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Abstract. We study internal diffusion limited aggregation (DLA) on the two dimensional comb lattice. The comb lattice is a
spanning tree of the Euclidean lattice, and internal DLA is a random growth model, where simple random walks, starting one at a
time at the origin of the comb, stop when reaching the first unoccupied site. An asymptotic shape is suggested by a lower bound of
Huss and Sava (Electron. J. Probab. 17 (2012) 30). We bound the fluctuations with respect to this shape.

Résumé. Nous étudions un modèle d’agrégation limitée par diffusion interne (DLA), sur le peigne bidimensionnel. Le peigne est
un arbre couvrant du réseau cubique, et DLA interne est un modèle de croissance aléatoire : des marches simples, lancées une après
l’autre à l’origine du peigne, s’arrêtent lorsqu’elles atteignent le premier sommet inexploré. Une forme asymptotique est suggérée
par une borne inférieure de Huss et Sava (Electron. J. Probab. 17 (2012) 30). Nous étudions les fluctuations par rapport à cette
forme asymptotique.
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1. Introduction

The comb lattice, denoted C, is an inhomogeneous spanning tree of Z2. Sites z = (x, y) and z′ = (x′, y′) share an edge
if either x = x′ and |y − y′| = 1, or if y = y′ = 0 and |x − x′| = 1; in this case, we say that z and z′ are neighbors.

Internal DLA on C is a Markov chain on the finite subsets of the comb, with initial condition the empty set, and
growing as follows. Assume we have obtained a cluster A. To build the cluster with one more site, launch a simple
random walk on the comb starting at the origin. Stop the random walk when it exits A, say on site z. The new cluster is
the union of A and z, the first visited site outside A. The random walk with the aggregation rule is called an explorer.
We say that the explorer settles on z.

Internal DLA has been first studied on the cubic lattice Zd in d dimension. Diaconis and Fulton [4] introduced it, as
well as many variants, with a special emphasize on the invariance of the cluster with respect to the order in which the
explorers are sent: the so-called Abelian property. Lawler, Bramson and Griffeath [12] established that the normalized
asymptotic shape is the Euclidean sphere in dimension two or more.

Blachère and Brofferio [3] obtained a limiting shape when the graph is a finitely generated group with exponential
growth. Huss [9] studied internal DLA for a large class of random walks on such graphs. Recently, internal DLA
has been considered on the infinite percolation cluster, and the asymptotic shape is a Euclidean ball intersected with
the infinite cluster: Shellef [13] obtained a bound on the inner fluctuations, and Duminil-Copin, Lucas, Yadin and
Yehudayoff [5] obtained the corresponding bound on the outer fluctuations using the inner bound.

It is interesting to study internal DLA on the comb, since it is inhomogeneous, and distinct from a cubic lattice:
a simple random walk is recurrent, however two random walks meet on the average a finite number of times [8]. Also,
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Fig. 1. For ρ = 3.5, D(ρ) and its boundary as balls.

the x and y axes play a different role: in a time n, a simple random walk on the comb, reaches a y-axis displacement of
order n1/2, and an x-axis displacement of order n1/4. To discuss results on the comb, let us introduce some notations.
For any real ρ, we define

D(ρ) =
{
(x, y) ∈R

2: |x| < ρ, |y| < 1

3

(
ρ − |x|)2

}
and D(ρ) = D(ρ) ∩Z

2. (1.1)

See Figure 1. For an integer n, the number of sites in D(n) is denoted d(n), and the internal DLA cluster obtained by
sending d(n) explorers is denoted A(n).

Recently, Huss and Sava [10] have characterized the limiting shape for a related model, the divisible sandpile
introduced in [11], and shown a lower bound for the shape of the internal DLA cluster on the comb.

Theorem 1.1 (Theorem 4.2 of [10]). For any ε > 0, with probability 1, we have for n large enough D(n−εn) ⊂ A(n).

Our main result here is the following improvement.

Theorem 1.2. There is a positive constant a such that with probability 1, and n large enough

D
(
n − a

√
log(n)

) ⊂ A(n) ⊂D
(
n + a

√
log(n)

)
. (1.2)

Remark 1.3. This result does not mean that fluctuations are sub-logarithmic, but rather suggests that they are Gaus-
sian. Indeed, a site z = (x, y) on the boundary of D(n− a

√
log(n)) is at a distance of order 2

3a
√

log(n)(n−|x|) from

the boundary of D(n), whereas the tooth’s length is of order 1
3 (n − |x|)2. Thus, the fluctuations are similar to what

would be observed in a collection of n independent segments whose lengths decrease quadratically. Diaconis and
Fulton in [4] used an urn-representation to obtain a central limit theorem on Z for the right-end of the DLA cluster.
The tip of D(n) has sublogarithmic fluctuations as in Z

d , for d ≥ 3.

Theorem 1.2 follows a classical approach by Lawler, Bramson and Griffeath [12], and requires a study of the
restricted Green’s function on D. It relies also on a deep connection with another cluster growth model, the divisible
sandpile, which was discovered by Levine and Peres [11]. Finally, the limiting shape of the divisible sandpile cluster
was shown to be D(n) on the comb in [10].

It is interesting to note that exit probabilities from the DLA cluster are not uniform, as it is the case for the cubic
lattice, or for discrete groups having exponential growth [3], or for the layered square lattice [7]. To better appreciate
the following estimate, note that for any ρ > 0, the size of the boundary of D(ρ) is of order ρ (see Figure 1).

Proposition 1.4. For any real ρ, and z = (x, y) in the boundary of D(ρ) with x < ρ, we have

1

2

ρ − |x|
ρ2 + 1/3

≤ P0
(
the walk exits D(ρ) at z

) ≤ ρ + 1 − |x|
ρ2 + 1/3

. (1.3)
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However, one important property, which holds also for the cubic lattice, is the following uniform hitting property.

Proposition 1.5. For each ρ > 0, there is a stopping time τ∗
ρ and two positive constants ¯κ, κ̄ , independent on ρ such

that

∀z ∈ D(ρ), ¯κ|D(ρ)| ≤ P0
(
S
(
τ ∗
ρ

) = z
) ≤ κ̄

|D(ρ)| . (1.4)

Proposition 1.5 is crucial in proving some large deviation estimates about the cluster, which in turn, are key in
controlling the outer error.

We now turn to some large deviations estimates which shed more light on the covering mechanism. Note that a
general feature which emerges from all studies is that during the covering process, explorers do not leave holes deep
inside the bulk. Our first lemma deals with the probability an explorer reaches site (R,0), on the x-axis, without
leaving the explored region V 
 (R,0). The result, and its proof, are interesting on their own, and follow closely
Lemma 1.6 of [2]. For a subset Λ in Z

2, let H(Λ) be the first time the random walk hits Λ.

Lemma 1.6. Let R be a positive integer, and V a subset of Z2 containing (0,0) and (R,0). There are positive
constants a3 and κ3, independent of R and V , such that

P0
(
H(R,0) < H

(
V c

)) ≤ exp

(
a3 − κ3

√
R3

|V |
)

. (1.5)

In other words, the random walk cannot reach (R,0) inside V , unless V contains of the order of R3 sites. As a
corollary of Lemma 1.6, we have the following large deviation upper bound. Recall that A(n) is the cluster obtained
when sending |D(n)| explorers at the origin, and that the volume of D(n) is of order n3. In other words, Lemma 1.6
quantifies the probability of making thin tentacles along the x-axis.

Corollary 1.7. There is β,κ2 > 0, such that if R and n are integers with d(n) < βR3, then

P
(
(R,0) ∈ A(n)

) ≤ exp
(−κ2R

2). (1.6)

We wish now to explain how to find the asymptotic shape of the internal DLA cluster built with simple random
walks all started at a distinguished vertex of a graph, say 0. A fundamental observation of Lawler, Bramson and
Griffeath [12] yields a recipe: find an increasing family of subsets of the graph, say {D(ρ), ρ ∈ R} containing 0, such
that the discrete mean value property holds for harmonic functions. More precisely, h is harmonic if for any vertex x

of the graph∑
y neighbor of x

(
h(y) − h(x)

) = 0. (1.7)

Define now, for any subset Λ, and any function h on Λ, the centered average (recall that walks start from 0)

MV(h,Λ) =
∑
z∈Λ

(
h(z) − h(0)

)
. (1.8)

Finally, we say that the mean value property holds on Λ when for any h harmonic, MV(h,Λ) is of smaller order than
the volume of Λ times h(0). Thus, we look for subsets {D(ρ), ρ ∈R}, such that for any ρ, we can show that the mean
value property holds on D(ρ).

The observation of [12] behind the connection between the DLA cluster and the mean value property is as follows.
Each site of the DLA cluster is the settlement of exactly one explorer. Thus, paint green the explorers’ trajectories
until settlement, and add red independent random walks trajectories, starting one on each site of the cluster. The
color-free trajectories, obtained by concatenating the end-point of a green strand with the red strand starting there, are
independent random walks starting from 0. In short, green explorers glued to red walkers make independent random
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walks all started at 0. Now, if D(n) is the shape around which the DLA cluster fluctuates, then the probability a green
explorer exits D(n) from site z in its boundary is small if few deep holes are left as D(n) gets covered. This probability
is bounded by the difference between the expected number of random walks starting at 0 and exiting D(n) from z,
and the expected number of red walkers exiting D(n) from z, with one starting on each site of D(n). This difference
is MV(hz,D(n)), where hz(y) is the probability of exiting D(n) from z when the initial position of the walk is y,
and y �→ hz(y) is a harmonic function. The smaller is MV(hz,D(n)), the better is the control of the fluctuation of the
cluster (see (2.18)).

The discrete mean value property holds for spheres on Z
d , as shown by Levine and Peres (Theorem 1.3 of [11] and

Lemma 6 of [6]) who used the divisible sandpile for that purpose (this property can also be derived from unpublished
estimates of Blachère, see the Appendix of [1]). On the comb, a mean value property for the domain D(n) is essentially
contained in the study of Huss and Sava [10]. This is the starting point of our study.

Let us mention that it is delicate to estimate the shape of the divisible sandpile cluster. For instance on the comb of
Z

3 (where teeth stand on the two dimensional plane), we did not succeed in identifying the sandpile cluster.
The rest of the paper is organized as follows. We start with estimates on restricted Green’s functions in Section 2.

Estimates on the Green’s function, Propositions 2.2 and 2.3 are the key technical novelties here. In Section 2.3, we
recall the classical approach developed in [12]. The mean value property is proved in Section 2.4. The large devia-
tions estimate Lemma 1.6 and Corollary 1.7 are proved in Section 3. Finally, inner and outer errors are respectively
estimated in Sections 4 and 5. Finally, in the Appendix, we prove technical properties of the Green’s function, most
notably Proposition 2.2.

2. Preliminaries

2.1. Notation

The comb, denoted C, is a tree rooted at the origin. Any nonzero site has a unique parent: that is its neighbor which is
closer to the origin. It is convenient to call A(z) the parent of z.

The discrete boundary of D(ρ), denoted ∂D(ρ), consists of the sites of Z2 not in D(ρ), but at a distance 1 from
D(ρ). The internal boundary of D(ρ), denoted ∂ID(ρ), consists of sites of D(ρ) at a distance 1 from ∂D(ρ). The
continuous boundary of D(ρ) is denoted ∂D(ρ), and is the curve {(x, y) ∈ R

2: |x| ≤ ρ, |y| = 1
3 (ρ − |x|)2}. The

Euclidean ball of center 0, and radius R is denoted B(R), and

B(R) = B(R) ∩Z
2, with B(R) = {

(x, y) ∈R
2: x2 + y2 < R

}
.

For a subset Λ of Z2, we denote by H(Λ) the time at which a simple random walk on the comb first hits Λ, and
we call Λ+ the intersection of Λ with the positive quadrant.

2.2. On Green’s functions

Henceforth, we consider a simple random walk on the comb C. We establish many results on harmonic functions on
the domain D(ρ). To ease the reading, their proofs are postponed to the Appendix.

For a subset Λ of Z2, let GΛ be Green’s function restricted to Λ. In other words, for x, y ∈ Λ, GΛ(x;y) is the
expected number of visits to y before escaping Λ, when starting on x:

GΛ(x;y) = Ex

[ ∞∑
n=0

1n<H(Λc)1{S(n)=y}

]
. (2.1)

We first approximate Green’s function restricted to D(ρ). For a real x, [x] denotes its integer part.

Lemma 2.1. Let ρ be any positive real, and z = (x, y) ∈D(ρ). Define h as

h(z) = 2(ρ − |x|)
ρ2 + 1/3

(
(ρ − |x|)2

3
− |y|

)
, (2.2)
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and h+ as

h+(z) = 2([ρ] + 1 − |x|)
([ρ] + 1)2 + 1/3 + 1

(
([ρ] + 1 − |x|)2

3
+ 1 − |y|

)
. (2.3)

Then

h(z) ≤ GD(ρ)(0; z) ≤ h+(z). (2.4)

Moreover, assume that z′ ∈ ∂D(ρ), z = A(z′). If y �= 0, then ρ − |x| > 1 and we have

(ρ − |Xz|)
ρ2 + 1/3

≤ GD(ρ)(0; z) ≤ 2([ρ] + 1 − |Xz|)
ρ2 + 1/3

, (2.5)

whereas if y = 0, then

1

4

2(ρ + 1 − |Xz|)
ρ2 + 1/3

≤ GD(ρ)(0; z) ≤ 2([ρ] + 1 − |Xz|)
ρ2 + 1/3

. (2.6)

For simplicity, we denote E(ρ) = H(Dc(ρ)) the exit time from D(ρ). Our second result is our main technical
contribution in estimating hitting probabilities. This in turn allows us to establish accurate Green’s function estimates.

Proposition 2.2. For any positive real ρ, and any integer x, with |x| ≤ ρ, there is a constant κa > 0 independent of ρ

P0
(
H(x,0) < E(ρ)

) ≥ κa

(
ρ − |x|

ρ

)2

. (2.7)

We now estimate the probability of exiting D(ρ) from z ∈ ∂D(ρ). This is equivalent to estimating Green’s function
y �→ GD(ρ)(y,A(z)), since by a last passage decomposition

Py

(
S
(
E(ρ)

) = z
) = 1

deg(A(z))
GD(ρ)

(
y,A(z)

)
. (2.8)

It is convenient for w ∈ Z
2, to denote its two coordinates as Xw and Yw . Also, let Lρ(w) denote the smallest integer

larger or equal than 1
3 (ρ − Xw)2, and sg(x) is the sign of x.

Proposition 2.3. Assume z ∈ ∂D(ρ), and w ∈D(ρ).

(i) When 0 ≤ Xw < Xz or Xw = Xz but sg(Yw) �= sg(Yz), we have

Pw

(
S
(
E(ρ)

) = z
) ≤ 4

κa

Lρ(w) − Yw

Lρ(w)
× (ρ + 1 − Xz)

(ρ − Xw)2
. (2.9)

(ii) When 0 ≤ Xz < Xw , we have

Pw

(
S
(
E(ρ)

) = z
) ≤ 4

κa

Lρ(w) − Yw

Lρ(z)
× (ρ − Xw)

(ρ − Xz)2
. (2.10)

(iii) When Xw < 0 ≤ Xz, there is a constant κ > 0 such that

Pw

(
S
(
E(ρ)

) = z
) ≤ κ

Lρ(w) − Yw

Lρ(w)
× (ρ − |Xw|)3(ρ + 1 − Xz)

ρ5
. (2.11)

(iv) When Xw = Xz and sg(Yw) = sg(Yz), we have

1

2

Yw

Lρ(w)
≤ Pw

(
S
(
E(ρ)

) = z
)
. (2.12)
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Finally, we have the following corollary of Proposition 2.3.

Corollary 2.4. Assume that z ∈ ∂D(ρ). There are constants ¯κ, κ̄ > 0 (independent of n and z) such that

¯κ
(
ρ + 1 − |Xz|

)2 ≤
∑

w∈D(ρ)

Pw

(
S
(
E(ρ)

) = z
)2 ≤ κ̄

(
ρ + 1 − |Xz|

)2
. (2.13)

2.3. On a classical approach

Denote by W(η, z) (resp. M(η, z)) the number of explorers (resp. random walkers) starting on configuration η ∈ N
C

which hit z. Two special initial configurations play a key role in internal DLA: we call d(n)10 the configuration with
d(n) explorers at 0; when Λ is a subset of Z2, we still use Λ, rather than 1Λ, to denote the configuration with one
explorer on each site of Λ. The main observation of [12] yields the following inequality in law

W
(
d(n)10, z

) + M
(
A(n), z

) ≥ M
(
d(n)10, z

)
. (2.14)

An important feature of (2.14) is that W(d(n)10, z) is expressed as a difference of two sums of Bernoulli variables.
However, A(n) is unknown, and as such (2.14) is of little use. Since we want to show that A(n) is close to a deter-
ministic region D(n), we first look for a region I(n) ⊂D(n) which is very likely covered by the cluster A(n), when n

is large. We even require that I(n) be covered by explorers not exiting I(n), and we call AI(n)(n) the cluster made by
these explorers. The possibility to discard trajectories exiting I(n) is made possible by a key observation of Diaconis
and Fulton [4] named the Abelian property: the law of the cluster is independent on the order in which explorers are
launched; this allows to obtain a smaller cluster if we discard some trajectories. The key point now is that by definition

AI(n)(n) ⊂ I(n). (2.15)

Now, for z ∈ I(n), WI(n)(η, z) (resp. MI(n)(η, z)) denotes the number of explorers (resp. walkers starting on η) which
hit z before exiting I(n). When z ∈ ∂ I(n), WI(n)(η, z) (resp. MI(n)(η, z)) still denotes the number of explorers (resp.
walkers starting on η) which exit I(n) from z. The same idea leading to (2.14) yields for z ∈ I(n)

WI(n)

(
d(n)10, z

) + MI(n)(AI(n)(n), z) ≥ MI(n)

(
d(n)10, z

)
, (2.16)

and this inequality becomes an equality when z ∈ ∂ I(n). Using (2.15), we obtain for z ∈ I(n)

WI(n)

(
d(n)10, z

) + MI(n)

(
AI(n)(n), z

) ≥ MI(n)(n10, z). (2.17)

The harmonic function y �→ Py(H(z) ≤ H(∂ I(n))) is denoted hz(y). Taking the expectation of both sides of (2.17)
allows a lower bound on the expectation of W(d(n)10, z)

E
[
W

(
d(n)10, z

)] ≥ E
[
WI(n)

(
d(n)10, z

)] ≥ μ(z) := E
[
MI(n)(n10, z)

] − E
[
MI(n)

(
I(n), z

)]
= (

d(n) − ∣∣I(n)
∣∣) × hz(0) + MV

(
hz, I(n)

)
. (2.18)

If (2.17) were an equality, and using that WI(n)(d(n)10, z) and MI(n)(I(n), z) are independent, we would have the
following bound for the variance of WI(n)(d(n)10, z) (we use that the M’s are sums of Bernoulli)

var
(
WI(n)

(
d(n)10, z

)) = var
(
MI(n)(n10, z)

) − var
(
MI(n)

(
I(n), z

)) ≤ μ(z) +
∑

y∈I(n)

h2
z(y). (2.19)

Even though (2.19) is wrong, and that no bound on the variance is known, [1] shows that for a positive constant κ

P
(
WI(n)

(
d(n)10, z

) = 0
) ≤ exp

(
−κ

μ2(z)

μ(z) + ∑
y∈I(n) h

2
z(y)

)
. (2.20)
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Then, due to the tree structure of the comb I (n) �⊂ A(n) implies that for some z ∈ ∂I (n), WI(n)(z) = 0. We look for a
subset I(n) in D(n) such that the following series on the right hand side converges.

∑
n∈N

P
(
I(n) �⊂ A(n)

) ≤
∑
n∈N

∑
z∈∂ I(n)

P
(
WI(n)

(
d(n)10, z

) = 0
)

≤
∑
n∈N

∑
z∈∂ I(n)

exp

(
−κ

μ2(z)

μ(z) + ∑
y∈I(n) h

2
z(y)

)
. (2.21)

Using Borel–Cantelli, (2.21) implies that almost surely, for n large enough, I(n) ⊂ A(n).
This approach can be implemented if we can estimate μ(z), and the sum of y �→ h2

z(y) over I(n). Note that μ(z)

should be of order (|D(n)| − |I(n)|)hz(0) provided we can show that

∀z ∈ I(n), MV
(
hz, I(n)

) � (∣∣D(n)
∣∣ − ∣∣I(n)

∣∣)hz(0). (2.22)

The divisible sandpile
Levine and Peres [11] have introduced a model, the divisible sandpile, whose cluster is a good candidate for D(n). In
this model, we start with a mass n at the origin of our graph, and topple sand along some sequence of sites. We topple
the sand at a site if its mass is above 1, and we transfer the total mass minus 1 equally to each nearest neighbor. The
toppling sequence is arbitrary provided it covers each site of the graph infinitely often. We call z �→ wn(z) the final
sand distribution, and we call z �→ un(z) the odometer function: that is the amount of sand emitted from each site.
The sandpile cluster is Sn = {z: un(z) > 0}. The key observation is that for any harmonic function on h : Sn →R,

∑
z∈Z2

wn(z)
(
h(z) − h(0)

) = 0. (2.23)

When the graph is the comb C, Huss and Sava obtain in [10] the following result.

Theorem 2.5 (Theorem 3.5 of [10]). There is a positive constant RHS, such that for n large enough

D(n − RHS) ⊂ Sn ⊂D(n + RHS). (2.24)

This result (Theorem 3.5 of [10]) is not precise enough for our purpose, but the arguments in [10] yield easily the
following stronger result. When A,B are subsets of Z2, it is handful to use the notation A+B for Minkowski addition
{z = x + y: x ∈ A,y ∈ B}, and A − B = {z = x − y: x ∈ A,y ∈ B}.

Lemma 2.6. There is a constant RHS > 0, such that for n large enough

D(n) −B(RHS) ⊂ Sn ⊂D(n) +B(RHS). (2.25)

To prove the lemma, it is enough to check that on the (continuous) boundary of D(n), the obstacle function γn

is bounded by a constant, independent of n. By the symmetry of D(n), it is enough to consider x, y both positive
satisfying x ≤ n and y = 1

3 (n − x)2. We recall Huss and Sava’s expression of γn with our normalizing of D(n) (that
is if n′ is their n, then n3 = 9n′/4):

γn(x, y) = 1

2

(
y − 1

2

(
2

3
x2 − tx + 9

24
t2 + 1

6

))2

, (2.26)

with (using the value for T (n) after (3.12) of [10] with our n)

t = T − 20

27

1

T
and T = 4

3
n + O

(
1

n5

)
. (2.27)
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Note that

t = 4

3
n − 5

9

1

n
+ O

(
1

n5

)
and t2 =

(
4

3

)2

n2 − 40

27
+ O

(
1

n2

)
. (2.28)

A simple computation yields for 0 ≤ x ≤ n, and y = 1
3 (n − x)2

γn(x, y) = 1

2

(
− 5

18

x

n
+ 7

36
+ O

(
x

n2

))2

. (2.29)

Thus, for a constant K independent of n,

sup
z∈∂cD(n)

γn(z) ≤ K. (2.30)

Now, the obstacle function is a upper bound for the odometer un which decays by one unit as we move along a
tooth (or along the x-axis), away from the origin. Thus, there is RHS such that Sn ⊂ D(n) + B(RHS). Note that
on ∂(D(n) + B(RHS)) the odometer vanishes, whereas γn is bounded uniformly in n, say by K̃ . Since un − γn

is superharmonic, it satisfies the minimum principle, and satisfies in D(n) + B(RHS) that un ≥ γn − K̃ . Since γn

increases quadratically as we move toward the origin, this implies the lower estimate D(n) − B(RHS) ⊂ Sn for some
constant RHS independent of n.

2.4. On the mean-value property in D(ρ)

Our main result in this section is the following mean value approximation, which relies on Lemma 2.6, where the
constant RHS appears. We consider z ∈ ∂D(ρ), and for y ∈ D(ρ) we set hz(y) = Py(S(E(ρ)) = z).

Lemma 2.7. There is a constant CMV > 0, such that for any ρ > 0 and any z ∈ ∂D(ρ)∣∣MV
(
hz;D(ρ)

)∣∣ ≤ CMVR2
HS. (2.31)

Remark 2.8. For the outer fluctuation, we need a related and simpler result, that we present now. We consider ρ′ <

ρ − RHS, and have that for some positive constant CMV∣∣MV
(
hz;D

(
ρ′))∣∣ ≤ CMVRHS. (2.32)

We explain after the proof of Lemma 2.7 how to obtain this simpler statement.

Proof of Lemma 2.7. First, we extend hz :D(ρ) → [0,1] into a harmonic function on the smallest sandpile cluster,
say S , containing D(ρ). By Lemma 2.6, it is enough to extend it to D(ρ) +B(RHS) with the constant RHS appearing
there.

We set h̃ ≡ hz on D(ρ) ∪ ∂D(ρ). Let w ∈ ∂D(ρ) with |Xw| ≤ ρ − 1. This implies that

hz(w) = 0 and hz

(
A(w)

)
> 0.

Since w is not on the x-axis, there is a unique site w′ such that Ak(w′) = w, we denote for simplicity w′ = A−k(w).
Since teeth are one-dimensional, harmonicity of h̃ imposes that for any positive integer k

h̃
(
A−k(w)

) − h̃(w) = k
(
hz(w) − hz

(
A(w)

)) = −khz

(
A(w)

)
,

so that if w ∈ ∂D(ρ) but w not on the x-axis,

h̃
(
A−k(w)

) = −khz

(
A(w)

)
. (2.33)
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On the x-axis, we choose the following extension

h̃
([ρ] + k,0

) = −(k − 1)h
([ρ],0

)
. (2.34)

Now, and if ([ρ] − 1,1) /∈D(ρ) we set for l ∈ Z, we set

h̃
([ρ] − 1, l

) = −(l − 1)hz

([ρ] − 1,0
)
.

Finally, we note that ([ρ],1) /∈ D(ρ), and we extend h̃ by linearity on each tooth rooted on {([ρ], k), k ∈ N}, so that
for integers k ≥ 0, and l ∈ Z, we have

h̃
([ρ] + k, l

) = (l − 1)(k − 1)h
([ρ],0

)
and h̃

(−[ρ] − k, l
) = (l − 1)(k − 1)h

(−[ρ],0
)
. (2.35)

Using a result of Levine and Peres (Theorem 1.3 of [11]), and Lemma 2.6 of [10], there exists a function y �→ ω(y)

with value in [0,1], which vanishes on D(ρ) +B(RHS), which equals 1 on D(ρ) −B(RHS), and which satisfies∑
y∈Z2

ω(y)
(
h̃(y) − h̃(0)

) = 0. (2.36)

Thus, if we denote ∂RD(ρ) the shell (D(ρ) +B(RHS)) \ (D(ρ) −B(RHS)), we have∣∣∣∣ ∑
y∈D(ρ)

h̃(y) − h̃(0)

∣∣∣∣ =
∣∣∣∣ ∑
D(ρ)\(D(ρ)−B(RHS))

(
1 − ω(y)

)(
h̃(y) − h̃(0)

) −
∑

(D(ρ)+B(RHS))\D(ρ)

ω(y)
(
h̃(y) − h̃(0)

)∣∣∣∣
≤

∑
y∈∂RD(ρ)

∣∣h̃(y) − h̃(0)
∣∣. (2.37)

This implies that for some positive constant C

∣∣MV
(
hz(·),D(ρ)

)∣∣ =
∣∣∣∣ ∑
y∈D(ρ)

(
h̃(y) − h̃(0)

)∣∣∣∣ ≤
∑

y∈∂RD(ρ)

∣∣h̃(y) − h̃(0)
∣∣

≤ ∣∣∂RD(ρ)
∣∣ × hz(0) + CR2

HS

∑
y∈∂D(ρ)

hz

(
A(y)

)

≤ CR2
HS

(
ρ(ρ − Xz)

ρ2
+

∑
y∈∂D(ρ)

h
(
A(y)

))
. (2.38)

The following bound implies (2.31). It is a consequence of Proposition 2.3, after we decompose ∂D(ρ) into four
regions to be dealt with estimates (2.11), (2.9), (2.12) and (2.10). Thus, there is a positive constant K such that

∑
y∈∂D(ρ)

hz

(
A(y)

) ≤
[ρ]∑
k=1

k3(ρ + 1 − Xz)

k2ρ5
+

∑
k≥ρ+1−Xz

(ρ + 1 − Xz)

k4
+ 1 +

[ρ]+1−Xz∑
k=1

k

(ρ + 1 − Xz)4

≤ K. (2.39)

This concludes the proof of Lemma 2.7. Finally, we wish to explain Remark 2.8. First, hz is harmonic on the smallest
sandpile cluster containing D(ρ′), so there is no need to extend it as in the previous proof. The estimates (2.38) yields
here ∣∣MV

(
hz(·),D

(
ρ′))∣∣ ≤

∑
y∈∂RD(ρ′)

∣∣hz(y) − hz(0)
∣∣ ≤ ∣∣∂RD

(
ρ′)∣∣ × hz(0) +

∑
y∈∂RD(ρ′)

hz(y). (2.40)

It is now enough to note that on each tooth intersecting ∂RD(ρ′) there are at most 2RHS sites, and that the estimates
for hz(w) in Proposition 2.3 are worse when Yw = 0, and this yields the bound∑

w∈∂RD(ρ′)
hz(w) ≤ 2RHS

∑
|x|≤ρ′+RHS

hz(x,0) ≤ CMVRHS. (2.41)
�
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3. Large deviations

Our aim in this section is to prove Proposition 1.5, Lemma 1.6 and Corollary 1.7.

3.1. On the uniform hitting property

For each ρ > 0, we build here a stopping time τ ∗
ρ which satisfies (1.4) of Proposition 1.5. The time τ ∗

ρ is called a
flashing time. We set

gρ(r) = 3r2

ρ3
for r ∈ [0, ρ] and for r > ρ gρ(r) = 0. (3.1)

The algorithm which defines τ ∗
ρ is as follows.

• Draw R according to gρ .
• If R < 1

2 , then τ ∗
ρ = 0, and the walk flashes on its initial position, the origin.

• If R > 1
2 , then τ ∗

ρ = inf{t > 0: S(t) /∈D(R)}.
We need to estimate P0(S(τ ∗

ρ ) = z) for z ∈D(ρ). We have

P0
(
S
(
τ ∗
ρ

) = z
) = P

(
R <

1

2

)
1z=0 +

∫ ρ

1/2
P0

(
S
(
E(r)

) = z
)
gρ(r)dr × 1z �=0.

First, P(S(τ ∗
ρ ) = 0) = P(R < 1

2 ) = 1/(2ρ)3. Assume henceforth that z �= 0, and note that S(E(r)) = z is possible
only if z ∈ ∂D(r). Thus, we define R(z) < R̄(z) such that

z ∈ ∂D(r) ⇐⇒ R(z) < r ≤ R̄(z). (3.2)

In other words, we define

1

3

(
R̄(z) − |Xz|

)2 = |Yz| and R(z) = R̄
(
A(z)

)
. (3.3)

We need to estimate P0(S(E(r)) = z) for R(z) ≤ r < R̄(z). Upper and lower bounds are obtain for Green’s function
in Lemma 2.1, and hold for the exit distribution by the last passage decomposition (2.8). Now, the upper and the lower
bound for P0(S(τ ∗

ρ ) = z) are done in a similar way, and we write in details only the upper bound. Also, because of the
symmetry of D(ρ), we can assume that Xz ≥ 0 and Yz ≥ 0. We treat three cases: (i) when z is a nearest neighbor of
the origin, (ii) when A(z) �= 0 and z is not on the x-axis, and (iii) when A(z) �= 0 and Yz = 0.

Case (i): A(z) = 0. Then, R̄(z) ≤ 2 and R(z) = 0. We have

P0
(
S
(
τ ∗
ρ

) = z
) ≤

∫ R̄(z)

1/2

1

deg(z)

2(r + 1 − Xz)

r2

3r2

ρ
dr

≤ 3

2ρ3

(
R̄(z) − 1

2

)(
R̄(z) + 1 − Xz

) ≤ 27

4ρ3
. (3.4)

Case (ii): A(z) �= 0 and Yz �= 0. Note that A(z) = (Xz,Yz − 1), R(z) ≥ 1, and

R̄(z) − R(z) = √
3Yz − √

3(Yz − 1) ≤
√

3√
Yz

.

Then

P0
(
S
(
τ ∗
ρ

) = z
) ≤

∫ R̄(z)

R(z)

1

deg(z)

2(r + 1 − Xz)

r2

3r2

ρ
dr

≤ 3

2ρ3

(
R̄(z) + 1 − Xz

)(
R̄(z) − R(z)

) ≤ 3

2ρ3

√
3Yz

√
3√
Yz

≤ 9

2ρ3
. (3.5)
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Case (iii): A(z) �= 0 and Yz = 0. Then A(z) = (Xz − 1,0), R̄(z) = Xz and R(z) = Xz − 1 ≥ 1. We have

P0
(
S
(
τ ∗
ρ

) = z
) ≤

∫ Xz

Xz−1

1

deg(z)

2(r + 1 − Xz)

r2

3r2

ρ
dr ≤ 3

4ρ3
. (3.6)

We omit the similar estimates yielding the lower bound of (1.4).

3.2. Proof of Lemma 1.6

We consider here that the explored region is V , and estimate the probability an explorer reaches (R,0). To obtain
(1.5) we can assume that the ratio |V |/R3 is as small as we wish. Also, we can restrict to |V | ≥ R, since an explorer
reaching (R,0) has to visit all sites of {(x,0),0 ≤ x ≤ R}.

The proof makes use of the concept of flashing explorer, which was introduced in [1], and follows the arguments of
the proof of Lemma 1.6 of [2]. A flashing explorer is a random walk which settles only if at some times, the flashing
times, it is not on the explored region V .

If an explorer reaches (R,0) (without escaping V ), then a flashing explorer following the same trajectory would
reach (R,0) as well. Since Lemma 1.6 requires a bound from below on the crossing probability, it is enough to obtain
an estimate for the flashing explorer.

We now define the flashing explorer associated with the scale h. Let h be a positive real smaller than R/2, and write
Mh for the integer part of R/(2h). We form Mh disjoint domains by translating D(h) so that they cover [0,2hMh],
see Figure 2, and we call Z1, . . . ,ZMh

their centers. The flashing explorer associated with scale h is as follows.

• It performs a simple random walk on the comb, starting at 0.
• The first time the walk reaches Zi , it draws one variable Ri according to gh and a flashing time τ ∗

i is constructed
as in the previous section but around D(Zi, h).

• It settles the first time H(Zi) + τ ∗
i that S(H(Zi) + τ ∗

i ) /∈ V , for i = 1, . . . ,Mh.

We say that the domain D(Zi, h) is well-covered when |D(Zi, h) ∩ V | > β|D(Zi, h)|, for a positive β < 1 to be
chosen later. We call Γh the set of well-covered domains:

Γh = {
i ∈ [1,Mh]:

∣∣D(Zi, h) ∩ V
∣∣ > β

∣∣D(Zi, h)
∣∣}. (3.7)

The reason we use a flashing explorer is that the probability that it settles in a not well-covered domain is easy to
estimate. Indeed, by the uniform hitting property, it visits the domain D(Zi, h) almost uniformly, and the probability

Fig. 2. Two scales h and ¯h = 2h, and corresponding centers.
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it flashes on a site of V is less than κβ , for some positive constant κ < 1 (independent of β and h). We now choose β

by requiring that when h = R/2 (and Mh = 1 and Z1 = (h,0)), then Γh = ∅. Thus,

P0
(
the flashing explorer reaches (R,0)

) ≤
∏
i /∈Γh

PZi

(
S
(
H(Zi) + τ ∗

i

) ∈ V
) ≤ (κβ)Mh−|Γh|. (3.8)

Now, β|D(h)||Γh| ≤ |V |, and for some α > 0 we have |D(h)| ≥ αh3. Replacing |Γh| in (3.8) by an upper bound yields

P0
(
the flashing explorer reaches (R,0)

) ≤ exp

(
− log

(
1

κβ

)(
Mh − |V |

β|D(h)|
))

≤ exp

(
− log

(
1

κβ

)(
R

2h
− 1 − |V |

βαh3

))
. (3.9)

We optimize now in h. The maximum of R/(2h) − |V |/(βαh3) is reached for h∗ = √
6/βα

√|V |/R, and this choice
completes the proof of (1.5).

3.3. Proof of Corollary 1.7

The proof relies on Lemma 1.6, and follows closely the arguments of Lemma 1.5 of [2] with d = 3. Indeed, |D(R)| is
of order R3.

The strategy of the proof is to built optimal disjoint random domains D(Z0, h0), . . . ,D(ZL,hL) inside D(0,R)

in such a that if Ni is the number of settled explorers in D(Zi, hi), we have that (R,0) ∈ A(n) implies that
for each j , Nj+1 + · · · + NL explorers have crossed D(Z0, h0) ∪ · · · ∪ D(Zj ,hj ). The randomness comes from
A(n).

We choose h0 = R/4 > 1, and Z0 = (h0,0). We choose a positive (large) constant γ from a3 and κ3 of
Lemma 1.6:

γ = max

(
1,

(
2a3

κ3

)2)
.

The choice of γ will be clear later. We choose now β such that γ d(n) < γβR3 < |D(h0)|.
We now build by induction neighboring domains D(Zi, hi) for i = 1, . . . ,L such that

L∑
i=0

D(Zi, hi) ⊃ {
(0, k): 0 ≤ k ≤ R,k ∈ N

}
.

Assume we have chosen hi−1 ≥ 1 and 2(h0 + · · · + hi−1) < R. We choose hi such that

∣∣D(hi)
∣∣ = γ

∣∣D(Zi−1, hi−1) ∩ A(n)
∣∣ and Zi =

(
2

i−1∑
j=0

hj + hi,0

)
. (3.10)

Note that since hi−1 ≥ 1, we have Ni−1 = |D(Zi−1, hi−1) ∩ A(n)| ≥ 3, and hi ≥ 1. Clearly, the induction stops with
L domains, and L ≤ R/2.

For any choice of integers l, n0, . . . , nl , the event {L = l,N0 = n0, . . . ,Nl = nl} implies that n1 +· · ·+nl explorers
have crossed D(Z0, h0) with an explored region made up of n0 settled explorers, and n2 + · · · + nl explorers have
crossed D(Z1, h1) with an explored region made up of n1 settled explorers, and so on and so forth. We use now (1.5)
of Lemma 1.6 to obtain

P
(
an explorer reaches (R,0)

) ≤
∑

l,n0,...,nl

∏
i>0

P

(
l∑

k=i

nk explorers cross D(Zi−1, hi−1)

)

≤ (
R3)R sup

l,n1,...,nl

exp

(
a3

l∑
i=1

ini − κ3

l∑
i=1

ni

(√
h3

0

n0
+ · · · +

√
h3

i−1

ni−1

))
. (3.11)
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By the arithmetic–geometric inequality, for 1 ≤ i ≤ l (and using hi ≤ h0)

1

i

(√
h3

0

n0
+ · · · +

√
h3

i−1

ni−1

)
≥

(
h3

0

n0
× · · · × h3

i−1

ni−1

)1/2i

=
(

h3
0

ni−1
γ i−1

)1/2i

=
(

h3
0

h3
i

γ i

)1/2i

≥ 2a3

κ3
. (3.12)

Thus, from (3.11) and (3.12), we have

P
(
(R,0) ∈ A(n)

) ≤ R
(
βR3)R+1 max

l≤R,n0,n1,...,nl≤βR3

∀i,ni≥�hi�

exp

(
−a3

l∑
i=1

ini

)

≤ R
(
βR3)R+1 max

l≤R,n0,n1,...,nl≤βR3

∀i,ni≥�hi�

exp

(
−a3

γ

l−1∑
i=1

ih3
i+1

)
. (3.13)

Since h1 ≤ R/4, we have h2 + · · · + hl ≥ R/4. By Hölder’s inequality, and for a constant c3, we have

l−1∑
i=1

ih3
i+1 ≥ (

∑l−1
i=1 hi+1)

3

(
∑l−1

i=1 1/
√

i)2
≥ c3

R3

l
≥ c3R

2. (3.14)

This concludes the proof.

4. Inner fluctuations

Our main result here is an inner estimate for the aggregate.

Proposition 4.1. There is a positive constant κin (independent of n) such that for any positive a and integer n large
enough

P
(
D

(
n − a

√
log(n)

) �⊂ A(n)
) ≤ d(n) exp

(−κina
2 log(n)

)
. (4.1)

Remark 4.2. Since d(n) is of order n3, (4.1) implies the inner estimate (1.2) of Theorem 1.2. Our proof below estab-
lishes actually a stronger result than (4.1). Indeed, we only count explorers which remain in the domain D(n). This
remark is used in the outer error bound.

Proof of Proposition 4.1. The constant A > 1 will be chosen later. For any α > 0, we set a = A
√

α and L =√
α log(n). Inequality (4.1) follows if we show that for z ∈ ∂D(n − L) with |Xz| ≤ n − AL, we have

P
(
WD(n−L)(z) = 0

) ≤ exp
(−κina

2 log(n)
)
. (4.2)

Indeed, since the comb is a tree, covering ∂D(n−L)∩{z: |Xz| < n−AL} by the DLA cluster implies that D(n−AL)

is entirely covered. Henceforth, consider z ∈ ∂D(n − L) with |Xz| ≤ n − AL. For y ∈ D(n − AL), define hz(y) =
Py(S(E(n − L)) = z), and set

μ(z) = E
[
MD(n−L)

(
d(n)10; z

)] − E
[
MD(n−L)

(
D(n − L); z)]

= (∣∣D(n)
∣∣ − ∣∣D(n − L)

∣∣)hz(0) + MV
(
hz,D(n − L)

)
. (4.3)

Using (2.5) of Lemma 2.1 and Lemma 2.7, we obtain when n is large enough, and for c1, c2 > 0 independent of n

and z,

c2L
(
n − L − |Xz|

) ≤ μ(z) ≤ c1L
(
n − L − |Xz|

)
. (4.4)
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Note also that by (2.13) of Corollary 2.4, there are κ1, κ2 independent of n and z such that

κ2
(
n − L − |Xz|

)2 ≤
∑

y∈D(n−L)

h2
z(y) ≤ κ1

(
n − L − |Xz|

)2
.

In order to use Lemma C.1, we form the following partition of D(n − L):

B = {
y ∈D(n − L): Xz = Xy,Yz × Yy ≥ 0

}
and A =D(n − L) \B. (4.5)

We need to show that there is κ > 1, independent of n such that for y ∈A, we have hz(y) < 1 − 1/κ . We choose here
κ = 2 for simplicity, and note that for y ∈A, any path joining y and z crosses (Xz,0) so that hz(y) ≤ hz(Xz,0). Note
also that

hz(Xz,0) = GD(n−L)((Xz,0);A(z))

2
= GD(n−L)(0;A(z))

2P0(H(Xz,0) < E(n − L))
. (4.6)

Using now Lemma 2.1 and Proposition 2.2, we obtain readily that hz(Xz,0) can be made smaller than 1/2 as soon as
n is large enough.

For δ to be fixed later, we choose A = 1 + 1
δ

so that δ(n − L − |Xz|) ≥ L, and we choose λ as follows.

λ = μ(z)

2(16|B| + (1/2)
∑

y∈D(n−L) h
2
z(y))

≤ c1

2(16/3 + κ2)

L(n − L − |Xz|)
(n − L − |Xz|)2

≤ c1

2(16/3 + κ2)
δ. (4.7)

Since, we need λ < log(2) in Lemma C.1, the condition on δ is that

δ < 2 log(2)
16/3 + κ2

c1
. (4.8)

We use Lemma C.1, with ξ = 0, κ = 1/2 and λ ≤ log(2) to have

P
(
WD(n−L)(z) = 0

) ≤ exp

(
−λμ(z) + λ2

2

(
μ(z) + 16|B| + 1

2

∑
y∈D(n−L)

h2
z(y)

))
.

Note that since λ < 1, we have λμ(z) − λ2μ(z)/2 > λμ(z)/2, and the choice of λ in (4.7) yields (4.2) with κin given
by c2/(8A2(16/3 + κ1)). �

5. Outer fluctuations

We estimate the probability that the largest finger reaches ∂D(n+A
√

log(n)) for some large A. The analysis is distinct
whether the finger protrudes in the tip of ∂D(n + A

√
log(n)), that is the region

T =
{
z: |Xz| > n + A

2
L

}
∩ ∂D(n + AL)

(
here L := [√

log(n)
])

(5.1)

or in the complement of T in ∂D(n + AL) called the bulk, and made of the edges of long teeth. Indeed, the geometry
of the graph is different on the tip, and on the edge of a long tooth. The goal is to show that the appearance of a long
finger implies that a narrow region is crossed by many explorers. More precisely, when a finger reaches site z of the
bulk, that is through a long tooth, it imposes that many explorers settle in the tooth: if Yz > 2k and we set z̃ = Ak(z),
then in order to cover z, we need that k explorers cross z̃. Moreover, at least half of these explorers if they were random
walks starting on z would very likely exit D(n + AL) from z. On the other hand, when a finger reaches a site z of the
tip, say on z = (n + AL,0), this imposes that site (n,0) is crossed by AL explorers, but these explorers if they where
random walks would have many ways to exit D(n + AL). We call B(z) the event that A(n) �⊂ D(n + AL), and z is
the first site of ∂D(n + AL) to be covered by the aggregate. Note that{

A(n) �⊂D(n + AL)
} =

⋃
z∈∂D(n+AL)

B(z). (5.2)
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5.1. The bulk region

We assume for z ∈ ∂D(n + AL) with |Xz| < n + AL/2 that B(z) holds. This implies that explorers fill the tooth of
z without escaping D(n + AL). For simplicity, we denote D̄ = D(n + AL). Let z̃ be the site of ∂D(n + 3AL/4) on
the same tooth as z. Necessarily, the number of explorers crossing z̃ before escaping D̄ is larger than the length of the
tooth to be covered

ξ
(
z̃
) = 1

3

(
n + AL − |Xz|

)2 − 1

3

(
n + 3AL

4
− |Xz|

)2

≥ AL

6

(
n + 3AL

4
− |Xz|

)
. (5.3)

To exploit this information, we introduce an auxiliary process which proved useful in studying DLA [1,2]. The flashing
process is a cluster growth, were explorers, called ∗-explorers settle less often than in DLA. We now build a flashing
process adapted to our purpose.

• Inside D(n), ∗-explorers are just explorers.
• When a ∗-explorer exits D(n), it cannot settle in D(n) anymore.
• A ∗-explorer does not settle in D̄ \D(n).
• Outside D̄, ∗-explorers behave like explorers.

We call A∗(n) the cluster made by d(n) ∗-explorers sent at the origin. Note that by construction, the cluster made by
d(n) explorers before they exit D(n), denoted A∗

D(N)
(n), is equal to AD(N)(n).

The key fact, established in [1], is that this growth can be coupled with the internal DLA cluster in such a way that
there are times {Ti, T

∗
i , i = 1, . . . , d(n)} with Ti ≤ T ∗

i and such that for d(n) independent random walks S1, . . . , Sd(n)

A(n) = {
Si(Ti), i = 1, . . . , d(n)

}
and A∗(n) = {

Si

(
T ∗

i

)
, i = 1, . . . , d(n)

}
. (5.4)

Thus, under the coupling of [1], if an explorer happens to visit z̃ before escaping D̄, then this will be the case for
the associated ∗-explorer. We add an index ∗ to denote objects linked with ∗-explorers. For instance, we denote
by W ∗

Λ(η, z) the number of ∗-explorers which cross z before escaping Λ, and we drop the η dependence when
η = d(n)10. As a consequence of the coupling, we have

B(z) ⊂ {
W ∗̄

D
(z̃) > ξ(z̃)

}
. (5.5)

Let us now estimate how many ∗-explorers exit D̄ most likely from z.
Note first that when |Xz| < n + AL/2, then

Yz̃

Yz

= (1/3)(n + 3AL/4 − |Xz|)2

(1/3)(n + AL − |Xz|)2
≥ 1

4
, so Pz̃

(
walk hits z before (Xz,0)

)
>

1

4
. (5.6)

W ∗̄
D

(z) represents the number of ∗-explorers which exit D̄ from z, out of W ∗̄
D

(z̃) ∗-explorers at z̃. Inside D̄, the ∗-

explorers are just simple random walks, and by (5.6), we have that E[W ∗̄
D

(z)|W ∗̄
D

(z̃)] ≥ 1
4W ∗̄

D
(z̃). Thus, by Chernoff’s

inequality

P

(
W ∗̄

D
(z) <

1

8
W ∗̄

D
(z̃)

∣∣W ∗̄
D

(z̃) > ξ(z̃)

)
≤ exp

(
−1

4

ξ(z̃)

8

)
. (5.7)

Second, note that since z is a bulk site n+ 3AL/4 − |Xz| > AL/4, and on the event B(z) we have that WD̄(z̃) > ξ(z̃),
which in turn implies W ∗̄

D
(z̃) > ξ(z̃) > (AL)2/24. Thus, we have

P

(
W ∗̄

D
(z) <

1

8
W ∗̄

D
(z̃)

∣∣B(z)

)
≤ exp

(
− 1

24 × 32
(AL)2

)
. (5.8)
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Thus,

P
(
B(z)

) ≤ P

(
B(z),W ∗̄

D
(z) <

1

8
W ∗̄

D
(z̃)

)
+ P

(
B(z),W ∗̄

D
(z) ≥ 1

8
W ∗̄

D
(z̃)

)

≤ P

(
W ∗̄

D
(z) <

1

8
W ∗̄

D
(z̃)

∣∣B(z)

)
+ P

(
D(n − a0L) �⊂ A∗

D(n)(n)
)

+ P

(
W ∗̄

D
(z) ≥ ξ(z̃)

8
,D(n − a0L) ⊂ A∗

D(n)(n)

)
. (5.9)

The probability D(n − a0L) �⊂ A∗
D(n)

(n) is actually estimated in Proposition 4.1 since A∗
D(n)

(n) = AD(n)(n).
We explain now why {W ∗̄

D
(z) ≥ ξ} is very unlikely, where we set for simplicity ξ = ξ(z̃)/8. Since our inner error

estimate is also valid for ∗-explorers, we have the equality in law

W ∗̄
D

(z) + MD̄

(
A∗̄

D
(n), z

) = MD̄

(
d(n)10, z

)
. (5.10)

This implies that

1D(n−a0L)⊂A∗̄
D

(n)

(
W ∗̄

D
(z) + MD̄

(
D(n − a0L), z

)) ≤ MD̄

(
d(n)10, z

)
. (5.11)

Now, (5.11) allows us to estimate the probability that W ∗̄
D

(z) is large, through Lemma 2.5 of [2]: for 0 < λ < log(2),
and ξ > μ∗(z) := E[MD̄(d(n)10, z)] − E[MD̄(D(n − a0L), z)],

P
(
W ∗̄

D
(z) > ξ,D(n − a0L) ⊂ A∗̄

D
(n)

) ≤ exp

(
−λ

(
ξ − μ∗(z)

) + λ2
(

μ∗(z) + 4
∑
y∈D̄

h2
z(y)

))
, (5.12)

where hz(y) is the probability of exiting D̄ from z, when a random walk starts on y. Note that the function y �→ hz(y)

is harmonic on D̄, and that since (A − a0)L ≥ RHS Remark 2.8 applies. There is a constant c∗ such that (recall that z

is in the bulk)

μ∗(z) = (∣∣D(n)
∣∣ − ∣∣D(n − a0L)

∣∣)hz(0) + MV
(
hz,D(n − a0L)

)
≤ c∗a0L

(
n + AL − |Xz|

)
. (5.13)

We choose A large enough, after a0 is fixed, so that

μ∗(z) ≤ c∗a0L
(
n + AL − |Xz|

) � 1

4
ξ ≤ 1

32

AL

4

(
n + AL − |Xz|

)
. (5.14)

Also, by (2.13) of Corollary 2.4 we have∑
y∈D̄

h2
z(y) ≤ κ2

(
n + AL − |Xz|

)2
. (5.15)

In the bulk, the following choice of λ with the estimate (5.15) yields

λ = μ∗(z)
16

∑
y∈D̄ h2

z(y)
≤ a0L

16κ2(n + AL − |Xz|) ≤ a0

8κ2A
. (5.16)

One chooses A large enough so that λ < log(2). Note that since λ < 1, our choice of A in (5.14) is such that λ(ξ −
μ∗(z)) − λ2μ ≥ λξ/2. Using (5.12) with the choice of λ in (5.16), and after simple algebra, one obtains for some
constant κ

P
(
W ∗̄

D
(z) > ξ,D(n − a0L) ⊂ A∗̄

D
(n)

) ≤ exp
(−κa0AL2). (5.17)
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Finally, from the inner error, we know that for a0 large enough most likely D(n − a0L) ⊂ AD(n)(n) = A∗
D(n)

(n) ⊂
A∗̄

D
(n). Combining the estimates for the three terms on the right hand side of (5.9), we obtain

P
(
B(z)

) ≤ exp

(
− 1

24 × 32
A2 log(n)

)
+ exp

(−κa0A log(n)
) + exp

(−κina
2
0 log(n)

)
.

We can choose a0, and then A so that P(B(z)) is smaller than any negative power of n.

5.2. The tip

Let us describe the additional idea needed to deal with the tip. A constant A large enough will be chosen later. Assume
A/4 ∈N, and define three points

B =
(

n + A

2
L,0

)
, B̃ =

(
n + A

4
L,0

)
and C ∈ ∂D(n + AL) with XC = n + A

4
L.

Assume in this section that a site of the tip is covered. This implies that B or −B is in A(n). Assume for instance that
B ∈ A(n). The internal DLA covering mechanism would say that B̃ is necessarily covered by A

4 L explorers. However,
too small a fraction, of the order of 1/L, of these explorers would exit D(B̃, 3

4AL) from site C. We first need to show
that of the order of (AL)3 explorers cross B̃ , and secondly that it is very unlikely that of the order of (AL)2 exit
D(B̃, 3

4AL) from site C.
As in the previous section, we need to consider here the same ∗-explorers. An important property is the fact that

the aggregate’s law is independent of the order of the explorers we launch, or more generally, of stopping explorers
in some region letting other explorers cover space before the stopped ones are eventually launched. Thus, we will
realize the aggregate by sending two waves of exploration. We stop ∗-explorers on B̃ ∪ ∂D(n + AL), and call ζ the
configuration of stopped ∗-explorers, that is ζ : {B̃} ∪ ∂D(n + AL) → N.

The event that B is covered, and ζ(B̃) is less than β(AL/4)3, is very unlikely by Corollary 1.7. Henceforth,
assume that ζ(B̃) > β(AL/4)3, where we recall that β is a constant independent of A,n. Assume that we launch
the stopped ∗-explorers and stop them on ∂D(n + AL). It is very unlikely that less than κ(AL)2 ∗-explorers exit
∂D(n + AL) from C for some positive constant κ . Indeed, let us call the latter number W ∗̄

D
(ζ(B̃)1

B̃
;C). Call for

simplicity Λ =D(B̃, 3
4AL), and define MΛ(ζ(B̃)1

B̃
;C) the number of random walks which exit Λ from C. Note the

following obvious fact

Λ ⊂ D̄ ⇐⇒ W ∗̄
D

(
ζ(B̃)1

B̃
;C) ≥ W ∗

Λ

(
ζ(B̃)1

B̃
;C)

.

Also, the Abelian property we mentioned says that (with equality in law)

W ∗̄
D

(C) = W ∗̄
D

(
ζ(B̃)1

B̃
;C)

. (5.18)

Thus, to estimate the probability that W ∗̄
D

(C) be small it is enough to estimate the probability that W ∗
Λ(ζ(B̃)1

B̃
;C) be

small. Note that ∗-explorers when starting in B̃ and staying in Λ have the same law as simple random walks, so that

W ∗
Λ

(
ζ(B̃)1

B̃
;C) = MΛ

(
ζ(B̃)1

B̃
;C)

.

MΛ is a sum of independent Bernoulli, and from (2.5), there is a constant κ > 0

E

[
MΛ

(
ζ(B̃)1

B̃
;C)∣∣∣ζ(B̃) ≥ β

(
AL

4

)3]
≥ β

(
AL

4

)3 2

3AL/4
≥ 2κ(AL)2,

and therefore, using Chernoff’s inequality on the event {ζ(B̃) ≥ β(AL
4 )3}

P
(
W ∗

Λ

(
ζ(B̃)1

B̃
;C) ≤ κ(AL)2) = P

(
MΛ

(
ζ(B̃)1

B̃
;C) ≤ κ(AL)2)

≤ exp
(−κ(AL)2). (5.19)
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We deal now with the event {W ∗̄
D

(C) > κ(AL)2}. Note that defining

μ∗̄
D

(C) := E
[
MD̄

(
d(n)10,C

)] − E
[
MD̄

(
D(n − a0L),C

)]
,

we have using our harmonic measure estimate, for some constant c∗

μ∗̄
D

(C) ≤ c∗a0AL2 and
∑

y∈D(n−a0L)

h2
C(y) ≤

∑
y∈D̄

h2
C(y) ≤ κ2

(
3AL

4

)2

. (5.20)

Thus, for λ < log(2),

P
(
W ∗̄

D
(C) > κ(AL)2,D(n − a0L) ⊂ A∗̄

D
(n)

) ≤ e−λ(κ(AL)2−c∗a0AL2)+λ2(a0AL2+κ2(AL)2). (5.21)

We need now to choose A so large that κA ≥ 2κ2c
∗a0, and λ = min(log(2), κ/(2κ2)), which gives finally that

P(the tip is covered) ≤ exp
(−cA2L2). (5.22)

Appendix A: Proof of Lemma 2.1

Our goal in this section is to estimate precisely the restricted Green’s function z �→ GD(ρ)(0; z) for any positive real ρ,
and z ∈ D(ρ). We use that the latter function is discrete harmonic on D(ρ) \ {0}, vanishes on the (discrete) boundary
of D(ρ), and satisfies ΔGD(ρ)(0, ·)|0 = −1.

We first find an explicit function, denoted h :Z×R, discrete harmonic on the x-axis, real harmonic on each tooth
of D(ρ) \ {0}, vanishing on

Σ(ρ) =
{
(x, y) ∈ Z×R: |x| ≤ ρ, |y| = 1

3

(
ρ − |x|)2

}
and Δh(0) = −1.

Since h is linear on each tooth of D(ρ), and can readily be extended to D(ρ) ∪ ∂D(ρ) with nonpositive values on
∂D(ρ), the maximum principle yields

∀z ∈ D(ρ), GD(ρ)(0; z) ≥ h(z). (A.1)

Similarly we build h+, positive and harmonic on a larger domain Σ+(ρ) \ {0} with

Σ+(ρ) =
{
(x, y) ∈ Z×R: |x| ≤ [ρ] + 1, |y| = 1

3

([ρ] + 1 − |x|)2
}

and Δh+(0) = −1.

We will have that h+ − GD(ρ) is harmonic on D(ρ) and nonnegative on ∂D(ρ). Again, by the maximum principle

∀z ∈ D(ρ), h+(z) ≥ GD(ρ)(0; z). (A.2)

The explicit expression of h and h+, and estimates (A.1) and (A.2) are the desired results of this section.

Construction of h

By the symmetries of D(ρ), h is even in the x and y coordinates. Thus, we restrict the construction for x ∈ [−ρ,0].
Also, it is convenient to shift D(ρ) by ρ units along the x-axis, so that (−ρ,0) becomes the origin, and (0,0) becomes
(0, ρ).

On each arm of the comb h is linear, and reads for z = (x, y),

h(z) = a(x)y + b(x). (A.3)
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We set Y(x) = 1
3x2, and we impose

0 = a(x)Y (x) + b(x) and b(0) = 0. (A.4)

We solve a set of equations: for xk = ρ − [ρ] + k with k integer in {1, . . . , [ρ] − 1},
4h(xk,0) = h(xk,1) + h(xk,−1) + h(xk+1,0) + h(xk−1,0) = 2h(xk,1) + h(xk+1,0) + h(xk−1,0), (A.5)

and a boundary equation

4h(ρ,0) = 2h(ρ,1) + 2h(ρ − 1,0) + 4. (A.6)

When we choose b(x) = 1
3αx3, (A.4) implies that a(x) = −αx. In terms of a and b, (A.5) and (A.6) read for k ∈

{1, . . . , [ρ] − 1}
2b(xk) = 2a(xk) + b(xk+1) + b(xk−1) and b(ρ) = a(ρ) + b(ρ − 1) + 2. (A.7)

Solving (A.7), we find

α = 2

ρ2 + 1/3
.

Thus, we obtain a function h : [0, ρ] ×R given by

h(x, y) = 2x

ρ2 + 1/3

(
x2

3
− y

)
. (A.8)

Construction of h+

Here, the domain D([ρ] + 1) is shifted by [ρ] + 1 units along the x-axis. We build a function h+(x, y) = a+(x)y +
b+(x), with h+(0,0) = 0, and h+(x,Y+(x)) = 0 for

Y+(x) = 1

3
x2 + 1 and b+(x) = αxY+(x).

This implies that a+(x) = −αx. Now, a+, b+ solve (A.5) for x an integer from 1 to [ρ] + 1. Also (A.6) holds with
[ρ] + 1 instead of ρ. This yields

α = 2

([ρ] + 1)2 + 1/3 + 1
.

We obtain a function h+ : [0, [ρ] + 1] ×R given by

h+(x, y) = 2x

([ρ] + 1)2 + 1/3 + 1

(
x2

3
+ 1 − y

)
. (A.9)

Estimate on Green’s function

We go back now to the usual coordinate system to obtain (2.4) with h and h+ given in (2.2) and (2.3). One more
relation is useful to obtain nondegenerate estimates when taking z close to the boundary of D(ρ). Recall that for
z �= 0,

GD(ρ)(0; z) = E0

[E(ρ)−1∑
k=1

1S(k)=z

]
= E0

[E(ρ)−1∑
k=1

1S(k−1)=A(z),S(k)=z

]

= GD(ρ)

(
0;A(z)

) × p
(
A(z); z). (A.10)
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Thus, if z = (x,0) ∈ D(ρ), and x + 1 > ρ, note that A(z) = (x − 1,0), and p(A(z); z) = 1/4 so that

GD(ρ)(0; z) = 1

4
GD(ρ)

(
0;A(z)

)
and GD(ρ)(0; z) ≥ h((x − 1,0))

4
. (A.11)

Appendix B: Proof of Proposition 2.2

Proposition 2.2 uses the following lemma which we prove at the end of the section.

Lemma B.1. For any ρ > 0,

P0
(
H(1,0) < E(ρ)

) ≥
(

ρ

ρ + 1

)3

. (B.1)

We assume that the integer y satisfies 0 < y < ρ − 1, and denote for k = 0, . . . , y

u(k) = P(k,0)

(
H(y,0) < E(ρ)

)
(B.2)

and Lρ(k) denotes the height of the tooth of D(ρ) at site (k,0), i.e. Lρ(k) = [ 1
3 (ρ − k)2] + 1. If we condition the

event {H(y,0) < E(ρ)} on the first step of the random walk, then we obtain for k = 1, . . . , y − 1

u(k) = u(k + 1) + u(k − 1)

4
+ 1

2

(
1 − 1

Lρ(k)

)
u(k) and u(y) = 1. (B.3)

We rewrite (B.3) as

u(k) − u(k − 1)

α(k − 1)
= 1

α(k − 1)

(
u(k + 1) − u(k)

α(k)

)
, (B.4)

and the {α(k), k = 0, . . . , y − 1} is a sequence obtained inductively with the constraint that

∀k = 1, . . . , y − 1, α(k − 1) + 1

α(k)
= 2 + 2

Lρ(k)
. (B.5)

As we iterate (B.5), from k = 1 to k = y − 1, we find

u(1) − u(0)

α(0)
= 1

α(0)
× · · · × 1

α(y − 2)

(
u(y) − u(y − 1)

α(y − 1)

)
. (B.6)

Now, assume we have the following three relations

(i) u(0) ≥ u(1)

(
ρ

ρ + 1

)3

, (ii) 1 − u(y − 1)

α(y − 1)
≥ 1

ρ − y − 1
(B.7)

and

(iii) 1 ≤ α(k) ≤ 1 + 3

ρ − k − 2
∀k < y.

Using (B.6) and (B.7), we obtain for ρ large enough and for a positive constant κ

((
ρ + 1

ρ

)3

− ρ − 2

ρ + 1

)
u(0) ≥

(
y−2∏
k=0

ρ − k − 2

ρ − k + 1

)
×

(
1 − u(y − 1)

α(y − 1)

)
. (B.8)
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Now, some simple algebra yields

((
ρ + 1

ρ

)3

− ρ − 2

ρ + 1

)
≤ 6

ρ

(
1 + 1

2ρ
+ 1

6ρ2

)
, (B.9)

and

y−2∏
k=0

ρ − k − 2

ρ − k + 1
≥ (ρ − y)3

ρ3
. (B.10)

We deduce from (B.8), (B.9) and (B.10) that for some constant κ

u(0) ≥ κ

(
ρ − y

ρ

)2

. (B.11)

We are left with showing the estimates of (B.7). Note that (i) is Lemma B.1.
We show (ii). When we start on (y − 1,0), one way to escape D(ρ) before reaching (y,0) is to go up on one tooth

and hit the boundary of D(ρ) before touching (y − 1,0). Thus, when y < ρ − 1

1 − u(y − 1) = P(y−1,0)

(
E(ρ) < H(y,0)

) ≥ 1

2Lρ(y − 1)
≥ 3/2

(ρ − y + 1)2 + 1
≥ 1

(ρ − y + 1)2
. (B.12)

This is equivalent to

1 − u(y − 1)

1 + 1/(ρ − y + 1)
≥ 1

ρ − y + 1
. (B.13)

Now, to produce a sequence satisfying (B.5), we choose α(y − 1) as follows, and build α(k) by a backward induction:

α(y − 1) = 1 + 3

ρ − y + 1
. (B.14)

This implies, using (B.13), that

1 − u(y − 1)

α(y − 1)
≥ 1 − u(y − 1)

1 + 1/(ρ − y + 1)
≥ 1

ρ − y + 1
. (B.15)

We now show that (iii) is compatible with our choice (B.14). We do it by backward induction. First, it is obvious
that α(k) > 1 implies that α(k − 1) > 1. We assume now that α(k − 1) > 1 + 3/(ρ − k − 1), and show that α(k) >

1 + 3/(ρ − k − 2). This in combination with (B.14) yields (iii). In view of (B.5) this is equivalent to checking that

1 ≥
(

1 + 2

Lρ(k)
− 3

ρ − k − 1

)(
1 + 3

ρ − k − 2

)

⇐⇒ 1 ≥ 1 − 9

(ρ − k − 1)(ρ − k − 2)
+

(
3

ρ − k − 2
− 3

ρ − k − 1

)
+ 2

Lρ(k)

(
1 + 3

ρ − k − 2

)

⇐⇒ Lρ(k) ≥ (ρ − k − 1)(ρ − k + 1)

3
= 1

3

(
(ρ − k)2 − 1

)
. (B.16)

The last inequality of (B.16) is true since Lρ(k) ≥ 1
3 (ρ − k)2.

Proof of Lemma B.1. Calling A = (1,0), we establish first,

P0
(
H(A) < E(ρ)

) =
(

1 + 1

Lρ(0)
+ 2

GD(ρ)(0;0)

)−1

. (B.17)
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For simplicity, we name B = (0,1), C = (−1,0) and D = (0,−1). Then,

P0
(
H(A) < E(ρ)

) = P0
(
S(1) = A

) +
∑

z∈{B,C,D}
P0

(
S(1) = z

)
Pz

(
H(0) < E(ρ)

)
P0

(
H(A) < E(ρ)

)

= 1

4
+ P0

(
H(A) < E(ρ)

)(PB(H(0) < E(ρ))

2
+ PC(H(0) < E(ρ))

4

)
. (B.18)

A classical gambler’s ruin estimate yields

PB

(
H(0) < E(ρ)

) = Lρ(0) − 1

Lρ(0)
. (B.19)

Also, by decomposing over the first step, we have for H(0)+ the return time to 0,

1 − 1

GD(ρ)(0;0)
= P0

(
H(0)+ < E(ρ)

)

= 1

2
PA

(
H(0) < E(ρ)

) + 1

2
PB

(
H(0) < E(ρ)

)
. (B.20)

Thus, using (B.19) and (B.20) in (B.18), we obtain (B.17). Now, by (2.4), we have

2

GD(ρ)(0;0)
≤ 3

ρ
+ 1

ρ3
. (B.21)

Recalling that Lρ(0) ≥ ρ2/3, we obtain the desired relation.

P0
(
H(A) < E(ρ)

) ≥
(

1 + 3

ρ
+ 3

ρ2
+ 1

ρ3

)−1

=
(

ρ

ρ + 1

)3

. (B.22)
�

Appendix C: Proof of Green’s function estimates

C.1. Proof of Proposition 2.3

We prove (i). By symmetries of D(ρ), we can consider 0 < Xw < Xz or Xw = Xz and Yw,Yz ≥ 0. Note that the path
joining w and z crosses (Xw,0), as well as the path joining 0 and z. Thus,

GD(ρ)(w; z) = Pw

(
H(Xw,0) < E(ρ)

) × GD(ρ)

(
(Xw,0); z) and

(C.1)
GD(ρ)(0; z) = P0

(
H(Xw,0) < E(ρ)

) × GD(ρ)

(
(Xw,0); z).

This implies that

GD(ρ)(w; z) = Pw

(
H(Xw,0) < E(ρ)

) × GD(ρ)(0, z)

P0(H(Xw,0) < E(ρ))
. (C.2)

Since Pw(H(Xw,0) < E(ρ)) = (Lρ(w) − Yw)/Lρ(w), (2.9) follows from Lemma 2.1 and Proposition 2.2.
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Note that case (ii) follows from the previous argument by noting first that a reversible measure for the simple
random walk assigns to a vertex its degree, and

GD(ρ)(w; z) = deg(z)

deg(w)
GD(ρ)(z,w) �⇒ GD(ρ)(w; z) ≤ 2GD(ρ)(z,w). (C.3)

Then, we interchange in (C.2) the role of z and w. Note, however that z is at a distance 1 from the boundary of D(ρ)

while w can be anywhere in D(ρ).
We prove now (iii). Note the two relations

GD(ρ)

(
(Xw,0); z) = P(Xw,0)

(
H(0) < E(ρ)

) × GD(ρ)(0; z)
and

GD(ρ)

(
0; (Xw,0)

) ≤ 2GD(ρ)

(
(Xw,0);0

) = P(Xw,0)

(
H(0) < E(ρ)

) × GD(ρ)(0,0). (C.4)

Using Lemma 2.1 and Proposition 2.2, (C.4) yields

GD(ρ)

(
(Xw,0); z) = GD(ρ)(0; (Xw,0))

GD(ρ)(0;0)
× GD(ρ)(0; z) ≤ κ

(ρ − Xw)3

3ρ2 + 1
× 3ρ2 + 1

2ρ3
× (ρ − Xz)

ρ2
. (C.5)

We complete (C.5) with the gambler’s ruin estimate to obtain (2.11).
Finally, we deal with (iv). Consider w,z with Xw = Xz. Then,

GD(ρ)(w; z) = Pw

(
H(z) < E(ρ)

)
GD(ρ)(z; z) ≤ GD(ρ)(z; z). (C.6)

On the other hand, by decomposing over the first step (and recalling that z ∈ ∂ID(ρ))

GD(ρ)(z; z) = 1 + 1

2
GD(ρ)(z − 1, z) ≤ 1 + 1

2
GD(ρ)(z; z) �⇒ GD(ρ)(z; z) ≤ 2. (C.7)

This completes (2.12).

C.2. Proof of Corollary 2.4

It is enough to consider z ∈ ∂D+(ρ), and to recall the last passage decomposition (2.8). Introduce now the following
notation. For Λ ⊂ Z

2,

Γ (Λ) =
∑
w∈Λ

G2
D(ρ)

(
w,A(z)

)
, (C.8)

and partition D(ρ) into four regions D1, . . . ,D4 with

D1 =D(ρ) ∩ ({0 ≤ x ≤ Xz} ∪ {x = Xz,Yz · Yw < 0}), D2 =D(ρ) ∩ {Xw = x,Yz · Yw ≥ 0},
D3 =D(ρ) ∩ {x > Xz}

and D4 the remaining part of D(ρ). Using κi to denote constants, whose meaning may change from line to line, we
obtain using the estimates of Proposition 2.3. We set n = [ρ] + 1, and

Γ (D1) ≤ κ(ρ + 1 − Xz)
2

n∑
k=n−Xz

1

k4

k2∑
i=1

i2

k4
≤ κ1(ρ + 1 − Xz), (C.9)

then,

Γ (D2) ≤ 2Ln(z) ≤ 2(ρ + 1 − Xz)
2

3
. (C.10)
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Also, note the lower bound

Γ (D2) ≥ κ

[(ρ−XA(z))
2]∑

i=1

i2

(ρ − XA(z))
4

≥ ¯κ(ρ − XA(z))
2. (C.11)

Now,

Γ (D3) ≤ κ
1

(ρ − Xz)8

n−Xz∑
k=1

k5 ≤ κ3
1

(ρ + 1 − Xz)2
. (C.12)

Finally

Γ (D4) ≤ (ρ + 1 − Xz)
2

ρ10

n∑
k=1

k6
k2∑

i=1

i2

k4
≤ κ3

(ρ + 1 − Xz)
2

ρ
. (C.13)

With our estimates, the dominant term in Γ (D(ρ)) is Γ (D2), and this concludes the proof.

C.3. On sums of Bernoulli

Let us recall Lemma 2.3 of [1]. Assume that for random variables W,M , and L we have

W + L ≥ M, (C.14)

and furthermore that L and M are sums of independent Bernoulli variables with L = Y1 + · · ·+Yn. Three hypotheses
played a key role in [1]: (H0) W is independent of L,

(H1) μ := E[M] − E[L] ≥ 0 and (H2) for some κ > 1 sup
i

E[Yi] < 1 − 1

κ
. (C.15)

Then, Lemma 2.3 of [1] establishes that for 0 ≤ ξ < μ, any λ ≥ 0,

P(W ≤ ξ) ≤ exp

(
−λ(μ − ξ) + λ2

2

(
μ + κ

∑
i

E[Yi]2
))

. (C.16)

In the inner estimate that we treat here, hypothesis (H2) does not hold. Rather, we decompose the Bernoulli variables
{Yi,1 ≤ i ≤ n} into two subgroups, according to some κ > 1 as follows:

A=
{
i ≤ n: E[Yi] < 1 − 1

κ

}
and B = {1, . . . , n} \A. (C.17)

We show the following estimate.

Lemma C.1. For {W,M,L} satisfying (H0) and (H1), and any 0 ≤ λ ≤ log(2), we have

for ξ ≥ 0, P (W ≤ ξ) ≤ exp

(
−λ(μ − ξ) + λ2

2

(
μ + 4

κ2
|B| + κ

∑
i∈A

E[Yi]2
))

. (C.18)

Proof. Using Chebychev’s inequality with any λ > 0, and hypothesis (H0)

P(W ≤ ξ) ≤ eλξ E[e−λW ]E[e−λL]
E[e−λL] ≤ eλξ E[e−λM ]

E[e−λL] ≤ e−(μ−ξ)λ E[e−λ(M−E[M])]
E[e−λ(L−E[L])] .
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We have now to estimate the Laplace transform of Bernoulli variables. The argument follows the proof of Lemma 2.3
of [1], with the following trick. When i ∈ B, Ỹi = 1 − Yi is again a Bernoulli variable, and

Yi − E[Yi] = −(
Ỹi − E[Ỹi]

)
. (C.19)

Now, we recall two simple inequalities used in the proof of Lemma 2.3 of [1]: for 0 ≤ x ≤ 1, we have 1 + x ≥
exp(x − x2), whereas for 0 ≤ x ≤ 1 − 1/κ , we have 1 − x ≥ exp(−x − κx2/2). Thus, using eλ ≤ 2 and the notation
f (t) = et − 1 − t , and g(t) = (et − 1)2, we have for i ∈ B,

E
[
exp

(−λ
(
Yi − E[Yi]

))] = E
[
exp

(
λ
(
Ỹi − E[Ỹi]

))] = e−E[Ỹi ]λ(1 + E[Ỹi]
(
eλ − 1

))
≥ exp

(
f (λ)E[Ỹi] − g(λ)E[Ỹi]2). (C.20)

On the other hand, for i ∈ A,

E
[
exp

(−λ
(
Yi − E[Yi]

))] ≥ exp

(
f (−λ)E[Yi] − κ

2
g(−λ)E[Yi]2

)
. (C.21)

Recall now that if [·]+ stands for the positive part

0 ≤ f (t) ≤ t2

2
e[t]+ and 0 ≤ g(t) ≤ t2e2[t]+ .

Finally, we have (using also in the third line that for λ ≥ 0, we have f (λ) ≥ f (−λ))

E[e−λ(M−E[M])]
E[e−λ(L−E[L])] ≤ exp

(
f (−λ)E[M] − f (−λ)

∑
i∈A

E[Yi] − f (λ)
∑
i∈B

E[Ỹi]

+ g(λ)
∑
i∈B

E[Ỹi]2 + κ

2
g(−λ)

∑
i∈A

E[Yi]2
)

≤ exp

(
f (−λ)μ + (

f (−λ) − f (λ)
)∑

i∈B
E[Ỹi]

+ g(λ)
∑
i∈B

(
1 − E[Yi]

)2 + κ

2
g(−λ)

∑
i∈A

E[Yi]2
)

≤ exp

(
λ2

2

(
μ + 4

κ2
|B| + κ

2

∑
i∈A

E[Yi]2
))

. (C.22)
�
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