, define the iterated Stratonovich’s integral of order n:

[j1, . . . , jn]s,t =
∫

s<t1<···<tn<t

◦dX
j1
t1

◦ dX
j2
t2

◦ · · · ◦ dX
jn
tn

, 0 ≤ s < t ≤ 1.

Alternatively, [j1, . . . , jn]s,t can be defined inductively by the following relation:

[j1, . . . , jn]s,t =
∫

s<u<t

[j1, . . . , jn−1]s,u ◦ dX
jn
u , 0 ≤ s < t ≤ 1,
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where [j1]s,t is defined to be

[j1]s,t =
∫

s<u<t

◦dX
j1
u = X

j1
t − X

j1
s , 0 ≤ s < t ≤ 1.

For convenience, if n = 0, we denote [j1, . . . , jn]s,t = 1. The family{[j1, . . . , jn]0,1 : j1, . . . , jn ∈ {1,2, . . . ,N}, n ≥ 0
}

of iterated Stratonovich’s integrals is called the Stratonovich signature of Xt over [0,1].
Let F1 be the completion of the σ -algebra generated by the diffusion process Xt over [0,1], and let G1 be the

completion of the σ -algebra generated by the Stratonovich’s signature of Xt over [0,1]. More precisely,

F1 = σ(Xt : 0 ≤ t ≤ 1),

G1 = σ
({[j1, . . . , jn]0,1 : j1, . . . , jn ∈ {1,2, . . . ,N}, n ≥ 0

})
.

For the case of Brownian motion, it was proved by Y. Le Jan and Z. Qian in [6] that

F1 = G1.

Such result for diffusion processes in our setting can be proved in the present paper. However, we are going to
formulate the problem in a more illustrative way, which to some extend reveals how we can reconstruct the diffusion
paths from the Stratonovich’s signature over [0,1] in a conceivable way.

First we need the following definition.

Definition 2.1. A piecewise linear trajectory (P.L.T.) T in R
N is a finite sequence of points in R

N (not necessarily all
distinct). Here we always assume that the number of points in T is greater than one (if T consists of only one point x,
we will regard T as the finite sequence (x, x)). For a P.L.T. T in R

N , the number of points in T will be denoted by |T |.
If the points of T belongs to a subset Γ ⊂R

N , we say that T is a P.L.T. in Γ .

The reason why we use the notion “piecewise linear trajectory” is that when given T , we actually think of T as
a piecewise linear graph by connecting the points in T by line segments in order. Here we should point out that the
order of points in T is rather important, and no parametrizations are involved.

Definition 2.2. For n ≥ 2, a parametrization σ of order n is a partition of the time interval [0,1] into n − 1 nontrivial
subintervals:

σ : 0 = t1 < t2 < · · · < tn−1 < tn = 1.

The space of all parametrizations of order n will be denoted by Pn.
Let T be a P.L.T. in R

N and let σ be a parametrization of order |T |. The piecewise linear path over [0,1] defined
by applying linear interpolation of T along the parametrization σ is denoted by T (t |σ).

Our formulation of the problem is related to a kind of convergence which is parametrization free. Therefore, we
need the following definition of convergence in trajectory.

Definition 2.3. Let (γt )0≤t≤1 be a continuous path in R
N . A sequence {T (n)} of P.L.T.s is said to be converging in

trajectory to (γt )0≤t≤1 if

lim
n→∞ inf

σ∈P|T (n)|
sup

0≤t≤1

∣∣γt − T (n)(t |σ)
∣∣ = 0.

Remark 2.2. Such kind of convergence modulo parametrization is similar to the notion of Fréchet distance, which
was originally introduced by M. Fréchet in the study of shapes of geometric spaces.
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Now we are in a position to state our main result.

Theorem 2.1. Let Z be the space of P.L.T.s in Z
N equipped with the discrete σ -algebra. Then there exists a se-

quence {T (n)} of Z-valued G1-measurable random variables (random P.L.T.s), such that with probability one, 1
n

·T (n)

converges in trajectory to the diffusion paths (Xt )0≤t≤1.

It seems that the statement of Theorem 2.1 does not contain much information about the approximating sequence
{T (n)}. However, when from the proof in the next section, we will see that T (n) is constructed in a quite explicit way.

It should be pointed out that the result of Theorem 2.1 was already implicitly proved in [6] for the case of Brownian
motion.

A direct consequence of Theorem 2.1 is the result based on Y. Le Jan and Z. Qian’s formulation.

Theorem 2.2. F1 = G1.

Before proving our main result Theorem 2.1 in the next section, we first illustrate the idea and main steps of the
proof.

We adopt the scheme and the key observation that the diffusion paths can be recovered by reading out the maximal
sequence of well-chosen compactly supported differential 1-forms such that the iterated Stratonovich’s integral of
those 1-forms (extended Stratonovich’s signature) along the diffusion paths over the duration of visiting their supports
is nonzero, which were proposed in [6].

The idea of the proof of Theorem 2.1 is the following.
Firstly, decompose the Euclidean space R

N into disjoint small boxes and narrow tunnels. By recording the suc-
cessive visit times of those small boxes, we can construct a piecewise linear approximation of the diffusion paths.
A convergence theorem can be proved by developing certain types of estimates of rare events for the diffusion pro-
cess. By enlarging the size of those small boxes a little bit (by a higher order infinitesimal relative to the size of
boxes), we can similarly get another piecewise linear approximation also converging to the diffusion paths as the size
of boxes goes to zero. Secondly, we construct a family of “special” differential 1-forms on R

N (depending on the size
of boxes) in a way that for any larger box, we construct a 1-form supported in it such that it is highly nondegenerate
on the inner smaller box. The crucial observation is that the Stratonovich’s integral of any of those 1-forms along
the diffusion paths over the duration of visit of its support is nonzero. It turns out that for a diffusion path, we can
read out an associated unique maximal finite sequence of 1-forms (a P.L.T.) recording a sequence of boxes in order
such that the iterated Stratonovich’s integral of this sequence of 1-forms (extended Stratonovich’s signature) along
the diffusion path over the duration of visiting their supports is nonzero. It provides us with sufficient information to
recover the diffusion path by taking limit in a reasonable way. This is due to the fact that based on our construction, we
can prove that such a maximal sequence always “lies” between the two piecewise linear approximations constructed
before, both of which converge to the diffusion path. Here we need to develop a kind of squeeze theorem for the type
of convergence (convergence in trajectory in the setting of P.L.T.s defined as before) in our situation.

To carry out the above idea, we are going to establish the following three steps.
(1) Step one: proving a convergence result for the piecewise linear approximation based on successive visit times

of small boxes.
The proof consists of two ingredients. The first one is a probabilistic estimate of the number of boxes visited over

the time duration [0,1], which can be developed by using a random time change technique. It turns out that we can
reduce to the Brownian motion case. The importance of such an estimate is that we can get an asymptotic rate of the
probability that the number of boxes visited over [0,1] is quite large. The second one is the probabilistic estimate of
the uniform distance between the piecewise linear approximation path and the original diffusion path, provided the
number of boxes visited over [0,1] is fixed. This can be done by using the Strong Markov property and a quantitative
result in [1] by G. Ben Arous, S. Kusuoka and D. W. Stroock, which gives us control on the density of the Poisson
kernel of a given bounded domain in R

N and enables us to estimate the probability that the diffusion process travels
through narrow tunnels. Combining the two ingredients, it is not hard to prove the convergence result by using the
Borel–Cantelli’s lemma via a subsequence.

(2) Step two: constructing special differential 1-forms and using extended Stratonovich’s signatures.
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For any larger box, we are going to construct a suitable differential 1-form supported in it and highly nondegenerate
on the inner smaller box. The construction of such a differential 1-form can be reduced to the construction of a
differential 1-form such that the generator of some associated SDE with dimension N +1 is hypoelliptic on the support
of the differential 1-form. The family of differential 1-forms constructed in such a way will be used to construct
extended Stratonovich’s signatures, which in turn will be used to recover the diffusion paths as stated in the idea of
the proof.

(3) Step three: proving a squeeze theorem for convergence in trajectory to recover the diffusion paths.
From the above two steps we constructed two sequences of piecewise linear approximations of the diffusion paths,

and between which a sequence of P.L.T.s in terms of extended Stratonovich signatures. We will formulate the term
“lying between” in a rigorous way in the setting of P.L.T.s and prove a squeeze theorem for convergence in trajectory
which fits our situation. Here the squeeze theorem we are going to prove is not in the most general case (we need to
make use of special parametrizations), so we need to modify the piecewise linear approximation associated to larger
boxes to fit our case.

An advantage of using such a squeeze theorem is that we can get around the estimates based on potential theory and
partial differential equations, which was used in [6] for the Laplace operator. In fact, for a general elliptic operator L,
the associated partial differential equation may not be well-posed and the conditions to ensure a (regular) probabilistic
representation of a solution is quite restrictive and technical.

3. Proof of the main result

In this section, we will give the detailed proof of our main result Theorem 2.1.
Recall that {Xt : t ≥ 0} is an N -dimensional diffusion process defined by the following SDE:

dXt =
d∑

α=1

Vα(Xt ) ◦ dWα
t + V0(Xt )dt

with X0 = 0, in which the generating vector fields satisfy assumptions (A), (B), (C).
In the following the coordinates of x ∈ R

N is taken with respect to the orthonormal basis given in assumption (C).

3.1. Discretization and an approximation result

Similar to the idea of Y. Le Jan and Z. Qian, we first construct a suitable approximation scheme for the diffusion paths.
For convenience, a constant is called universal if it depends only on the generator L and the dimensions N,d .

Moreover, sometimes we may use the same notation to denote universal constants coming out from estimates, although
they may be different from line to line.

Let 0 < ε < 1. For z = (z1, . . . , zN) ∈ Z
N , let Hε

z be the N -cube in R
N defined by

Hε
z =

{
(x1, . . . , xN) : εzi − ε − εμ

2
≤ xi ≤ εzi + ε − εμ

2
, i = 1,2, . . . ,N

}
,

where μ is some universal constant to be chosen later on.
For technical reasons we assume that the boundary of Hε

z is smoothed to the order of ε2μ. Such a smoothing
procedure can be done in a simple geometric way, or by using standard mollifiers. In the case of N = 2, we can simply
replace each corner of Hε

z by a quarter of a circle with radius ε2μ. The space R
N is then divided into disjoint small

boxes and narrow tunnels.
Now we are going to construct an approximation of diffusion paths Xt over the time duration [0,1].
Let τ ε

0 = 0 and mε
0 = (0, . . . ,0). For k ≥ 1, define

τ ε
k = inf

{
t > τε

k−1 : Xt ∈
⋃

z �=mε
k−1

Hε
z

}
.
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If τ ε
k < ∞, define mε

k be the integer point in Z
N such that Xτε

k
∈ Hε

mε
k
; if τ ε

k = ∞, define mε
k = mε

k−1. Intuitively, the

sequence of hitting times {τ ε
k }∞k=0 records the successive visit times of the small boxes and the sequence of integer

points {mε
k}∞k=0 records the boxes visited by the diffusion paths in order (revisit of the same box before visiting other

boxes does not count). Note that it is possible that P(τε
k = ∞) > 0 since with positive probability the process can

always stay in narrow tunnels after leaving some box.
Let Mε

H be the number of boxes visited by the diffusion paths over the time duration [0,1]. Formally,

Mε
H = inf

{
k ≥ 0 : τ ε

k+1 > 1
}
.

It follows from uniform continuity of the diffusion paths over [0,1] that Mε
H < ∞ for almost surely.

By a standard random time change argument, we can prove the following.

Lemma 3.1. Let C = max{‖V1‖∞, . . . ,‖Vd‖∞,‖V0 + 1
2

∑d
α=1 ∇VαVα‖∞}. Then for any k > 2C

εμ ,

P
(
Mε

H = k
) ≤ 4Nke−(ε2μk)/(8NdC2).

Proof. For k ≥ 1, it is obvious that

P
(
Mε

H = k
) = P

(
τ ε
k ≤ 1, τ ε

k+1 > 1
)

≤ P

(
k⋃

l=1

{
τ ε
l − τ ε

l−1 ≤ 1

k
, τ ε

k ≤ 1

})

≤
k∑

l=1

P

(
τ ε
l − τ ε

l−1 ≤ 1

k
, τ ε

k ≤ 1

)

≤
k∑

l=1

P
(

sup
0≤t≤1/k

∣∣Xt+τε
l−1

− Xτε
l−1

∣∣ ≥ εμ, τ ε
l−1 < ∞

)
,

where the last inequality comes from the fact that the distance between two different boxes is bounded from below by
εμ. By the strong Markov property, it suffices to estimate

P
(

sup
0≤t≤1/k

|Xt − x| ≥ εμ
)
,

where Xt is the diffusion process defined by (2.1) starting at x ∈R
N .

By rewriting (2.1) in the sense of Itô, we have{
dXt = ∑d

α=1 Vα(Xt )dWα
t + Ṽ0(Xt )dt,

X0 = x,

where Ṽ0 = V0 + 1
2

∑d
α=1 ∇VαVα . It follows that for k > 2C

εμ , we have

P
(

sup
0≤t≤1/k

|Xt − x| ≥ εμ
)

= P

(
sup

0≤t≤1/k

∣∣∣∣∣
d∑

α=1

∫ t

0
Vα(Xs)dWα

s +
∫ t

0
Ṽ0(Xs)ds

∣∣∣∣∣ ≥ εμ

)

≤ P

(
sup

0≤t≤1/k

∣∣∣∣∣
d∑

α=1

∫ t

0
Vα(Xs)dWα

s

∣∣∣∣∣ ≥ εμ

2

)

≤
N∑

i=1

P

(
sup

0≤t≤1/k

∣∣∣∣∣
d∑

α=1

∫ t

0
V i

α(Xs)dWα
s

∣∣∣∣∣ ≥ εμ

2
√

N

)
.
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By using a standard random time change technique and the inequality∫ ∞

x

1√
2π

e−(1/2)t2
dt ≤ e−(1/2)x2

, x > 0,

it is then easy to obtain that

P
(

sup
0≤t≤1/k

|Xt − x| ≥ εμ
)

≤ 4Ne−(ε2μk)/(8NdC2).

Therefore, we have

P
(
Mε

H = k
) ≤ 4Nke−(ε2μk)/(8NdC2), k >

2C

εμ
,

and the proof is complete. �

Now we define polygonal approximations of the diffusion paths through successive visits of those boxes. More
precisely, if Mε

H = 0, define Xε
t ≡ (0,0, . . . ,0) on [0,1]; otherwise for 1 ≤ k ≤ Mε

H , define

Xε
t = τ ε

k − t

τ ε
k − τ ε

k−1
εmε

k + t − τ ε
k−1

τ ε
k − τ ε

k−1
εmε

k−1, t ∈ [
τ ε
k−1, τ

ε
k

]
,

and on [τMε
H
,1], define Xε

t ≡ εmε
Mε

H
. Figure 1 illustrates the construction.

Now we have the following convergence result. The proof is developed for arbitrary dimension N ≥ 2, but in the
case of N = 2 the idea is easier to visualize.

Proposition 3.1. There exists a subsequence εn → 0, such that with probability one, (X
εn
t )0≤t≤1 converges uniformly

to the diffusion paths (Xt )0≤t≤1 on [0,1] as n → ∞.

Proof. We aim at estimating the following probability

P
(

sup
0≤t≤1

∣∣Xε
t − Xt

∣∣ > λε
)
,

where λ is a large universal constant to be chosen later on. For convenience, we will assume that λ
12 is a positive

integer.

Fig. 1. This figure illustrates the construction of the polygonal approximation of the diffusion path. Here the total number of boxes visited by the
path in order is 8.
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For this purpose, let k be a large integer to be chosen later on (may depend on ε). It follows that

P
(

sup
0≤t≤1

∣∣Xε
t − Xt

∣∣ > λε
)

≤
k∑

l=0

P
(

sup
0≤t≤1

∣∣Xε
t − Xt

∣∣ > λε,Mε
H = l

)
+ P

(
Mε

H > k
)

≤
k∑

l=0

P

(
l⋃

j=1

{
sup

τ ε
j−1≤t≤τε

j

∣∣Xε
t − Xt

∣∣ > λε,Mε
H = l

}
∪

{
sup

τ ε
l ≤t≤1

∣∣Xε
t − Xt

∣∣ > λε,Mε
H = l

})
+ P

(
Mε

H > k
)

≤
k∑

l=0

[
l∑

j=1

P
(

sup
τ ε
j−1≤t≤τε

j

∣∣Xε
t − Xt

∣∣ > λε, τ ε
j ≤ 1

)
+ P

(
sup

τ ε
l ≤t≤1

∣∣Xε
t − Xt

∣∣ > λε,Mε
H = l

)]
+ P

(
Mε

H > k
)
.

We first estimate P(supτ ε
j−1≤t≤τε

j
|Xε

t −Xt | > λε, τ ε
j ≤ 1). The idea is the following: the event {supτ ε

j−1≤t≤τε
j
|Xε

t −
Xt | > λε, τ ε

j ≤ 1} implies that after time τ ε
j−1, the process must have travelled through many narrow tunnels and

spread far away from Hε
mε

j−1
by many boxes before visiting another box. Define σ0 to be the first time after τ ε

j−1 that

the process arrives at the entrance of some narrow tunnel which is far away from Hε
mε

j−1
with distance at least λ

6 ε

without hitting any other boxes. For 1 ≤ L ≤ λ/12, define σL to be the first time after σL−1 that the process travels
through a narrow tunnel without hitting any boxes other than Hε

mε
j−1

(define σ0 = ∞ if there is no such arrival and

σL = ∞ if there is no such travel through). It is easy to see that{
sup

τ ε
j−1≤t≤τε

j

∣∣Xε
t − Xt

∣∣ > λε, τ ε
j ≤ 1

}
⊂ {σ0 < σ1 < · · · < σλ/12 < ∞}.

Thus it suffices to estimate P(σ0 < σ1 < · · · < σλ/12 < ∞). This can be done by using the strong Markov property
and a quantitative estimate for the Poisson kernel of some nice domain in [1]. In fact, by the strong Markov property,

P(σ0 < σ1 < · · · < σλ/12 < ∞)

= E
[
P

(
σ0 < σ1 < · · · < σλ/12 < ∞|FX

σλ/12−1

)
, σλ/12−1 < ∞]

= E
[
P

Xσλ/12−1 (ω)({
ω′ : ω′ ∈ T (ω)

})
, σ0(ω) < σ1(ω) < · · · < σλ/12−1(ω) < ∞]

,

where T (ω) denotes the set of sample paths ω′ of the diffusion process starting at Xσλ/12−1(ω) such that the first time
of traveling through a narrow tunnel without hitting any boxes is finite. By the assumptions on the generating vector
fields, the generator L and those small boxes Hε

z verify the conditions of Lemma 2.6 in [1]. It follows from the lemma
that the Poisson kernel H(x,dη) of any small box has a continuous density h(x,η) with respect to the normalized
surface measure dη. Moreover, there are universal constants (in particular, not depending on ε) K0, ν0 > 0, such that∣∣h(x,η)

∣∣ ≤ K0 · dist(x, ∂G)/dist(x, η)ν0 ,

for any x in the box and η on the boundary. Since traveling through narrow tunnels implies escaping through narrow
windows of the boundary of some associated domain, it follows that on {ω : σλ/12−1(ω) < ∞},

P
Xσλ/12−1 (ω)({

ω′ : ω′ ∈ T (ω)
}) ≤ K

(
ε − εμ − 2ε2μ

)1−ν0 · εμ

ε
,

for some universal constant K > 0. Now it is clear that if we choose μ to be universal and far greater than ν0, then on
{ω : σλ/12−1(ω) < ∞}, we have

P
Xσλ/12−1 (ω)({

ω′ : ω′ ∈ T (ω)
}) ≤ Kεμ−ν0,
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for some universal constant K > 0. Therefore,

P(σ0 < σ1 < · · · < σλ/12 < ∞) ≤ Kεμ−ν0P(σ0 < σ1 < · · · < σλ/12−1 < ∞).

By induction, it is immediate that

P(σ0 < σ1 < · · · < σλ/12 < ∞) ≤ Kλ/12ε(λ/12)(μ−ν0)P (σ0 < ∞)

≤ Kλ/12ε(λ/12)(μ−ν0).

Therefore, we arrive at

P
(

sup
τ ε
j−1≤t≤τε

j

∣∣Xε
t − Xt

∣∣ > λε, τ ε
j ≤ 1

)
≤ Kλ/12ε(λ/12)(μ−ν0).

The estimate of P(supτ ε
l ≤t≤1 |Xε

t − Xt | > λε,Mε
H = l) is exactly the same as above since on {Mε

H = l}, there will

be no visit of boxes other than Hε
mε

l
during [τ ε

l ,1].
Now consider P(Mε

H > k). By Lemma 3.1, if k > 2C
εμ ,

P
(
Mε

H > k
) =

∞∑
l=k+1

P
(
Mε

H = l
)

≤
∞∑

l=k+1

4Nle−(ε2μl)/(8NdC2)

≤ 4Ne−kC̃ε2μ

(1 − e−C̃ε2μ
)2

+ 4Nke−kC̃ε2μ

1 − e−C̃ε2μ
,

where C̃ = 1
8NdC2 . Choose a universal constant γ � 2μ, and let k = [ 1

εγ ] (when ε is small, the condition k > 2C
εμ in

Lemma 3.1 is satisfied). It follows that

P
(
Mε

H > k
) ≤ C′

(
e−C̃/(εγ−2μ)

(1 − e−C̃ε2μ
)2

+ 1

εγ

e−C̃/(εγ−2μ)

1 − e−C̃ε2μ

)
,

where C′ is a positive universal constant.
Combining with the estimates before, we arrive at

P
(

sup
0≤t≤1

∣∣Xε
t − Xt

∣∣ > λε
)

≤ C′
(

Kλ/12ε(λ/12)(μ−ν0)−2γ + e−C̃/(εγ−2μ)

(1 − e−C̃ε2μ
)2

+ 1

εγ

e−C̃/(εγ−2μ)

1 − e−C̃ε2μ

)
. (3.1)

Finally, choose a positive universal integer λ such that

λ >
24γ + 24

μ − ν0

and λ
12 is a positive integer. By taking εn = 1/n, we have

∞∑
n=1

P
(

sup
0≤t≤1

∣∣Xεn
t − Xt

∣∣ > λεn

)
< ∞.

Borel–Cantelli’s lemma then yields the desired result.
Now the proof is complete. �
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Let μ′ > μ be another universal constant. Define (V ε
z , ζ ε

k ,nε
k,M

ε
V , X̃ε) in the same way as (Hε

z , τ ε
k ,mε

k,M
ε
H ,Xε)

only with μ replaced by μ′, then Proposition 3.1 is also true for X̃ε (with εn = 1
n

as in the proof of Proposition 3.1).
To complete the proof, it remains to trace the diffusion paths via extended Stratonovich’s signatures “between”

smaller boxes Hε
z and larger boxes V ε

z , and prove a squeeze theorem so that we are able to pass to the same limit Xt .

3.2. Constructing differential 1-forms and using extended Stratonovich’s signatures

To trace the diffusion paths by using extended Stratonovich’s signatures, we first need to construct suitable compactly
supported differential 1-forms, such that the Stratonovich’s integral of any such 1-form φ along the diffusion paths
over the duration of visit of suppφ is nonzero with probability one.

To this end, it suffices to construct a suitable differential 1-form φ on R
N with compact support such that the family

of vector fields on R
N+1:{(

V1
φ · V1

)
, . . . ,

(
Vd

φ · Vd

)
;
(

V0
φ · V0

)}
satisfies Hörmander’s condition on (suppφ) ×R

1 so that the generator of the diffusion process on R
N+1 defined by{

dXt = ∑d
α=1 Vα(Xt ) ◦ dWα

t + V0(Xt )dt,

dXN+1
t = φ(Xt) ◦ dXt,

is hypoelliptic on (suppφ) ×R
1, which ensures the existence of smooth probability densities of certain Wiener func-

tionals. Here and thereafter we use the geometric notation for convenience (so Vα is a regarded as a column vector and
φ is regarded as a row vector in R

N ). In fact, if this is possible, then we can proceed in the same way as Lemmas 2.1–
2.3 in [6] to show that the Stratonovich’s integral of φ along the diffusion paths over the duration of visit of suppφ is
nonzero with probability one, since starting from this point the proof relies only on the strong Markov property and
again the results in [1], which hold true from our assumptions on the generating vector fields {V1, . . . , Vd ;V0}.

Now to make it more precise, for z ∈ Z
N and ε > 0, we are interested in constructing a differential 1-form φε

z such
that

Hε
z ⊂ (

suppφε
z

)◦ ⊂ suppφε
z ⊂ (

V ε
z

)◦
,

and φε
z has the property mentioned before.

The following result gives the desired construction.

Proposition 3.2. Assume that the family of vector field {V1, . . . , Vd;V0} satisfies Hörmander’s condition at every
point x in R

N . Let G be a bounded domain in R
N and W be an open subdomain of G such that

W ⊂⊂ G.

Let η ∈ C∞
0 (RN) be a cut-off function of W , that is, 0 ≤ η ≤ 1, η ≡ 1 on W and η = 0 outside a small neighborhood

of W . Then there exists Λ > 0, such that for any ξ ∈R
N with |ξ | > Λ, if we define the differential 1-form φ on R

N by

φ(x) = η(x)e−(1/2)|x−ξ |2(dx1 + · · · + dxN
)
, (3.2)

and define the vector field Ṽα on R
N+1 (independent of xN+1) by

Ṽα =
(

Vα

φ · Vα

)
, α = 0,1, . . . , d, (3.3)

then the family of vector fields

{Ṽ1, . . . , Ṽd ; Ṽ0}
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satisfies Hörmander’s condition at every point on (suppφ) ×R. In other words, the differential operator L̃ on R
N+1

defined by

L̃ = 1

2

d∑
α=1

Ṽ 2
α + Ṽ0 (3.4)

is hypoelliptic on (suppφ) ×R.

Proof. For a differential 1-form φ on R
N defined by (3.2), define the vector fields

{Ṽ1, . . . , Ṽd ; Ṽ0}
on R

N+1 by (3.3). Note that suppφ is independent of ξ , which will be denoted by K .
Let

Θ1 = {1,2, . . . , d};
Θn = {

(α1, . . . , αn) : αi = 0,1, . . . , d
}
, n ≥ 2;

Θ =
∞⋃

n=1

Θn.

For θ = (θ1, . . . , θn) ∈ Θn, denote |θ | = n, and we use the notation V[θ ] (Ṽ[θ ], respectively) to denote [Vθ1 , [Vθ2 , . . . ,[Vθn−1 ,Vθn ]]] ([Ṽθ1, [Ṽθ2 , . . . , [Ṽθn−1 , Ṽθn]]], respectively).
We first prove that for any θ ∈ Θ , Ṽ[θ ] can be written as

Ṽ[θ ] =
(

V[θ ]
g[θ ] + φ · V[θ ]

)
for some g[θ ] ∈ C∞

b (RN+1) independent of xN+1. In fact, when θ ∈ Θ1, it is just the definition of Ṽ[θ ]. Assume that it
is true for any θ ∈ Θn. Let θ ∈ Θn+1, then there exists some 0 ≤ α ≤ d and θ ′ ∈ Θn, such that

V[θ ] = [Vα,V[θ ′]], Ṽ[θ ] = [Ṽα, Ṽ[θ ′]].
By the induction hypothesis, we have

Ṽ[θ ] =
[(

Vα

φ · Vα

)
,

(
V[θ ′]

g[θ ′] + φ · V[θ ′]

)]
=

( [Vα,V[θ ′]]
∇N(g[θ ′] + φ · V[θ ′]) · Vα − ∇N(φ · Vα) · V[θ ′]

)
=

(
V[θ ]

g[θ ] + φ · V[θ ]

)
,

where

g[θ ] = ∇Ng[θ ′] · Vα + V T
[θ ′] · ∇NφT · Vα − V T

α · ∇NφT · V[θ ′] ∈ C∞
b

(
R

N+1),
which is independent of xN+1. Here ∇N denotes the gradient operator with respect to x(N) = (x1, . . . , xN) and (·)T
denotes the transpose operator.

Now we are going to prove the result by a compactness argument.
A key observation is that for any fixed θ ∈ Θ , let g[θ ] ∈ C∞

b (RN+1) be such that

Ṽ[θ ] =
(

V[θ ]
g[θ ] + φ · V[θ ]

)
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as in the previous discussion, then g[θ ] is of the form

g[θ ](x) = p[θ ](ξ ;x)e−(1/2)|x−ξ |2 ,

where p[θ ](ξ ;x) is a polynomial in ξ = (ξ1, . . . , ξN ) with C∞
b coefficients depending only on x(N). Here the degree

of p[θ ] is at most |θ | − 1. In other words,

p[θ ](ξ ;x) =
|θ |−1∑
j=0

∑
|α|=j

cα

(
x(N)

)
ξα.

Fix x0 = (x
(N)
0 , xN+1

0 ) ∈ K◦ × R
1, where x

(N)
0 = (x1

0 , . . . , xN
0 ) ∈ R

N . By the hypoellipticity of L and continuity,

there exists a neighborhood U ⊂ K◦ of x
(N)
0 and θ(1), . . . , θ (N) ∈ Θ , such that for any x(N) ∈ U ,{

V[θ(1)]
(
x(N)

)
, . . . , V[θ(N)]

(
x(N)

)}
constitutes a basis of RN . It follows that for any x ∈ U ×R

1, the family of vectors in R
N+1{

Ṽ[θ(1)](x), . . . , Ṽ[θ(N)](x)
}

generate an N -dimensional subspace of RN+1. Let M = max{|θ(1)|, . . . , |θ(N)|}. Again by the assumptions on L and
continuity, it is possible to choose θ ∈ Θ with |θ | > M , such that

degree(p[θ ]) > M (3.5)

in some compact neighborhood U0 ⊂ U of x
(N)
0 . In particular, the choice of θ and U0 is independent of the ξ since

the coefficients of p[θ ] are functions of x only.
Now we are going to show that there exists Λ > 0, such that when ξ ∈ R

N with |ξ | > Λ, the vector field Ṽ[θ ]
cannot be generated by {Ṽ[θ(1)], . . . , Ṽ[θ(N)]} in U0 ×R

1, so that

dim Span{Ṽ[θ(1)], . . . , Ṽ[θ(N)], Ṽ[θ ]} = N + 1,

which yields the hypoellipticity of L̃ defined by 3.4 in U0 ×R
1.

To prove this, first notice that there exists λi(x(N)) ∈ C∞
b (U0), such that

V[θ ]
(
x(N)

) =
N∑

i=1

λi
(
x(N)

)
V[θ(i)]

(
x(N)

)
, for x(N) ∈ U0.

Moreover, from (3.5) it is easy to see that there exists Λ > 0, such that

p[θ ](ξ ;x) �=
N∑

i=1

λi
(
x(N)

)
p[θ(i)](ξ ;x) (3.6)

for ξ ∈ R
N with |ξ | > Λ and x ∈ U0 ×R

1. If

Ṽ[θ ](x1) ∈ Span
{
Ṽ[θ(1)](x1), . . . , Ṽ[θ(N)](x1)

}
for some x1 ∈ U0 ×R

1, then we must have

Ṽ[θ ](x1) =
N∑

i=1

λi
(
x

(N)
1

)
Ṽ[θ(i)](x1).
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It follows from simple calculation that

g[θ ](x1) =
N∑

i=1

λi
(
x

(N)
1

)
g[θ(i)](x1). (3.7)

This is a contradiction to (3.6) when |ξ | > Λ. Therefore, Ṽ[θ ] cannot be generated by {Ṽ[θ(1)], . . . , Ṽ[θ(N)]} in U0 ×R
1

if we choose ξ with |ξ | > Λ in the definition of φ.
The case when x0 ∈ ∂K ×R

1 can be proved in the same way by replacing U0 with U0 ∩ K .
Finally, combining with the above local results and by the compactness of K , we are able to choose Λ > 0 (de-

pending on K), such that for any ξ ∈ R
N with |ξ | > Λ, the differential operator L̃ is hypoelliptic on K ×R

1.
Now the proof is complete. �

For z ∈ Z
N and ε > 0, by taking W = Hε

z and G = V ε
z , we can construct a differential 1-form φε

z supported in G

according to Lemma 3.2 (just take some fixed admissible ξ ∈R
N as in the lemma). By proceeding in the same way as

in [6], we conclude that the Stratonovich’s integral of φε
z along the diffusion paths over the duration of visit of suppφε

z

is nonzero with probability one.
Now we are going to construct extended Stratonovich’s signatures to trace the original diffusion paths by using

these differential 1-forms φε
z .

We first define extended Stratonovich’s signatures formally.
For smooth differential forms ψ1, . . . ,ψk on R

N , the iterated Stratonovich’s integral [ψ1, . . . ,ψk]s,t (0 ≤ s <

t ≤ 1) defined inductively by

[
ψ1, . . . ,ψk

]
s,t

=
∫

s<u<t

[
ψ1, . . . ,ψk−1]

s,u
ψk(◦dXu),

where

[
ψ1]

s,t
=

N∑
i=1

∫
s<u<t

ψ1
i (Xu) ◦ dXi

u,

is called an extended Stratonovich’s signature of the diffusion process Xt .
The following lemma allows us to use extended Stratonovich’s signatures for our study. The case of Brownian

motion was proved in [6], but we can easily adopt the proof to the our case without changing anything (in fact, the
proof does not rely on probabilistic features, but only on paths). Recall that G1 is the completion of the σ -algebra
generated by the Stratonovich’s signature of Xt over [0,1].

Lemma 3.2. If ψ1, . . . ,ψk are smooth differential 1-forms on R
N with compact supports, then[

ψ1, . . . ,ψk
]

0,1

is G1-measurable.

Proof. See [6], Lemma 1.3. �

For m ≥ 0, let

Wm = {(
z0 = (0, . . . ,0), z1, . . . , zm

) : zi ∈ Z
N, zi �= zi−1, i = 1,2, . . . ,m

}
.

An element (z0, z1, . . . , zm) ∈Wm is called an admissible word of length m + 1. For ε > 0, define the G1-measurable
random variable Mε to be the supremum of those m ≥ 0 such that[

φε
z0

, φε
z1

, . . . , φε
zm

]
0,1 �= 0
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for some admissible word (z0, z1, . . . , zm) ∈ Wm. It follows that Mε
H ≤ Mε ≤ Mε

V for almost surely. For m ≥ 0,
(z0, z1, . . . , zm) ∈ Wm, define

Aε
m;(z0,z1,...,zm) = {

ω : Mε = m,
[
φε

z0
, φε

z1
, . . . , φε

zm

]
0,1 �= 0

}
,

then {Aε
m;(z0,z1,...,zm)

: m ≥ 0, (z0, z1, . . . , zm) ∈ Wm} are mutually disjoint G1-measurable sets whose union is the

whole space Ω . See [6] for a more detailed discussion.
Let

W =
∞⋃

m=0

Wm

be the space of admissible words. For ε > 0, define the mapping Yε : Ω → W ,

Yε(ω) = (z0, z1, . . . , zm),

if (z0, z1, . . . , zm) is such that

ω ∈ Aε
m;(z0,z1,...,zm).

It follows that Yε is well-defined and G1-measurable. Intuitively, Yε is the maximal admissible word such that the
associated extended Stratonovich’s signature is nonzero. It is natural to believe that Yε records a reasonable amount
of information of the diffusion paths and as ε → 0, it might be possible to recover the diffusion paths.

3.3. Completing the proof: A squeeze theorem for convergence in trajectory

In Section 2, we defined piecewise linear trajectories (P.L.T.s), parametrization of a P.L.T., and introduced the concept
of convergence in trajectory. In this section, we are going to show that if Yε is regarded as a P.L.T. in Z

N , then by
taking εn = 1

n
, with probability one, εn · Yεn converges in trajectory to (Xt )0≤t≤1, which completes the proof of our

main theorem.
Recall that a P.L.T. T is essentially a finite sequence of points in R

N (not necessarily all distinct).

Definition 3.1. For a P.L.T. T , T − is denoted as the new P.L.T. by removing the last point of T . Let T1,T2 be two
P.L.T.s. T1 is called a sub-P.L.T. of T2 (denoted by T1 ≺ T2) if T1 is a subsequence of T2.

By the convergence result and the construction of φε
z in the last two subsections, if we denote X ε (respectively,

X̃ ε) as the associated P.L.T. of the piecewise linear path Xε (respectively, X̃ε), then it is immediate that(
X ε

)− ≺ ε ·Yε ≺ (
X̃ ε

)−
,

with probability one, and X εn and X̃ εn both converges in trajectory to (Xt )0≤t≤1. Therefore, it is natural to claim a
certain kind of squeeze theorem for convergence in trajectory so we may conclude that Yεn also converges in trajectory
to (Xt )0≤t≤1 with probability one.

The following result is a squeeze theorem for convergence in trajectory we are looking for, which is sufficient for
our use.

Proposition 3.3. Assume that {T (n)
1 }, {T (n)

2 } are two sequence of P.L.T.s such that:

(1) the first points of T (n)
1 and T (n)

2 are identical;

(2) the last two points of T (n)
i are identical (i = 1,2).
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Let σ
(n)
i be a parametrization of T (n)

i (i = 1,2) such that the partition points in σ
(n)
1 belong to the partition points

in σ
(n)
2 and for any t < 1 in σ

(n)
1 ,

T (n)
1

(
t |σ (n)

1

) = T (n)
2

(
t |σ (n)

2

)
.

(This assumption implies that (T (n)
1 )− ≺ (T (n)

2 )−.) Let {T (n)} be a sequence of P.L.T.s such that(
T (n)

1

)− ≺ T (n) ≺ (
T (n)

2

)−
,

and (γt )0≤t≤1 be a continuous path in R
N such that

lim
n→∞ sup

0≤t≤1

∣∣T (n)
i

(
t |σ (n)

i

) − γt

∣∣ = 0, i = 1,2.

Then we can choose a parametrization σ (n) of T (n), such that

lim
n→∞ sup

0≤t≤1

∣∣T (n)
(
t |σ (n)

) − γt

∣∣ = 0.

In particular, T (n) converges in trajectory to (γt )0≤t≤1.

Proof. For any ε > 0, there exists n0 > 0, such that for any n > n0,

sup
0≤t≤1

∣∣T (n)
i

(
t |σ (n)

i

) − γt

∣∣ < ε, i = 1,2. (3.8)

On the other hand, it is obvious that we are able to construct a parametrization σ (n) of T (n), such that:

(1) the partition points of σ
(n)
1 belong to the partition points in σ (n), and for any t < 1 in σ

(n)
1 ,

T (n)
1

(
t |σ (n)

1

) = T (n)
(
t |σ (n)

);
(2) the partition points in σ (n) belong to the partition points in σ

(n)
2 , and for any t < 1 in σ (n),

T (n)
(
t |σ (n)

) = T (n)
2

(
t |σ (n)

2

)
.

Let tn be the largest time spot in σ
(n)
1 such that tn < 1. Let un < vn be any consecutive time spots in σ (n), then on

[un, vn] both T (n)
1 (·|σ (n)

1 ) and T (n)(·|σ (n)) are linear. Therefore, by an elementary result on the comparison for linear
paths, we have

sup
un≤t≤vn

∣∣T (n)
1

(
t |σ (n)

1

) − T (n)
(
t |σ (n)

)∣∣
≤ max

{∣∣T (n)
1

(
un|σ (n)

1

) − T (n)
(
un|σ (n)

)∣∣, ∣∣T (n)
1

(
vn|σ (n)

1

) − T (n)
(
vn|σ (n)

)∣∣}. (3.9)

If vn ≤ tn, then

T (n)
(
un|σ (n)

) = T (n)
2

(
un|σ (n)

2

)
, T (n)

(
vn|σ (n)

) = T (n)
2

(
vn|σ (n)

2

)
.

It follows from (3.8) and (3.9) that

sup
un≤t≤vn

∣∣T (n)
1

(
t |σ (n)

1

) − T (n)
(
t |σ (n)

)∣∣ < 2ε, n > n0.
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If un ≥ tn, since the last two points of T (n)
1 are identical (denoted by x(n)), it follows that

sup
un≤t≤vn

∣∣T (n)
1

(
t |σ (n)

1

) − T (n)
(
t |σ (n)

)∣∣
≤ max

{∣∣x(n) − T (n)
(
un|σ (n)

)
,
∣∣x(n) − T (n)

(
vn|σ (n)

)∣∣∣∣}.
Obviously

T (n)
(
un|σ (n)

) = T (n)
2

(
un|σ (n)

2

)
.

But it may not be true for vn since it is possible that vn = 1. However, since T (n) ≺ T (n)
2 , there exists some wn > un,

such that

T (n)
(
vn|σ (n)

) = T (n)
2

(
wn|σ (n)

2

)
(wn = vn if vn < 1).

Due to the fact that T (n)
1 ≡ x(n) on [tn,1], we arrive again at

sup
un≤t≤vn

∣∣T (n)
1

(
t |σ (n)

1

) − T (n)
(
t |σ (n)

)∣∣ < 2ε, n > n0.

Consequently,

sup
0≤t≤1

∣∣T (n)
1

(
t |σ (n)

1

) − T (n)
(
t |σ (n)

)∣∣ < 2ε, n > n0.

It follows that

lim
n→∞ sup

0≤t≤1

∣∣T (n)
(
t |σ (n)

) − γt

∣∣ = 0,

and in particular, T (n) converges in trajectory to (γt )0≤t≤1.
Now the proof is complete. �

In order to apply Proposition 3.3, we are going to modify X̃ ε and choose a suitable parametrization based on the one
for X̃ ε specified in Section 3.1, which is chosen according to the successive visit time of larger boxes for the diffusion
paths (excluding revisit of the same box before visiting other boxes), so that the assumptions of Proposition 3.3 are
all verified.

The method is the following. By using the notation in Section 3.1, if (ζ ε
k , τ ε

l , ζ ε
k+1) is such that

ζ ε
k < τε

l < ζ ε
k+1 ≤ 1,

then we modify the linear path X̃ε on [ζ ε
k , ζ ε

k+1] to a new path such that it does not move during [ζ ε
k , τ ε

l ] and goes
directly from its initial position at t = τ ε

l to X̃ε
ζ ε
k+1

at t = ζ ε
k+1 with constant velocity. If

ζ ε
k < τε

l < 1 < ζε
k+1,

then we modify the linear path X̃ε on [ζ ε
k ,1] (in fact, X̃ε remains still on [ζ ε

k ,1]) to a path such that during [ζ ε
k , τ ε

l ]
and [τ ε

l ,1] it remains still (equals X̃ε
ζ ε
k
). It seems that such modification is trivial and does not change anything, but it

does make a slight difference if we are using the associated P.L.T. Let X̂ε be the modified piecewise linear path of X̃ε

and let X̂ ε be the associated P.L.T. of X̂ε . If we can prove that X̂εn converges uniformly to (Xt )0≤t≤1 with probability
one, then all the assumptions in Proposition 3.3 for the triple sequence {(X εn , εn ·Yεn, X̂ εn)} are verified, and we will
complete the proof of Theorem 2.1. In fact, it is just a simple modification of the arguments in Section 3.1.

Lemma 3.3. With probability one, (X̂
εn
t )0≤t≤1 converges uniformly to the diffusion paths (Xt )0≤t≤1.
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Proof. As in the proof of Proposition 3.1, we need to estimate P(sup0≤t≤1 |X̂ε
t − Xt | > λε) for some universal

constant λ, which reduces to the estimation of P(supζ ε
j−1≤t≤ζ ε

j
|X̂ε

t − Xt | > λε, ζ ε
j ≤ 1), P(supζ ε

l ≤t≤1 |X̂ε
t − Xt | >

λε,Mε
V = l) and P(Mε

V > k).
For the first quantity, from the definition of X̂ε we have

X̂ε
([

ζ ε
j−1, ζ

ε
j

]) = X̃ε
([

ζ ε
j−1, ζ

ε
j

])
on {ζ ε

j ≤ 1}, regardless of whether the path has visited the smaller box Hε
nε

j−1
during [ζ ε

j−1, ζ
ε
j ]. Therefore, the event

{supζ ε
j−1≤t≤ζ ε

j
|X̂ε

t −Xt | > λε, ζ ε
j ≤ 1} again implies that during [ζ ε

j−1, ζ
ε
j ], the path must have traveled through many

narrow tunnels and spread far away from the box V ε
nε

j−1
before visiting another box. More precisely, again we have

{
sup

ζ ε
j−1≤t≤ζ ε

j

∣∣X̂ε
t − Xt

∣∣ > λε, ζ ε
j ≤ 1

}
⊂ {σ0 < σ1 < · · · < σλ/12 < ∞},

the same as in the proof of Proposition 3.1. Similar arguments apply to the estimation of the second quantity, and the
third quantity has nothing to do with the polygonal approximation.

Therefore, we can apply exactly the same arguments as in the proof of Proposition 3.1 to concluded that

∞∑
n=1

P
(

sup
0≤t≤1

∣∣X̂ε
t − Xt

∣∣ > λεn

)
< ∞,

where λ is the universal constant chosen in that proof. �

Now the proof of Theorem 2.1 is complete.

Remark 3.1. From the proof of Theorem 2.1, it is not hard to see that the global assumption (C) on the generating
vector fields can be weakened to a local one to some extend. In fact, the only property of the vector fields we’ve used
from assumption (C) is that at every point on the boundary of Hε

z , the vector fields V1, . . . , Vd do not generate a
subspace of the tangent space at that point. Therefore, it suffices to assume that for each z and ε, there exists a small
rotation O (an orthogonal transformation) such that after rotating the box Hε

z by O with respect to its center, the
vector fields do not generate a subspace of the tangent space at every point on the boundary. The smallness of the
rotation O can be quantified as follows. If we let

H̃ ε
z = εz + O

(
Hε

z − εz
)

be the rotated box, then O should satisfy the condition that for any x = (x1, . . . , xN) ∈ H̃ ε
z ,

|xi − εzi | < ε

2
, ∀i = 1, . . . ,N.

This is to ensure that the geometric configuration, in particular the tunnel structure, is not damaged, so that the whole
proof of Theorem 2.1 carries through in the same way.
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