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The auto-cross covariance matrix is defined as

Mn = 1

2T

T∑
j=1

(
ej e∗

j+τ + ej+τ e∗
j

)
,

where ej ’s are n-dimensional vectors of independent standard complex com-

ponents with a common mean 0, variance σ 2, and uniformly bounded 2+ηth
moments and τ is the lag. Jin et al. [Ann. Appl. Probab. 24 (2014) 1199–
1225] has proved that the LSD of Mn exists uniquely and nonrandomly, and
independent of τ for all τ ≥ 1. And in addition they gave an analytic expres-
sion of the LSD. As a continuation of Jin et al. [Ann. Appl. Probab. 24 (2014)
1199–1225], this paper proved that under the condition of uniformly bounded
fourth moments, in any closed interval outside the support of the LSD, with
probability 1 there will be no eigenvalues of Mn for all large n. As a conse-
quence of the main theorem, the limits of the largest and smallest eigenvalue
of Mn are also obtained.

1. Introduction. For a p × p random Hermitian matrix A with eigenvalues
λj , j = 1,2, . . . , p, we define the empirical spectral distribution (ESD) of A by

F A(x) = 1

p

p∑
j=1

I (λj ≤ x).

The limit distribution F of {F An} for a given sequence of random matrices {An}
is called the limiting spectral distribution (LSD). Let {εit } be independent random
variables with common mean 0 and variance 1. Define ek = (ε1k, . . . , εnk)

′, γ k =
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1√
2T

ek and Mn(τ ) = ∑T
k=1(γ kγ

∗
k+τ +γ k+τγ

∗
k). Here, τ ≥ 1 is the number of lags.

Under the condition of bounded 2 + ηth moments, Jin et al. (2014) or under the
weaker condition of second moments, Bai and Wang (2015) derived the LSD of
Mn(τ ), namely, F Mn(τ ) =: Fn

w→ Fc a.s. and Fc has a density function given by

φc(x) = 1

2cπ

√√√√ y2
0

1 + y0
−
(

1 − c

|x| + 1√
1 + y0

)2

,

(1.1)
−d(c) ≤ x ≤ d(c).

Here, c = limn→∞ cn := limn→∞ n
T

and y0 is the largest real root of the equation

y3 − (1 − c)2 − x2

x2 y2 − 4

x2 y − 4

x2 = 0

and

d(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − c)

√
1 + y1

y1 − 1
, c 	= 1,

lim
c→1

(1 − c)
√

1 + y1

y1 − 1
= lim

c→1

√
1 + y1

y3
1

√
1 + y1 = 2, c = 1,

where y1 is a real root of the equation:(
(1 − c)2 − 1

)
y3 + y2 + y − 1 = 0

such that y1 > 1 if c < 1 and y1 ∈ (0,1) if c > 1. Further, if c > 1, then Fc has a
point mass 1 − 1/c at the origin.

The model of consideration comes from a high-dimensional dynamic k-factor
model with lag q , that is, Rt = ∑q

i=0 �iFt−i + et , t = 1, . . . , T . The factor Ft−τ

captures the structural part of the model at lag τ , while et corresponds to the noise
component. Readers are referred to Jin et al. (2014) for more details. An inter-
esting problem to economists is how to estimate k and q . To solve this problem,
for τ = 0,1, . . . , define 	n(τ) = 1

2T

∑T
j=1(Rj R∗

j+τ + Rj+τ R∗
j ). Note that essen-

tially, Mn(τ ) and 	n(τ) are symmetrized auto-cross covariance matrices at lag
τ and generalize the standard sample covariance matrices Mn(0) and 	n(0), re-
spectively. The matrix Mn(0) has been intensively studied in the literature and it
is well known that the LSD has an MP law [Marčenko and Pastur (1967)]. More-
over, when τ = 0 and Cov(Ft ) = 
f , the population covariance matrix of Rt is a
spiked population model [Johnstone (2001), Baik and Silverstein (2006), Bai and
Yao (2008)]. In fact, under certain conditions, k(q + 1) can be estimated by count-
ing the number of eigenvalues of 	(0) that are significantly larger than (1 +√

c)2.
What remains is to separate the estimates of k and q , which can be achieved us-
ing the LSD of Mn = Mn(τ ) for general τ ≥ 1. A related work has been found
in Li, Wang and Yao (2014) in which the number k was detected by a different
symmetrized covariance matrix for a factor model without lags. Jin et al. (2014)
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has proved that the LSD of Mn exists uniquely and nonrandomly, and independent
of τ for all τ ≥ 1, whose Stieltjes transform m(z) satisfies the following equation:(

1 − c2m2(z)
)(

c + czm(z) − 1
)2 = 1,

from which four roots are obtained, with y0 defined as above:

m1(z) = ((1 − c)/z + √
1 + y0) +

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m2(z) = ((1 − c)/z + √
1 + y0) −

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m3(z) = ((1 − c)/z − √
1 + y0) +

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m4(z) = ((1 − c)/z − √
1 + y0) −

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
.

Here, as convention, we assume that the square root with a complex number is the
one whose imaginary part is positive and the Stieltjes transform for a function of
bounded variation G is defined as

mG(z) =
∫ 1

x − z
dG(x) for complex �(z) > 0.

However, the number of eigenvalues of 	n(τ) that lie outside the support of the
LSD of Mn at lags 1 ≤ τ ≤ q is different from that at lags τ > q . Thus, the esti-
mates of k and q can be separated by counting the number of eigenvalues of 	n(τ)

that lie outside the support of the LSD of Mn from τ = 0,1,2, . . . , q, q + 1, . . . .

It is worth noting that for the above method to work, one should expect no
eigenvalues outside the support of the LSD of Mn so that if an eigenvalue of 	n(τ)

goes out of the support of the LSD of Mn, it must come from the signal part. As
a continuation of Jin et al. (2014), this paper establishes limits of the largest and
smallest eigenvalues of Mn, after showing that no eigenvalues exist outside the
support of the LSD of Mn, along the similar lines as in Bai and Silverstein (1998).

In Bai and Silverstein (1998), the authors considered the separation problem
of the general sample covariance matrices. Later, Paul and Silverstein (2009)
extended the result to a more general class of matrices taking the form of
1
n

A1/2
n XnBnX∗

nA1/2
n and Bai and Silverstein (2012) established the result for the

information-plus-noise matrices.
Compared with Bai and Silverstein (1998), the model we considered here is

more complicated and some new techniques are employed. Besides the recursive
method to solve a disturbed difference equation as in Jin et al. (2014), a relationship
between the convergence rates of polynomial coefficients and those of the roots is
established and applied. Moreover, the results in this paper will pave the way for
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establishing other results such as limit theorems for sample eigenvalues of the
spiked model. The main results can now be stated.

THEOREM 1.1. Assume:

(a) τ ≥ 1 is a fixed integer.
(b) ek = (ε1k, . . . , εnk)

′, k = 1,2, . . . , T +τ , are n-vectors of independent stan-
dard complex components with supi,t E|εit |4 ≤ M for some M > 0.

(c) There exist K > 0 and a random variable X with finite fourth-order moment
such that, for any x > 0, for all n,T

1

nT

n∑
i=1

T +τ∑
t=1

P
(|εit | > x

) ≤ KP
(|X| > x

)
.(1.2)

(d) Mn = ∑T
k=1(γ kγ

∗
k+τ + γ k+τγ

∗
k), where γ k = 1√

2T
ek .

(e) cn ≡ n/T → c ∈ (0,1) ∪ (1,∞) as n → ∞.
(f) The interval [a, b] lies outside the support of Fc.

Then P(no eigenvalues of Mn appear in [a, b] for all large n) = 1.

By definition of ek and the convergence of the largest eigenvalue of the sample
covariance matrix [Yin, Bai and Krishnaiah (1988)], we have, for any δ > 0 and
all large n,

‖Mn‖ ≤ 1

2T

(∥∥EE∗
τ

∥∥+ ∥∥Eτ E∗∥∥)
≤ 1

T
smax(E)smax(Eτ ) = smax

(
E√
T

)
smax

(
Eτ√
T

)
(1.3)

≤ (1 + √
c)2 + δ a.s.

Here, E = (e1, . . . , eT ), Eτ = (e1+τ , . . . , eT +τ ) and smax(A) denotes the largest
singular value of a matrix A. This, together with Theorem 1.1, implies the follow-
ing result.

THEOREM 1.2. Assuming conditions (a)–(e) in Theorem 1.1 hold, we have

lim
n→∞λmin(Mn) = −d(c) a.s. and lim

n→∞λmax(Mn) = d(c) a.s.

Here, −d(c) and d(c) are the left and right boundary points of the support of the
LSD of Mn, as defined in (1.1).

PROOF. When c ∈ (0,1)∪ (1,∞), let ε > 0 be given and consider the interval
[d(c) + ε, b] with b > (1 + √

c)2 + δ for some δ > 0. By (1.3), with probability
one, there is no eigenvalue in the interval (b,∞). This, together with Theorem 1.1,
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implies that with probability one, there is no eigenvalue in the interval [d(c) +
ε,∞). Therefore, we have

lim sup
n→∞

λmax(Mn) ≤ d(c) + ε a.s.

Next, we claim that, for all large n, there exists at least one eigenvalue in [d(c)−
ε, d(c)]. Otherwise, we have Fn(d(c)) − Fn(d(c) − ε) = 0 for infinitely many n,
which contradicts the fact that Fn → Fc, or equivalently that Fc(d(c))−Fc(d(c)−
ε) > 0. Hence, our claim is proved. Therefore, we have

lim inf
n→∞ λmax(Mn) ≥ d(c) − ε a.s.

Now, let ε → 0, and we then have limn→∞ λmax(Mn) = d(c), a.s. By symmetry,
limn→∞ λmin(Mn) = −d(c), a.s. This completes the proof of the theorem. �

One can extend Theorem 1.2 to the case c = 1 as follows.

THEOREM 1.3. When c = 1, Theorem 1.2 still holds, that is,

lim
n→∞λmin(Mn) = −d(1) = −2 a.s.

and

lim
n→∞λmax(Mn) = d(1) = 2 a.s.

PROOF. To prove this theorem, we need to enlarge the matrix Mn with a
larger dimension. To this end, denote Mn = Mn,T = Mn,T (n). Fix T , we show that
λmax(Mn,T ) is nondecreasing and λmin(Mn,T ) is nonincreasing in n, or more pre-
cisely, λmax(Mn,T (n)) ≤ λmax(Mn+1,T (n)) and λmin(Mn,T (n)) ≥ λmin(Mn+1,T (n)).

To prove these relations, we will employ the interlacing theorem (Lemma 2.6)
by showing that Mn,T (n) is a major sub-matrix of Mn+1,T (n). Rewrite

Mn,T (n) =
T (n)∑
k=1

(
γ kγ

∗
k+τ + γ k+τγ

∗
k

) =
T (n)∑
k=1

(
γ k,nγ

∗
k+τ,n + γ k+τ,nγ

∗
k,n

)
.

By introducing, xt,n+1 = 1√
2T (n)

ε(n+1)t , we obtain

Mn+1,T (n)

=
T (n)∑
k=1

(
γ k,n+1γ

∗
k+τ,n+1 + γ k+τ,n+1γ

∗
k,n+1

)

=
T (n)∑
k=1

[(
γ k,n

xk,n+1

)(
γ ∗

k+τ,n, x
∗
k+τ,n+1

)+
(

γ k+τ,n

xk+τ,n+1

)(
γ ∗

k,n, x
∗
k,n+1

)]
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=

⎛⎜⎜⎜⎜⎜⎜⎝

T (n)∑
k=1

(
γ k,nγ

∗
k+τ,n + γ k+τ,nγ

∗
k,n

) T (n)∑
k=1

(
γ k,nx

∗
k+τ,n+1 + γ k+τ,nx

∗
k,n+1

)
T (n)∑
k=1

(
xk,n+1γ

∗
k+τ,n + xk+τ,n+1γ

∗
k,n

) T (n)∑
k=1

(
xk,n+1x

∗
k+τ,n+1 + xk+τ,n+1x

∗
k,n+1

)

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
Mn,T (n)

T (n)∑
k=1

(
γ k,nx

∗
k+τ,n+1 + γ k+τ,nx

∗
k,n+1

)
T (n)∑
k=1

(
xk,n+1γ

∗
k+τ,n + xk+τ,n+1γ

∗
k,n

) T (n)∑
k=1

(
xk,n+1x

∗
k+τ,n+1 + xk+τ,n+1x

∗
k,n+1

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

By Lemma 2.6, we have λmax(Mn+1,T (n)) ≥ λmax(Mn,T (n)). By symmetry, we also
have λmin(Mn+1,T (n)) ≤ λmin(Mn,T (n)). This together with Theorem 1.2 implies
that for any ε > 0, we have a.s.

lim sup
n→∞

n/T (n)→1

λmax(Mn,T (n)) ≤ lim
n→∞

n/T (n)→1

λmax(M[(1+ε)n],T (n)) = d(1 + ε).

Note that d(c) is continuous in c. By letting ε → 0, we have a.s.

lim sup
n→∞

n/T (n)→1

λmax(Mn,T (n)) ≤ d(1) = 2.

Since the LSD of Mn exists with right support boundary d(1) = 2, we have proved
that

lim
n→∞

n/T (n)→1

λmax(Mn,T (n)) = 2.

By symmetry, we have a.s. limn→∞,n/T (n)→1 λmin(Mn,T (n)) = −d(1) = −2. The
proof of the theorem is complete. �

As an immediate consequence of Theorem 1.3, Corollary 1.1 complements The-
orem 1.1 for c = 1.

COROLLARY 1.1. Theorem 1.1 still holds when c = 1.

Figures 1 and 2 display the density functions φc(x) and the distributions of
sample eigenvalues with τ = 1, c = 0.2 (n = 200, T = 1000) and c = 2.5 (n =
2500, T = 1000), respectively.

We will now focus on proving Theorem 1.1. As in Jin et al. (2014), we denote
the Stieltjes transform of Mn as mn(z) = 1

n
tr(Mn − zIn)

−1 where, and throughout
the paper, z = u + ivn, vn > 0, and let m0

n(z) be the Stieltjes transform of φcn with
limiting ratio of cn = n/T . Using the truncation technique employed in Section 3
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FIG. 1. Density function φc(x) of Fc and distribution of sample eigenvalues with τ = 1, c = 0.2
(n = 200, T = 1000).

of Bai and Silverstein (1998), we further assume that the εij ’s satisfy the conditions
that

|εij | ≤ C, Eεij = 0, E|εij |2 = 1, E|εij |4 < M(1.4)

for some C,M > 0. More detailed justifications are provided in the Appendix.
The rest of the paper is structured as follows. Section 2 contains some lemmas

of known results. Section 3 provides some technical lemmas. Convergence rates
of ‖Fn − Fcn‖ and mn(z) − m0

n(z) are obtained in Sections 4 and 5, respectively.
Section 6 concludes the proof of Theorem 1.1. Justifications of variable truncation,

FIG. 2. Density function φc(x) of Fc and distribution of sample eigenvalues with τ = 1, c = 2.5
(n = 2500, T = 1000). Note that the area under the density function curve is 1/c.
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centralization and rescaling and proofs of lemmas presented in Section 3 are given
in the Appendix.

2. Mathematical tools. In this section, we provide some known results.

LEMMA 2.1 [Burkholder (1973)]. Let {Xk} be a complex martingale differ-
ence sequence with respect to the increasing σ -fields {Fn}. Then, for p ≥ 2, we
have

E
∣∣∣∑Xk

∣∣∣p ≤ Kp

(
E
(∑

E
(|Xk|2|Fk−1

))p/2 + E
∑ |Xk|p

)
.

LEMMA 2.2 [Burkholder (1973)]. Let {Xk} be as above. Then, for p ≥ 2, we
have

E
∣∣∣∑Xk

∣∣∣p ≤ KpE
(∑ |Xk|2

)p/2
.

LEMMA 2.3 [Theorem A.43 of Bai and Silverstein (2010)]. Let A and B be
two n × n Hermitian matrices. Then∥∥F A − F B∥∥ ≤ 1

n
rank(A − B),

where F A is the empirical spectral distribution of A and ‖f ‖ = supx |f (x)|.

LEMMA 2.4 [Bai (1993) or Corollary B.15 of Bai and Silverstein (2010)].
Let F be a distribution function and let G be a function of bounded variation
satisfying

∫ |F(x) − G(x)|dx < ∞. Denote their Stieltjes transforms by f (z) and
g(z), respectively. Assume that for some constant B > 0, F([−B,B]) = 1 and
|G|((−∞,−B)) = |G|((B,∞)) = 0, where |G|((a, b)) denotes the total varia-
tion of the signed measure G on the interval (a, b). Then we have

‖F − G‖ := sup
x

∣∣F(x) − G(x)
∣∣

≤ 1

π(1 − κ)(2γ − 1)

×
[∫ A

−A

∣∣f (z) − g(z)
∣∣du + v−1 sup

x

∫
|y|≤2va

∣∣G(x + y) − G(x)
∣∣dy

]
,

where z = u + iv, v > 0, a and γ are positive constants such that γ =
1
π

∫
|u|<a

1
u2+1

du > 1
2 . A is a positive constant such that A > B and κ =

4B
π(A−B)(2γ−1)

< 1.
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LEMMA 2.5 [Lemma B.26 of Bai and Silverstein (2010)]. Let A = (aij ) be an
n×n nonrandom matrix and X = (x1, . . . , xn)

′ be a random vector of independent
entries. Assume that Exi = 0, E|xi |2 = 1, and E|xj |� ≤ v�. Then, for any p ≥ 1,

E
∣∣X∗AX − tr A

∣∣p ≤ Cp

((
v4 tr

(
AA∗))p/2 + v2p tr

(
AA∗)p/2)

,

where Cp is a constant depending on p only.

LEMMA 2.6 [The interlacing theorem, Rao and Rao (1998)]. If C is an
(n − 1) × (n − 1) major sub-matrix of the n × n Hermitian matrix A, then
λ1(A) ≥ λ1(C) ≥ λ2(A) ≥ · · · ≥ λn−1(C) ≥ λn(A). Here λi(A) denotes the ith
largest eigenvalue of the Hermitian matrix A.

3. Some technical lemmas. Before proceeding, some technical lemmas are
presented with proofs postponed in the Appendix. The first three are about the
convergence rates of roots of a polynomial.

LEMMA 3.1. Let {rn} be a sequence of positive real numbers converging to 0
and m be a fixed positive integer, independent of n. Let B(x0, rn) denote the open
ball centered at x0 with radius rn. Given m points x1, . . . , xm in B(x0, rn), one can
find x ∈ B(x0, rn) and d > 0 such that mini∈{1,...,m} |x − xi | ≥ drn.

LEMMA 3.2. For each n ∈ N, let Pn(x) = xk + an,k−1x
k−1 + · · · + an,1x +

an,0 be a polynomial of degree k, with roots xn1, . . . , xnk . Moreover, for i =
0,1, . . . , k − 1, limn→∞ an,i = ai . Let P(x) = xk + ak−1x

k−1 + · · · + a1x + a0.
Suppose P(x) has distinct roots x1, . . . , xm, and each xj has multiplicity �j with∑m

j=1 �j = k. Then for n large enough, for each j ∈ {1, . . . ,m}, there are exactly

�j xni ’s in B(xj , r
1/�j
n ), where rn = maxi∈{0,1,...,k−1} |an,i − ai |.

LEMMA 3.3. For each n ∈N, let Pn(x) = xk +an,k−1x
k−1 +· · ·+an,1x+an,0

and Qn(y) = yk + bn,k−1y
k−1 + · · · + bn,1y + bn,0 be two polynomials of de-

gree k, with roots xn1, . . . , xnk and yn1, . . . , ynk , respectively. Moreover, for i =
0,1, . . . , k − 1, limn→∞ bn,i = limn→∞ an,i = ai . Let P(x) = xk + ak−1x

k−1 +
· · · + a1x + a0. Suppose P(x) has distinct roots x1, . . . , xm, and each xj has
the multiplicity �j with

∑m
j=1 �j = k. Then for n large enough, for each j ∈

{1, . . . ,m}, for any xni ∈ B(xj , r
1/�j
n ), there exists at least one ynl such that

|xni − ynl | ≤ dr̃
1/�j
n for some d > 0. Here, rn = maxi∈{0,1,...,k−1} |an,i − ai | and

r̃n = maxi∈{0,1,...,k−1} |an,i − bn,i |.

To establish the following lemmas, we need some notation: let z = u + ivn,
where u ∈ [−A,A] and vn ∈ [n−1/52, n−1/212] and A > 0 is a large constant. De-
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fine

A = Mn − zIn,

Ak = Mn,k − zIn = A − γ k(γ k−τ + γ k+τ )
∗ − (γ k−τ + γ k+τ )γ

∗
k,

...

Ak,...,k+sτ = A −
s∑

t=0

[
γ k+tτ (γ k+(t−1)τ + γ k+(t+1)τ )

∗

+ (γ k+(t−1)τ + γ k+(t+1)τ )γ
∗
k+tτ

]
,

with the convention that γ l = 0 for l ≤ 0 or l > T + τ .
The following lemma will be frequently used.

LEMMA 3.4. Let r, s be fixed positive integers. For l 	= k, we have

E
∣∣γ ∗

l A−s
k γ k

∣∣2r ≤ K

T rv2rs
n

for some K > 0.

Define an = cnEmn

2 and let xn1, xn0 be two roots of the equation x2 = x − a2
n

with |xn1| > |xn0|. Some properties regarding xn1 and xn0 are stated in the next
lemma.

In the following, if a lemma contains two sets of results simultaneously, then
the results labelled by “a” hold for all z = u + ivn, and u lies in a bounded in-
terval [−A,A] ⊆ R, whereas results labelled by “b” hold for all z = u + ivn with
u ∈ [a, b] and are obtained under the additional condition that P(‖Fn − Fcn‖ ≥
n−1/104) = o(n−t ) for any fixed t > 0, where [a, b] is defined in Theorem 1.1.
Results “a” will be used to establish a preliminary convergence rate of the ESD
of Mn in Section 4 and the results “b” will be applied to the refinement of the
convergence rate when u ∈ [a, b] in Section 5. If a lemma contains only one set
of results, the results will be established for all u ∈ [a, b] and under the additional
assumption that P(‖Fn − Fcn‖ ≥ n−1/104) = o(n−t ).

LEMMA 3.5. When u ∈ [a, b], let λkj denote the j th largest eigenvalue of
Mn − γ k(γ k+τ + γ k−τ )

∗ − (γ k+τ + γ k−τ )γ
∗
k , for �(z) ≥ n−δ with δ = 1/106, we

have, for any t > 0

P
(

1

2T

∑ 1

|λkj − z|2 > K

)
= o

(
n−t )

for some K > 0.
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REMARK 3.1. When u ∈ [a, b], with similar proofs, for �(z) ≥ n−δ with δ =
1/53, we have, for any t > 0,

P
(

1

2T

∣∣tr A−1
k

∣∣ > K

)
≤ P

(
1

2T

∑ 1

|λkj − z| > K

)
= o

(
n−t )

and when �(z) ≥ n−δ with δ = 1/212,

P
(

1

2T

∣∣tr A−4
k

∣∣ > K

)
≤ P

(
1

2T

∑ 1

|λkj − z|4 > K

)
= o

(
n−t )

for some K > 0.

REMARK 3.2. When u ∈ [a, b], and λkj ’s are eigenvalues of Mn,k = Mn −
γ k(γ k+τ + γ k−τ )

∗ − (γ k+τ + γ k−τ )γ
∗
k , for �(z) ≥ n−δ with δ = 1/212, with a

similar proof, we have

P
(

1

2T

∑ 1

|λkj − z|2 > K

)
= o

(
n−t )

for some K > 0.

LEMMA 3.6. With xn1 and xn0 defined as above, for any vn ≥ n−1/52, we
have:

(i) There exists some η > 0 such that for all large n:

(a) supu∈[−A,A],�(z)=vn
|xn0(z)
xn1(z)

| < 1 − ηv3
n.

(b) supu∈[a,b],�(z)=vn
|xn0(z)
xn1(z)

| < 1 − η.

(ii)

(a) When u ∈ [−A,A], we have |xn1| ≥ 1
2 and |xn1| ≤ Kv−1

n for some
constant K .

(b) When u ∈ [a, b], we have |xn1| ≥ 1
2 and |xn1| ≤ K for some con-

stant K .

(iii)

(a) When u ∈ [−A,A], we have |xn1 − xn0| ≥ ηvn for some constant
η > 0.

(b) When u ∈ [a, b], we have |xn1 − xn0| ≥ η for some constant η > 0.

(iv)

(a) When u ∈ [−A,A], we have |xn1||xn1−xn0| ≤ Kv−1
n for some constant K .

(b) When u ∈ [a, b], we have |xn1||xn1−xn0| ≤ K for some constant K .

(v) When u ∈ [a, b], we have |an| < 1
2 − η for some constant η > 0.
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LEMMA 3.7. For any vn ≥ n−1/52 and t > 0:

(a) for any u ∈ [−A,A] and k ≤ T − v−4
n , we have

P
(∣∣∣∣γ ∗

k+τ A−1
k γ k+τ − cnEmn

2xn1

∣∣∣∣ ≥ v6
n

)
= o

(
n−t )

and for any k ≥ v−4
n ,

P
(∣∣∣∣γ ∗

k−τ A−1
k γ k−τ − cnEmn

2xn1

∣∣∣∣ ≥ v6
n

)
= o

(
n−t ),

(b1) for any u ∈ [a, b], there is a constant η ∈ (0, 1
2) such that P(|γ ∗

k+τ A−1
k ×

γ k+τ | ≥ 1 − η) = o(n−t ),
(b2) for any u ∈ [a, b], when k ≤ T − log2 n, we have |Eγ ∗

k+τ A−1
k γ k+τ − an

xn1
| =

o(1/(nvn)), and when k ≥ log2 n, we have |Eγ ∗
k−τ A−1

k γ k−τ − an

xn1
| = o(1/(nvn)),

(b3) for any u ∈ [a, b], when k ≤ T − log2 n, we have E|γ ∗
k+τ A−1

k γ k+τ −
an

xn1
|2 = o(1/(nvn)), and when k ≥ log2 n, we have E|γ ∗

k−τ A−1
k γ k−τ − an

xn1
|2 =

o(1/(nvn)).

LEMMA 3.8. For any vn ≥ n−1/52 and t > 0:

(a) for any u ∈ [−A,A], we have

P
(∣∣γ ∗

k−τ A−1
k γ k+τ

∣∣ > v6
n

) = o
(
n−t );

(b1) for any u ∈ [a, b], we have |Eγ ∗
k−τ A−1

k γ k+τ | = o(1/(nvn));

(b2) for any u ∈ [a, b], we have E|γ ∗
k−τ A−1

k γ k+τ |2 = o(1/(nvn)).

LEMMA 3.9. For any vn ≥ n−1/212, u ∈ [a, b] and t > 0, there exists a con-
stant K > 0 such that

P
(∣∣γ ∗

k+τ A−1
k

(
A∗

k

)−1
γ k+τ

∣∣ ≥ K
) = o

(
n−t ).

LEMMA 3.10. For any vn ≥ n−1/212, u ∈ [a, b] and t > 0, we have

P
(∣∣γ ∗

k+τ A−2
k

(
A∗

k

)−2
γ k+τ

∣∣ ≥ K
) = o

(
n−t )

for some K > 0.

LEMMA 3.11. Let u ∈ [a, b], then for any vn ≥ n−1/212, we have∣∣E tr A−1 − E tr A−1
k

∣∣ = O(1) and∣∣E tr A−1
k,...,k+(s−1)τ − E tr A−1

k,...,k+sτ

∣∣ = O(1).

4. A convergence rate of the empirical spectral distribution. In this sec-
tion, we give a convergence rate of ‖Fn − Fcn‖.
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4.1. A preliminary convergence rate of mn(z) − Emn(z). Let Ek denote
the conditional expectation given γ k+1, . . . ,γ T +τ . With this notation, we have
mn(z) = E0(mn(z)) and Emn(z) = ET (mn(z)). Therefore, we obtain

mn(z) − Emn(z) =
T +τ∑
k=1

(
Ek−1mn(z) − Ekmn(z)

)

=
T +τ∑
k=1

1

n
(Ek−1 − Ek)

(
trA−1 − trA−1

k

)

≡
T +τ∑
k=1

1

n
(Ek−1 − Ek)αk.

Write

Mn = Mn,k + (γ k+τ ,γ k,γ k−τ )

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠⎛⎝γ ∗
k+τ

γ ∗
k

γ ∗
k−τ

⎞⎠
≡ Mn,k + Ck.

Let λi(B) denote the ith smallest eigenvalue for a Hermitian matrix B. Then, for
any i > 3, we have

λi(Mn) = sup
α1,...,αi−1

inf
β⊥α1,...,αi−1

‖β‖=1

(
β∗Mn,kβ + β∗Ckβ

)
≥ sup

α1,...,αi−4

inf
β⊥α1,...,αi−4,γ k+τ ,γ k,γ k−τ

‖β‖=1

β∗Mn,kβ

(4.1)
≥ sup

α1,...,αi−4

inf
β⊥α1,...,αi−4

‖β‖=1

β∗Mn,kβ

= λi−3(Mn,k).

Similarly, we have λi(Mn) ≤ λi+3(Mn,k). Therefore, with

G(x) :=
n∑

i=1

I{λi(Mn)≤x} and Gk(x) :=
n∑

i=1

I{λi(Mn,k)≤x},

we have

|αk| = ∣∣tr A−1 − tr A−1
k

∣∣
=

∣∣∣∣∫ 1

x − z
d
(
G(x) − Gk(x)

)∣∣∣∣
≤

∫ |G(x) − Gk(x)|
|x − z|2 dx(4.2)
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≤ 3
∫ 1

(x − u)2 + v2
n

dx

≤ 3π

vn

.

Here, the third equality follows from integration by parts. Therefore, by Lem-
ma 2.2,

P
(∣∣mn(z) − Emn(z)

∣∣ > vn

) = P

(∣∣∣∣∣
T +τ∑
k=1

(Ek−1 − Ek)αk

∣∣∣∣∣ > nvn

)

≤ E

(
1

(nvn)p

∣∣∣∣∣
T +τ∑
k=1

(Ek−1 − Ek)αk

∣∣∣∣∣
p)

(4.3)

≤ K

(nvn)p
E

(
T +τ∑
k=1

∣∣(Ek−1 − Ek)αk

∣∣2)p/2

≤ Kn−p/2v−2p
n .

Hence, when vn ≥ n−α for some 0 < α < 1
4 , we can choose p > 1 such that p(1

2 −
2α) > t , and thus

P
(∣∣mn(z) − Emn(z)

∣∣ > vn

) = o
(
n−t ),(4.4)

for any fixed t > 0. This implies |mn(z) − Emn(z)| = o(vn), a.s.

4.2. A preliminary convergence rate of Emn(z) − m0
n(z). Next, we want to

show that when vn ≥ n−1/52,∣∣Emn(z) − m0
n(z)

∣∣ = o(vn).(4.5)

By

A =
T∑

k=1

(
γ kγ

∗
k+τ + γ k+τγ

∗
k

)− zIn

we have

In =
T∑

k=1

(
A−1γ kγ

∗
k+τ + A−1γ k+τγ

∗
k

)− zA−1.

Taking trace and dividing by n, we obtain

1 + zmn(z) = 1

n

T∑
k=1

(
γ ∗

k+τ A−1γ k + γ ∗
kA−1γ k+τ

)
.
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Taking expectation on both sides, we obtain

1 + zEmn(z) = 1

n

T∑
k=1

Eγ ∗
kA−1(γ k+τ + γ k−τ ),

or equivalently, by noticing 1 − c2
n

2xn1
E2mn(z) = xn1 − xn0,

cn + cnzEmn(z)

= 1

T

T∑
k=1

Eγ ∗
kA−1(γ k+τ + γ k−τ )

= 1

T

T∑
k=1

[
1 − E

1

1 + γ ∗
kÃ−1

k (γ k+τ + γ k−τ )

]
(4.6)

= 1

T

T∑
k=1

[
1 − E

(
1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

))]

= 1 − 1

1 − (c2
n/(2xn1))E2mn(z)

+ δn,

where

Ãk = A − (γ k+τ + γ k−τ )γ
∗
k = Ak + γ k

(
γ ∗

k+τ + γ ∗
k−τ

)
,

δn = − 1

T

T∑
k=1

(
E
(

1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

))

− 1

xn1 − xn0

)
,

xn1, xn0 are the roots of the equation x2 = x − a2
n with |xn1| > |xn0|, and an =

cnEmn

2 , as defined below the statement of Lemma 3.4. Substituting the expression
of xn1, we have(

1 − c2
n

(
Emn(z)

)2)(
cn + cnzEmn(z) − 1 − δn

)2 = 1.(4.7)

Meanwhile, by (3.8) of Jin et al. (2014), we have(
1 − c2m2(z)

)(
c + czm(z) − 1

)2 = 1.(4.8)
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Similarly, m0
n(z) satisfies(

1 − c2
n

(
m0

n(z)
)2)(

cn + cnzm
0
n(z) − 1

)2 = 1.(4.9)

We can regard the three expressions above as polynomials of Emn(u + ivn),
m(u) and m0

n(u + ivn), respectively. Compared with (4.8), coefficients in (4.7)
and (4.9) are different in terms of δn and cn.

4.2.1. Identification of the solution to equation (4.8). In this subsection, we
show that for c 	= 1 and every A > 0, there is a constant η > 0 such that for every
z with �(z) ∈ (0, η) and |�(z)| ≤ A, equation (4.8)(

1 − c2m2(z)
)(

1 − c − czm(z)
)2 = 1

has only one solution satisfying �(m(z)) > ηv and the other three satisfying
�(m(z)) < −ηv when c < 1; and one satisfying �(m(z)+ c−1

cz
) > ηv and the other

three satisfying �(m(z) + c−1
cz

) < −ηv when c > 1.
At first, we claim that the statement is true when |z| < δ for some small posi-

tive δ. In Jin et al. (2014), it has been proved that the four solutions for a z with
�(z) > 0 are

m1(z) = ((1 − c)/z + √
1 + y0) +

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m2(z) = ((1 − c)/z + √
1 + y0) −

√
((1 − c)/z − 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m3(z) = ((1 − c)/z − √
1 + y0) +

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

m4(z) = ((1 − c)/z − √
1 + y0) −

√
((1 − c)/z + 1/

√
1 + y0)2 − y2

0/(1 + y0)

2c
,

where as convention, we assume that the square root of a complex number is the
one with positive imaginary part, and y0 is the root of the largest absolute value to
the equation

y3 − (1 − c)2 − z2

z2 y2 − 4

z2 y − 4

z2 = 0

or equivalently

z2y3 − (
(1 − c)2 − z2)y2 − 4y − 4 = 0.(4.10)

We first consider the case where z → 0. At first, by Lemma 4.1 of Bai, Miao and
Rao (1991), we see that y0 → ∞ as z → 0. Dividing both sides of (4.10) by y2,
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we obtain that y0 = (1−c)2

z2 (1 + o(1)). Writing y0 = (1−c)2

z2 + d and substituting it
into (4.10), we obtain

(1 − c)6

z4 + 3d
(1 − c)4

z2 + 3d2(1 − c)2 + d3z2

− (
(1 − c)2 − z2)((1 − c)4

z4 + 2d(1 − c)2

z2 + d2
)

− 4(1 − c)2

z2 − 4d − 4

(4.11)

= d(1 − c)4

z2 − 4(1 − c)2 − (1 − c)4

z2 + 2
(
d2 + d

)
(1 − c)2 − 4(d + 1)

+ (
d3 + d2)z2 = 0.

By equation (4.11), we have

d = 4

(1 − c)2 − 1 + O
(
z2).

That is,

y0 = (1 − c)2

z2 + 4

(1 − c)2 − 1 + O
(
z2).(4.12)

Therefore, we have√
1 + y0 = −|1 − c|

z

(
1 + 2z2

(1 − c)4 + O
(
z4)).(4.13)

Consequently,

1 − c

z
+
√

1 + y0 = 1 − c − |1 − c|
z

− 2z

|1 − c|3 + O
(
z3),(4.14)

1 − c

z
−
√

1 + y0 = 1 − c + |1 − c|
z

+ 2z

|1 − c|3 + O
(
z3).(4.15)

Because(
1 − c

z
∓ 1√

1 + y0

)2

− y2
0

1 + y0
= (1 − c)2

z2 ∓ 2
1 − c

z
√

1 + y0
+ 1 − y0

= − 4

(1 − c)2 ± 2
1 − c

|1 − c| + O(z2)
+ 2 + O

(
z2)

= − 4

(1 − c)2 ± 2
1 − c

|1 − c| + 2 + O
(
z2),

we obtain √√√√(
1 − c

z
∓ 1√

1 + y0

)2

− y2
0

1 + y0
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(4.16)

= i

√
4

(1 − c)2 ∓ 2
1 − c

|1 − c| − 2 + O
(
z2).

When c < 1, from (4.14) and (4.16), as z → 0, we obtain

�(2cm1) = �
(
O(z) + i

√
4

(1 − c)2 − 4
)

>

√
c(2 − c)

(1 − c)
,

�(2cm2) = �
(
O(z) − i

√
4

(1 − c)2 − 4
)

< −
√

c(2 − c)

(1 − c)
,

(4.17)

�(2cm3) = �
(

2(1 − c)

z
+ i

√
4

(1 − c)2 + O(z)

)
< −1 − c

|z|2 v,

�(2cm4) = �
(

2(1 − c)

z
− i

√
4

(1 − c)2 + O(z)

)
< − 2

(1 − c)
.

When c ∈ (1,2], as z → 0, we have

�
(

2c

(
m1 + c − 1

cz

))
= �

(
i

√
4

(1 − c)2 + O(z)

)
>

1

c − 1
,

�
(

2c

(
m2 + c − 1

cz

))
= �

(
−i

√
4

(1 − c)2 + O(z)

)
< − 1

c − 1
,

�
(

2c

(
m3 + c − 1

cz

))
= �

(
2(c − 1)

z
+ i

√
4c(2 − c)

(1 − c)2 + O(z)

)
(4.18)

< −c − 1

|z|2 v,

�
(

2c

(
m4 + c − 1

cz

))
= �

(
2(c − 1)

z
− i

√
4c(2 − c)

(1 − c)2 + O(z)

)

< −c − 1

|z|2 v.

When c > 2, as z → 0, we have

�
(

2c

(
m1 + c − 1

cz

))
= �

(
i

√
4

(1 − c)2 + O(z)

)
>

1

c − 1
,

�
(

2c

(
m2 + c − 1

cz

))
= �

(
−i

√
4

(1 − c)2 + O(z)

)
< − 1

c − 1
,

�
(

2c

(
m3 + c − 1

cz

))
= �

(
2(c − 1)

z
−
√

4c(c − 2)

(1 − c)2 + O(z)

)
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< −c − 1

|z|2 v,(4.19)

�
(

2c

(
m4 + c − 1

cz

))
= �

(
2(c − 1)

z
+
√

4c(c − 2)

(1 − c)2 + O(z)

)

< −c − 1

|z|2 v.

This proves the result when |z| < δ for some δ > 0.
For |z| ≥ δ, we first consider the case where c < 1. Suppose that m(z) is one of

the four continuous branches of the solutions of the equation (4.8). If the conclu-
sion is incorrect for m(z), then there exist a sequence of constants ζn ↓ 0 and
a sequence of complex numbers zn = un + ivn satisfying |zn| ≥ δ, |un| ≤ A,
vn ∈ (0, η) with η = δ2/2 and |�(m(zn))| ≤ ζnvn. Then there is a subsequence {n′}
such that zn′ → z0 = u0 + iv0 with un′ → u0 ∈ [−A,A] and vn′ → v0 ∈ [0, η].

Write m(zn) = m1(zn) + im2(zn), where m1(zn) and m2(zn) are real. Since
m(zn) satisfies the equation (4.8), we have(

1 − c2m2(zn)
)(

1 − c − cznm(zn)
)2 = 1.(4.20)

Comparing the imaginary parts of both sides of (4.20), we obtain

c2m1(zn)m2(zn)

× [(
1 − c − cunm1(zn) + cvnm2(zn)

)2 − (
cunm2(zn) + cvnm1(zn)

)2]
+ (

1 − c2m2
1(zn) + c2m2

2(zn)
)(

cunm2(zn) + cvnm1(zn)
)

× (
1 − c − cunm1(zn) + cvnm2(zn)

) = 0.

Dividing by vn both sides of the equation above, we obtain(
1 − c2m2

1(z0)
)(

cm1(z0)
)(

1 − c − cu0m1(z0)
) = 0.(4.21)

By the condition that |�(m(zn))| ≤ ζnvn → 0, we have that m(z0) = m1(z0) is
real. The solutions ±1/c and 0 of the equation (4.21) for m(z0) do not satisfy
equation (4.8). Therefore, we have 1 − c − cu0m(z0) = 0, and hence by (4.8)

−(
1 − c2m2(z0)

)
c2v2

0m2(z0) = 1.(4.22)

Note that v0 = 0 contradicts to the equation above. Thus, we have v0 ∈ (0, δ2/2].
By (4.22) and the fact that 1 − c − cu0m(z0) = 0, we obtain

(1 − c)2

u2
0

= v2
0 +

√
v4

0 + 4v2
0

2v2
0

or u2
0 = 2v2

0(1 − c)2

v2
0 +

√
v4

0 + 4v2
0

.

The expression of u2
0 implies that u2

0 < v0 < δ2/2. On the other hand, by the as-
sumption that |z0| > δ, we have u2

0 + v2
0 > δ2 and v2

0 < v0 < δ2/2 which implies
that u2

0 > δ2/2, the contradiction proves our assertion.
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Now, we consider the case c > 1. Let m(z) = cm(z)+ c−1
z

. Then equation (4.8)
becomes

z2m2(z)

(
1 −

(
1 − c

z
+ m(z)

)2)
= 1.(4.23)

If the conclusion is untrue, similar to the case where c < 1, there exist sequences
ζn ↓ 0 and zn = un + ivn → z0 = u0 + i0 such that |�(m(zn))| ≤ ζnvn, and |un| ≤
A. By the continuity of the solution m(z) for |z| ≥ δ, we may assume the inequality
above is an equality, for otherwise, one may shift �(zn) = un toward the origin.
Write m(zn) = m1(zn) + im2(zn), where m1(zn) and m2(zn) are both real. By the
equality of imaginary parts of (4.23), we have

m1(zn)m2(zn)

× (
u2

n − v2
n − (

1 − c + unm1(zn) − v0m2(zn)
)2

+ (
unm2(zn) + vnm1(zn)

)2)
(4.24)

− (
m2

1(zn) − m2
2(zn)

)
× (

unvn − (
1 − c + unm1(zn) − vnm2(zn)

)(
unm2(zn) + vnm1(zn)

))
= 0

Dividing both sides by vn and making n → ∞ on both sides of the equation above,
by assumption, we obtain

m2
1(z0)

(
u0 − (

1 − c + u0m1(z0)
)
m1(z0)

) = 0.(4.25)

This implies that

u0 = (1 − c)m1(z0)

(1 − m2
1(z0))

.(4.26)

Similarly, we have m(u0) = m1(u0) which is real. By the real part of (4.23), we
have

m2(u0)
(
u2

0 − (
1 − c + u0m(u0)

)2) = 1.

The solution to the equation above in u0 is

u0 = m3(u0)(1 − c) ±
√

m2(u0) − c(2 − c)m4(u0)

m2(u0)(1 − m2(u0))
.(4.27)

If m2(u0) 	= 1
c(2−c)

, then (4.27) contradicts (4.26).

Now, we consider the case where c ∈ (1,2) and m2(u0) = 1
c(2−c)

. By differen-
tiating (4.23) with respect to z, we obtain

dm(z)

dz
= − m(z − m(1 − c + zm))

z2 − (1 − c + zm)2 − zm(1 − c + zm)

= − m(z − m(1 − c + zm))

z2 − (1 − c)2 − z(1 − c)m
.
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Because

�(zn − m
(
1 − c + znm(zn)

)) = vn

[(
1 − m2

1(u0)
)+ o(1)

]
,

�(
zn − m

(
1 − c + znm(zn)

))
= [

un − m1(zn)
(
1 − c + unm1(zn)

)]+ O
(
m2(zn)

)
= [

un

(
1 − m2

1(zn)
)− (1 − c)m1(zn)

]+ O
(
m2(zn)

) (
by (4.24)

)
= − m2(zn)

vnm1(zn)

[
u2

n − (1 − c)2 − un(1 − c)m1(zn) + o(1)
]

� ζn

(1 − c)2[1 − 2m2(u0)]
m(u0)(1 − m(u0)2)2 ,

z2
n − (1 − c)2 − z(1 − c)m(zn)

m(zn)
� (1 − c)2[2m2(u0) − 1]

m(u0)(1 − m2(u0))2 .

Therefore,

∂m2(zn)

∂u
� vn

m(u0)(1 − m2(u0))
3

(1 − c)2(2m2(u0) − 1)
,

and

∂m1(zn)

∂u
� ζn.

Hence,

Gn = m2
1(zn)

(
un − (

1 − c + unm1(zn)
)
m1(zn)

)
− m2

1(z0)
(
u0 − (

1 − c + u0m1(z0)
)
m1(z0)

)
(4.28)

= (un − u0)
(
m2

1
(
z∗
n

)(
1 − m2

1(z0)
)+ O(ζn)

)
.

On the other hand, we have

ζnvn = m2(zn) − m2(z0)

= (un − u0)
∂m2(z

∗
n)

∂u
(4.29)

� (un − u0)
vnm(z0)(1 − m2(z0))

3

(1 − c)2(2m2(z0) − 1)
.

Therefore,

Gn � ζn

(1 − c)2m(u0)(2m2(z0) − 1)

(1 − m2(z0))2 .(4.30)
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Substituting the above into (4.24) and dividing m2(zn) = ζnvn on both sides and
letting n → ∞, we obtain

0 = m(u0)
(
u2

0 − (
1 − c + u0m(u0)

)2)+ m2(u0)
(
1 − c + u0m(u0)

)
u0

+ (1 − c)2m(u0)(2m2(u0) − 1)

(1 − m2(u0))2

(4.31)
= m(u0)

(
u2

0 − (1 − c)2 − u0(1 − c)m(u0)
)

+ (1 − c)2m(u0)(2m2(u0) − 1)

(1 − m2(u0))2 .

By substitution of (4.26), the equation above becomes

2(1 − c)2m(u0)(2m2(u0) − 1)

(1 − m2(u0))2 = 0

which also implies that m2(u0) = 1
2 . This contradicts to the assumption that

m2(u0) = 1
c(2−c)

and the assertion is finally proved.

Consequently, under the condition that |δn| ≤ Kv
η
n with η > 1, we have

maxj=2,3,4,z=u+ivn |mj(z) − Emn(z)| ≥ ηvn and thus maxz=u+ivn |m1(z) −
Emn(z)| ≤ Kv

η
n when c < 1. Similarly for m(z) when c > 1.

Hence, to prove (4.5), it remains to show

|δn| ≤ Kvη
n(4.32)

for some K > 0, and η > 1.

4.2.2. Convergence rate of δn. Let vn ≥ n−1/52. By (4.6), we have

δn = cn + cnzEmn(z) − 1 + 1

xn1 − xn0
=: 1

T

T∑
k=1

Eηk,

where

ηk = γ ∗
kA−1(γ k+τ + γ k−τ ) − 1 + 1

xn1 − xn0
.

When k ≤ v−4
n or ≥ T − v−4

n , by (iii)(a) of Lemma 3.6, we have

|Eηk| ≤ v−1
n

√
E|γ k|2

(
E|γ k−τ |2 + E|γ k+τ |2

)+ 1 + 1

|xn1 − xn0|
≤ Kv−1

n .

Therefore, for all large n,

1

T

([v−4
n ]∑

k=1

+
T∑

k=[T −v−4
n ]

)
|Eηk| ≤ K

T v5
n

≤ Kv47
n .(4.33)
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When k ∈ ([v−4
n ], [T − v−4

n ]), denote

ε1 = (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k γ k,

ε2 = γ ∗
kA−1

k (γ k+τ + γ k−τ ),

ε3 = γ ∗
kA−1

k γ k − 1

2T
tr A−1

k ,(4.34)

ε4 = 1

2T
tr A−1

k − cn

2
Emn(z),

ε5 = (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ ) − cn

xn1
Emn(z).

Then, by the fact that xn1 − xn0 = 1 − 2a2
n/xn1, we have

−Eηk = E
(

1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

))
− 1

xn1 − xn0

= 1

xn1 − xn0
Eβk

(
−2ε1

a2
n

xn1
− ε2 − ε1ε2

+ (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )(ε3 + ε4) + anε5

)
,

where

βk = 1

1 + ε1 + ε2 + ε1ε2 − γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

= 1

1 + ε1 + ε2 + ε1ε2 − (an + ε3 + ε4)(2an/xn1 + ε5)
.

Define a random set En = {|εi | ≤ v6
n, i = 1,2,3,4,5}. When En happens, by the

facts |an| ≤ Kv−1
n , |2an

xn1
| ≤ 2 and Lemma 3.6(iii)(a), we have

|βk| ≤ 1

|1 − 2a2
n/xn1 − 9v6

n − Kv5
n|

= 1

|1 − 2xn0 − 9v6
n − Kv5

n|
= 1

|xn1 − xn0 − 9v6
n − Kv5

n|
≤ Kv−1

n .
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Together with Lemma 3.6(ii)(a) and (iii)(a), we obtain that

|ηk| ≤ 1

|xn1 − xn0|
× Kv−1

n

(
v6
n

(
2|xn0|)+ v6

n + v12
n + v−1

n ‖γ k+τ + γ k−τ‖2(2v6
n

)+ Kv5
n

)
≤ Kv3

n.

Therefore, by Lemmas 3.4, 3.7(a) and 3.8(a), when vn ≥ n−1/52, we have

E|ηk| ≤ Kv3
n + Kv−1

n

( 5∑
i=1

P
(|εi | ≥ v6

n

))
(4.35) ≤ Kv3

n.

Then the conclusion (4.32) follows from (4.33) and (4.35).

4.3. Convergence rate of ‖Fn − Fcn‖. Choose vn = n−1/52. Let Fn be the
empirical distribution function of Mn and Fcn be the LSD with the ratio pa-
rameter cn = n/T whose Stieltjes transform is denoted by m0

n. By (1.3), let
B = (1 + √

c)2 + δ, and we have Fcn([−B,B]) = 1. By Lemma 2.4 we have,
for some A > B and a > 0,

P
(‖Fn − Fcn‖ > c′√vn

)
≤ P

(
sup

u∈[−A,A]
∣∣mn(z) − m0

n(z)
∣∣ > K0

√
vn

)
+ P

(
sup
x

∫
|y|≤2vna

∣∣Fcn(x + y) − Fcn(x)
∣∣dy > K0

(
c′ − 1

)
v3/2
n

)

≤ P
(

sup
u∈[−A,A]

∣∣mn(z) − Emn(z)
∣∣ > K0

√
vn

2

)

+ P
(

sup
u∈[−A,A]

∣∣Emn(z) − m0
n(z)

∣∣ > K0
√

vn

2

)

+ P
(

sup
x

∫
|y|≤2vna

∣∣Fcn(x + y) − Fcn(x)
∣∣dy > K0

(
c′ − 1

)
v3/2
n

)
,

where K0 = π(1 − κ)(2γ − 1), and a is a constant defined in Lemma 2.4. By
|Emn(z) − m0

n(z)| = o(vn), the second probability is 0 for all large n.
By the analysis of Section 3 of Jin et al. (2014), we see that φcn(x) :=

d
dx

Fcn(x) ≤ K|x|−1/2, which implies that Fcn satisfies the Lipschitz condition with
index 1

2 . Hence, for some large c′, we have

sup
x

∫
|y|≤2vna

∣∣Fcn(x + y) − Fcn(x)
∣∣dy

≤ K

∫
|y|≤2vna

|y|1/2 dy = 4Ka2v3/2
n < K0

(
c′ − 1

)
v3/2
n .
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Therefore, the third probability is 0.
For the first probability, let Sn be the set containing n2 points that are equally

spaced between −n and n and note that [−A,A] ⊆ [−n,n] for all large n. When
|u1 − u2| ≤ 2

n
, we have∣∣mn(u1 + ivn) − mn(u2 + ivn)

∣∣ ≤ |u1 − u2|v−2
n <

K0
√

vn

2
,

∣∣m0
n(u1 + ivn) − m0

n(u2 + ivn)
∣∣ ≤ |u1 − u2|v−2

n <
K0

√
vn

2
.

Therefore, by (4.3), for any t > 0, we have

P
(

sup
u∈[−A,A]

∣∣mn(z) − Emn(z)
∣∣ > K0

√
vn

2

)

= P
(

sup
u∈Sn

∣∣mn(z) − Emn(z)
∣∣ > K0

√
vn

2

)

≤ n2P
(∣∣mn(z) − Emn(z)

∣∣ > K0
√

vn

2

)
≤ Kn2−p/2v−p

n

= o
(
n−t )

by selecting p large enough. Thus, we have proved, for any fixed t > 0

P
(‖Fn − Fcn‖ > c′n−1/104) = o

(
n−t ).(4.36)

Next, let a′ = a − ε and b′ = b + ε for some ε > 0 such that (a′, b′) ⊇ [a, b] is
an open interval outside the support of Fcn for all n large enough. By |d(cn) −
d(c)| → 0, and hence [a′, b′] is also outside the support of Fcn . We conclude that
Fcn(b

′) − Fcn(a
′) = 0 for all large n. Hence, we have

Fn

{[
a′, b′]} = Fn

(
b′)− Fn

(
a′)− (

Fcn

(
b′)− Fcn

(
a′))

≤ 2‖Fn − Fcn‖.
Therefore,

P
(
max
k≤n

Ek

(
Fn

{[
a′, b′]}) ≥ 4c′n−1/104

)
≤ P

(
max
k≤n

Ek

(
Fn

{[
a′, b′]}I{‖Fn−Fcn‖<c′n−1/104}

) ≥ 2c′n−1/104
)

+ P
(
max
k≤n

Ek

(
Fn

{[
a′, b′]}I{‖Fn−Fcn‖≥c′n−1/104}

) ≥ 2c′n−1/104
)

(4.37)

≤ 0 + P
(
max
k≤n

EkI{‖Fn−Fcn‖≥c′n−1/104} 	= 0
)

≤ nP
(‖Fn − Fcn‖ ≥ c′n−1/104) = o

(
n−t )

for any t > 0.
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5. A refined convergence rate of Stieltjes transform when u ∈ [a,b]. In
this section, we are to prove that for vn = n−1/212,

mn − m0
n = o

(
1/(nvn)

)
a.s.(5.1)

by refining the convergence rates obtained in the last section.

5.1. A refined convergence rate of mn − Emn. In this subsection, we want to
show that

sup
u∈[a,b]

∣∣mn(z) − Emn(z)
∣∣ = o

(
1/(nvn)

)
, a.s.(5.2)

First, by recalling that Ãk = A − (γ k+τ + γ k−τ )γ
∗
k and Ak = Ãk − γ k(γ k+τ +

γ k−τ )
∗, we have

mn(z) − Emn(z)

=
T∑

k=1

(
Ek−1mn(z) − Ekmn(z)

)

=
T∑

k=1

1

n
(Ek − Ek−1)

((
tr A−1

k − tr Ã−1
k

)+ (
tr Ã−1

k − tr A−1))

=
T∑

k=1

1

n
(Ek − Ek−1)

×
(

(γ k+τ + γ k−τ )
∗A−2

k γ k

1 + (γ k+τ + γ k−τ )
∗A−1

k γ k

+ γ ∗
kÃ−2

k (γ k+τ + γ k−τ )

1 + γ ∗
kÃ−1

k (γ k+τ + γ k−τ )

)

=
T∑

k=1

1

n
(Ek − Ek−1)

d

dz

(
log

(
1 + (γ k+τ + γ k−τ )

∗A−1
k γ k

)
+ log

(
1 + γ ∗

kÃ−1
k (γ k+τ + γ k−τ )

))
=

T∑
k=1

1

n
(Ek − Ek−1)

d

dz

× (
log

((
1 + (γ k+τ + γ k−τ )

∗A−1
k γ k

)(
1 + γ ∗

kA−1
k (γ k+τ + γ k−τ )

)
− γ ∗

kA−1
k γ k

(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )
)

− log(xn1 − xn0)
)

=
T∑

k=1

1

n
(Ek − Ek−1)
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×
(

d

dz
log

(
1 + ε1

xn1 − xn0
+ ε2

xn1 − xn0

− ε3(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

xn1 − xn0

+ ε1ε2 − ε4(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ ) − anε5

xn1 − xn0

))

:=
T∑

k=1

1

n
(Ek − Ek−1)

d

dz
log

(
1 + αk1(z) + αk2(z) + αk3(z) + rk(z)

)

:=
T∑

k=1

1

n
(Ek − Ek−1)

d

dz
fk(z),

where εi’s, i = 1, . . . ,5, are defined in (4.34).
Let αk4(z) := fk(z) − αk1(z) − αk2(z) − αk3(z) − rk(z). It is easy to derive that

d

dz
αk1(z) = 1

xn1 − xn0

(
γ ∗

k+τ + γ ∗
k−τ

)
A−2

k γ k

(5.3)

− x′
n1 − x′

n0

(xn1 − xn0)2

(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k γ k,

d

dz
αk2(z) = 1

xn1 − xn0
γ ∗

kA−2
k (γ k+τ + γ k−τ )

(5.4)

− x′
n1 − x′

n0

(xn1 − xn0)2 γ ∗
k+A−1

k (γ k+τ + γ k−τ )

and

d

dz
αk3(z)

= 1

xn1 − xn0

×
((

γ ∗
kA−2

k γ k − 1

2T
tr A−2

k

)(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )

(5.5)

+
(
γ ∗

kA−1
k γ k − 1

2T
tr A−1

k

)(
γ ∗

k+τ + γ ∗
k−τ

)
A−2

k (γ k+τ + γ k−τ )

)

+ x′
n1 − x′

n0

(xn1 − xn0)2

×
(
γ ∗

kA−1
k γ k − 1

2T
tr A−1

k

)(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ ).
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Note that by (iii)(b) of Lemma 3.6, we have 1
|xn1−xn0| ≤ K . Also, by Remarks 3.1

and 3.2, we have |x′
n1 − x′

n0| = |− 4ana′
n

xn1−xn0
| ≤ K . Together with Cauchy’s formula

and the fact that | ln(1 + x) − x| ≤ |x|2 for any complex x with absolute value
smaller than 1

2 , we have∣∣∣∣ d

dz
αk4(z)

∣∣∣∣
=

∣∣∣∣ d

dz

(
log

(
1 + αk1(z) + αk2(z) + αk3(z) + rk(z)

)
− αk1(z) − αk2(z) − αk3(z) − rk(z)

)∣∣∣∣
(5.6)

=
∣∣∣∣ 1

2πi

∮
|ξ−z|=vn/2

((
log

(
1 + αk1(ξ) + αk2(ξ) + αk3(z) + rk(ξ)

)
− αk1(ξ) − αk2(ξ) − αk3(ξ) − rk(ξ)

)
/(ξ − z)2)dξ

∣∣∣∣.
Therefore, for each u ∈ [a, b], � ≥ 1, we have

E
∣∣nvn

(
mn(z) − Emn(z)

)∣∣2�

= E

∣∣∣∣∣vn

T∑
k=1

(Ek − Ek−1)
d

dz
fk(z)

∣∣∣∣∣
2�

(5.7)

≤ K

4∑
i=1

E

∣∣∣∣∣vn

T∑
k=1

(Ek − Ek−1)
d

dz
αki

∣∣∣∣∣
2�

+ KE

∣∣∣∣∣vn

T∑
k=1

(Ek − Ek−1)
d

dz
rk

∣∣∣∣∣
2�

.

By Lemma 2.1, for i = 1,2,3,4, we have

E

∣∣∣∣∣vn

T∑
k=1

(Ek − Ek−1)
d

dz
αki

∣∣∣∣∣
2�

≤ K�v
2�
n

[
E

(
T∑

k=1

Ek−1

∣∣∣∣(Ek − Ek−1)
d

dz
αki

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣(Ek − Ek−1)

d

dz
αki

∣∣∣∣2�
]

≤ K ′
�v

2�
n

[
E

(
T∑

k=1

Ek−1

∣∣∣∣ d

dz
αki

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣ d

dz
αki

∣∣∣∣2�
]
.
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Now we are ready to estimate the terms above. By elementary calculation, we have

Ek

∣∣γ ∗
k+τ A−1

k γ k

∣∣2 = 1

2T
Ekγ

∗
k+τ A−1

k

(
A∗

k

)−1
γ k+τ

(5.8)

≤ K

T
+ 1

2T v2
n

EkI
(∣∣γ ∗

k+τ A−1
k

(
A∗

k

)−1
γ k+τ

∣∣ ≥ K
)

and

Ek

∣∣γ ∗
k+τ A−2

k γ k

∣∣2 = 1

2T
Ekγ

∗
k+τ A−2

k

(
A∗

k

)−2
γ k+τ

(5.9)

≤ K

T
+ 1

2T v4
n

EkI
(∣∣γ ∗

k+τ A−2
k

(
A∗

k

)−2
γ k+τ

∣∣ ≥ K
)
,

for the constant K > 0 such that Lemmas 3.9 and 3.10 hold.
Come back to the expressions of (5.3), (5.4) and (5.5). By definition of xni one

can verify that x′
n1 − x′

n0 = − 4ana′
n

xn1−xn0
which is bounded. By Remarks 3.1, 3.2,

Lemma 3.4 and estimates (5.8), (5.9), we have

v2�
n

[
E

(
T∑

k=1

Ek

∣∣∣∣ d

dz
αk1

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣ d

dz
αk1

∣∣∣∣2�
]

≤ Kv2�
n

[
E

(
T∑

k=1

Ek

∣∣(γ ∗
k+τ + γ ∗

k−τ

)
A−2

k γ k

∣∣2

+
T∑

k=1

Ek

∣∣(γ ∗
k+τ + γ ∗

k−τ

)
A−1

k γ k

∣∣2)�

+
T∑

k=1

E
∣∣(γ ∗

k+τ + γ ∗
k−τ

)
A−2

k γ k

∣∣2�

+
T∑

k=1

E
∣∣(γ ∗

k+τ + γ ∗
k−τ

)
A−1

k γ k

∣∣2�

]

≤ Kv2�
n

+ Kv−2�
n E

(
max

k
EkI

(∣∣(γ k+τ + γ k−τ )
∗A−2

k

(
A∗

k

)−2
(γ k+τ + γ k−τ )

∣∣ ≥ K
))�

+ Kv2�
n

+ KE
(
max

k
EkI

(∣∣(γ k+τ + γ k−τ )
∗A−1

k

(
A∗

k

)−1
(γ k+τ + γ k−τ )

∣∣ ≥ K
))�

+ Kv2�
n

(
T 1−�v−4�

n + T 1−�v−2�
n

)
≤ Kv2�

n
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+ Kv−2�
n

T∑
k=1

E
(
EkI

(∣∣(γ k+τ + γ k−τ )
∗A−2

k

(
A∗

k

)−2
(γ k+τ + γ k−τ )

∣∣ ≥ K
))

+ K

T∑
k=1

E
(
EkI

(∣∣(γ k+τ + γ k−τ )
∗A−1

k

(
A∗

k

)−1
(γ k+τ + γ k−τ )

∣∣ ≥ K
))

≤ Kv2�
n ,

where Lemmas 3.9 and 3.10 are used in the last estimation. By similar arguments,
one can show that

v2�
n

[
E

(
T∑

k=1

Ek

∣∣∣∣ d

dz
αk2

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣ d

dz
αk2

∣∣∣∣2�
]

≤ Kv2�
n .

By Remarks 3.1, 3.2, (5.8), (5.9) and Lemmas 2.5 and 3.5 we have

v2�
n

[
E

(
T∑

k=1

Ek

∣∣∣∣ d

dz
αk3

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣ d

dz
αk3

∣∣∣∣2�
]

≤ Kv2�
n

[
E

(
T∑

k=1

Ek

∣∣∣∣γ ∗
kA−2

k γ k − 1

2T
tr A−2

k

∣∣∣∣2
× ∣∣(γ k+τ + γ k−τ )

∗A−1
k (γ k+τ + γ k−τ )

∣∣2
+

T∑
k=1

Ek

∣∣∣∣γ ∗
kA−1

k γ k − 1

2T
tr A−1

k

∣∣∣∣2

× ∣∣(γ k+τ + γ k−τ )
∗A−2

k (γ k+τ + γ k−τ )
∣∣2)�

+
T∑

k=1

E
∣∣∣∣γ ∗

kA−2
k γ k − 1

2T
tr A−2

k

∣∣∣∣2�

× ∣∣(γ k+τ + γ k−τ )
∗A−1

k (γ k+τ + γ k−τ )
∣∣2�

+
T∑

k=1

E
∣∣∣∣γ ∗

kA−1
k γ k − 1

2T
tr A−1

k

∣∣∣∣2�

× ∣∣(γ k+τ + γ k−τ )
∗A−2

k (γ k+τ + γ k−τ )
∣∣2�

]

≤ Kv2�
n E

((
T∑

k=1

1

4T 2 Ek tr A−2
k Ā−2

k

∣∣(γ k+τ + γ k−τ )
∗A−1

k (γ k+τ + γ k−τ )
∣∣2)�
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+
(

T∑
k=1

1

4T 2 Ek tr A−1
k Ā−1

k

× ∣∣(γ k+τ + γ k−τ )
∗A−2

k (γ k+τ + γ k−τ )
∣∣2)�

+
T∑

k=1

E
(

1

4T 2 tr A−2
k Ā−2

k

× ∣∣(γ k+τ + γ k−τ )
∗A−1

k (γ k+τ + γ k−τ )
∣∣2)�

+
T∑

k=1

E
(

1

4T 2 tr A−1
k Ā−1

k

× ∣∣(γ k+τ + γ k−τ )
∗A−2

k (γ k+τ + γ k−τ )
∣∣2)�

)

≤ Kv2�
n .

By (5.6) and similar arguments, we have

v2�
n

[
E

(
T∑

k=1

Ek

∣∣∣∣ d

dz
αk4

∣∣∣∣2
)�

+
T∑

k=1

E
∣∣∣∣ d

dz
αk4

∣∣∣∣2�
]

≤ Kv2�
n

[
E

(
1

v2
n

sup
|ξ−z|=vn/2

T∑
k=1

Ek

(∣∣αk1(ξ)
∣∣4 + ∣∣αk2(ξ)

∣∣4

+ ∣∣αk3(ξ)
∣∣4 + ∣∣rk(ξ)

∣∣4))�

+ 1

v2�
n

sup
|ξ−z|=vn/2

T∑
k=1

E
(∣∣αk1(ξ)

∣∣4� + ∣∣αk2(ξ)
∣∣4�

+ ∣∣αk3(ξ)
∣∣4� + ∣∣rk(ξ)

∣∣4�)]

≤ KT −�v−4�
n .

Finally, by measurable properties of some terms of rk , we have

(Ek−1 − Ek)rk = (Ek−1 − Ek)
ε1ε2

xn1 − xn0
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from which and similar argument for αk1 and αk2, we conclude that

v2�
n E

∣∣∣∣∣ d

dz

T∑
k=1

(Ek−1 − Ek)rk

∣∣∣∣∣
2�

= KT −�v−4�
n .

Substituting the five upper-bounds into (5.7), we have

P
(
max
u∈Sn

∣∣nvn

(
mn(z) − Emn(z)

)∣∣ > ε
)

= Kn2E
∣∣nvn

(
mn(z) − Emn(z)

)∣∣2�

≤ Kn2(v2�
n + v−4�

n T −�)
which is summable when � > 318 and vn ≥ n−α for α = 1/212. Therefore, we
have proved that maxu∈[a,b] |mn(z) − Emn(z)| = o( 1

nvn
) a.s.

5.2. A refined convergence rate of Emn(z) − m0
n(z). To show

sup
u∈[a,b]

∣∣Emn(z) − m0
n(z)

∣∣ = o

(
1

nvn

)
,

we follow the notation and expressions in Section 4.2. Recall

cn + cnzEmn(z)

= 1

T

T∑
k=1

[
1 − E

1

1 + γ ∗
kÃ−1

k (γ k+τ + γ k−τ )

]

= 1

T

T∑
k=1

[
1 − E

(
1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

(5.10)

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

))]

= 1 − 1

xn1 − xn0
+ δn,

where

δn = 1

T

T∑
k=1

Eηk

with

ηk = −
(

1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

)
− 1

xn1 − xn0

)
.
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Consider expressions of (4.7) and (4.8). To apply Lemma 3.2, we only need to

show |δn| = o( 1
nvn

), which can be reduced to showing |Eηk| = o( 1
nvn

) for log2 n <

k < T − log2 n and |Eηk| = O(1) for k ≤ log2 n or ≥ T − log2 n.

When log2 n < k < T − log2 n, rewrite ηk as

−ηk = 1
/(

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

)
− 1

1 − (2a2
n/xn1)

= (
1 + (

γ ∗
k+τ + γ ∗

k−τ

)
A−1

k γ k

)
/
((

1 + γ ∗
kA−1

k (γ k+τ + γ k−τ )
)(

1 + (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k γ k

)
− γ ∗

kA−1
k γ k

(
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )
)

− 1

1 − (2a2
n/xn1)

= (1 + ε1)/(
1 + ε1 + ε2 + ε1ε2

− (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )(ε3 + ε4) − anε5 − 2a2
n

xn1

)
− 1

1 − (2a2
n/xn1)

= 1

1 − (2a2
n/xn1)

×
(
−ε1

2a2
n

xn1
− ε2 − ε1ε2

+ (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )(ε3 + ε4) + anε5

)
/(

1 + ε1 + ε2 + ε1ε2

− (
γ ∗

k+τ + γ ∗
k−τ

)
A−1

k (γ k+τ + γ k−τ )(ε3 + ε4) − anε5 − 2a2
n

xn1

)
,

where εi’s are defined as in Section 4.2.
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For simplicity, denote ε̃ = ε2 + ε1ε2 − (γ ∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )(ε3 +

ε4)−anε5. Applying the identity x
1+x+y

= x
1+y

− x2

(1+x+y)(1+y)
repeatedly, we have

−ηk = 1

1 − (2a2
n/xn1)

× −ε1(2a2
n/xn1) − ε̃

1 + ε1 + ε̃ − (2a2
n/xn1)

= − 2a2
n/xn1

1 − (2a2
n/xn1)

× ε1 + ε̃

1 + ε1 + ε̃ − (2a2
n/xn1)

− ε̃

1 + ε1 + ε̃ − (2a2
n/xn1)

= − 2a2
n/xn1

1 − (2a2
n/xn1)

×
(

ε1 + ε̃

1 − (2a2
n/xn1)

− (ε1 + ε̃)2

(1 − (2a2
n/xn1))(1 + ε1 + ε̃ − (2a2

n/xn1))

)

−
(

ε̃

1 + ε1 − (2a2
n/xn1)

− ε̃2

(1 + ε1 − (2a2
n/xn1))(1 + ε1 + ε̃ − (2a2

n/xn1))

)

= − 2a2
n/xn1

1 − (2a2
n/xn1)

×
(

ε1 + ε̃

1 − (2a2
n/xn1)

− (ε1 + ε̃)2

(1 − (2a2
n/xn1))(1 + ε1 + ε̃ − (2a2

n/xn1))

)

−
(

ε̃

1 − (2a2
n/xn1)

− ε̃ε1

(1 + ε1 − (2a2
n/xn1))(1 − (2a2

n/xn1))

)

+ ε̃2

(1 + ε1 − (2a2
n/xn1))(1 + ε1 + ε̃ − (2a2

n/xn1))
.

Therefore, by Lemma 3.6(iv)(b), we have |− 2a2
n/xn1

1−(2a2
n/xn1)

| = | 2xn0
xn1−xn0

| ≤ | 2xn1
xn1−xn0

|
is bounded. Together with the fact that all the denominators being bounded below
and the Cauchy–Schwarz inequality, to show |Eηk| = o( 1

nvn
), it suffices to show

|Eε1|, |Eε̃|, |Eε2
1|, |Eε̃2| are of o( 1

nvn
). As |Eεi | = 0 for i = 1,2,3, it is clear that the

above convergence rates achieve o( 1
nvn

) provided that so do E|εi |2, i = 1,2,3,4,5,

|Eε4| and |Eε5| for log2 n < k < T − log2 n.
When log2 n < k < T − log2 n, for i = 1, by Lemma 3.9, we have, for any t > 0,

E
∣∣(γ k+τ + γ k−τ )

∗A−1
k γ k

∣∣2 = 1

2T
E(γ k+τ + γ k−τ )

∗A−1
k

(
A∗

k

)−1
(γ k+τ + γ k−τ )

= K

T
+ v−2

n o
(
n−t ) = O(1/n) = o

(
1

nvn

)
.
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Similarly, for i = 2, E|ε2|2 = O(1/n) = o( 1
nvn

).
For i = 3, by Lemmas 2.5 and 3.5, we have

E|ε3|2 = E
∣∣∣∣γ ∗

kA−1
k γ k − 1

2T
tr A−1

k

∣∣∣∣2 ≤ K

4T 2 E
∣∣tr A−1

k

(
A∗

k

)−1∣∣
= K

4T 2 E
∑ 1

|λkj − z|2

≤ K

2T
+ K

T v2
n

Fn

([
a′, b′]) ≤ K

T
+ o

(
T −1) = O(1/n) = o

(
1

nvn

)
.

For |Eε4|, by Lemma 3.11 we have

|Eε4| =
∣∣∣∣ 1

2T
E tr A−1

k − an

∣∣∣∣ = 1

2T

∣∣E(tr A−1
k − tr A−1)∣∣ = O

(
T −1) = o

(
1

nvn

)
.

For E|ε4|2, by (4.2) and the convergence rate obtained in Section 5.1, we have

E
∣∣∣∣ 1

2T
tr A−1

k − an

∣∣∣∣2
≤ 2E

∣∣∣∣ 1

2T
tr A−1

k − E
1

2T
tr A−1

k

∣∣∣∣2 + 2
∣∣∣∣ 1

2T
E tr A−1

k − an

∣∣∣∣2
≤ K

n2v2
n

+ O
(
n−1) = o

(
1

nvn

)
.

Bounds of |Eε5| and E|ε5|2 will follow Lemmas 3.7(b2), (b3) and 3.8(b1), (b2).
To show |Eηk| = O(1) when k ≤ log2 n or ≥ T − log2 n, we just prove the case

for k ≥ T − log2 n, as the case for k ≤ log2 n follows by symmetry.
When k ≥ T − log2 n, by Lemma 3.7(b1), we have P(|γ ∗

k+τ A−1
k γ k+τ | ≥ 1 −

η) = o(n−t ). By Lemma 3.7(a), we have P(|γ ∗
k−τ A−1

k γ k−τ − cnEmn

2xn1
| ≥ v6

n) =
o(n−t ), by Lemma 3.4, P(|γ ∗

kA−1
k γ k±τ | ≥ v3

n) = o(n−t ), and by Lemmas 2.5 and

inequalities (4.2) and (4.3), P(|γ ∗
kA−1

k γ k − an| ≥ v3
n) = o(n−t ). By Lemma 3.8(a),

P(|γ ∗
k±τ A−1

k γ k∓τ | ≥ v6
n) = o(n−t ). By Lemma 3.6(ii)(b) and (iv)(b), we have

| 1
xn1−xn0

| ≤ K and |Eηk| ≤ Kv−1
n . Substitute the above results into the definition

of ηk , and we finally have

|Eηk| ≤
∣∣∣∣E(1

/(
1 + γ ∗

kA−1
k (γ k+τ + γ k−τ )

− γ ∗
kA−1

k γ k(γ
∗
k+τ + γ ∗

k−τ )A
−1
k (γ k+τ + γ k−τ )

1 + (γ ∗
k+τ + γ ∗

k−τ )A
−1
k γ k

))∣∣∣∣
+
∣∣∣∣ 1

xn1 − xn0

∣∣∣∣
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≤
∣∣∣∣ 1 + v3

n

(1 − 2v3
n) − (1/2 − η + v3

n)(1 − η + 3v3
n + |an|/|xn1|)

∣∣∣∣
+ K + Kv−1

n o
(
n−t ) = O(1).

6. Completing the proof. In this section, we follow the idea of Bai and Sil-
verstein (1998) and give the main steps here. From what has been obtained in the
last two sections, we have, with vn = n−1/212,

sup
u∈[a,b]

∣∣mn(z) − m0
n(z)

∣∣ = o

(
1

nvn

)
a.s.(6.1)

It is clear from the last two sections that (6.1) is true when �(z) is replaced by a
constant multiple of vn. In fact, we have

max
k∈{1,2,...,106} sup

u∈[a,b]
∣∣mn(u + i

√
kvn) − m0

n(u + i
√

kvn)
∣∣ = o

(
v211
n

)
a.s.

Taking the imaginary part, we get

max
k∈{1,2,...,106} sup

u∈[a,b]

∣∣∣∣∫ d(Fn(λ) − F 0
n (λ))

(u − λ)2 + kv2
n

∣∣∣∣ = o
(
v210
n

)
a.s.

After taking difference, we obtain

max
k1 	=k2

sup
u∈[a,b]

∣∣∣∣∫ v2
nd(Fn(λ) − F 0

n (λ))

((u − λ)2 + k1v2
n)((u − λ)2 + k2v2

n)

∣∣∣∣ = o
(
v210
n

)
a.s.

...

sup
u∈[a,b]

∣∣∣∣∫ (v2
n)

105d(Fn(λ) − F 0
n (λ))

((u − λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u − λ)2 + 106v2
n)

∣∣∣∣ = o
(
v210
n

)
a.s.

Therefore,

sup
u∈[a,b]

∣∣∣∣∫ d(Fn(λ) − F 0
n (λ))

((u − λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u − λ)2 + 106v2
n)

∣∣∣∣ = o(1)

a.s.

After splitting the integral, we get

sup
u∈[a,b]

∣∣∣∣∫ I[a′,b′]c (λ)d(Fn(λ) − F 0
n (λ))

((u − λ)2 + v2
n)((u − λ)2 + 2v2

n) · · · ((u − λ)2 + 106v2
n)

+ ∑
λj∈[a′,b′]

v212
n

((u − λj )2 + v2
n)((u − λj )2 + 2v2

n) · · · ((u − λj )2 + 106v2
n)

∣∣∣∣
= o(1) a.s.
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Note that the first term tends to 0 by dominated convergence theorem. Now, if
there is at least one eigenvalue contained in [a, b], then the second sum will be
away from zero when u takes one of such eigenvalues. This contradicts the right-
hand side. Therefore, with probability 1, there are no eigenvalues of Mn in [a, b]
for all n large and the proof is complete.

APPENDIX A: JUSTIFICATION OF TRUNCATION, CENTRALIZATION
AND RESCALING

Here, we give some justifications of (1.4), which will be divided into two parts.

A.1. Truncation and centralization. Fix some C > 0, define ε̂it =
εit I{|xit |≤C} − Eεit I{|xit |≤C}, γ̂ k = 1√

2T
(ε̂1k, . . . , ε̂nk)

′ ≡ 1√
2T

êk , Ê = (ê1, . . . , êT ),

Êτ = (ê1+τ , . . . , êT +τ ) and M̂n = ∑T
k=1(γ̂ k γ̂

∗
k+τ + γ̂ k+τ γ̂

∗
k) = 1

2T
(ÊÊ∗

τ + Êτ Ê∗).
By Theorem A.46 of Bai and Silverstein (2010),

max
k

∣∣λk(M̂n) − λk(Mn)
∣∣

≤ ‖M̂n − Mn‖
= 1

2T

∥∥(E − Ê)Ê∗
τ + Êτ (E − Ê)∗ + E(Eτ − Êτ )

∗ + (Eτ − Êτ )E∗∥∥
≤ 1

T

(‖E − Ê‖‖Êτ‖ + ‖E − Ê‖‖E‖).
By a similar approach as in Yin, Bai and Krishnaiah (1988), one can show that
almost surely

lim sup
n

1√
T

‖E‖ ≤ (1 + √
c)2,

lim sup
n

1√
T

‖Êτ‖ ≤ (1 + √
c)2

and

lim sup
n

1√
T

‖E − Ê‖

≤ (1 + √
c)2 max

i,t
var(εit − ε̂it )

= (1 + √
c)2 max

i,t
var(εit I{|xit |≥C})

≤ (1 + √
c)2 max

i,t
E(εit I{|xit |≥C})2

≤ (1 + √
c)2

C2 max
i,t

Eε4
it

≤ (1 + √
c)2M

C2 ,
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which can be arbitrarily small by choosing C large enough. This verifies the trun-
cation at a fixed point and centralization.

A.2. Rescaling. Define σ 2
it = E|ε̂it |2, ε̌it = ε̂it /σit , γ̌ k = 1√

2T
(ε̌1k, . . . ,

ε̌nk)
′ ≡ 1√

2T
ěk , Ě = (ě1, . . . , ěT ), Ěτ = (ě1+τ , . . . , ěT +τ ), D = (σ−1

it )n×T , Dτ =
(σ−1

i(t+τ))n×T and M̌n = ∑T
k=1(γ̌ kγ̌

∗
k+τ + γ̌ k+τ γ̌

∗
k) = 1

2T
(ĚĚ∗

τ + Ěτ Ě∗). By The-
orem A.46 and Corollary A.21 of Bai and Silverstein (2010),

max
k

∣∣λk(M̌τ ) − λk(M̂τ )
∣∣

≤ ‖M̌τ − M̂τ‖
≤ 1

T

∥∥Ê ◦ (D − J)
∥∥∥∥Êτ ◦ (Dτ − J)

∥∥
≤ 1

T
‖Ê‖‖Êτ‖max

i,t

(
σ−1

it − 1
)2

.

Here, ◦ denotes the Hadamard product and J is the n × T matrix of all entries 1.
From Yin, Bai and Krishnaiah (1988), we have, with probability 1 that

lim supn
1
T
‖Ê‖‖Êτ‖ ≤ (1 + √

c)4.
Also, we have

max
i,t

∣∣1 − σ 2
it

∣∣ ≤ max
i,t

(
E|εit |2I (|εit | > C

)+ (
E|εit |I (|εit | > C

))2)
≤ max

i,t

2

C2 E|εit |4 ≤ 2M

C2 → 0 as C → ∞.

Since mini,t σit → 1 as n → ∞ and thus σit (1+σit ) ≥ 1 for all large n. Therefore,
we have

σ−1
it − 1 = 1 − σ 2

it

σit (1 + σit )
≤ 1 − σ 2

it ,

which implies maxk |λk(M̌τ ) − λk(M̂τ )| → 0 as n → ∞.

APPENDIX B: PROOFS OF LEMMAS IN SECTION 3

B.1. Proofs of Lemmas 3.1, 3.2 and 3.3. To show Lemma 3.1, take d =
√

1
2m

and denote S the total area covered by the m balls B(xi, drn), i = 1, . . . ,m. Then
we have S ≤ mπ(drn)

2 < πr2
n , which is the total area of B(x0, rn). Therefore, such

x must exist.
For Lemma 3.2, write Pn(x) = ∏k

j=1(x −xnj ) and P(x) = ∏m
j=1(x −xj )

�j . Let

δ = 1

3
min

i,j∈{1,...,m}
i 	=j

|xi − xj | > 0.
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First, we claim that for any i ∈ {1, . . . , k}, there exists j ∈ {1, . . . ,m} such that
xni ∈ B(xj , δ). Suppose not, that is, there is some xni with |xni − xj | ≥ δ for any
j ∈ {1, . . . ,m}. Then it follows that |P(xni)| = ∏m

j=1 |xni − xj |�j ≥ δk . On the
other hand, as Pn(xni) = 0, we have Lrn ≥ |Pn(xni) − P(xni)| = |P(xni)|. This is
a contradiction.

Also, by our construction of δ, it follows that all the B(xj , δ)’s are disjoint.
Suppose the lemma is not true, then as the sum of �j ’s is fixed, there is

at least one j such that, there are �0 xni ’s in B(xj , r
1/�j
n ), with 0 ≤ �0 < �j .

WLOG, we can assume j = 1 and denote these �0 xni ’s by x1
n1, . . . , x

1
n�0

. By

Lemma 3.1, we can choose x∗ ∈ B(x1, r
1/�1
n ) such that mini∈{1,...,�0} |x∗ − x1

ni | ≥
dr

1/�1
n for some d > 0. By the construction of δ, we have |x∗ − x| > δ for all

x ∈ B(xj , r
1/�j
n ), j = 2, . . . ,m. Therefore, we have |P(x∗)| = ∏m

j=1 |x∗ − xj |�j =
|x∗ − x1|�1

∏m
j=2 |x∗ − xj |�j = O(rn). On the other hand, we have |Pn(x

∗)| =∏k
j=1 |x∗ − xnj | = ∏�0

i=1 |x∗ − x1
ni |

∏
xnj /∈B(x1,r

1/�1
n )

|x∗ − xnj | > δk−�0r
�0/�1
n , con-

tradicting |P(x∗) − P(x∗
n)| = O(rn). Therefore, the lemma is proved.

For Lemma 3.3, write Pn(x) = ∏k
j=1(x − xnj ), Qn(y) = ∏k

j=1(y − ynj ) and

P(x) = ∏m
j=1(x − xj )

�j . Let δ = 1
3 mini,j∈{1,...,m},i 	=j |xi − xj | > 0. By the defi-

nition of r̃n, there exists some L > 0 such that Lr̃n ≥ |Pn(xni) − Qn(xni)| for all
xni . Let j ∈ {1, . . . ,m} be given, and let d := ( L

δ
k−�j

)1/�j > 0. By Lemma 3.2, we

have exactly �j xni ’s and exactly �j yni ’s in B(xj , r
1/�j
n ). Let xni ∈ B(xj , r

1/�j
n ) be

fixed. By our construction in the proof of Lemma 3.2, if ynl /∈ B(xj , r
1/�j
n ), one has

d(xni, ynl) > δ. Therefore, for the lemma to be true, we only need to look at those

ynl ∈ B(xj , r
1/�j
n ) and show that at least one such ynl satisfies the desired distance.

Suppose not, that is, for this xni ∈ B(xj , r
1/�j
n ), for any ynl ∈ B(xj , r

1/�j
n ), one has

d(xni, ynl) > r̃
1/�j
n . Note that when ynl /∈ B(xj , r

1/�j
n ), we have d(xni, ynl) > δ.

Hence, we have |Qn(xni)| = ∏k
l=1 |xni − ynl| > δk−�j (dr̃

1/�j
n )�j = Lr̃n. However,

we also have Lr̃n ≥ |Qn(xni) − Pn(xni)| = |Qn(xni)|, which is a contradiction.

B.2. Proof of Lemma 3.4. Let γ ∗
l A−s

k = b = (b1, . . . , bn). Noting |εit | < C,
we have

E
∣∣γ ∗

l A−s
k γ k

∣∣2r

= 1

2rT r
E

(∣∣∣∣∣
n∑

i=1

εkibi

∣∣∣∣∣
2r)

= 1

2rT r
E

∑
i1+···+in=r

j1+···+jn=r

(r!)2

i1!j1! · · · in!jn!(εk1b1)
i1(ε̄k1b̄1)

j1 · · · (εknbn)
in(ε̄knb̄n)

jn
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= 1

2rT r
E

∑
i1+···+in=r

j1+···+jn=r

i1+j1 	=1

(r!)2

i1!j1! · · · in!jn!(εk1b1)
i1(ε̄k1b̄1)

j1 · · · (εknbn)
in(ε̄knb̄n)

jn.

Let l denote the number k ≤ n such that ik + jk ≥ 2. By the fact that (r!)2

(2r)! ≤
r

2r
r−1
2r−1 · · · 1

r+1 ≤ 1
2r , we have

E
∣∣γ ∗

l A−s
k γ k

∣∣2r

≤ 1

22rT r

r∑
l=1

∑
1≤j1<···<jl≤n

∑
i1+···+il=2r

i1≥2,...,il≥2

(2r)!
i1! · · · il!l!E

∣∣εi1
kj1

b
i1
j1

· · · εil
kjl

b
il
jl

∣∣

≤ 1

22rT r
E

r∑
l=1

C2r
∑

1≤j1<···<jl≤n

∑
i1+···+il=2r

i1≥2,...,il≥2

(2r)!
i1! · · · il!l! |bj1 |i1 · · · |bjl

|il

≤ Kr

T r

r∑
l=1

∑
i1+···+il=2r

E
l∏

t=1

(
n∑

j=1

|bj |it
)

≤ Kr

T r
E

(
n∑

j=1

∣∣b2
j

∣∣)r

≤ Kr

T r
E
(
γ ∗

l A−s
k

(
A∗

k

)−s
γ l

)r
.

Note that ‖γ l‖ ≤ K and ‖A−1
k ‖ ≤ v−1

n , we finally obtain that

E
∣∣γ ∗

l A−s
k γ k

∣∣2r ≤ K

T rv2rs
n

for some K > 0. The proof of the lemma is complete.

B.3. Proof of Lemma 3.5. Recall that a′ = a − ε and b′ = b + ε, as defined
at the end of Section 4. Therefore, we have

P
(

1

2T

∑ 1

|λkj − z|2 > K

)

≤ P
( ∑

λkj /∈[a′,b′]

1

|λkj − u|2 + v2
n

> T K

)

+ P
( ∑

λkj∈[a′,b′]

1

|λkj − u|2 + v2
n

> T K

)
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≤ P
(
nε−2 > T K

)+ P
(
nv−2

n Fnk

([
a′, b′]) > T K

)
≤ 0 + P

(
‖Fn − Fcn‖ ≥ K

2c
n−1/53

)
= o

(
n−t ).

Here, we pick K > cε−2 so that the first probability is 0. The second probability
follows (4.36). The proof is complete.

B.4. Proof of Lemma 3.6, part (a). For (i)(a), by definition of xnj , j = 0,1,
we have

xn0,1 = 1
2

(
1 ±

√
1 − 4a2

n

)
:= 1

2

(
1 ± (α̃ + iβ̃)

)
.

Therefore,

∣∣∣∣xn0

xn1

∣∣∣∣ =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√√√√(1 − α̃)2 + β̃2

(1 + α̃)2 + β̃2
< 1 − 2α̃

(1 + α̃)2 + β̃2
, if α̃ > 0,

√√√√(1 + α̃)2 + β̃2

(1 − α̃)2 + β̃2
< 1 − 2|α̃|

(1 − α̃)2 + β̃2
, if α̃ < 0

= 1 − |α̃|
2|x2

n1|
< 1 − η1v

2
n|α̃|,

where the last inequality follows from the fact that x2
n1 = xn1 − a2

n = O(v−2
n ).

Thus, to complete the proof of (i)(a), it suffices to show that there is a constant
η2 > 0 such that |α̃| > η2vn.

Write cnEmn(z) = 2an = α + iβ where α and β are real. Then, by the formula
of square root of complex numbers [see (2.3.2) of Bai and Silverstein (2010)] we
have √

1 − 4a2
n = α̃ + iβ̃,

where

α̃ = −√
2αβ√√

(1 − α2 + β2)2 + 4α2β2 − (1 − α2 + β2)

.

Obviously, when 1−α2 +β2 > 0, by
√

(1 − α2 + β2)2 + 4α2β2 −(1−α2 +β2) <

2|α|β we have

|α̃| > 1/
√|α|β > 1/

∣∣cnEmn(z)
∣∣ > η2vn,

for all large n such that cnη2 < 1, where η2 ∈ (0, c−1).
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On the other hand, if 1 − α2 + β2 < 0, by α2 > 1 + β2 we have

|α̃| >
|α|β

4
√

(1 − α2 + β2)2 + 4α2β2
= |α|β

4
√

(1 − α2 − β2)2 + 4β2
> β/

√
2.

Then the assertion that |α̃| > η2vn is proved if one can show that β > η3vn for
some η3 > 0. This is trivial if one notices

β = v

∫ 1

(x − u)2 + v2 dEFn(x) > vn

(
4A2 + 1

)−1EFn

([−A,A]),
when |z| < A and v ∈ (vn,1). The conclusion (i) is proved.

For (ii)(a), by xn1 +xn0 = 1 and |xn1| > |xn0|, we conclude that |xn1| ≥ 1
2 . Since

xn1 = 1
2(1 ±

√
1 − 4a2

n), we conclude that

|xn1| ≤ 1

2

(
1 +

∣∣∣√1 − 4a2
n

∣∣∣) ≤ Kv−1
n .

For (iii)(a), by noting that

|xn1 − xn0|2 = (
1 − α2 + β2)2 + 4α2β2 = (

1 − α2 − β2)2 + 4β2.

Then the conclusion (iii)(a) follows from the fact |β| > η3vn that is shown in the
proof of part (i)(a) of the lemma.

The conclusion (iv)(a) follows from
|xn0|

|xn1 − xn0| ≤ 1

2

(
1

|
√

1 − 4a2
n|

+ 1
)

≤ Kv−1
n ,

where the last inequality follows from conclusion (iii)(a).
The proof of the lemma is complete.

B.5. Proof of Lemma 3.7(a). Recall that an = cnEmn

2 . Write Wk = γ ∗
k+τ ×

A−1
k γ k+τ and Wk,k+τ,...,k+sτ = γ ∗

k+(s+1)τ A−1
k,k+τ,...,k+sτγ k+(s+1)τ . Denote

Ãk,...,k+(s−1)τ = Ak,...,k+sτ + γ k+(s+1)τγ
∗
k+sτ . Apply the identity

(
B + αγ ∗)−1 = B−1 − B−1αγ ∗B−1

1 + γ ∗B−1α
,

we have

A−1
k,...,k+(s−1)τ = (

Ãk,...,k+(s−1)τ + γ k+sτγ
∗
k+(s+1)τ

)−1

= Ã−1
k,...,k+(s−1)τ − Ã−1

k,...,k+(s−1)τγ k+(s+1)τγ
∗
k+sτ Ã−1

k,...,k+(s−1)τ

1 + γ ∗
k+sτ Ã−1

k,...,k+(s−1)τγ k+(s+1)τ

,

Ãk,...,k+(s−1)τ = (
Ak,...,k+sτ + γ k+(s+1)τγ

∗
k+sτ

)−1

= A−1
k,...,k+sτ − A−1

k,...,k+sτγ k+(s+1)τγ
∗
k+sτ A−1

k,...,k+sτ

1 + γ ∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τ

.
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Therefore, we have

γ ∗
k+sτ A−1

k,...,k+(s−1)τ

= γ ∗
k+sτ Ã−1

k,...,k+(s−1)τ

− γ ∗
k+sτ Ã−1

k,...,k+(s−1)τγ k+(s+1)τγ
∗
k+sτ Ã−1

k,...,k+(s−1)τ

1 + γ ∗
k+sτ Ã−1

k,...,k+(s−1)τγ k+(s+1)τ

= γ ∗
k+sτ Ã−1

k,...,k+(s−1)τ

1 + γ ∗
k+sτ Ã−1

k,...,k+(s−1)τγ k+(s+1)τ

and

γ ∗
k+sτ A−1

k,...,k+(s−1)τγ k+sτ

= γ ∗
k+sτ Ã−1

k,...,k+(s−1)τγ k+sτ

1 + γ ∗
k+(s+1)τ Ã−1

k,...,k+(s−1)τγ k+sτ

=
(
γ ∗

k+sτ A−1
k,...,k+sτγ k+sτ

− γ ∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τγ
∗
k+sτ A−1

k,...,k+sτγ k+sτ

1 + γ ∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τ

)
(B.1)

/(
1 + γ ∗

k+(s+1)τ A−1
k,...,k+sτγ k+sτ

− γ ∗
k+(s+1)τ A−1

k,...,k+sτγ k+(s+1)τγ
∗
k+sτ A−1

k,...,k+sτγ k+sτ

1 + γ ∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τ

)

= (cn/2)Emn(z) + r1(k + sτ )

1 − (cn/2)Emn(z)γ
∗
k+(s+1)τ A−1

k,...,k+sτγ k+(s+1)τ + r2(k + sτ )
,

that is,

Wk,...,k+(s−1)τ = an + r1(k + sτ )

1 − anWk,...,k+sτ + r2(k + sτ )
,(B.2)

where

r1(k + sτ ) = γ ∗
k+sτ A−1

k,...,k+sτγ k+sτ − an,

r2(k + sτ ) = −(
γ ∗

k+sτ A−1
k,...,k+sτγ k+sτ − an

)
γ ∗

k+(s+1)τ A−1
k,...,k+sτγ k+(s+1)τ

+ γ ∗
k+(s+1)τ A−1

k,...,k+sτγ k+sτ + γ ∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τ

+ γ ∗
k+(s+1)τ A−1

k,...,k+sτγ k+sτγ
∗
k+sτ A−1

k,...,k+sτγ k+(s+1)τ .
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When k ≤ T −v−4
n , applying this relation � times (� = [v−4

n ]), we may express Wk

in the following form:

Wk = (an + r1(k + τ))(αk+τ,� − anγk+τ,�Wk,k+τ,...,k+(�+1)τ )

αk,� − anγk,�Wk,k+τ,...,k+(�+1)τ

,

where the coefficients satisfy the recursive relation

αk+sτ,� = (
1 + r2(k + sτ )

)
αk+(s+1)τ,�

− an

(
an + r1(k + sτ )

)
αk+(s+2)τ,�,

αk+�τ,� = 1 + r2(k + �τ), αk+(�+1)τ,� = 1,
(B.3)

γk+sτ,� = (
1 + r2(k + sτ )

)
γk+(s+1)τ,�

− an

(
an + r1(k + sτ )

)
γk+(s+2)τ,�,

γk+�τ,� = 1, γk+(�+1)τ,� = 0.

Notice that vn = n−1/52. Employing Lemma 2.5 and an estimation similar to (4.3),
for any fixed t , one has

P
(∣∣ri(k + �τ)

∣∣ ≥ v12
n

) = o
(
n−t ) for i = 1,2.(B.4)

As in the proof of Lemma B.3 of Jin et al. (2014), by letting � = [v−4
n ], it follows

by induction that

αk+lτ,� = (1 − α)

�−l+1∏
μ=1

νμ,1 + α

�−l+1∏
μ=1

νμ,0,(B.5)

where ν1,i , i = 1,0 (with |ν1,1| > |ν1,0|) are defined by the two roots of the
quadratic equation

x2 = (
1 + r2(k + �τ)

)
x − an

(
an + r1(k + �τ)

)
and α is such that

(1 − α)ν1,1 + αν1,0 = 1 + r2(k + �τ) = αk+�τ,�.

Recall that xni , i = 1,0 (with |xn1| > |xn0|) are two roots of the quadratic equation

x2 = x − a2
n.

Applying Lemmas 3.1–3.3 to the above two quadratic equations and using (B.4),
we have

P
(|ν1,i − xni | ≥ 2v6

n

)
(B.6)

≤ P
(∣∣r1(k + �τ)

∣∣ ≥ v12
n

)+ P
(∣∣r2(k + �τ)

∣∣ ≥ v12
n

) = o
(
n−t ),

P
(∣∣∣∣α − xn0

xn0 − xn1

∣∣∣∣ ≥ 3v6
n

)
≤ P

(|ν1,0 − xn0| ≥ v6
n

)+ P
(|ν1,1 − xn1| ≥ v6

n

)+ P
(∣∣r2(k + �τ)

∣∣ ≥ v6
n

)
(B.7)

= o
(
n−t ).
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By induction, one has for μ ∈ [1, �]
νμ+1,i = 1 + r2

(
k + (� − μ)τ

)− an(an + r1(k + (� − μ)τ))

νμ,i

and can similarly verify that

P
(|νμ,i − xni | ≥ 2μv6

n

) ≤
μ∑

l=1

2∑
j=1

P
(∣∣rj (k + lτ )

∣∣ ≥ v12
n

) = o
(
n−t ).

Therefore, we have

P
(∣∣αk+τ,� − (

(1 − α)x�
n1 + αx�

n0
)∣∣ ≥ v6

n

) ≤
�∑

μ=1

1∑
i=0

P
(|νμ,i − xni | ≥ 2μv6

n

)
= o

(
n−t ),

P
(∣∣αk,� − (

(1 − α)x�+1
n1 + αx�+1

n0

)∣∣ ≥ v6
n

) ≤
�+1∑
μ=1

1∑
i=0

P
(|νμ,i − xni | ≥ 2μv6

n

)
= o

(
n−t ),

and

P
(∣∣∣∣αk+τ,�

αk,�

− 1

xn1

∣∣∣∣ ≥ v6
n

)
≤ P

(∣∣αk+τ,� − (
(1 − α)x�

n1 + αx�
n0
)∣∣ ≥ v6

n

)
+ P

(∣∣αk,� − (
(1 − α)x�+1

n1 + αx�+1
n0

)∣∣ ≥ v6
n

)
+ P

(|ν�+1,1 − xn1| ≥ 2(� + 1)v6
n

)
= o

(
n−t ).

Similarly, we have

γk+lτ,� = (1 − α̃)

�−l+1∏
μ=1

ν̃μ,1 + α̃

�−l+1∏
μ=1

ν̃μ,0,

where ν̃μ,i , i = 1,0, are the two roots of the quadratic equation

x2 = (
1 + r2

(
k + (� − 1)τ

))
x − an

(
an + r1

(
k + (� − 1)τ

))
,

and α̃ satisfies

(1 − α̃)ν̃1,1 + α̃ν̃1,0 = 1 + r2
(
k + (� − 1)τ

) = γk+(�−1)τ,�.

One can similarly prove that ν̃μ,i , i = 0,1, satisfy

P
(|ν̃μ,i − xni | ≥ 2μv6

n

) ≤
μ∑

l=0

2∑
j=1

P
(∣∣rj (k + lτ )

∣∣ ≥ v12
n

) = o
(
n−t ),
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and

P
(∣∣∣∣α̃ − xn0

xn0 − xn1

∣∣∣∣ ≥ 3v6
n

)
= o

(
n−t ).

Therefore, we have

P
(∣∣γk+τ,� − (

(1 − α̃)x�
n1 + α̃x�

n0
)∣∣ ≥ v6

n

) ≤
�∑

μ=1

1∑
i=0

P
(|ν̃μ,i − xni | ≥ 2μv6

n

)
= o

(
n−t ),

P
(∣∣γk,� − (

(1 − α̃)x�+1
n1 + α̃x�+1

n0

)∣∣ ≥ v6
n

) ≤
�+1∑
μ=1

1∑
i=0

P
(|ν̃μ,i − xni | ≥ 2μv6

n

)
= o

(
n−t ),

and

P
(∣∣∣∣γk+τ,�

γk,�

− 1

xn1

∣∣∣∣ ≥ v6
n

)
≤ P

(∣∣γk+τ,� − (
(1 − α̃)x�

n1 + α̃x�
n0
)∣∣ ≥ v6

n

)
+ P

(∣∣γk,� − (
(1 − α̃)x�+1

n1 + α̃x�+1
n0

)∣∣ ≥ v6
n

)
+ P

(|ν̃�+1,1 − xn1| ≥ 2(� + 1)v6
n

)
= o

(
n−t ).

Substituting back to the recursive expression of Wk , we thus have

P
(∣∣∣∣Wk − an

xn1

∣∣∣∣ ≥ v6
n

)
= o

(
n−t ).(B.8)

The proof of this lemma is complete.

B.6. Proof of Lemma 3.8(a). When τ < k ≤ 2τ , the lemma is obviously true
because γ k−τ is independent of Ak . Similarly, the lemma is true when T − τ <

k ≤ T .
When 2τ < k ≤ T/2, similar to (B.1), we have

W̃k,...,k+sτ

:= γ ∗
k−τ A−1

k,k+τ,...,k+(s−1)τγ k+sτ

= γ ∗
k−τ (Ak,k+τ,...,k+sτ + γ k+(s+1)τγ

∗
k+sτ )

−1γ k+sτ

1 + γ ∗
k+(s+1)τ (Ak,k+τ,...,k+sτ + γ k+(s+1)τγ

∗
k+sτ )

−1γ k+sτ

=
(
γ ∗

k−τ A−1
k,k+τ,...,k+sτγ k+sτ
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− γ ∗
k−τ A−1

k,k+τ,...,k+sτγ k+(s+1)τγ
∗
k+sτ A−1

k,k+τ,...,k+sτγ k+sτ

1 + γ ∗
k+sτ A−1

k,k+τ,...,k+sτγ k+(s+1)τ

)
/(

1 + γ ∗
k+(s+1)τ A−1

k,k+τ,...,k+sτγ k+sτ

− γ ∗
k+(s+1)τ A−1

k,k+τ,...,k+sτγ k+(s+1)τγ
∗
k+sτ A−1

k,k+τ,...,k+sτγ k+sτ

1 + γ ∗
k+sτ A−1

k,k+τ,...,k+sτγ k+(s+1)τ

)

= r̃1(k + sτ ) − W̃k,...,k+(s+1)τ an

1 + r2(k + sτ ) − anWk,...,k+sτ

,

where

r̃1(k + sτ ) = γ ∗
k−τ A−1

k,...,k+sτγ k+sτ

(
1 + γ ∗

k+sτ A−1
k,...,k+sτγ k+(s+1)τ

)
− W̃k,...,k+(s+1)τ

(
γ ∗

k+sτ A−1
k,...,k+sτγ k+sτ − an

)
.

Similarly, one can show that

P
(∣∣̃r1(k + sτ )

∣∣ ≥ v12
n

) = o
(
n−t ).

When |̃r1(t + sτ )| ≤ v12
n , |r2(k + sτ )| ≤ v12

n , and |Wk,...,k+sτ − an

xn1
| ≤ v6

n, we have

|W̃k,...,k+sτ | ≤ v12
n

|xn1| − v5
n

+ |W̃k,...,k+(s+1)τ |
∣∣∣∣ |an|
|xn1| + v5

n

∣∣∣∣
≤ 3v12

n + |W̃k,...,k+(s+1)τ |
(

1 − 1

2
ηv3

n + v4
n

)
,

where the second term follows from the fact that

|an|
|xn1| =

√
|xn0|
|xn1| ≤ 1 − 1

2
ηv3

n.

Therefore, when v−4
n < � < v−5

n ,

|W̃k| ≤ 3�v12
n + |W̃k,...,k+�τ |

∣∣1 − 1
2ηv3

n + v4
n

∣∣� ≤ v6
n.

The lemma then follows by the fact that

P
(|W̃k| ≥ v6

n

)
≤

�∑
s=1

(
P
(∣∣̃r1(k + sτ )

∣∣ ≥ v12
n

)+ P
(∣∣r2(k + sτ )

∣∣ ≥ v12
n

)
+ P

(∣∣∣∣Wk,...,k+sτ − an

xn1

∣∣∣∣ ≥ v6
n

))
= o

(
n−t ).

The proof of the lemma is complete.
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B.7. Proof of Lemma 3.6, part (b). Let x1 and x0 be the two roots of the
quadratic equation

x2 = x − ă2,

where ă = ă(z) = cm(z)/2 and m(z) satisfies (4.8). We claim that

sup
u∈[a,b]

|x0(z)|
|x1(z)| ≤ 1 − η(B.9)

for some η ∈ (0,1). Otherwise, there will be a sequence {zk} with �(zk) ∈ [a, b]
and

|x0(zk)|
|x1(zk)| → 1.

Then we can select a convergent subsequence {zk′ } → z0. If z0 = ∞, then ă(z0) =
0 and hence x1 = 1 and x0 = 0. It contradicts the fact that

|x0(z0)|
|x1(z0)| = 1.

The only case to make the equality above true is that ă(z0) is real and its absolute
value is ≥1

2 . That is, z0 is real and |ă(z0)| ≥ 1
2 . Since ă(∞) = 0, there is a real

number z′ between z0 and sgn(z0)∞ such that |ă(z′)| = 1
2 which contradicts the

equation (4.8). Therefore, (B.9) is proved.
Since m0

n(z) → m(z) uniformly for all �(z) ∈ [a, b], we conclude that there is
a constant η ∈ (0,1) such that

sup
�(z)∈[a,b]

|x̃n0|
|x̃n1| < 1 − η,

where x̃n1 and x̃n0 are the two roots of the equation

x2 = x − 1
4c2

n

(
m0

n(z)
)2

.

By what has been proved in Section 4, we have sup1>�(z)≥n−1/52 |Emn(z) −
m0

n(z)| → 0. Thus,

sup
�(z)∈[a,b]

1>�(z)≥n−1/52

|xn0|
|xn1| ≤ 1 − η.

The conclusion (i)(b) follows.
We then prove the conclusion (v). In the proof of (i)(b), we actually proved that

there is a constant η ∈ (0, 1
2) such that for all u ∈ [a, b],∣∣ă(u)

∣∣ < 1
2 − η.
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By the uniform continuity of ă(z) for all �(z) ∈ [a, b]. we have∑
u∈[a,b],v∈(0,δn)

∣∣ă(u + iv) − ă(u)
∣∣ → 0 as δn → 0.

Then conclusion (v) follows from the fact that sup1>�(z)≥n−1/52 |Emn(z) −
m0

n(z)| → 0.
The first conclusion of (ii)(b) is the same as (ii)(a) and the second follows easily

from the fact that |an(z)| ≤ 1
2 and the argument that |xn1| ≤ 1

2(1+
√

1 + 4|a2
n|) ≤ 3

2 .

The conclusion (iii)(b) follows from the fact that |xn1 − xn0| = |
√

1 − 4a2
n| ≥√

4η(1 − η). The conclusion (iv)(b) follows from conclusions (ii)(b) and (iii)(b).
The goal of this section is reached.

B.8. Proof of Lemma 3.7(b1). When k ≤ T − log2 n, noticing |xn0|/|xn1| ≤
1 − η established in part (b) of Lemma 3.6, so (B.8) remains true, hence in turn
implies the lemma. When k > T − log2 n, we shall recursively show the lemma by
proving

P
(|Wk,...,k+sτ | > 1 − η

) = o
(
n−t ),(B.10)

for some η ∈ (0, 1
2). In fact, when k + sτ ≥ T > k+ (s −1)τ , (B.10) follows easily

by the fact that γ k+(s+1)τ is independent of A−1
k,...,k+sτ , and hence P(|Wk,...,k+sτ −

an| ≥ v3
n) = o(n−t ) and |an| ≤ 1/2 − η.

By induction, assume that (B.10) is true for some s ≥ 1. By (B.2) and
Lemma 3.6(v), when |r1(k + sτ )| ≤ v3

n and |r2(k + sτ )| ≤ v3
n, we have

|Wk,...,k+(s−1)τ | ≤ 1/2 − η + v3
n

1 − (1/2 − η)(1 − η) − v3
n

≤ 1 − η for all large n.

Thus,

P
(|Wk,...,k+(s−1)τ | > 1 − η

)
≤ P

(|Wk,...,k+sτ | > 1 − η
)+ P

(∣∣r1(k + sτ )
∣∣ ≥ v3

n

)+ P
(∣∣r2(k + sτ )

∣∣ ≥ v3
n

)
= o

(
n−t ).

The assertion (B.10) is proved, and thus the proof of the lemma is complete.

B.9. Proof of Lemma 3.9. Define Ãk = Ak,k+τ + γ k+τγ
∗
k+2τ . Recall Ak =

Ak,k+τ + γ k+τγ
∗
k+2τ + γ k+2τγ

∗
k+τ , so we have

A−1
k = (

Ãk + γ k+2τγ
∗
k+τ

)−1 = Ã−1
k − Ã−1

k γ k+2τγ
∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

.
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Hence, we have

γ ∗
k+τ A−1

k = γ ∗
k+τ Ã−1

k − γ ∗
k+τ Ã−1

k γ k+2τγ
∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

= γ ∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

.

Next, we have

γ ∗
k+τ Ã−1

k = γ ∗
k+τ A−1

k,k+τ − γ ∗
k+τ A−1

k,k+τγ k+τγ
∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

= γ ∗
k+τ A−1

k,k+τ − anγ
∗
k+2τ A−1

k,k+τ + Rk1,

where

Rk1 = anγ
∗
k+2τ A−1

k,k+τ − γ ∗
k+τ A−1

k,k+τγ k+τγ
∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

=
(

an − γ ∗
k+τ A−1

k,k+τγ k+τ + anγ
∗
k+2τ A−1

k,k+τγ k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

)
γ ∗

k+2τ A−1
k,k+τ .

Substituting back, we obtain

γ ∗
k+τ A−1

k = γ ∗
k+τ A−1

k,k+τ − anγ
∗
k+2τ A−1

k,k+τ + Rk1

1 + γ ∗
k+τ A−1

k,k+τγ k+2τ − anγ
∗
k+2τ A−1

k,k+τγ k+2τ + Rk1γ k+2τ

= (
γ ∗

k+τ A−1
k,k+τ − anγ

∗
k+2τ A−1

k,k+τ + Rk1
)

(B.11)
/
(
xn1 + γ ∗

k+τ A−1
k,k+τγ k+2τ

− an

(
γ ∗

k+2τ A−1
k,k+τγ k+2τ − an/xn1

)+ Rk1γ k+2τ

)
.

When |γ ∗
k+2τ A−1

k,k+τγ k+τ | ≤ v3
n, |an − γ ∗

k+τ A−1
k,k+τγ k+τ | ≤ v3

n, we have

‖Rk1‖ ≤ Kv2
n.

Using similar approach of the proof of Lemma 3.7(a), one can prove that when
k ≤ T − log2 n, |γ ∗

k+lτ A−1
k,...,k+lτγ k+(l+1)τ | ≤ v3

n, |γ ∗
k+(l+1)τ A−1

k,...,k+lτγ k+lτ | ≤ v3
n,

and |γ ∗
k+lτ A−1

k,...,k+lτγ k+lτ − an| ≤ v3
n, for l = 1, . . . , [log2 n], we have

P
(∣∣γ ∗

k+2τ A−1
k,k+τγ k+2τ − an/xn1

∣∣ ≥ v3
n

) = o
(
n−t ).

Therefore, by (B.11), we have∥∥γ ∗
k+τ A−1

k

∥∥ ≤ 2
∥∥γ ∗

k+τ A−1
k,k+τ

∥∥+ (
1 − η′)∥∥γ ∗

k+2τ A−1
k,k+τ

∥∥+ Kvn.(B.12)

Similarly, one can prove that∥∥γ ∗
k+2τ A−1

k,k+τ

∥∥
(B.13)

≤ 2
∥∥γ ∗

k+2τ A−1
k,k+τ,k+2τ

∥∥+ (
1 − η′)∥∥γ ∗

k+3τ A−1
k,k+τ,k+2τ

∥∥+ Kvn.
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By induction, for any k ≤ T − [log2 n] and � ≤ [log2 n], one obtains∥∥γ k+τ A−1
k

∥∥
≤ 2

�∑
l=1

(
1 − η′)l−1∥∥γ ∗

k+lτ A−1
k,...,k+lτ

∥∥(B.14)

+ (
1 − η′)�∥∥γ ∗

k+(�+1)τ A−1
k,...,k+�τ

∥∥+ K�vn,

where η′ ∈ (0, η) is a constant. Since

∥∥γ ∗
k+lτ A−1

k,...,k+lτ

∥∥2 → c

2

∫ 1

(x − u)2 dFc(x) =: K1

uniformly for k ≤ T + τ − [log2 n] and l ≤ [log2 n], then for any K >
2
√

K1+ε
η′ ,

when n is large, we have

P
(∥∥γ ∗

k+τ A−1
k

∥∥ ≥ K
)

≤
[log2 n]∑

l=1

[
P
(∣∣γ ∗

k+(l+1)τ A−1
k,...,k+lτγ k+lτ

∣∣ ≥ v3
n

)
+ P

(∣∣γ ∗
k+lτ A−1

k,...,k+lτγ k+(l+1)τ

∣∣ ≥ v3
n

)
(B.15)

+ P
(∣∣γ ∗

k+lτ A−1
k,...,k+lτγ k+lτ − an

∣∣ ≥ v3
n

)]
= o

(
n−t ).

This proves the lemma for k ≤ T + τ − [log2 n].
When k > T + τ − [log2 n], by the first equality of (B.11) and Lemma 3.6(v),

when |γ ∗
k+2τ A−1

k,k+τγ k+2τ | ≤ 1 [which, by (B.10), occurs with probability 1 −
o(n−t )], we have∣∣1 + γ ∗

k+τ A−1
k,k+τγ k+2τ − anγ

∗
k+2τ A−1

k,k+τγ k+2τ + Rk1γ k+2τ

∣∣
≥ 1 − v3

n − (1
2 − η

)− Kv2
n ≥ 1

2 + η′,

for some constant η′ > 0. Therefore,∥∥γ ∗
k+τ A−1

k

∥∥ ≤ 2
∥∥γ ∗

k+τ A−1
k,k+τ

∥∥+ (
1 − η′)∥∥γ ∗

k+2τ A−1
k,k+τ

∥∥+ Kvn.

Again, by using induction, the lemma can be proved for the case where k > T −
log2 n.

Therefore, the proof of the lemma is complete.
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B.10. Proof of Lemma 3.10. As in last subsection, we first consider the case
k ≤ T + τ − [log2 n]. Note that

A−1
k = (

Ãk + γ k+2τγ
∗
k+τ

)−1 = Ã−1
k − Ã−1

k γ k+2τγ
∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

,

Ã−1
k = A−1

k,k+τ − A−1
k,k+τγ k+τγ

∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

,

and

γ ∗
k+τ A−1

k = γ ∗
k+τ Ã−1

k − γ ∗
k+τ Ã−1

k γ k+2τγ
∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

= γ ∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

.

By similar approach to prove Lemmas 3.7 and 3.9, we have∣∣γ ∗
k+τ A−1

k,k+τγ k+2τ

∣∣ ≤ v3
n with probability 1 − o

(
n−t ),∣∣γ ∗

k+τ A−2
k,k+τγ k+2τ

∣∣ ≤ v3
n with probability 1 − o

(
n−t ),∣∣γ ∗

k+2τ A−1
k,k+τγ k+2τ − an/xn1

∣∣ ≤ v3
n with probability 1 − o

(
n−t ),∣∣γ ∗

k+τ A−1
k,k+τγ k+τ − an

∣∣ ≤ v3
n with probability 1 − o

(
n−t ).

By Remark 3.2,

γ ∗
k+τ A−2

k,k+τγ k+τ = 1

2T
tr A−2 + o

(
v3
n

) ≤ K with probability 1 − o
(
n−t ).

By Lemma 3.9,∥∥γ ∗
k+2τ A−1

k,k+τ

∥∥2 = ∣∣γ ∗
k+2τ A−1

k,k+τ

(
A∗

k,k+τ

)−1
γ k+2τ

∣∣ ≤ K

with probability 1 − o
(
n−t

)
,∣∣γ ∗

k+2τ A−2
k,k+τγ k+2τ

∣∣ ≤ ∣∣γ ∗
k+2τ A−1

k,k+τ

(
A∗

k,k+τ

)−1
γ k+2τ

∣∣ ≤ K

with probability 1 − o
(
n−t

)
.

By Lemma 3.5,∥∥γ ∗
k+τ A−1

k,k+τ

∥∥2 = 1

2T
tr A−1

k,k+τ

(
A∗

k,k+τ

)−1 + o
(
v3
n

) ≤ K

with probability 1 − o
(
n−t

)
.

Also, we have

γ ∗
k+τ Ã−1

k γ k+2τ = γ ∗
k+τ A−1

k,k+τγ k+2τ − γ ∗
k+τ A−1

k,k+τγ k+τγ
∗
k+2τ A−1

k,k+τγ k+2τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

= −xn0 + o
(
v3
n

)
with probability 1 − o

(
n−t ).
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Therefore, with probability 1 − o(n−t ), we have∥∥γ ∗
k+τ A−1

k Ã−1
k γ k+2τγ

∗
k+τ Ã−1

k

∥∥
=

∥∥∥∥ γ ∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

×
(

A−1
k,k+τ − A−1

k,k+τγ k+τγ
∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

)
γ k+2τγ

∗
k+τ Ã−1

k

∥∥∥∥
=

∣∣∣∣ 1

1 + γ ∗
k+τ Ã−1

k γ k+2τ

∣∣∣∣
×
∣∣∣∣γ ∗

k+τ

(
A−1

k,k+τ − A−1
k,k+τγ k+τγ

∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

)2

γ k+2τ

∣∣∣∣
×
∥∥∥∥γ ∗

k+τ

(
A−1

k,k+τ − A−1
k,k+τγ k+τγ

∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

)∥∥∥∥
≤ M1

for some M1 > 0. By Remark 3.1,

∥∥γ ∗
k+τ A−2

k,k+τ

∥∥2 = 1

2T
tr A−2(A∗)−2 + o

(
v3
n

) ≤ K

with probability 1 − o
(
n−t

)
.

This implies, with probability 1 − o(n−t )∥∥γ ∗
k+τ A−1

k Ã−1
k

∥∥
=

∥∥∥∥ γ ∗
k+τ

1 + γ ∗
k+τ Ã−1

k γ k+2τ

(
A−1

k,k+τ − A−1
k,k+τγ k+τγ

∗
k+2τ A−1

k,k+τ

1 + γ ∗
k+2τ A−1

k,k+τγ k+τ

)2∥∥∥∥
≤ M2 + |bn|

∥∥γ ∗
k+2τ A−2

k,k+τ

∥∥
for some M2 > 0 and

bn = − cnEmn/2

1 − (cnEmn/2)(cnEmn/2xn1)
= − an

xn1

with ∣∣∣∣ an

xn1

∣∣∣∣ ≤ √|xn0|/|xn1| ≤
√

1 − η.
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Therefore, we have∥∥γ ∗
k+τ A−2

k

∥∥
=

∥∥∥∥γ ∗
k+τ A−1

k

(
Ã−1

k − Ã−1
k γ k+2τγ

∗
k+τ Ã−1

k

1 + γ ∗
k+τ Ã−1

k γ k+2τ

)∥∥∥∥
≤ ∥∥γ ∗

k+τ A−1
k Ã−1

k

∥∥+
∣∣∣∣ 1

1 + γ ∗
k+τ Ã−1

k γ k+2τ

∣∣∣∣∥∥γ ∗
k+τ A−1

k Ã−1
k γ k+2τγ

∗
k+τ Ã−1

k

∥∥
≤ (2 + ε)M1 + M2 +√

1 − η
∥∥γ ∗

k+2τ A−2
k,k+τ

∥∥,
where ε > 0 is a constant. Then similar to the proof of Lemma 3.9, using the
recursion above we have

P
(∣∣γ ∗

k+τ A−2
k

(
A∗

k

)−2
γ k+τ

∣∣ ≥ K
) = o

(
n−t )

for some K > 0. When k > T − log2 n, one can similarly prove the inequality
above. The proof of the lemma is complete.

B.11. Proof of Lemma 3.11. We first consider the case where log2 n < k <

T − log2 n. Note that A = Ak +γ kβ
∗
k +βkγ

∗
k , where βk = γ k−τ +γ k+τ . We have

tr A−1
k − tr A−1

= d

dz
log

(
(1 + ε1)(1 + ε2) − γ ∗

kA−1
k γ kβ

∗
kA−1

k βk

)
(B.16)

= d

dz
log

(
(1 + ε1)(1 + ε2) − (ε3 + ε4 + an)

(
ε5 + 2an

xn1

))
= d

dz
log

(
xn1 − xn0 + ε1 + ε2 + ε1ε2 − anε5 −

(
2an

xn1
+ ε5

)
(ε3 + ε4)

)
,

where εi ’s are defined in (4.34). Note that

E(εi |γ j , j 	= k) = 0 for i = 1,2,3.

Therefore, by Taylor’s expansion, Cauchy integral and Lemma 3.6 part (b), we
have∣∣∣∣E(tr A−1

k − tr A−1)− d

dz
log(xn1 − xn0)

∣∣∣∣
≤
∣∣∣∣ d

dz
E
[
log

(
1 + ε1 + ε2 + ε1ε2 − anε5 − ((2an/xn1) + ε5)(ε3 + ε4)

xn1 − xn0

)
(B.17)

− ε1 + ε2

xn1 − xn0
− 2ε3an

xn1(xn1 − xn0)

]∣∣∣∣
≤ Kv−1

n sup
|ξ−z|=vn/2

[ 5∑
i=1

(
E
∣∣ε2

i (ξ)
∣∣)+ ∣∣Eε4(ξ)

∣∣+ ∣∣Eε5(ξ)
∣∣].
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By applying Lemmas 3.9 and 3.10, one can easily verify that

E
∣∣ε2

i (ξ)
∣∣ = O

(
n−1) for i = 1,2,3.(B.18)

Also, by (4.2),

∣∣Eε4(ξ)
∣∣ = ∣∣∣∣ 1

2T
E
(
tr A−1

k (ξ) − tr A−1(ξ)
)∣∣∣∣ ≤ K

T vn

,(B.19)

and similar to the proof of (4.4)

∣∣Eε2
4(ξ)

∣∣ ≤ 1

4T 2 E
∣∣tr A−1

k (ξ) − E tr A−1
k (ξ)

∣∣2 + ∣∣Eε4(ξ)
∣∣2 = O

(
1

n

)
.(B.20)

By the proof of Lemma 3.7(a) with noticing |xn0/xn1| ≤ 1 − η, when log2 n ≤ k ≤
T − log2 n, for i = 1,2, one can prove that

E
∣∣∣∣γ ∗

k+τ A−1
k γ k+τ − an

xn1

∣∣∣∣i = o(1),

(B.21)

E
∣∣∣∣γ ∗

k−τ A−1
k γ k−τ − an

xn1

∣∣∣∣i = o(1),

and by the proof of Lemma 3.8(a),

E
∣∣γ ∗

k−τ A−1
k γ k

∣∣i = o(1),
∣∣Eγ ∗

k+τ A−1
k γ k−τ

∣∣i = o(1).(B.22)

inequalities (B.21) and (B.22) imply that

E
∣∣ε5(ξ)

∣∣i = o(1).(B.23)

Combining (B.17), (B.18), (B.19), (B.20) and (B.23), the first conclusion of
Lemma 3.11 is proved when log2 n ≤ k ≤ T − log2 n. If k > T − log2 n, by Lem-
mas 3.7(b1) and 3.8(a), one may modify the right-hand sides of (B.21)–(B.22) as
O(1). This also proves the lemma. The conclusion for k < log2 n can be proved
similarly.

The second conclusion of the lemma can be proved similarly. The proof of the
lemma is complete.

B.12. Proof of Lemma 3.7(b2). We assume that k < T − log2 n and prove
the first statement only, as the second follows by symmetry. As in the proof
of Lemma 3.7(a), write Wk = γ ∗

k+τ A−1
k γ k+τ and Wk,k+τ,...,k+sτ = γ ∗

k+(s+1)τ ×
A−1

k,k+τ,...,k+sτγ k+(s+1)τ . Then by (B.2), we have

Wk,...,k+(s−1)τ = an + r1(k + sτ )

1 − anWk,...,k+sτ + r2(k + sτ )
,
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where

r1(k + sτ ) = γ ∗
k+sτ A−1

k,...,k+sτγ k+sτ − an,

r2(k + sτ ) = −(
γ ∗

k+sτ A−1
k,...,k+sτγ k+sτ − an

)
γ ∗

k+(s+1)τ A−1
k,...,k+sτγ k+(s+1)τ

+ γ ∗
k+(s+1)τ A−1

k,...,k+sτγ k+sτ + γ ∗
k+sτ A−1

k,...,k+(s+1)τγ k+sτ

+ γ ∗
k+(s+1)τ A−1

k,...,k+sτγ k+sτγ
∗
k+sτ A−1

k,...,k+(s+1)τγ k+sτ .

Therefore, we have

Wk − an

xn1

= an + r1(k + τ)

1 − anWk,k+τ + r2(k + τ)
− an

xn1
(B.24)

= r1(k + τ)

1 − anWk,k+τ + r2(k + τ)
− anr2(k + τ)

xn1(1 − anWk,k+τ + r2(k + τ))

+ a2
n(Wk,k+τ − (an/xn1))

xn1(1 − anWk,k+τ + r2(k + τ))
.

By Lemma 3.11, when k + sτ ≤ T ,

∣∣Er1(k + sτ )
∣∣ = ∣∣∣∣ 1

2T
E tr A−1

k,...,k+sτ − an

∣∣∣∣ = O

(
s

n

)
= O

(
log2 n

n

)
.

Using this estimate together with Lemmas 3.4 and 3.9, one can prove that

E
(∣∣r1(k + sτ )

∣∣p)
≤ K

(∣∣Er1(k + sτ )
∣∣p + E

∣∣r1(k + sτ ) − Er1(k + sτ )
∣∣p)

(B.25)
≤ K

(
n−p log2p n + n−pE

(
tr A−1

k,...,k+sτ

(
A∗

k,...,k+sτ

)−1)p/2)
≤ Kn−p/2,

which implies that for any fixed δ > 0,

P
(∣∣r1(k + sτ )

∣∣ ≥ n−0.5+δ) = o
(
n−t ).(B.26)

By this and Lemmas 3.7(b1) and 3.4, one can prove that

P
(∣∣r2(k + sτ )

∣∣ ≥ n−0.5+δ) = o
(
n−t ).(B.27)

In Section 4, we have proved that with probability 1 − o(n−t ), |Wk,k+τ −
an

xn1
| ≤ v6

n. Also by Lemma 3.6(ii)(b), we have |xn1| ≥ 1
2 which implies that

| 1
1−anWk,k+τ +r2(k+τ)

| is bounded by 3 with probability 1 − o(n−t ).
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Moreover, by the fact that | an

xn1
| =

√
|xn0
xn1

| ≤ √
1 − η < 1 − 1

2η, we have, with

probability 1 − o(n−t ),∣∣∣∣ an

1 − anWk,k+τ + r2(k + τ)

∣∣∣∣ ≤ |an|
|xn1| − v4

n

≤ (1 − (1/2)η)|xn1|
|xn1| − v4

n

≤ 1 − (1/2)η

1 − 2v4
n

≤ 1 − η′,

for some 0 < η′ < 1
2η. In (B.24), split the first term as

r1(k + τ)

1 − anWk,k+τ + r2(k + τ)

= r1(k + τ)

1 − anWk,k+τ

− r1(k + τ)r2(k + τ)

(1 − anWk,k+τ )(1 − anWk,k+τ + r2(k + τ))

and the second term as

anr2(k + τ)

xn1(1 − anWk,k+τ + r2(k + τ))

= anr2(k + τ)

xn1(1 − anWk,k+τ )
− anr

2
2 (k + τ)

xn1(1 − anWk,k+τ )(1 − anWk,k+τ + r2(k + τ))
.

Noting that |Wk| ≤ Kv−1
n , we have∣∣∣∣EWk − an

xn1

∣∣∣∣
≤ Kn−1+2δ + K

∣∣Er1(k + τ)
∣∣+ K

∣∣Er2(k + τ)
∣∣

+ (
1 − η′)2

∣∣∣∣EWk,k+τ − an

xn1

∣∣∣∣
(B.28)

...

≤ K�n−1+2δ + K

�∑
s=1

∣∣Er1(k + sτ )
∣∣+ K

�∑
s=1

∣∣Er2(k + sτ )
∣∣

+ (
1 − η′)2�

∣∣∣∣EWk,...,k+�τ − an

xn1

∣∣∣∣.
By choosing � = [log2 n] and δ < 1/106, we can show that

∑�
s=1 |Eri(k + sτ )| =

o(1/(nvn)), i = 1,2 and that (1 − η′)2�|EWk,...,k+�τ − an

xn1
| = o(1/(nvn)). Substi-

tuting all the above into (B.28), we have |EWk − an

xn1
| = o(1/(nvn)).
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B.13. Proof of Lemma 3.7(b3). Again, we assume that k < T − log2 n and
prove the first statement only, as the second follows by symmetry. As in the proof
of Lemma 3.7(b2), we have

E
∣∣∣∣Wk − an

xn1

∣∣∣∣2

≤ KE
∣∣r1(k + τ)

∣∣2 + KE
∣∣r2(k + τ)

∣∣2 + (
1 − η′)4E

∣∣∣∣Wk,k+τ − an

xn1

∣∣∣∣2
...

(B.29)

≤ K

�∑
s=1

E
∣∣r1(k + sτ )

∣∣2 + K

�∑
s=1

E
∣∣r2(k + sτ )

∣∣2
+ (

1 − η′)4�E
∣∣∣∣Wk,...,k+�τ − an

xn1

∣∣∣∣2
≤ K�n−1+2δ = o

(
1/(nvn)

)
.

The proof of the lemma is complete.

B.14. Proof of Lemma 3.8(b1). By symmetry, we only consider the case k ≤
T/2. As in the proof of Lemma 3.8(a), write

W̃k,...,k+sτ := γ ∗
k−τ A−1

k,k+τ,...,k+(s−1)τγ k+sτ .

Then we have

W̃k,...,k+sτ = r̃1(k + sτ ) − W̃k,...,k+(s+1)τ (an + r̃2(k + sτ ))

1 + r2(k + sτ ) − anWk,...,k+sτ

,(B.30)

where

r̃1(k + sτ ) = γ ∗
k−τ A−1

k,...,k+sτγ k+sτ

(
1 + γ ∗

k+sτ A−1
k,...,k+sτγ k+(s+1)τ

)
,

r̃2(k + sτ ) = γ ∗
k+sτ A−1

k,...,k+sτγ k+sτ − an.

Similar to the proof of (B.27), one has

P
(∣∣̃ri(k + τ)

∣∣ ≥ n−0.5+δ) = o
(
n−t ), i = 1,2.(B.31)

Similar to the proof of (B.28), one can prove that for some η′ > 0,

|EW̃k,...,k+sτ | ≤ Kn−1+2δ + K
∣∣Er̃1(k + sτ )

∣∣+ (
1 − η′)|EW̃k,...,k+(s+1)τ |.

Therefore, when k ≤ T/2,

|EW̃k| ≤ K�n−1+2δ + K

�∑
s=1

∣∣Er̃1(k + sτ )
∣∣+ (

1 − η′)�|EW̃k,...,k+�τ |

= o
(
1/(nvn)

)
.

The proof of the lemma is complete.
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B.15. Proof of Lemma 3.8(b2). Using the notation of Lemma 3.8(b1), by
triangle inequality, we have(

E|W̃k+sτ |2)1/2 ≤ K
(
E
∣∣̃r1(k + sτ )

∣∣2)1/2 + ((
1 − η′)E|W̃k,...,k+(s+1)τ |2)1/2

.

Therefore, when k ≤ T/2 and � = [log2 n],
(
E|W̃k|2)1/2 ≤ K

�∑
s=1

(
E
∣∣̃r1(k + sτ )

∣∣2)1/2 + (
1 − η′)�/2(E|W̃k,...,k+�τ |2)1/2

≤ K log2 nn−1/2+δ.

Therefore, when 2δ < 1/212,

E|W̃k|2 ≤ K log4 nn−1+2δ = o
(
1/(nvn)

)
and the proof of the lemma is complete.

Acknowledgements. The authors would like to thank the referees for their
careful reading and invaluable comments which greatly improved the quality of
the paper.

REFERENCES

BAI, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices.
I. Wigner matrices. Ann. Probab. 21 625–648. MR1217559

BAI, Z. D., MIAO, B. Q. and RAO, C. R. (1991). Estimation of directions of arrival of signals:
Asymptotic results. In Advances in Spectrum Analysis and Array Processing, Vol. I (S. Haykin,
ed.) 327–347. Prentice Hall, West Nyack, NY.

BAI, Z. D. and SILVERSTEIN, J. W. (1998). No eigenvalues outside the support of the limiting
spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 316–345.
MR1617051

BAI, Z. D. and SILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Ma-
trices, 2nd ed. Springer, New York. MR2567175

BAI, Z. D. and SILVERSTEIN, J. W. (2012). No eigenvalues outside the support of the limiting
spectral distribution of information-plus-noise type matrices. Random Matrices Theory Appl. 1
1150004, 44. MR2930382

BAI, Z. D. and WANG, C. (2015). A note on the limiting spectral distribution of a symmetrized
auto-cross covariance matrix. Statist. Probab. Lett. 96 333–340. MR3281785

BAI, Z. D. and YAO, J.-F. (2008). Central limit theorems for eigenvalues in a spiked population
model. Ann. Inst. Henri Poincaré Probab. Stat. 44 447–474. MR2451053

BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked
population models. J. Multivariate Anal. 97 1382–1408. MR2279680

BURKHOLDER, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19–
42. MR0365692

JIN, B., WANG, C., BAI, Z. D., NAIR, K. K. and HARDING, M. (2014). Limiting spectral dis-
tribution of a symmetrized auto-cross covariance matrix. Ann. Appl. Probab. 24 1199–1225.
MR3199984

JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components
analysis. Ann. Statist. 29 295–327. MR1863961

http://www.ams.org/mathscinet-getitem?mr=1217559
http://www.ams.org/mathscinet-getitem?mr=1617051
http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=2930382
http://www.ams.org/mathscinet-getitem?mr=3281785
http://www.ams.org/mathscinet-getitem?mr=2451053
http://www.ams.org/mathscinet-getitem?mr=2279680
http://www.ams.org/mathscinet-getitem?mr=0365692
http://www.ams.org/mathscinet-getitem?mr=3199984
http://www.ams.org/mathscinet-getitem?mr=1863961


STRONG LIMIT OF EXTREME EIGENVALUES 3683

LI, Z., WANG, Q. and YAO, J. F. (2014). Identifying the number of factors from singular values of
a large sample auto-covariance matrix. Preprint. Available at arXiv:1410.3687v2.
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