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The auto-cross covariance matrix is defined as
1 T
- .o¥ . *
M, = 5T 2:(e]ej_,_r +e]+rej),
Jj=1

where e i ’s are n-dimensional vectors of independent standard complex com-
ponents with a common mean 0, variance o2, and uniformly bounded 2 4 nth
moments and 7 is the lag. Jin et al. [Ann. Appl. Probab. 24 (2014) 1199—
1225] has proved that the LSD of M, exists uniquely and nonrandomly, and
independent of 7 for all T > 1. And in addition they gave an analytic expres-
sion of the LSD. As a continuation of Jin et al. [Ann. Appl. Probab. 24 (2014)
1199-1225], this paper proved that under the condition of uniformly bounded
fourth moments, in any closed interval outside the support of the LSD, with
probability 1 there will be no eigenvalues of M,, for all large n. As a conse-
quence of the main theorem, the limits of the largest and smallest eigenvalue
of Mj, are also obtained.

1. Introduction. For a p x p random Hermitian matrix A with eigenvalues
Aj,j=1,2,..., p, we define the empirical spectral distribution (ESD) of A by

p
FAx) = ! Y I <x).
P

The limit distribution F of {FA} for a given sequence of random matrices {A,}
is called the limiting spectral distribution (LSD). Let {¢;;} be independent random
variables with common mean 0 and variance 1. Define e = (€1, .- ., &ak)’s Vi =
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\/%ek and M, (1) = Zszl (PiVise T PVisr¥y)- Here, T > 1is the number of lags.

Under the condition of bounded 2 + nth moments, Jin et al. (2014) or under the
weaker condition of second moments, Bai and Wang (2015) derived the LSD of
M,,(t), namely, F M.(1) —. F, = F. a.s. and F, has a density function given by

pe(x) = : )% —(1_C+ : )2
T 2em\ 14y \ x| VTHyp/ ]
—d(c) <x <d(c).

(1.1

Here, ¢ = lim,,_ o0 ¢ 1= lim,— oo % and yy is the largest real root of the equation

3 (I—e)?—x2, 4 4
T YTyl

and

d-ovI+n 41
yl_l 9 b

1= OVTF i
fim SOV JLEM s o
c—1 yr—1 c—1 Vi

where y; is a real root of the equation:
(1= =1)y’ +y2+y—-1=0

such that y; > 1 if ¢ < 1 and y; € (0, 1) if ¢ > 1. Further, if ¢ > 1, then F; has a
point mass 1 — 1/c at the origin.

The model of consideration comes from a high-dimensional dynamic k-factor
model with lag ¢, that is, R, = Z?:o AF,_; +e,t=1,...,T. The factor F,_;
captures the structural part of the model at lag 7, while e; corresponds to the noise
component. Readers are referred to Jin et al. (2014) for more details. An inter-
esting problem to economists is how to estimate k and ¢g. To solve this problem,
fort=0,1,..., define ,(t) = % ZJTZI(RjRjTH + Rj+er). Note that essen-
tially, M,,(r) and ®,(r) are symmetrized auto-cross covariance matrices at lag
7 and generalize the standard sample covariance matrices M,,(0) and ®,,(0), re-
spectively. The matrix M,,(0) has been intensively studied in the literature and it
is well known that the LSD has an MP law [Marcenko and Pastur (1967)]. More-
over, when 7 =0 and Cov(F;) = X ¢, the population covariance matrix of R; is a
spiked population model [Johnstone (2001), Baik and Silverstein (2006), Bai and
Yao (2008)]. In fact, under certain conditions, k(g + 1) can be estimated by count-
ing the number of eigenvalues of ®(0) that are significantly larger than (1 + /c).
What remains is to separate the estimates of k£ and ¢, which can be achieved us-
ing the LSD of M,, = M,,(7) for general 7 > 1. A related work has been found
in Li, Wang and Yao (2014) in which the number k& was detected by a different
symmetrized covariance matrix for a factor model without lags. Jin et al. (2014)

d(c) =
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has proved that the LSD of M,, exists uniquely and nonrandomly, and independent
of t for all T > 1, whose Stieltjes transform m(z) satisfies the following equation:

(1= m?(@)(c + czm(z) — 1) =1,

from which four roots are obtained, with yy defined as above:

(1= &)/2+ VTF30) +4/ (1 =) /2 = 1/TF30)2 = 33/(1 + y0)

mi(z) = ,
2c

N S R Dl (@ =0)/z = 1/TF30% = y3/(1 + y0)

mp(2) = 9
2c

ey < (== VT 50) +y/((1 = )/z+ 1/V/TF 302 = 33/(1+ y0)

3\ %) = s
2c

ety < (=92 = VT30 - (@ =0)/z+ 1/TF30% = y3/(1 + y0)

4(2) = .
2c

Here, as convention, we assume that the square root with a complex number is the
one whose imaginary part is positive and the Stieltjes transform for a function of
bounded variation G is defined as

1
mg(2) = / P dG(x) for complex J(z) > 0.

However, the number of eigenvalues of @, (7) that lie outside the support of the
LSD of M,, at lags 1 < 7 < g is different from that at lags T > ¢. Thus, the esti-
mates of k and g can be separated by counting the number of eigenvalues of @, (1)
that lie outside the support of the LSD of M,, from 7 =0,1,2,...,9,g+1,....
It is worth noting that for the above method to work, one should expect no
eigenvalues outside the support of the LSD of M, so that if an eigenvalue of @, (7)
goes out of the support of the LSD of M,,, it must come from the signal part. As
a continuation of Jin et al. (2014), this paper establishes limits of the largest and
smallest eigenvalues of M,,, after showing that no eigenvalues exist outside the
support of the LSD of M,;, along the similar lines as in Bai and Silverstein (1998).
In Bai and Silverstein (1998), the authors considered the separation problem
of the general sample covariance matrices. Later, Paul and Silverstein (2009)
extended the result to a more general class of matrices taking the form of

1A,*X,B,X}A,/* and Bai and Silverstein (2012) established the result for the
information-plus-noise matrices.

Compared with Bai and Silverstein (1998), the model we considered here is
more complicated and some new techniques are employed. Besides the recursive
method to solve a disturbed difference equation as in Jin et al. (2014), a relationship
between the convergence rates of polynomial coefficients and those of the roots is
established and applied. Moreover, the results in this paper will pave the way for
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establishing other results such as limit theorems for sample eigenvalues of the
spiked model. The main results can now be stated.

THEOREM 1.1. Assume:

(a) t > 1 is a fixed integer.

(b) ex = (E1xs ..., &nk) k=1,2,..., T +1,are n-vectors of independent stan-
dard complex components with sup; , Eleis|* < M for some M > 0.

(¢c) There exist K > 0 and a random variable X with finite fourth-order moment
such that, for any x > 0, for alln, T

1 n T+t
(1.2) n—TZ > P(leir] > x) < KP(1X] > x).
i=1r=1
(d) My = Y (PP + Vigo V) where yi = ey
) ch=n/T —ce(0,1)U(1,00)asn— oc.
(f) The interval a, b] lies outside the support of F,.

Then P(no eigenvalues of My, appear in a, b] for all large n) = 1.
By definition of e; and the convergence of the largest eigenvalue of the sample

covariance matrix [Yin, Bai and Krishnaiah (1988)], we have, for any § > 0 and
all large n,

1 * *
M| = - (JBEZ | + [E-E7])
(1.3) < is (E)Smax(E7) = s (i)s (E)
. — T max max T/ — 2max ﬁ max ﬁ

<(1+/0)+5 a.s.

Here, E = (e1,...,e7), E; = (€14¢,...,e74;) and smax(A) denotes the largest
singular value of a matrix A. This, together with Theorem 1.1, implies the follow-
ing result.

THEOREM 1.2. Assuming conditions (a)—(e) in Theorem 1.1 hold, we have

nlggo Amin(M,,) = —d(c) a.s. and nlgr()lo Amax(M,) = d(c) a.s.

Here, —d(c) and d(c) are the left and right boundary points of the support of the
LSD of M,,, as defined in (1.1).

PROOF. When c € (0, 1)U(1, 00), let ¢ > 0 be given and consider the interval
[d(c) +¢&,b] with b > (1 + ﬁ)z + 4 for some § > 0. By (1.3), with probability
one, there is no eigenvalue in the interval (b, 00). This, together with Theorem 1.1,
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implies that with probability one, there is no eigenvalue in the interval [d(c) +
g, 00). Therefore, we have

limsup Amax (M) <d(c) + ¢ a.s.

n—oo

Next, we claim that, for all large 7, there exists at least one eigenvalue in [d(c) —
g, d(c)]. Otherwise, we have F,(d(c)) — F,(d(c) — ¢) = 0 for infinitely many n,
which contradicts the fact that F,, — F¢, or equivalently that F.(d(c)) — F.(d(c) —
€) > 0. Hence, our claim is proved. Therefore, we have

liminf Apmax (M) > d(c) — ¢ a.s.
n—o0

Now, let ¢ — 0, and we then have lim,,_, ;o Amax(M;;) = d(c), a.s. By symmetry,
limy, 50 Amin(My,) = —d(c), a.s. This completes the proof of the theorem. [J

One can extend Theorem 1.2 to the case ¢ = 1 as follows.

THEOREM 1.3. When ¢ =1, Theorem 1.2 still holds, that is,

lim Amin(M,) = —d(1) = -2 a.s.
n—oo
and

Iim Apax(M,) =d(1) =2 a.s.
n—oo

PROOF. To prove this theorem, we need to enlarge the matrix M, with a
larger dimension. To this end, denote M, =M, 7 =M, 7(»). Fix T', we show that
Amax (M, 7) 1s nondecreasing and A, (M, 7) is nonincreasing in n, or more pre-
cisely, )\max(Mn,T(n)) = )Vmax(Mn—f—l,T(n)) and )\min(Mn,T(n)) > Amin(Mu+1,7())-

To prove these relations, we will employ the interlacing theorem (Lemma 2.6)
by showing that M, 7(,) is a major sub-matrix of M,,+1 7(). Rewrite

T (n) T(n)
Muroy) = D (PiVige F Vi) = 2 VinVisen + VivenVin)-
k=1 k=1

By introducing, x; ,4+1 = ﬁemﬂ);, we obtain
M, +1,7(m)
T (n)

_ * *
=Y (Pins1Virontt + Virons1Vins1)
k=1

T (n)
- Z |:<x:k‘n ) (YZ—&-T,n’ xl:—&-r,n—&-l) + ( Viton ) (yz,n’ xljc,n+l):|
k=1 ntl

Xk+1,n+1
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T (n) T (n)
¢ * * *
Z (yk,n}’k+r,n + }’k-'rt,nYk,n) Z (}’k,nxk+t,n+l + Yk+t,nxk,n+l)
_ k=1 k=1
| rw T(n)
¢ * * *
D 1V i Xeren Vi) D (et 16 1 T Xkttt 16 g 1)
k=1 k=1
T (n)
* *
Mn,T(n) Z (}’k,nxk+r,n+l + yk+r,nxk,n+1)
k=1
| @ T(n)
* * * *
Z (xk,n—&-lyk_;_f’n + Xk+r,n+1 }’k’n) Z (xk,n+1xk+f,n+1 + xk+r,n+1xk,n+1)
k=1 k=1

By Lemma 2.6, we have Amax(My41,7(1)) = Amax My, 7(n)). By symmetry, we also
have Amin(Mp4+1,7(m)) < Amin(My,7(n)). This together with Theorem 1.2 implies
that for any € > 0, we have a.s.

imsup Amax(Mp, 7)) = M Amax M{(14+)n], 7)) = d(1 +€).

n—oo
n/Tn)—1 n/Tn)—1

Note that d(c) is continuous in c¢. By letting & — 0, we have a.s.

lim sup )\max(Mn,T(n)) = d(l) =2.
n—oo
n/T(n)—1
Since the LSD of M,, exists with right support boundary d(1) = 2, we have proved
that

lim )Mmax (Mn,T(n)) =2.
n— 00
n/Tn)—1

By symmetry, we have a.s. limy, o0 5/ 7 (n)— 1 Amin(Mp,7(n)) = —d(1) = —2. The
proof of the theorem is complete. [J

As an immediate consequence of Theorem 1.3, Corollary 1.1 complements The-
orem 1.1 for c = 1.

COROLLARY 1.1. Theorem 1.1 still holds when ¢ = 1.

Figures 1 and 2 display the density functions ¢.(x) and the distributions of
sample eigenvalues with T =1,¢c =0.2 (n =200, T = 1000) and ¢ =2.5 (n =
2500, T = 1000), respectively.

We will now focus on proving Theorem 1.1. As in Jin et al. (2014), we denote
the Stieltjes transform of M, as m, (z) = % tr(M,, — zI,)~! where, and throughout
the paper, z =u +iv,, v, > 0, and let mg(z) be the Stieltjes transform of ¢, with
limiting ratio of ¢, = n/T. Using the truncation technique employed in Section 3
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FI1G. 1. Density function ¢.(x) of F. and distribution of sample eigenvalues with t = 1,¢ =0.2
(n =200, T = 1000).

of Bai and Silverstein (1998), we further assume that the ¢;;’s satisfy the conditions
that

(14)  legjl<C,  Bey=0,  Elgl*=1,  Elgl*<M

for some C, M > 0. More detailed justifications are provided in the Appendix.
The rest of the paper is structured as follows. Section 2 contains some lemmas
of known results. Section 3 provides some technical lemmas. Convergence rates
of |F, — Fe, || and m,(z) — mg(z) are obtained in Sections 4 and 5, respectively.
Section 6 concludes the proof of Theorem 1.1. Justifications of variable truncation,

phi_c
0.04
1

0.02
1

FIG. 2. Density function ¢.(x) of Fe and distribution of sample eigenvalues with t =1,c =2.5
(n=2500, T = 1000). Note that the area under the density function curve is 1/c.
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centralization and rescaling and proofs of lemmas presented in Section 3 are given
in the Appendix.

2. Mathematical tools. In this section, we provide some known results.

LEMMA 2.1 [Burkholder (1973)]. Let {Xy} be a complex martingale differ-
ence sequence with respect to the increasing o-fields {F,}. Then, for p > 2, we
have

E’ZXk‘p < Kp(E(X E(|Xk|2|-/rk—l))p/2 +EY |Xk|1’).

LEMMA 2.2 [Burkholder (1973)]. Let { X} be as above. Then, for p > 2, we
have

B[S Xk‘p < K,E(Y |Xk|2)p/2.

LEMMA 2.3 [Theorem A.43 of Bai and Silverstein (2010)]. Let A and B be
two n x n Hermitian matrices. Then

1
| FA — FB| < —rank(A — B),
n
where FA is the empirical spectral distribution of A and || f|| = sup, | f(x)].

LEMMA 2.4 [Bai (1993) or Corollary B.15 of Bai and Silverstein (2010)].
Let F be a distribution function and let G be a function of bounded variation
satisfying [ |F(x) — G(x)|dx < oo. Denote their Stieltjes transforms by f(z) and
g(z), respectively. Assume that for some constant B > 0, F([—B, B]) = 1 and
|G|((—o0, —B)) = |G|((B, o)) = 0, where |G|((a, b)) denotes the total varia-
tion of the signed measure G on the interval (a, b). Then we have

I1F =Gl := Sl;p|F(X) —G)|

- 1
T a(l-x)Q2y -1

A
x[/_A|f(z)—g(z)\du+v_lsup \G(x+y)—G(x)|dy},

x J|y|<2va

where 7 = u + iv, v > 0, a and y are positive constants such that y =
1 1 1 . ... _
= |u‘<amdu > 5. A is a positive constant such that A > B and k =

4B

TA—B)2y—1 = L.
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LEMMA 2.5 [Lemma B.26 of Bai and Silverstein (2010)]. Let A = (a;;) be an
n X n nonrandom matrix and X = (x1, ..., x,) be a random vector of independent
entries. Assume that Ex; =0, E|x; |2 =1,and E|x; |€ <wyg. Then, for any p > 1,

E‘X*AX — '[I‘A|p < Cp((v4 tr(AA*))p/2 +v2 tr(AA*)”/z),

where C, is a constant depending on p only.

LEMMA 2.6 [The interlacing theorem, Rao and Rao (1998)]. If C is an
(n — 1) x (n — 1) major sub-matrix of the n x n Hermitian matrix A, then
AMA) > A(C) = XA) = - > A,_1(C) = A, (A). Here Ai(A) denotes the ith
largest eigenvalue of the Hermitian matrix A.

3. Some technical lemmas. Before proceeding, some technical lemmas are
presented with proofs postponed in the Appendix. The first three are about the
convergence rates of roots of a polynomial.

LEMMA 3.1. Let {r,} be a sequence of positive real numbers converging to 0
and m be a fixed positive integer, independent of n. Let B(xq, r,) denote the open
ball centered at xo with radius r,,. Given m points x1, ..., Xp in B(xg, ry), one can
find x € B(xo, ry) and d > 0 such that min;¢(;

.....

LEMMA 3.2. For each n € N, let P,(x) = x*+ an,k_lxkfl + -t ap1x +

an,0 be a polynomial of degree k, with roots xp1, ..., Xnk. Moreover, for i =
0,1,....k—1,limy 0 an; =a;. Let P(x) =xk+ g x* 1+ 4 ax + ao.
Suppose P(x) has distinct roots x1, ..., Xy, and each x; has multiplicity £ ; with

7’=1 Lj =k. Then for n large enough, for each j € {1, ..., m}, there are exactly

.. 1/¢;
Lj xpi’sin B(xj,ry' '), where rp = max;e(o,1,... k—1} lan,i — a;l.

LEMMA 3.3. Foreachn € N, let P,(x) = xk+an’k_1xk_1 +---4ay1x+ano
and Q,(y) = yk + bn,k_lykfl 4+ -+ by1y + byo be two polynomials of de-

gree k, with roots x1, ..., Xpk and Y1, ..., Ynk, respectively. Moreover, for i =
0,1,....k =1, limyoobpni =limyooan; =a;. Let P(x) = ka4
-+ aix + ag. Suppose P(x) has distinct roots xi, ..., Xy, and each x; has

the multiplicity €£; with ZT:l L 1:ek. Then for n large enough, for each j €
{1,...,m}, for any x,; € B(xj,rn/ ), there exists at least one y,; such that

~1/4;
[Xni — yni| < drn/ ! for some d > 0. Here, r, = max;e(o,1,....k—1} lan,i — a;| and
Tn = MaX;e(0,1,...k—1} |an,i — bn,il.

To establish the following lemmas, we need some notation: let z = u + ivy,
where u e [—A, Aland v, € [n~12, n~= 1221 and A > O is a large constant. De-
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fine
A=M, -7,
Ar=M,; —zZln=A -y (Vs + }’k+r)>X< = (Vr—r T )’k—i-t)y;ck’

t=0
+ (}’k-l-(t—l)r + }’k+(t+1)r)yz+tr]’

with the convention that y; =0for/ <0Oorl! > T 4.
The following lemma will be frequently used.

LEMMA 3.4. Letr,s be fixed positive integers. For | # k, we have

— 2r K
E|)’7Ak S)’k| =
= 27
TrvnrY
for some K > 0.
Define a, = C”E% and let x,1, x,0 be two roots of the equation x> = x — a,zl

with |x,1| > |xn0|. Some properties regarding x,; and x,q are stated in the next
lemma.

In the following, if a lemma contains two sets of results simultaneously, then
the results labelled by “a” hold for all z = u + iv,, and u lies in a bounded in-
terval [—A, A] € R, whereas results labelled by “b” hold for all z = u + iv,, with
u € [a, b] and are obtained under the additional condition that P(|| F;, — F¢, || >
n— 1104y = o(n~") for any fixed ¢ > 0, where [a, b] is defined in Theorem 1.1.
Results “a” will be used to establish a preliminary convergence rate of the ESD
of M,, in Section 4 and the results “b” will be applied to the refinement of the
convergence rate when u € [a, b] in Section 5. If a lemma contains only one set
of results, the results will be established for all # € [a, b] and under the additional
assumption that P(|| F,, — F,, || > n~/1%) = o(n™).

LEMMA 3.5. When u € [a,b], let Ayj denote the jth largest eigenvalue of
M, = YW ige + Vi) — Wige + Vi) Vi for 3(z) = n=? with § = 1/106, we
have, for any t > 0

1

P(%Zm > K) =o(n™")

for some K > 0.
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REMARK 3.1. When u € [a, b], with similar proofs, for J(z) > n—% with § =
1/53, we have, for any ¢ > 0,

. 1 1 _
Pl —|trA K Pl ) ——>K )= !
<2T|r 0> )5 <2Tzlkkj—z|> > o(n™")

and when J(z) > n~?% with § = 1/212,
1 1 1
P(—|rA? K><P(_§:_ K): —
(2T|r k |> — 2T |)\kj_Z|4 = O(I’l )
for some K > 0.

REMARK 3.2. When u € [a, b], and Ay;’s are eigenvalues of M, x = M,, —
YiWhar T Vi)' — Wige + Vi) 5 for 3(z) > n=° with § = 1/212, with a
similar proof, we have

1 1
Pl — — > K|=o0(n"
<2TX:|k/<j—Z|2 ) (™)
for some K > 0.

LEMMA 3.6. With x,1 and x,o defined as above, for any v, > n=132 we
have:

(1) There exists some n > 0 such that for all large n:

n0(Z 3
(@) SUPye[—A,A],3()=un |§n(1)8| <1—nv,.
(b) supyeq,b1,3(2)=0, |i2?8| <l-n.
(i)

(@) When u € [—A, A], we have |x,1| > % and |x,1| < Kvn_1 for some
constant K .

(b) When u € la, b], we have |x,1| > % and |xn1| < K for some con-
stant K .

(iii)
(a) When u € [—A, A], we have |x,1 — xu0| > nv, for some constant
n > 0.

(b) When u € [a, b], we have |x,1 — xn0| = 1 for some constant n > Q.
(iv)
(a) Whenu e[—A, A], we have % < Kvn_lfor some constant K .

(b) When u € [a, b], we have % < K for some constant K .
n n

(v) When u € [a, b], we have |a,| < % — 1 for some constant n > 0.
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LEMMA 3.7. Foranyv, >n""?andt > 0:

(a) foranyue|[—A,Alandk <T — vn_4, we have

_ c,Em _
P(‘yz+rAk lyk-i—r - gx ln = US) = 0(” t)
n

and for any k > vn_4,

-1 C Em
P(‘yi_,Ak Vit — ;x ln
n

= uf) =oln™)

(bl) for any u € la, b], there is a constant n € (0, %) such that P(|)/;':_HA,(_1 X

an | —

Yigel =1 =m) =0@™),
(b2) foranyu € [a, b], when k < T —log? n, we have |Eyz+TAk_1yk+r — | =

o(1/(nvy)), and when k > logzn, we have |EyZ77Ak_1yk_T — )%| =o(1/(nvy,)),
(b3) for any u € la,b], when k < T — logzn, we have E|)’z+1Ak_l)’k+r —
o(1/(nvy)), and when k > log?n, we have E|}’Z—TA1:17’k—r — ;’—ﬂl|2 =

o(1/(nvy)).

a_n|2_
X

LEMMA 3.8.  For any v, > n~ Y52 and t > 0:

(a) foranyu € [-A, A], we have
P(|yZ—rAk_l)’k+f| > U,(,)) = O(I/L*t);

(bl) for any u € [a, b], we have |Ey;€"_TA,:1yk+T| =o(1/(nvy));
(b2) for any u € [a, b], we have E|}’}:,TA;:] YViic |2 = o(1/(nvy)).

LEMMA 3.9. For any v, > n—1/212 e [a, b] and t > 0, there exists a con-

stant K > 0 such that
_ -1 _
P(lyii-A '(Af) Viiel = K)=o0(n™).

LEMMA 3.10. Forany v, > n 1212 4 e [a, b] and t > 0, we have
— -2 —
P(|yZ+rAk Z(AZ) yk+r| = K) = O(n t)

for some K > 0.

LEMMA 3.11. Letu € [a, b], then for any v, > n=1212 e have

[EwrA™' —EwA'|=0() and
-1 -1
|EtrAk,...,k+(s—1)r - EtrAk ..... k+sr| = 0(1).

4. A convergence rate of the empirical spectral distribution. In this sec-

tion, we give a convergence rate of || F,, — F, ||.
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4.1. A preliminary convergence rate of m,(z) — Em,(z). Let Ex denote
the conditional expectation given Y, ..., Y74.. With this notation, we have
my(z) = Eo(my(z)) and Em,,(z) = Er (m, (z)). Therefore, we obtain

T+t
ma(z) —Emp(2) = ) (Bx_1mp(2) — Exm, (2))
k=1
T+t
= > —(Brm1 —Ep(rA™" —tw A"
n
k=1
T+t
=Y —(Bx—1 —Ear.
k=1 "
Write
0 1 0\ (¥
Mn = Mn,k + (yk-}-r’ }’k, }’k_f) 1 0 1 ’/Z
01 0/ \y;,

= Mn,k + Ck.

Let A; (B) denote the ith smallest eigenvalue for a Hermitian matrix B. Then, for
any i > 3, we have

Ai(M,) = sup inf  (B*M, 1B + B*CiB)
al,...,(xiflﬂl“lsms“ifl
1Bl=1
> sup inf B*M,, 1B
0(1,...,0(1'_4IgJ—“l’~~-s“i74’}'k+r7}'k’yk7r
Bl=1
“4.1)
> sup inf  B*M, B
ctl,..‘,cti,4ﬂJ_Ot],...,oc,-,4
1Bl=1
=Xi—3(Mp 1).

Similarly, we have A; (M) < X;43(M,, «). Therefore, with

n n
Gx):=) Inmp=x) and Gr(x):=Y_ I, <)

i=1 i=1
we have
log | = |trA_l —trAk_1|
1
- ‘ [ 6w - Gk<x))‘
X—z
(4.2) < de

Ix — z|?
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1
<3| ———d
- /(x—u)2+v% *

3
< —.

Un

Here, the third equality follows from integration by parts. Therefore, by Lem-

ma 2.2,
T+t
P(|my(z) — Em,(2)| > v,) = P( > (Bx-1 —Epon| > nvn)
k=1
1 T+t p
< E((nvn)l’ ];(Ek—l — Ep)ag )

(4.3)

<

K T+t 5 p/2
= E (BEx—1 — Ep)
(nv,)P (,§1| k—1 k k| )

< Kn=P/?y %P,

Hence, when v,, > n=% for some 0 < o < }‘, we can choose p > 1 such that p(% —

20) > t, and thus
4.4) P(|my(2) — Emy(2)] > va) = o(n ™),
for any fixed 7 > 0. This implies |m,, (z) — Em,(z)| = 0(v,), a.s.

4.2. A preliminary convergence rate of Em,(z) — mg (z). Next, we want to
show that when v,, > n—1/%

4.5) [Emy (2) — mQ(2)| = o(vy).
By

A=) (ViViee T Vi?i) — 2

T
=1

k

we have
T
L=Y A 'vi + A ypvd) —2A7L
k=1

Taking trace and dividing by n, we obtain

T

1 _ _
Lt ama(@) = — 3 (Vi AT v+ VEAT Yi).
k=1
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Taking expectation on both sides, we obtain

1 & _
Lt 2Bm(2) = — 3 BY{A™ ige + Vi),
k=1

c
2xp1

or equivalently, by noticing 1 — E2m, (2) = Xp1 — Xn0s
cn + cnzEmy (2)

1 & _
= T ZE}’ZA 1(}’k+r + ykfr)

1 1
R —
it L+ YAy Vige T Vi—r)

(4.6) 1
== ;[1 = E(l/(l + VAL Ve FVir)
VIAC YW VEOAL ey + yk_»))]
L g Vi AL vk
=1- : + 8,
1= (c2/Q2xn1)E?ma (2)
where

Ak =A-— (yk+r + )’k_f)}’]t =Ar+ J’k(yz—f—r + }’Z—r)’

1< -
8, = —= Z(E(l/(l +VIA Ve + Vi)
k=1

VAL O VEOA i yk_f)>)
L+ (Ee + Vi DALYy

: )
Xnl — Xn0

=x— a% with |x,1] > |xn0l, and a, =
, as defined below the statement of Lemma 3.4. Substituting the expression
of x,1, we have

Xn1, Xno are the roots of the equation x2

cnEmy,
2

Meanwhile, by (3.8) of Jin et al. (2014), we have

(4.8) (1= m?(@)(c + czm(z) — 1)> = 1.
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Similarly, mg(z) satisfies

(4.9) (1= 2(m5(2)*) (cn + cazmd(z) —1)* = 1.

We can regard the three expressions above as polynomials of Em, (u + iv,),
m(u) and mg(u + ivy,), respectively. Compared with (4.8), coefficients in (4.7)
and (4.9) are different in terms of §,, and c¢;,.

4.2.1. Identification of the solution to equation (4.8). In this subsection, we
show that for ¢ # 1 and every A > 0, there is a constant n > 0 such that for every
z with J(z) € (0, n) and [N(z)| < A, equation (4.8)

(1= m2 @)1 — ¢ — czm(z))’ =

has only one solution satisfying J(m(z)) > nv and the other three satisfying
I(m(z)) < —npv whenc < 1; and one satisfying J(m(z) + <~ ) > nv and the other
three satisfying J(m(z) + € ) < —nv when ¢ > 1.

At first, we claim that the statement is true when |z| < § for some small posi-
tive 8. In Jin et al. (2014), it has been proved that the four solutions for a z with
J(z) > 0 are

(1= 0)/z+ VT30 +/ (1 —0)/z — /T30 = 33/(1 +30)

mi(z) =
2c
o =9/ + VT - \/((1—0)/2—1/«/—1+Y)2—y/(1+yo)
ma(zZ
2c
ey < (=92 = VT30 )+ (1= 0) /2 + 1/ TF 3002 = y3/ (1 + y0)
3(Z s
2c
ey < (=92 = VT30 - S =) /z+1/VTT50? - y3/(L+ y0)
4 s
2¢

where as convention, we assume that the square root of a complex number is the
one with positive imaginary part, and yg is the root of the largest absolute value to
the equation

(1—c)?—272 4 4
ys_Tyz

or equivalently
(4.10) 2y —((1—0)? =)y —dy—4=0.

We first consider the case where z — 0. At first, by Lemma 4.1 of Bai, Miao and
Rao (1991), we see that yg — 0o as z — 0. Dividing both sides of (4.10) by y?,
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we obtain that yy = (1;—26)2(1 + o(1)). Writing yg = (1;—26)2 + d and substituting it

into (4.10), we obtain

(1—¢)® (1 -0
+3d
ai Z2

(1—o)*

+3d%(1 — )2 +d3F2

~ (-0t -2) (5

4.11) .

_dl=o* 41— (-0

2d(1 —¢)? 4(1 — ¢)?
4 (Z2 ) +d2>_ (Zz)

—4d —4

2 2

+2(d> +d)(1 — ) —4(d + 1)

z Z
+ (@ +aH)F=o0.
By equation (4.11), we have
4
= —140(2%).
(1—6)2 + (Z)
That is,
(1—0)? 4 )
4.12 = — 14 0(z%).
(4.12) W=t g g 1 O0R)
Therefore, we have
4.13) J1+ ——'1_C|<1+ 2 +0(z4))
. Yo = Z (1—c) .
Consequently,
1—c¢ l—c—|1-c 27
@14)  — 4 l4+y= el ;+0(2),
Z z 1 —c|
1—c l—c+|1—c| 2z 3
4.15 ——J1+w= + + 0z
( ) e Yo z |1—C|3 ( )
Because
l—c 1 \2 (1—¢)? l1—c
_ - 2 _|_1_
( z :F«/1+yo) 1+ yo 2 T z/T+yo Y0
4 1—c
=— + +2+40(2
(1=0)? " [1—c|+0(?) @)
4 1—c
- 24 0(2%),
(= =g P20
we obtain
<l—c 1 )2 yg
z :Fv1+yo 1+ yo
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(4.16)
. 4 l1—c¢ _ 2
_l\/(l—oﬁzu—d 2+0)
When ¢ < 1, from (4.14) and (4.16), as z — 0, we obtain
X — X i m
seenn=3(0@+i/ =5 —4) = Y=
R . . 4 Je(@2—c)
I(2cmy) = ~5<0(Z) - l\/T)z_‘l) < (-0
4.17)

3Qems) m<2(1—c)+,/ 4 +O()><—1_Cv
I2cm3) =S ; i 1—op2 z —|Z|2 )
50 (20 =0) . 4 0 2

J(2cmy) —J( . —1i 1—op2 + (z)) < —(1 o

When c € (1, 2], as z — 0, we have

S<2c(m1 + - 1)) :3(;’ 4 O(z)> .
cz ‘ (1—c)? c—1’
x( c—1 o~ 4 0 1
0( C(m2+ - >) —~S<—l m + (Z)) < —:,
c—1 f2(c—=1)  |4c(2—0)
S(Zc(m3+ >) =;5< +1i| +O(z))
cz z (1—10¢)?

(4.18)
-
lz|2
s(zc(m4+ - 1)) :3(2(0_ D_;[#C=9 0(z)>
cz z (1—10¢)?
< —SU
2|2

When ¢ > 2, as z — 0, we have

o+ )=
oo+ )
oo+ )

Il
R

<i /ﬁ + 0(z)> > C—Ll’
(—i /ﬁ+0(z)) <—C_L1,

~<2(c— 1) de(c —2)
X _
z (1—10¢)?

Il
2%

LR

+ 0(2))
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(4.19) Bt ¥
' 22
c—1 [(2(c—=1) dc(c —2)
3(26<m4 + )) = gs( + >+ 0(Z)>
cz z (1 -0
c—1
<——.
e

This proves the result when |z| < & for some § > 0.

For |z| > §, we first consider the case where ¢ < 1. Suppose that m(z) is one of
the four continuous branches of the solutions of the equation (4.8). If the conclu-
sion is incorrect for m(z), then there exist a sequence of constants ¢, | 0 and
a sequence of complex numbers z, = u, + iv, satisfying |z,| > 6, |u,| < A,
vn € (0, n) with n = 82/2 and |3(m(z,))| < £, Vs. Then there is a subsequence {n’}
such that z,,; — z¢ = ug + ivg with u,y — ug € [—A, A] and v,y — vg € [0, n].

Write m(z,) = mi(z,) + imy(z,), where mi(z,) and my(z,) are real. Since
m(z,) satisfies the equation (4.8), we have
(4.20) (1= Em*@))(1 — ¢ — czam(za))* = 1.

Comparing the imaginary parts of both sides of (4.20), we obtain
m 1 (za)ma(zn)
2 2
X [(1 —c—cupymi(z,) + Cvan(Zn)) - (Cuan(Zn) + Cvnml(zn)) ]
+(1-— czm%(zn) + czm%(zn))(cunmz(zn) + cvymi(zn))
x (1 — ¢ — cupymi(zp) + cvyma(zy)) =0.
Dividing by v, both sides of the equation above, we obtain
(4.21) (1 = *m3(z0))(cm1(20)) (1 = ¢ — cugm1 (z0)) = 0.

By the condition that |J(m(z,))| < ¢nv, — 0, we have that m(z9) = m1(zo) is
real. The solutions £1/c and O of the equation (4.21) for m(zg) do not satisfy
equation (4.8). Therefore, we have 1 — ¢ — cugm(zp) = 0, and hence by (4.8)
(4.22) —(1 = 2m?(z0))Pvim*(z0) = 1.

Note that vg = 0 contradicts to the equation above. Thus, we have vg € (0, 82 /2].
By (4.22) and the fact that 1 — ¢ — cugm(zp) = 0, we obtain

(1-0? vg +\Jvg +4v3

2 2
uj 2v0

203(1 —¢)?

v%+,/vé+4v(2)

The expression of u% implies that u% < v < 82/2. On the other hand, by the as-
sumption that |zg| > 8, we have u% + v% > 8% and v% < v < 82/2 which implies
that u(z) > 82 /2, the contradiction proves our assertion.

or u}=
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Now, we consider the case ¢ > 1. Let m(z) = cm(z) + % Then equation (4.8)
becomes

2.2 l—C 2
(4.23) 2m (z)(l - (7 +m(z)) ) _ 1.

If the conclusion is untrue, similar to the case where ¢ < 1, there exist sequences
¢4 0and z, = u, +iv, — zo = ug +i0 such that |I(m(z,))| < &, vy, and |u,| <
A. By the continuity of the solution m(z) for |z| > §, we may assume the inequality
above is an equality, for otherwise, one may shift N (z,) = u, toward the origin.
Write m(z,) =m,(z,) + im,(z,), where m,(z,) and m,(z,) are both real. By the
equality of imaginary parts of (4.23), we have

my (zn)my(2n)

x (u2 =02 — (1 = ¢ + upm (20) — vomy(zn))°

+ (unmy(z) + Unﬂl(Zn))z)
— (m3(z) — m5(zn))
X (unvp — (1 = ¢+ upmy (zn) = vamy(2n)) (Uniy (2n) + vam (zn)))
=0

Dividing both sides by v;,, and making n — oo on both sides of the equation above,
by assumption, we obtain

(4.25) m3(z0) (o — (1 — ¢ 4 uom; (z0))m, (z0)) = 0.
This implies that

(4.24)

(I =c)m,(z0)

(1 —m7(z0))
Similarly, we have m(ug) = m;(up) which is real. By the real part of (4.23), we
have

(4.26) uo

m* (o) (uf — (1 = ¢ + uom(ug))’) = 1.
The solution to the equation above in ug is
m3(ug)(1 —c) £ \/mz(uo) — ¢(2 = c)m*(uo)
(4.27) uo = 5 5 .
m=(uo) (1 — m=(uo))
If m?(uo) + ﬁ, then (4.27) contradicts (4.26).

Now, we consider the case where ¢ € (1,2) and m?(ug) = ﬁ By differen-
tiating (4.23) with respect to z, we obtain
dm(z) m(z —m(l —c+zm))
dz 22— —-c+zm)?—zm(l —c+zm)

m(z —m(l — ¢ +zm))
2Z2Z—(1=-0?2—z(l—0om
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Because

S(zn —m(1 = ¢ + zam(zy))) = va[(1 — mi(uo)) +o(1)],
N(zp —m(1 — ¢+ zam(zn)))
= [tn — 1y (z0) (1 — ¢ + upm; (z2))] + O (my(zn))
= [un(1 —m}(z) — (1 — Omy(z)] + O(my(z0))  (by (4.24))

o mZ(ZI’l) [l/i
v (z,)
(=01 —2m?(u)]

T m(uo) (1 — m(ug)?)?

= (1 =0 —z(l —om(za) _ (1= )*[2m*(uo) — 1]

2 _(1=0)? —uy(1 = )my(zn) +o(D)]

m(zp)  muo)(1 —m?(ug))?
Therefore,
omy(z,) muo)(l — m?(up))?
u (1= 02Cm2(uo) — 1)’
and
omy(zn) _
ou "
Hence,

Gn = m}(z) (un — (1 — ¢ 4+ upmy (z2))m; (z2))
(4.28) — m3(z0) (o — (1 — ¢ + uom; (20))m; (20))
= (up — ug)(m? () (1 — m3(z0)) + O(Ln)).

On the other hand, we have

Cny = mz(Zn) —m, (z0)
om,(z))

(4.29) = (un —u0)—_

vnm(z0)(1 — m*(z0))?
(1—-0)2@2m?@zo) — 1)

>~ (uy — uo)

Therefore,

(1 — )’ m(uo)(2m>(z0) — 1)
(1 — m2(z0))?

(4.30) Gn~n
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Substituting the above into (4.24) and dividing m,(z,) = {,v, on both sides and
letting n — oo, we obtain

0= m(uo)(ud — (1 — ¢+ uom(uo))*) + m?(uo) (1 — ¢ + uom (uo))uo
(1 = )*m(uo) 2m*(ug) — 1)
(1 — m?(up))?
= m(uo) (ug — (1 — ©)* — uo(1 — c)m(uo))
(1 — &)?m(ug)(2m*(ug) — 1)
(1 — m2(up))?
By substitution of (4.26), the equation above becomes
2(1 — ¢)*m(uo) 2m* (ug) — 1)
=0
(1 — m?(uo))?

which also implies that mz(uo) = % This contradicts to the assumption that

(4.31)

+

m?(ug) = 6(21—_0 and the assertion is finally proved.

Consequently, under the condition that |§,| < K v with n > 1, we have
max ;=334 z=u+iv, M) — Em,(z)| = nv, and thus max;—,t;y, [mi(z) —
Em,(2)| < Kv, when ¢ < 1. Similarly for m(z) when ¢ > 1.

Hence, to prove (4.5), it remains to show

(4.32) 16,] < K0

for some K >0, and n > 1.

4.2.2. Convergence rate of 8,. Let v, >n~1/>2. By (4.6), we have

1 1
8n = cn + cnzBmy(2) = 1+ ————— =1 = 3 "B,
where
_ 1
M =ViA Wpe + Vi) — 1+ ———.
Xnl — Xn0

When k < vn_4 or>T — vn_4, by (iii)(a) of Lemma 3.6, we have

il < vy " EDcPEIY e > +Elpgp )+ 14 ————
|Xn1 — Xnol

< Kvn_l.
Therefore, for all large n,
4.33 () T Bl < & < k¥
433 T(g +k:[Tz_vn4])| NEE
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When k € ([v,*], [T — v;*]), denote
&1 = (ylt-i-r + yZ—r)AI:ka’

& = )’ZAk_l()’k—f—r + }’k—‘[)’

1
-1 -1
(4.34) e3=YiAL Vi — 7 trA; ",
1 C
&4 = 3T trA,:1 — E"Emn(z),

_ C
&5 = (yz—l—r + y:—r)Ak l(ykJrr + Vi) — ﬁEmn(Z)
n

Then, by the fact that x,,; —x,0=1— 2a,% /Xn1, we have

~En=E(1/(1+ VAL e 710

VA A VDA e + yk_f)» N
1+ (yz+f + yz_f)Ak_l)’k Xnl — Xn0
1 2
= —Eﬁk(—zel“—" e e
Xnl — Xn0 Xn1
b e+ VAT Pise + Vi) (E3 +20) + anss),
where
B 1
k= — —
l1+e+ex+e1620 —YiA; lyk(yZH +¥i )AL l(ykﬂ + Vi r)

1
C l4er+ert 16— (an + &3+ e4)2an/xn1 +5)°

Define a random set &£, = {|&;| < vS, i=1,2,3,4,5}. When &, happens, by the
facts |a,| < Kvn_l, |ii’1‘| < 2 and Lemma 3.6(iii)(a), we have

1
<
Bl = T a2 e — 008 — K|
B 1
|1 = 2xp0 — 900 — K0
1

|Xn1 — Xn0 — 9v2 — Kv2|

§Kv,f1.
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Together with Lemma 3.6(ii)(a) and (iii)(a), we obtain that

1
Ink| < ———
|xn1 _xn0|
x Kv, ' (08(21x001) 4+ 08 4+ 012 v My psr + v 17 (200) + Kv))
< Kv,3l.

Therefore, by Lemmas 3.4, 3.7(a) and 3.8(a), when v,, > n=1/52 we have

5
Elnk| < Kv) + Kv;1<ZP(I8iI > vS))
4.35 i=1
( ) < sz.

Then the conclusion (4.32) follows from (4.33) and (4.35).

4.3. Convergence rate of |F,, — F., |. Choose v, = n=1/52 Let F, be the
empirical distribution function of M,, and F., be the LSD with the ratio pa-
rameter ¢, = n/T whose Stieltjes transform is denoted by mg. By (1.3), let
B = (1 + /¢)> + 8, and we have F, ([—B, B]) = 1. By Lemma 2.4 we have,
for some A > Band a > 0,

P(|Fy — Fe, Il > ¢'\/vn)

=P( sup |ma(2) —mf(2)| > Kov/o)
ue[—A,A]

+P(sup |Fe,(x +y) — Fe,(x)|dy > Ko(c — 1)v$/2>

x J|y|<2v,a

K() Un
< P( sup  |my,(z) —Em,(2)| > >
ue ] 2

[—A.A
Ko /v
+P( sup  |Bm,(z) —m2(2)| > u)
uel—A,A] 2

+ P(Sup / | Fo (x +y) — Fe, (1) dy > Ko(c' — 1)”3/2)’
x J]y|=2vpa

where Ko = (1 — x)(2y — 1), and a is a constant defined in Lemma 2.4. By
|Em,, (z) — mg (z)| = o(vy), the second probability is O for all large .

By the analysis of Section 3 of Jin et al. (2014), we see that ¢, (x) 1=
% F., (x)<K |x|~Y/2, which implies that F,, satisfies the Lipschitz condition with
index % Hence, for some large ¢/, we have

sup |Fe, (x +y) = Fe, (x)| dy

x Jy|=2vpa

< K/ Iy[Y2dy = 4K a*v3? < Ko(c — 1)v/2.
[y|=2v,a
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Therefore, the third probability is O.

For the first probability, let S, be the set containing n? points that are equally
spaced between —n and n and note that [—A, A] C [—n, n] for all large n. When
lug —us| < %, we have

Ko /v
. . ) A/ Un
My (U1 +ivn) — mp(ua +ivy)| < |luy —uzlv, * < S
Ko /v

0 . 0 . -2 0 n
Iy (uy +ivy) — m, (uz + ivy)| < luy — uzlv, <

Therefore, by (4.3), for any ¢ > 0, we have
Ko /v
P( sup |mu(z) —Em,(2)| > Oﬁ)

ue[—A,A] 2

= P(sup |mn(z) — Emp(2)| > KOF)

UES,

Ko\ /v
<nP(|ma @) — By ()] = =2 )
< anfp/Zvn*p
=o(n™")
by selecting p large enough. Thus, we have proved, for any fixed ¢ > 0
(4.36) P(|F, — F., || > n V10 = o(n™).

Next, let ' =a — ¢ and b’ = b + ¢ for some ¢ > 0 such that (a’, b') D [a, b] is
an open interval outside the support of F,, for all n large enough. By |d(c,) —
d(c)| — 0, and hence [a’, b'] is also outside the support of F,,. We conclude that
F., (V') — F,,(a’) =0 for all large n. Hence, we have

Fu{ld', b']} = Fu(b) = Fu(a') = (F, (b) = Fe, (d))

<2||Fy — Fe,|l.
Therefore,
P(Iiliazc Ei(Fu{[d’, b']}) = 4C/n—1/104)
< P(I,?;fEk(Fn{[a’, VI 5 F <en-1/104) = chn—1/104)
(4.37) + P(r]?gr)l(Ek(Fn{[a,, VI e Fy (2 en-1/108) = 26%-1/104)

=0+ P(?ﬁfEk’{nFn—Fm zen- 1108y #0)

<nP(|Fy — Fe, |l = ¢/n~ V1% = o(n ")

for any ¢ > 0.
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5. A refined convergence rate of Stieltjes transform when u € [a, b]. In
this section, we are to prove that for v, =n=1/212,

(5.1 my —mY =o(1/(nvy))  as.

n=

by refining the convergence rates obtained in the last section.

5.1. A refined convergence rate of m,, — Em,. In this subsection, we want to
show that

(5.2) sup |my,(z) — Em,(2)| = o(1/(nvy)), a.s.

u€la,b]

First, by recalling that Ay = A — Vise ¥ yy and Ap = Ay — YiWViae +
Vi—z)", we have

my(z) — Emy(z)
T

= Z(Ek_lm” (z) — Exmy (Z))
k=1

(Bx — Ek_l)((trAk_1 — trzik_l) + (trzik_1 — trA_l))

S | =

Il
M~

»
I
-

Il
]~
S| —

(Ex —Ex-1)

bond
Il
MR

« ( (yk—H + yk—r)*Ak_z}’k + yz‘&k_z(}’k—&-t + yk—r) )
L4+ Ppge T Vi )AL Y 1+ VAT P igr + 700

d _
(B~ Ben) -~ (log(1 + (i + vi0) A v1)

»
Il
—_

Il
1~
S|~

+log(1+ A Viie +740))

(Ex —E )d
k— B

S | =

Il
M~

»
I
-

X (log((l + (yk-‘rt + yk—t)*Ak_]yk)(l + VzAEI (yk—i-r + yk—r))
- y;ckAlzlyk(yZth + szr)A;l (Yk—i-r + )’k—r))

—log(xy1 — x10))

(Ex —Ex-1)

S | =
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d
X (—log(l + ol + £
dz Xnl —Xn0  Xnl — Xno

a0 F VDAL Phr Vi)

Xnl — Xn0
LS e Y. W O N R an85>>
Xnl — Xn0
LN d
=Y —(Bx —Eg—1)— log(1 4 ak1(2) + a2 (2) + a3 (2) + 1k (2))
on dz
L d
=Y —(B —Er_1)— fi(2),
k=1 " dz

where ¢;’s,i =1, ..., 5, are defined in (4.34).
Let axa(z) := fx(2) — ak1(z) — ak2(2) — ax3(z) — r(2). It is easy to derive that

d 1 _
d—akl(z) = — (Vi FVi_)AL i
Xnl — Xn0
(5.3) S
X1l —Xno * * —1
— 5 (Vryr T Vi )AL Vi
(Xn1 _an)z( k+t k ‘() k Tk
d 1 _
—ap2(2) = ———ViA; 2(7k+t + V1)
dz Xnl — Xn0
(5.4) o
Xl —Xno * -1
— SV AL Vi T Vi)
(an —Xn0)2 k+ 2k k+t k—t1
and
4 (@)
—
dz k3lz
_ 1
Xnl — Xn0
_ 1 _ _
X (()’iAk i — 3T trAy 2) Vi Vi )AL Wiy +¥i0)
(5.5 |
+ (Vs v = 5 AL e+ VT DA i+ 7o)
Xp1 — Xn0
(xnl _an)2

_ 1 _ _
x (yiAk Yy — 7 AL 1>(yi+r VA P rir + Vi)
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Note that by (iii)(b) of Lemma 3.6, we have

| _ |_ 4a,a’

< K. Also, by Remarks 3.1

—Xnol —
— | < K Together with Cauchy’s formula

/
and 3.2, we have |x,; — gl =

and the fact that |In(1 + x) — x| < |x|? for any complex x with absolute value
smaller than %, we have

d
‘d—zam(Z)
d
= ’E(log(l + k1 (2) + 2 (z) + ar3(2) + 11(2))

— ak1(2) — ok2(2) — a3 (2) — re(2))

(5.6) |

= %%&- . vn/Z((log(l+akl(€)+ak2(§)+ak3(z)+rk(§))

— g1 (&) —axa(§) — o3 (&) —ri(§))

/(€ —2)?)dt|.
Therefore, for each u € [a, b], £ > 1, we have
E|nv, (m,(2) — Emn(z))|22
20
(5.7 E|vp Z(Ek — B 1)—fk(Z)
k=1
4 T d 20 T d 20
<K Elv, Y (Ex—Ei-D)—ai| +KEv, Y Ex—Ei)—nx
i=1 —1 dz k=1 dz

By Lemma 2.1, fori =1, 2, 3, 4, we have
24

Elv, Z(Ek —Ei— 1)—Olkl
k=1

y
]

L
d |? T 1d
Z o >'E
dzakl‘>+k:1 d

d
SKEU,%|: (ZEk 1’(Ek—Ek 1)—0th
k=1

T
d
+ ZE'(Ek - Ek—l)aaki

- Oki

T
< K2t |:E(Z Ei—1
k=1

1
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Now we are ready to estimate the terms above. By elementary calculation, we have

1 _ -1
Ec|vi A vl = STV AL (ADT i

(5.8) K
= T + To 2Ek1(|yk+rAk (AY) )’k+r| > K)
and
1 -2
Ek|yk+rAk 7k| = Ek)’k+rAk (AZ) YVi+r
(5.9

K
+ 37 4Ek1(b’k+rAk (A%)~ )’k+r}2K)»

for the constant K > 0 such that Lemmas 3.9 and 3.10 hold.

Come back to the expressions of (5.3), (5.4) and (5.5). By definition of x,; one
can verify that x,, — x,, = —% which is bounded. By Remarks 3.1, 3.2,

Lemma 3.4 and estimates (5.8), (5.9), we have
y T d nt Ty 2¢
v | E Ex|—« + E‘—a

(el ) + el |

T

— 2

< Kot [E(Z Bl (ks + 71 AT
k=1

T Y4
— 2
+ Y Bk (Ve + Vi )AL Vi )
k=1

T
— 20
+ D E|(¥isr + Vi )AL YA
k=1

T
+ ]{ZIEI()'LI + ylt—r)Ak_lyk’%:|
< KU% )

+ KUJME(m,ngkI(I(VHf + Vi) ACAD) T e 70| = K))K

+ Kvﬁg

+ KB(maxEel (s + -0 Ac (AD ™ Drpe +76-0| = K )

+ KU%K(TI—EUn—M + Tl—évn—%)

< Kv,zl(Z
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T
+ Kvy 2 Y BB (|(Par + Vi) AL AD) P W 70| = K))
k=1

T
+K ZE(EIJ(K}’I{—H + }’k—r)*AI:I (Az)_l (yk-i-r + )’k—r)| =z K))
k=1

< Kv*,

where Lemmas 3.9 and 3.10 are used in the last estimation. By similar arguments,
one can show that

20 4 d
E Ei|—
vy [ <k§ k‘dzakz
By Remarks 3.1, 3.2, (5.8), (5.9) and Lemmas 2.5 and 3.5 we have
T Nt Ty 2¢
v,%e E ZEk +ZE’—O(/(3
k=1 k=1 dZ

_ 1 _
YiA Y — T A’

nt T d 20
E_
) + ‘dzakz

k=1

:| < Kv,%e.

d
—
dz k3

2

T
<Kv' [E(Z Ex

k=1

_ 2
X ‘(J’k-i-‘[ =+ yk—r)*Ak l(yk+f =+ },k—‘[)|

T
+ZEk

k=1

_ 1 )P
yzAklyk — ﬁtrAkl

14
_ 2
X ’(yk—I—r + Yk—t)*Ak 2(7k+‘[ + )’k—f)‘ )

T

_ 1 _
+ ZE‘yZAk 2yk — ﬁ trAk 2
k=1

2¢

_ 20
X |Vt + Vimo) Ay 10’k+r +Vio)|
d 1 1 |
k=1

2¢

_ 20
X |(yk+r + yk—r)*Ak 2(7k+t + yk—r){ :|

- ¢
1 _
2% 232 . )
= Kv, E((Z 4T2Ek tr A A Vg + Vi) AL Vi +¥50)| )
=1



3654 C. WANG ET AL.

T
1 1x-1

¢
_ 2
X |(yk—|—r + )’k—r)*Ak z(yk-i-r + yk—r)} )
A 1
2312
1 2 ¢
X |(yk+f + Yk—r)*Ak_ (}’k-i—‘[ + yk—r)‘ >
+ 3 (A AL
412 "k Tk

¢
_ 2
X |(yk+t + }’k—r)*Akz(yk—l-r + yk—l’)| ) )
< Kv2t,

n

By (5.6) and similar arguments, we have

2 t T d
+ E‘—a
) > Ef o

2(|: 4 d
v, E(Z Ek‘—am
e dz

|

4 T
§Kv,2f{E(ﬁ sup X:Ek(|01k1(-“§)|4+|ock2(§)|4

|E—zl=vn/2 =1

L
+ s ®)] + |rk(s)|4)>

1 T
+—; sup Z:E(|Oék1($)|4Z + |ara(®)[*
Ui |E—zl=va/2 =1

+ |z )] + }rk@)!‘“)}

< KT %v %

Finally, by measurable properties of some terms of r;, we have

£1€&2
(Bx—1 —Eore = Br—1 —Ep) ———
Xnl — Xn0
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from which and similar argument for o and g2, we conclude that
20
— KTy

2¢
Uy E n

d T

iz I;(Ek—l — Erk

Substituting the five upper-bounds into (5.7), we have
P(IMIgi(\nvn (mn(z) — Emy(2))| > e)

= Kn2E|nvn (mn(Z) —Em, (Z)) |ZZ

which is summable when £ > 318 and v, > n~% for « = 1/212. Therefore, we

have proved that max,c(4,p] |m,(2) — Em,(2)| = 0(n+)n) a.s.

5.2. A refined convergence rate of Emy(z) — m2 (z). To show

)
nv, )’

we follow the notation and expressions in Section 4.2. Recall

sup |Emy,(z) —m2(2)| = 0(
u€la,b]

cn + cnzEmy, (Z)

-

14+ YA Pige + Vier)

1 & i
=7 [ B/ (i e o

(5.10) . .
VAL Vi VAL Wi+ rk_f)»}
L+ e +7i- DA 74
1
= 1 - + 8}19
Xnl — Xn0
where
1 T
(Sn == ZEnk
T
k=1
with

me=(1/(1+ VA i+ v

_ y;ckAk_l)’k(y;:+r + ylt—r)Ak_l(Yk—I—‘r + yk—r)) _ 1 )
T+ (g + Vi_JA;erk Xnl = Xn0
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Consider expressions of (4.7) and (4.8). To apply Lemma 3.2, we only need to
show |8, | = o(ﬁ), which can be reduced to showing |Eng| = O(n%)n) for logzn <
k <T —log?n and |[Eni| = O(1) for k <log?n or > T — log’n.

When log’n < k < T — log? n, rewrite 1 as

=1/ (14 VA e+ 70

VIV O YDA e yka) 1
L+, Vi DA Y 1 — (2a2/xp1)
—1
=1+ Vipe Vo)A V1)
N+ VA P i 70 )) L+ (Vi HVE_ DA Y0)
-1 -1
— VAL Vi (Vi T V)AL Prgr T Vi)
1
1 — (2a2/xn1)
=(1+e¢)

/(1+81+82+8182

2
_ a
- (y;ck-i-r + yZ—r)Ak l()’k—i—t + }’k—r)(33 +&4) —anes — _n)

Xnl
1
1 (2a2/xn1)
_ 1
1= (Qa?/xn)

a2
X <—81—” — & — €18
Xn1

+ (yz—i-r + yZ—r)Alzl(yk—f—r + yk—r)(83 +&4) + an85>

/<1+81+82+8182

_ 2612
- (y;<k+t + ysz)Ak l(yk+r + )/](,T)(83 +&4) —ap€s — X ,11>’
n

where ¢;’s are defined as in Section 4.2.
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For simplicity, denote &€ = &, + €162 — (¥4, + y,"gfr)A,:l(y,H_t + Vi )3+
2

£4) —anes. Applying the identity Hf—ﬂ = ljﬁ—y — m repeatedly, we have

1 —&1Q2a, /xn1) —
T T Qa2 ) Ve +E — 2a2/xm)
Za%/xnl g1+¢ g
T I Qa2 ) Ve +E— Qa2/xn) L te1+E— (2a2/xn)
_ Za,%/xnl
T 11— (a2 /xm)
X( el +é (e1+8)2 )
1= Qa2/xa1) (1= QaZ/xa)(1 + &1+ & — (2a2/xn1))
g
a (1 + &1 — (2a2/xn1)
52
T (+e —Qa2/xu)) (1 + 61+ — <2a,%/xn1)))
_ 2a,21/x,,1
T 11— (a2 /xm)
o ( g1+ ¢ _ (e1+ 5)2 )
1= a2/xa1) (1= QaZ/xa)(1 + 1+ & — (2a2/xn1))
g £eq
B <1 —Qa2/xa)  (1+e1 — (a2 /xu))(1 — (2a,%/xn1))>
52
0T e - a2/ +e1 17— Qadaa)
Therefore, by Lemma 3.6(iv)(b), we have [— —2%/8__| = | 280 | < |25 _|

l—(Zu%/x,,l) Xn1—Xn0 Xnl1—Xn0
is bounded. Together with the fact that all the denominators being bounded below

and the Cauchy—Schwarz inequality, to show |En| = o(ﬁ), it suffices to show
|Eeq], |E€], |E8%|, |E&2| are ofo(ﬁ). As |Eg;| =0fori =1, 2, 3, it is clear that the
above convergence rates achieve o(ﬁ) provided that so do E|¢; |2, i=1,2,3,4,5,
|Ee4| and |Ees| for logzn <k<T-— logzn.

When log2 n<k<T-— log2 n,fori =1, by Lemma 3.9, we have, for any ¢ > 0,

o2 1 _ —1
E|(ise + Vi) Ay = ﬁE()’kH Vi) A AD) T Wi Vi)

)
nv, /)’

= g + vn_zo(n_t) =0(1/n)= 0(
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Similarly, for i =2, E|e2|?> = O(1/n) = 0( )
For i =3, by Lemmas 2.5 and 3.5, we have

_ 1 P K _ 1
Eles|? = E'yzAk lyk — ﬁtrAk < ?E\trAk l(AZ) |

K 1
= E
4T2 Z|)\kj_z|2

~| =

K K o _ 1
<o tTa Fy([a',b']) < = +o(T 1)=O(I/n)=0<nvn>.

I’l

For |Ee4]|, by Lemma 3.11 we have

1 1
= - [B(wA;! —wAT) = 0(r ) = 0< >

nvy,

1 _
|Eg4| = ‘ﬁEtrAk '—a,

For E|e4|%, by (4.2) and the convergence rate obtained in Section 5.1, we have

2
‘—trA

2

1 1P 1 i

= 52-1-0(111):0( ! )

Bounds of |Ees| and E|es|? will follow Lemmas 3.7(b2), (b3) and 3.8(b1), (b2).

To show |En| = O(1) when k < log?n or > T — log® n, we just prove the case
for k > T — log® n, as the case for k < log® n follows by symmetry.

When k > T — log2n, by Lemma 3.7(b1), we have P(|yz+TA,:1yk+T| >1-—
n) = o(n~"). By Lemma 3.7(a), we have P(|yz_rAk_1yk,T — %| > v,?) =
o(n~"), by Lemma 3.4, P(|yzA;1ykiT| > vg) =o(n""), and by Lemmas 2.5 and
inequalities (4.2) and (4.3), P(|}';<"A,:1 Yi—anl > v =om). By Lemma 3.8(a),
P(lyk:ttAk_IYk:FTl v ) = o(n~"). By Lemma 3.6(ii)(b) and (iv)(b), we have
|xn1 — 0| <K and |Eng| < Kv,, —1_Substitute the above results into the definition
of ni, and we finally have

il = B(1/ (14 VAT Do + 700

VAV T VDAL i yk_f)»’
L+ (P +VE DAL P4

Xnl — Xn0
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1+v
(1 —2v3) — (1/2—n+v) (1 —n+3v) + lanl/|Ixa])

+K +Kv,lo(n™") = 0(1).

6. Completing the proof. In this section, we follow the idea of Bai and Sil-
verstein (1998) and give the main steps here. From what has been obtained in the
last two sections, we have, with v, = n~1/212,

)
a.s.
nuy

(6.1) sup |mp(z) —m(2)| :0(
u€la,b]

It is clear from the last two sections that (6.1) is true when J(z) is replaced by a

constant multiple of v,,. In fact, we have

max sup |my (u 4 ivkvy) — m2(u + ivkv,)| = o(v2!h) a.s.
ke{1,2,.1106} y c[a.b]

Taking the imaginary part, we get

d(F,(A) — FO(x
‘/ ( ( ) - n(Z)) :0( },2!]0) a.s.
ke{l, 2 ..... 106 ue[a b] (u — 1) + kvj;
After taking difference, we obtain
2 0
d(F,(A\) — F’(A
max sup '/ UZ" ( (2) n ;) =o(v21%)
kls«ékzue[u pil) ((w—A)*+kivp)((u—2)
a.s.
WD)'d(F, () — F)(L)) 210
Sup 2. .2 2 2 2 =o(v; ")
uela,p)l) (@ —2A2)>+vp)((u —A)*+2v7) --- ((u — 1)~ + 106v;,
a.s.
Therefore,
d(F,(\) — F)(1)) B
up 2.2 2 2 2 =o(l)
uela,b] A7+ v)((u— 1)~ +2v;) - (w0 — A)~ + 106v;
a.s.
After splitting the integral, we get
/ I WA (F (M) = FO ()
wetanild (=202 (@ = 02 +202) - (u — N2 + 10602)
212
+ n
Z (=22 +v)((u—1;)>+2v2) - ((u — Arj)> + 106v7)

Ajelad,b']
=o(l) a.s.
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Note that the first term tends to O by dominated convergence theorem. Now, if
there is at least one eigenvalue contained in [a, b], then the second sum will be
away from zero when u takes one of such eigenvalues. This contradicts the right-
hand side. Therefore, with probability 1, there are no eigenvalues of M,, in [a, b]
for all n large and the proof is complete.

APPENDIX A: JUSTIFICATION OF TRUNCATION, CENTRALIZATION
AND RESCALING

Here, we give some justifications of (1.4), which will be divided into two parts.

A.l. Truncation and centralization. Fix some C > Q define &;; =
irlijvil=c) = Eeirliny<c) Pi = 757 Cuee oo Bu) = = E= @1, 87),
E;=@yr.....er40) and My = Y[ (019 kye + 1o P0) = 57 (BEX + ELEY).
By Theorem A.46 of Bai and Silverstein (2010),

mI?XMk(Mn) — M (M,)|

< M, — M,
1 A A A A A A

= 57 1€ = B)E; + Er(E—B)* + E(E, — B0)* + (E; — E)E|
1 A A A

< Z(IE —EJE || + |E — E|| |E|).

By a similar approach as in Yin, Bai and Krishnaiah (1988), one can show that
almost surely

1
limsup — |[E|| < (1 + /<)%,
n p T

1

ﬁnfz,n < (1 +/c)?

lim sup
n
and

1 «
limsup—||E — E
' sup T“ I

JT
<+ \/E)Z max var(g;; — &ir)

1,t
= (1 +/¢)* max var(ei I{jx; =)

<1+ \/E)ZTYI!E;XE(SitI{ui,EC})Z

1 2
1t
(14 J/e)’M
= —

’
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which can be arbitrarily small by choosing C large enough. This verifies the trun-
cation at a fixed point and centralization.

A.2. Rescaling. Define crizt = Eléi 1%, & = &i/0ir, Vi = \/%(511(,.

< v 1 X T x N - y y -1
Enk)/ = ﬁek’ E = (elv .o 7eT)7 E‘L’ = (el-‘r‘L” . -’eT-i—'L')a D = (Git )I’lXT’ D‘L’ =

(O—iz,;l_;_r))nxT and Mn = Zl{:l(i’k}v’;}—r + }\;k—i-r)vlz) = %(Eﬁj + EIE*) By The-
orem A.46 and Corollary A.21 of Bai and Silverstein (2010),

m]?x|Xk(Mf) — A (M)
< IM; — M|

1 . ~
< ?“EO(D_J)HHETO(DT =D

1 & s - 2
< —[IE|[|E || max(o;, " — 1),
T 1,1t
Here, o denotes the Hadamard product and J is the n x T matrix of all entries 1.
From Yin, Bai and Krishnaiah (1988), we have, with probability 1 that
limsup,, + [ B[l E- || < (1 + /)",
Also, we have

H}E}X“ —of| < rr;z;x(E|ei,|21(|e,~,| > C) + (Eleic| I (|&ir| > C))Z)

<max —E|g;|"<——>0 as C — oo.
it C2 Cc?

Since min; ; o;; — 1 as n — oo and thus o;,(1 +0y;) > 1 for all large n. Therefore,

we have

2
-1 _ 1—oj 2

o, 1= <l-o
oir(1+0i)

it
which implies max |)Lk(l\v/[,) — Ak(M,)| — 0asn— oo.

APPENDIX B: PROOFS OF LEMMAS IN SECTION 3
B.1. Proofs of Lemmas 3.1, 3.2 and 3.3. To show Lemma 3.1, take d =,/ L

2m
and denote S the total area covered by the m balls B(x;,dr,),i =1,...,m. Then
we have S < mm (drp)* < nr,%, which is the total area of B(xg, r,,). Therefore, such
X must exist.

For Lemma 3.2, write P,(x) = ]_[IJ‘-:I(x —xpj)and P(x) = ’}1:1(x —xj)ef.Let
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First, we claim that for any i € {1, ..., k}, there exists j € {1,..., m} such that
Xni € B(x;,8). Suppose not, that is, there is some x,; with |x,; — x;| > J for any
Jj €{l,...,m}. Then it follows that | P(x,;)| = [T}, [xni — x;| > 8*. On the
other hand, as P,(x,;) =0, we have Lr, > |P,(x;;) — P(x,;)| = | P(xi)|. This is
a contradiction.

Also, by our construction of 4, it follows that all the B(x;, §)’s are disjoint.

Suppose the lemma is not true, then as the sum of ¢;’s is fixed, there is

. , . 1/¢; )
at least one j such that, there are £p x,;’s in B(xj, rn/ 1), with 0 < £y < ;.
WLOG, we can assume j = 1 and denote these £¢ x,;’s by xél, .. .,xrlleo. By

.....

drnl/e1 for some d > 0. By the construction of §, we have |x* — x| > § for all

1/¢; . .
x € B(xjora'"), j =2.....m. Therefore, we have | P(x*)| = [T/ |x* — x;|% =
x* — x1 |9 [T}, [x* = x| = O(@ry). On the other hand, we have |P,(x*)| =
k Loy 1 k—2y,.Lo/t1
[Mjma b =gl = Thicy 17 =2 T, gy, vy W7 = ng| > 8770n 0, con-

tradicting | P (x*) — P(x)5)| = O(ry). Therefore, the lemma is proved.
For Lemma 3.3, write P,(x) = ]_[l;zl(x — Xnj), On(y) = ]_[]j‘.:l(y — ynj) and

.....

nition of 7,,, there exists some L > 0 such that L7, > |P,(x,;) — Qn(x,;)| for all
xpi. Let j €{l,...,m} be given, and let d := ((Skf/j )!7¢ > 0. By Lemma 3.2, we

) 1/¢; 1/¢;
have exactly € x,;’s and exactly £; y,;’sin B(x;, r,,/gf ). Let x,; € B(xj, rn/e’) be

fixed. By our construction in the proof of Lemma 3.2, if y,; ¢ B(x;, r,i/ b ), one has
d(xpni, yn1) > 6. Therefore, for the lemma to be true, we only need to look at those

ynl € B(xj, r,i/gj ) and show that at least one such y,; satisfies the desired distance.
. . 1/¢; 1/¢;

Suppose not, that is, for this x,; € B(x;, rn/g"), for any y,; € B(x;, rn/e"), one has

d(Xpi, yn1) > 7,1/éj. Note that when y,; ¢ B(x;, r,i/gj), we have d(x,i, yn1) > 8.

S VNS ~
Hence, we have |Q,, (x,i)| = ]_[f;l |Xni — Yni| > 8k=¢; (drn/ ])e, = L7,. However,
we also have L7, > |0, (xni) — Pu(xni)| = | Oy (xni)|, which is a contradiction.

B.2. Proof of Lemma 3.4. Let yfA,” =b=(by,...,b,). Noting |¢;;| < C,

we have
2r>

—S 2r
Ely7 A vl
1 (r))? NP S
Yo o b)) Eab)t - (ernbn)" Ernbn)

1 n
T
i=1
- rTr TN A AN
2T = il il
Jittjn=r




STRONG LIMIT OF EXTREME EIGENVALUES 3663

1 (r!? o
= E —(Sklbl)”(Sklbl)“ - (&knbp)" (Exnbn)".
2rTV i1+”.2—+_in_r l] J] _] n¥n nt¥n
J1+Fju=r
i1+j1#1

2
Let [ denote the number k < n such that iy 4+ jx > 2. By the fact that g’r))! <
r r—1 1 1

721 741 = 77> We have

Ely?‘A;‘ykl ol

22r Tr Z Z Z

=1 1<ji<-<ji<nii+-+i=2r ll
i1>2,...,0>2

1 d 2r)! ~

2r i

= 22rTrEZC Z Z il 'l'| J1| |bjl|
=1 1<ji<-<jisniy+-4i;=2r
i1>2,...,ij>2

ElL[(Zn: |bj|i’)

I=1ij++i=2r t=1\j=1

ZE(Zwﬂ)
j=1

2n)!
il Ele k]lb

i

Skab” |

~

IA
3|5

=<

’ﬂ|N

>§

—ETAC(A) )"

Note that || y,|| < K and ||A,:1 |l <v, I, we finally obtain that

K

Elyi AL vl < W

for some K > 0. The proof of the lemma is complete.

B.3. Proof of Lemma 3.5. Recall that @’ =a — ¢ and b’ = b + ¢, as defined
at the end of Section 4. Therefore, we have

1 1
Pl — ——>K
(ZT 2 Ak — zI? )

1
Y S N
- 112 2

g lany) Mk Um0

+P( > ;>TK)

12
Ake[a/,,/]l?u ul? + v2
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<P(neg™? > TK)+P(nv, *Fu([a',b']) > TK)

K
<0+P(1F = Rl = 5007 )=o)
C

Here, we pick K > ce 2 so that the first probability is 0. The second probability
follows (4.36). The proof is complete.

B.4. Proof of Lemma 3.6, part (a). For (i)(a), by definition of x,;, j =0, 1,

we have
xu0,1 = 5 (14 /1 —4a2) = 3(1 £ @ +ip)).
Therefore,
1—a)?+p2 24
( (f) +'€ <1-—- ~0{ —, ifa >0,
x50 \ (L +a@)? + g2 (1+a)2+ B2
ol (1+@)?2+p? 21| _
— — <1 — —, fa<0
(1—a)?+ B2 (1—-a)%+ B2
WI 20~
=1- <1—=—nvilal,

where the last inequality follows from the fact that x,%l =xp1 — a2 = 0(v,2).
Thus, to complete the proof of (i)(a), it suffices to show that there is a constant
n2 > 0 such that |&| > novy,.
Write ¢,Em,, (z) = 2a, = o« + i where « and § are real. Then, by the formula
of square root of complex numbers [see (2.3.2) of Bai and Silverstein (2010)] we

have
J1—4da2=a+ip,

20

\/J(l—a FER T a2 (1 —a2 4 )

where

Obviously, when 1 —a?+ % > 0,by \/(1 — a2 + $2)2 + 4a22 — (1 —a? + ) <
2|a|B we have

l&| > 1/y/la|B > 1/|cnEmy (2)| > novn,

for all large n such that ¢, ny < 1, where 1, € (0, c‘l).
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On the other hand, if 1 — «? + B2 <0, by o> > 1 + 8% we have

o o
@l > lo|B _ la|B NG
\7(1—&2—{-/32)2—%—40(2,32 \7(1_052_'32)24_4’32
Then the assertion that |@| > npv, is proved if one can show that 8 > n3v, for
some 13 > 0. This is trivial if one notices

p=v /( )2+ QdEFn(x)>vn(4A2+1)_lEFn([—A,A]),

when |z| < A and v € (v,, 1). The conclusion (i) is proved.
For (ii)(a), by x,,1 +x,0 = 1 and |x;1| > |x,0|, we conclude that |x,1| > % Since

Xp1 = %(1 +,/1 —4a?), we conclude that

1 —4a2

1 -1
|xn1|§§< )fKUn .
For (iii)(a), by noting that
a1 — xn0l> = (1 — o + %)% +4a2p% = (1 — o® — )7 + 482
Then the conclusion (iii)(a) follows from the fact | 3| > n3v, that is shown in the
proof of part (i)(a) of the lemma.
The conclusion (iv)(a) follows from

1 1
|Xn1 — Xnol — | 4ar21|

where the last inequality follows from conclusion (iii)(a).
The proof of the lemma is complete.

B.5. Proof of Lemma 3.7(a). Recall that g, = ‘”E% Write Wy = yj,, X

-1 _
ék Yirr and Wigir kst = 7;+(s+1)rAkk+r kst ¥k+(s+1r-  Denote
Ak kt(s—1)7 = Ak ktst T Vits+1) Y kese- Apply the identity

B lay*B~!

B+ay* -1 =B ' - _
we have

—1 e -1
Ak ..... k+(s—Dt — (Ak vvvvv k+(s—1)t + yk—i—sry;—f—(s—&-l)r)

71
k,...,k+(s—1)rVk+(s+1)r}’7§+srA ..... k+(s—Dt
..... k+(s—Dt 1 s
1+y£+srA ,,,,, k(=D ¥ k+(s+ D)t
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Therefore, we have
* -1
yk-i-sz Sk+(s—Dt

_yk—i-stA ,,,,, k+(s—1)t

* - * A-—1
_ yk+stAk,...,k+(s—1)r Ykt ktstDr k(5= 1)z

-1
I+ 77§+srAk =D Yk G+ )T

and
* A—l
VitstB, . k+(s—D)r¥ ktst
-1
YitstAro. k+(s—D ¥ k+st
1
N yk+(s—|—1)rA k=D Y k+st
<7k+vrAk ..... kst ¥ k4st
—1 —1
(B.1) . yz+srAk, ,k+sryk+(?+1)fyZ+srAk,4.4,k+sr}’k+A€T>
1+ yk-l—srA ..... k+S‘L’yk+(S+l)‘(
/(1 + Vit e A% kst Y kotst
1
yk+(s+1)rA ..... kst k+(s+D)t yk—|—stAk ..... k+st¥k+st )
1+ yz—l—stAk ..... k+st yk-i—(s-i—l)r
(cn/2)Emy(z) +ri(k +s7)
1
1 — (cn/2)Emy (Z))’k_Hg.H)TA stV k+Gs+DT +ra(k + ST)
that is,
ap +rik+s7)
(B.2) Wi, .. kt(s—Dr = - ,
L —ayWy,.. ktst +1r2(k+57)
where

1
ritk+s7) = yZ-‘,—srAk ..... ktst¥ k+st — dn>
- -1
rak +s7) = _(YZ+SIAk kst ¥ kst an)y;+(s+1)rAk,...,k+sryk+(S+l)r
—1
+ )’k+(s+l)rAk ..... k+sr}’k+sr + yz+vrAk,...,k+sryk+(s+1)r

+yk+(s+1)rAk ..... ks VstV st AL kst Y k(s 1)r-
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Whenk <T —v, 4 applying this relation £ times (£ = (v, 41), we may express Wy
in the following form:

W (an +r1k + ) (k11,6 — AnVitr,e Wi ktt, ... k+-(e+1)7)
k = bl
Akt — An Vi, e Wi ktz, ... k+(E4+ 1)t

where the coefficients satisfy the recursive relation

ktste = (1 +r2(k + 7))okt (s+ )7,
—ap(an +ritk +57)) okt (s1+2)1,¢»

Qpter,e =1 +ra(k+L1), gt (t+yr,e = 1,
(B.3)

Yitst,e = (L+r2(k +5T)) Vet s+1)7.0
— ay(an +r1(k + 5T)) Vit (s+2)7. 65

Viter,e =1, Yi+(t+ 1,6 = 0.

Notice that v, = n~!/32. Employing Lemma 2.5 and an estimation similar to (4.3),
for any fixed ¢, one has

(B.4) P(|ri(k+€v)| > v} =o(m™)  fori=1,2.

As in the proof of Lemma B.3 of Jin et al. (2014), by letting £ = [v,#], it follows
by induction that

—I1+1 L—I1+1
(B.5) ke =0 =) [ vui+ea [] vuo
u=1 n=1

where vy ;, i = 1,0 (with |v1 1| > |v1,0]) are defined by the two roots of the
quadratic equation

x2 = (1+rpk + £7))x — ay(an + r1(k + £1))
and « is such that
(I —a)vy 1 +avio=1+r2k+L£1) = agror,e.
Recall that x,,;, i = 1, 0 (with |x,1| > |x,0|) are two roots of the quadratic equation
2 _ 2
X =X — an.

Applying Lemmas 3.1-3.3 to the above two quadratic equations and using (B.4),
we have

P(jv1,; — Xnil = 209)
<P(|rik +€7)| > v,llz) +P(|r2(k + £1)| > v,llz) =o(n™"),
Xn0

(B.6)
P( z3ﬁ)
Xn0 — Xnl

(B.7) <P(Iv1,0 — xnol = v8) + P(lv1,1 — xn1] = 05) + P(|ralk + £7)| > v8)

=o(n™").

o —
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By induction, one has for u € [1, £]
ap(an +r1(k+ (£ — /L)T))

Vi

Vytl,i = 1 +r2(k + (£ — ,lL)‘L’) -

and can similarly verify that

w2
P = il = 2000) <3 3 P(rjk +10)[ 2 v,%) = o(n™).
I=1 j=1

Therefore, we have

L
P(|tkse,e — (1 —a)xfy +axbo)] = v8) < 3 S P(Ivpi — xuil = 2u08)
=1i=0

1
P(lak,e — (1 —e)xp ' +axsd ) = 0) < D7 D " P(Ivpi — Xnil = 2105)

and
Ck+tr,0 _ L
(073 Xnl

g

< Plogir.e — (1= @)y +axyg) | = vf)
+P(lake = (1= @)y + o) = of)
+ P(Ivet11 — Xn1] = 2(€ 4+ 1d)

=o(n™").

Similarly, we have

—1+1 {—I+1
Vik+lt, 0 = (I—-a) 1_[ ﬁu,l +a 1_[ ﬁ,u,Oy
n=1 n=1

where v, ;, i =1, 0, are the two roots of the quadratic equation
x> =(14rk+E—=1)7))x —an(a, +ri(k+ (€ — D7),
and « satisfies
(I—a)b 1 +avo=1+r(k+E—1T) = Vet
One can similarly prove that v, ;, i =0, 1, satisfy

no2
P(1T0i — uil = 200§) = 3 3 P(lrj(k+10)| 2 v)%) = o),

1=0 j=1
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and

Therefore, we have

£ 1

P(|vktr.e — (1= @)xty +axb) = v8) < D0 S P — xuil = 200)
n=1i=0

=o(n"

£+1

P(|ye.e — (1 — oz)errl +ozx£+1)| > %) < Z ZP Dusi — Xni| = 2008)
n=1i=0

~—

9

—

and
Yk+1.,¢ _ L
V4N Xn1

<P(|Yrgr.e — (1 —&@)xpy +axso)| = v))

+P(lyee — (1 —@)xi T 4 axt )| = vd)

i

+ P(IPet1.1 — Xn1] = 2(€ 4+ Dd)

=o(n™").

Substituting back to the recursive expression of Wy, we thus have

(B.8) P(‘Wk s vf;> —o(n™").

Xnl

The proof of this lemma is complete.

B.6. Proof of Lemma 3.8(a). When 7 < k <27, the lemma is obviously true
because y;_, is independent of Ay. Similarly, the lemma is true when 7T — 7 <
k<T.

When 2t < k < T /2, similar to (B.1), we have

e 4k -
=Vi- fAk k47, k(=D Y k+st

~1
Vit Akkr,. ktst + Virsa)rVigst) VYitse

1+ )’z+(s+1)T(Ak,k+r ..... k+st T }’k_;_(s_;_l)r}’z_i_”)_l}’k-{-sr

_ * —1
- <ykTAk,k—i-r,...,k-i—sr),k-i-sr
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. _
Vi Ak ktr... k+vryk+(s+1)tyk+wAk kT, .. ktsT }’k+sr)

1+ yk—|—stAk,k+r ..... k—l—sryk-‘r(s-i-l)t

-1
/(1 L 4 SRCNRISY. Viy SIS g au

* —1 * —1
. yk+(s+l)rAk,k+r,m,k—l—st}’k-f—(S-ﬁ-l)Tyk—i—stAk,k-i-t ..... k+styk+sf)
* -1
L+ ¥ erse Ak k. kst Ykt (s+ D

_ Filk45T) = We . k(54 1)rn
1+rk+st)—a, W

9
..... k+st
where

FIk+5T) = Vi Ap iseVirst (U Vi AL iase Pkt e)

- Wk,---»k-i-(s-f'l)f(}’Z+srAl:,...,k+sryk+sr - an)'
Similarly, one can show that

P(|F1(k +s7)| > vlz) =o(n™").

When |Fi(t +s57)| < v |r2(k—|—sr)| < v 2 and [ Wk ... ktst — —| < vn, we have
= U12 || 5
|Wk, ,k+5r| = = + |Wk k+(Av+1)r| + v,
|Xn1] — v [xn1]

1
<30 + Wi ., k+<s+m|(1 =5+ v;‘),
where the second term follows from the fact that

|| _ |xx0] <1_ 1 3
|xn1| |xn1| B 2
5

Therefore, when v, Yot < v,

12 1,3, 410 _ 6
| Wil <3€v)? + Wy, kel [1 = 5m0; + v, <.

The lemma then follows by the fact that
P(| Wil = v})

<Z( (IF1(k +57)| = v1?) + P(jralk + s7)| > v)?)

)

an
+P Wk,‘..,k—i—sr -

Xn1

=o(n™).

The proof of the lemma is complete.
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B.7. Proof of Lemma 3.6, part (b). Let x; and x¢ be the two roots of the
quadratic equation

where @ = a(z) = cm(z)/2 and m(z) satisfies (4.8). We claim that

@I _

(B.9) sup =<
uela,b] 1X1(2)]

for some 7 € (0, 1). Otherwise, there will be a sequence {zx} with R(zx) € [a, b]
and

|x0(zi)|
|x1 (zi) |

Then we can select a convergent subsequence {z;'} — zo. If zg = 00, then a(zg) =
0 and hence x; = 1 and xg = O. It contradicts the fact that

lxo(zo)| |

|x1(z0)!

The only case to make the equality above true is that a(zg) is real and its absolute
value is Z%. That is, zo is real and |d(zo)| > 4. Since d(co) = 0, there is a real
number z’ between zo and sgn(zg)oo such that |a(z)| = % which contradicts the
equation (4.8). Therefore, (B.9) is proved.

Since mg (z) = m(z) uniformly for all N(z) € [a, b], we conclude that there is
a constant 1 € (0, 1) such that

|fn0|
sup

— <1 —n,
R(z)ela,b] [Xn1l

where X1 and X, are the two roots of the equation
2 1.2/ 0 2
x7=x— 56, (my(2)"

By what has been proved in Section 4, we have SUP = x(5)=n-1/52 [Emn(2) —
mg (z)] — 0. Thus,

<1l-—n.
R()elab]  Xnil
1>3(z)=>n—1/52

The conclusion (i)(b) follows.
We then prove the conclusion (v). In the proof of (i)(b), we actually proved that
there is a constant n € (0, %) such that for all u € [a, b],

law| <3 —n.
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By the uniform continuity of a(z) for all R(z) € [a, b]. we have

> Jau+iv)—aw)|—0  ass, — 0.
uela,b],ve(0,8,)
Then conclusion (v) follows from the fact that sup 1=3()=n-1/52 [Emn (2) —
m9(z)| — 0.
The first conclusion of (ii)(b) is the same as (ii)(a) and the second follows easily
from the fact that |a, (z)| < % and the argument that |x, ;| < %(1 +/1+4|a2)) < %

The conclusion (iii)(b) follows from the fact that |x,; — x,0| = |/1 — 4a,%| >

/4n(1 — n). The conclusion (iv)(b) follows from conclusions (ii)(b) and (iii)(b).
The goal of this section is reached.

B.8. Proof of Lemma 3.7(bl). Whenk < T — logzn, noticing |xn0|/|xn1| <
1 — n established in part (b) of Lemma 3.6, so (B.8) remains true, hence in turn
implies the lemma. When k > T — log? n, we shall recursively show the lemma by
proving

(B.10) P(IW... k45l > 1—n) =o0(n™"),

for some n € (0, %). In fact, whenk+st > T > k+ (s — 1)1, (B.10) follows easily
by the fact that Yi+G+Dr is independent of Ak_,.l,.,k+sr’ and hence P(|Wi, . k45t —
an| = vp) =o(n™") and |a,| < 1/2 — 1.

By induction, assume that (B.10) is true for some s > 1. By (B.2) and

Lemma 3.6(v), when |rj(k +s7)| < v3 and [k +s1)| < vﬁ, we have

1/2—n+v3
Wi,k | = L <
1=(1/2=m1—n) —v,

1—n for all large n.
P(IWi,. k+s—Del >1—n)
<P(|Wi...krsel > 1 =) +P(|ritk +s7)| = v2) + P(|ra(k + s7)| = v?)
=o(n™").

The assertion (B.10) is proved, and thus the proof of the lemma is complete.

B.9. Proof of Lemma 3.9. Define Ay = Ak ktt + VigrVipo,- Recall Ay =
Ak ktt + Virr Ve T Vii2c Vs 50 We have

» - K—ly y* K—l

1 ~1 -1 k YitarY ks

Ak = (Ak T Vitor J’ZH) = Ak - - ‘L"N71+r .
L+ i A Vigae
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Hence, we have

* A—1 NG | * 1—1
YierAr VieaVie A Y s Ax

-1 *  A—1
yZ-HAk =yk+rAk - | ~—1 .
L+ Y7 eAr Vi L+ yi A Vg

Next, we have

* —1 * —1
yk+rAk,k+r Yi+e Vk+2rAk,k+r

*  A—=1__ % —
YiteAr = VigeArkir — ) " 1
R 0, VIS 4

* —1 * —1
= Yite Ak ke — Y ip2c A kg T Rits

where

* —1 * -1
R -1 yk+rAk,k+tyk+fyk+2rAk,k+r
K1 = an¥ k42r kk+t

1
[ ST Vi

* —1 * —1
. <an — Vit Al ks Vi T anV ko Ap ko Vire >y A-
= » - kr2r Ak, br-
L+ ¥Yitor A ke Ve

Substituting back, we obtain

* -1 * -1
YiteAlktr — Y iporAr ke T Ri

Vi A =
+rk T * —1 * —1
L+ Vi Al ke Vh2r = @Y fpoc Ak ke Vir2r T RV igar

—1 —1
B.11) = (szrrAk,k—f—r - anyZJrhAk,k—i—r + Rkl)

/(an + yz-H'Ak_,/lc—H Yi+2t
—an (yz—i-ZtAl:,llc-i-t}’k—ﬁ—Zr - an/xﬂl) + Rk17k+2r)‘
When [y}, A ki Picel S 030 10 — Vi Al ko Vigo| < 03, we have
IRk1]l < K vy

Using similar approach of the proof of Lemma 3.7(a), one can prove that when
2 -1

k<T—log™n, |y; A k+ltyk+(l+1)r| <v,, |Vk+(1+1)zA iV itiel S5

and |yZ+IrAI:,.1..,k+lry1€+lf ap| <vl, forl=1,. ., [log? n], we have

P(|yz+2rAk_Jl<+t)’k+2r - a"/xnl ‘ = US) = O(H_Z)'
Therefore, by (B.11), we have
B.12)  [vi A | =20 Ak |+ (= )Y iac A e | + K on.

Similarly, one can prove that

|7k I
(B.13) k+2t k k+r

= 2||yk+2rAk kirigael (=) ki3 k_,11<+t,k+2r | + Kvy.
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By induction, forany k < T — [log2 n]and £ < [log2 n], one obtains

[7esAC

.....

4
(B.14) Z (1 =) " A e

,,,,,

where 1’ € (0, n) is a constant. Since

— 2
A w5 [ dFetn =K,

uniformly for k < T + 1t — [log2 n]and [ < [log2 n], then for any K > LI;}“,
when n is large, we have

P(lyi Al = K)
[log® n]
Z ’yk+(l+1)rAk ..... kteVietlz| =V )

(B.15) + P(|Y7§+er/:?.. e kel = 03)
(|)’k+1rAk1 KtV ke — an| = vi)]

=o(n™").

This proves the lemma for k < T + t — [log2 nj.

Whenk >T + 1 — [log2 n], by the first equality of (B.11) and Lemma 3.6(v),
when |y} +2rAk_Jl< +¢Vk+2:1 = 1 [which, by (B.10), occurs with probability 1 —
o(n™1)], we have

|1+ 7Z+1Al<_,11<+zyk+2r - an}’Z+2rAk_,11<+t)’k+2r + Ri1Y ji2¢ |
SO R S S
for some constant ” > 0. Therefore,
[vi A < 20vic A+ (L= 1) [P Er Al e |+ Kn.

Again, by using induction, the lemma can be proved for the case where k > T —
log® n.
Therefore, the proof of the lemma is complete.



STRONG LIMIT OF EXTREME EIGENVALUES 3675

B.10. Proof of Lemma 3.10. As in last subsection, we first consider the case
k < T 4 t — [log? n]. Note that

~ ~ Aly, oyt A
_q -1 —1 K Yir2eV ks Ax
Ay = A+ Vign Vi) =AL — " i_lﬂ )
L+ Vi A Viroe

—1 —1

A=Al Ap iV koY isar A kge

ko= Bhoktr T T " - )

T Vitor Bk koY ke
and
x-1 A1 X1
y;—l—rAk yk+2ryz+rAk _ y;ck+rAk
~—7 = =7 .
L+ Vi AL Viaae R . s e

By similar approach to prove Lemmas 3.7 and 3.9, we have

* -1 _ o« 3x-1
YitcAr =Vt A —

Vit Af kseVigor| V2 with probability 1 — o(n ™

k)

(n™)
Vi At cPkse| vy with probability 1 —o(n ™),
(n™)
(n™)

—t

’

n

|¥ii2r Al kse¥hrar — dn/Xn1| vy with probability 1 —o(n
3
n

Vit e AL ke Vhor — dn| <0 with probability 1 — o(n™").

By Remark 3.2,
1
yZ+TA,;i+Tyk+T =57 rA~% +o(v)) <K with probability 1 — o(n™").
By Lemma 3.9,
_ 2 - -1
”)’lt-i-ZrAk,IIH—r “ = b’lt—l—ZrAk,llc—l—r (Az,k—i-r) yk+2r| =<K
with probability 1 —o(n™"),
— - —1
|y;€k+2TAk,i+ryk+2‘L’| = b’Z+2zAk,11<+r(Az,k+r) Vitoel <K
with probability 1 —o(n™").
By Lemma 3.5,
[ViseAiie = trAl:k+r (Afise) +o(v) <K
with probability 1 — o(n™").
Also, we have

* -1 * —1
x Xl s —1 ). VG S 4 . VIS
Vi YVir2r = Vido B ko V420 —

—1
1+ y;+2rAk,k+r Yit+t

= —Xx,0 + 0(v2) with probability 1 —o(n™").
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Therefore, with probability 1 — o(n~"), we have
“ * A—lg—l * K_IH
Vit B Vid2oV k4o

T-1
_ H yz-&—IAk
- T—1
1+ yz-l—rAk Yi+21

-1 * —1
Al Ap ke Vit Y ksor Ak ke x Xl
X\ A kgr — YVi+2r YV k+r %

—1
1+ yz-l—ZrAk,k-i-ryk-&-T

1
= -1
‘ 1+ yz-i-rAk Yik+21

X

-1 * -1
" 1 %; VIS GRS § AT, Vi
yk“rf k,k+T - 1 % A—l },k—|—2f
t Viror Ak ko Vit

—1 * —1
* Afl o Ak,k-i—‘[ Vit yk+2rAk,k+r
YViro | Ak k+r T+ A
Vit Dkt Y k4t

X

<M

for some M; > 0. By Remark 3.1,

1 _
75 A P = 5 rA A7) o(0]) < K

with probability 1 — o(n™").
This implies, with probability 1 — o(n™")
—1x-1
|7 A A

* -1 * —1 2
_” Yitr ( —1 _Ak,k+r)’k+r7k+2rAk,k+z> H
- * X —1 k,k+t

L+ Vi Al Viroe

1
1+ }’z+21Ak,k+t)’k+T
-2
=< MZ + |bn|”yz+2tAk,k+r ”
for some M, > 0 and

cnEmy /2 dn

bl’l = — =
I — (cuEmy /2)(chEmy /2x,1) Xnl

with

=< \/lxn0|/|xn1| = \/1 -n.

dp
nl
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Therefore, we have

[7i-AC

| « y-1
AL Vit Vi Ax

b))
1+ i Ar Yigoe

—1({xX-1
:H}’Z—I—rAk (Ak -

175 A A Y2 v AL

S P
k+tk Y k42t

< Q4+ OMi+ My + VT =y} Ai 2,

where & > 0 is a constant. Then similar to the proof of Lemma 3.9, using the
recursion above we have

— -2 —
P75 AL (A Yipe] 2 K) = 0(n™)

for some K > 0. When k > T — log?n, one can similarly prove the inequality
above. The proof of the lemma is complete.

B.11. Proof of Lemma 3.11. We first consider the case where log’n < k <
T —log® n. Note that A = Ag + ¥ 85 + By}, where B; = y;_, + ¥i4r. We have

'[rA,:l —trA™!

d _ —
=7 log((1+&1)(1+2) — VA, 'viBiAL ' Br)
(B.16)

)
Xn1

d 2ay,
= d_z 10g<xn1 —Xpo+ &1+ &2+ €182 —anés — (x— +85>(83 + 84)),

nl

== log((l +en)(1+62) — (83 + &4 +an)(es +

where ¢;’s are defined in (4.34). Note that
E(ely;, j #k) =0  fori=1,2,3.

Therefore, by Taylor’s expansion, Cauchy integral and Lemma 3.6 part (b), we
have

d
E(trA; ' —trA™!) — 7 108 Cin1 = xu0)

< ‘iE[log(l n €1+ & +e16 —anes — ((2an/xn1) + €5) (€3 +84))
Xnl — Xn0
g1+ & 2e3ay, :H

Xnl — Xn0 X1 (Xn1 — Xn0)

B.17)

5
=Kvo s, [Z E‘giz(g)b""E84(5)’+}E85(§)‘:|_



3678 C. WANG ET AL.

By applying Lemmas 3.9 and 3.10, one can easily verify that
(B.18) Ele?)|=0(m"") fori=1,2,3.
Also, by (4.2),

1
(B.19) [Eea(€)] = ﬁE(trA,?(@—trA—l(s)))s -,

and similar to the proof of (4.4)

1 _ _ 1
(B.20) |Esj(®)| < mE}trAk (&) —Bur AL (&) + |Eea(®))* = 0(;).
By the proof of Lemma 3.7(a) with noticing |x,0/xn1| < 1 —n, when log?n < k <
T — log2 n,fori =1, 2, one can prove that

i

_ a

E"'Z—l—rAk lyk—i-r - ﬁ =o(1),

(B.21) S
* -1 An !
E yk—rAk Yi—r — —| =o(l),
Xnl
and by the proof of Lemma 3.8(a),
* —1 i * —1 i

(B.22)  Elyi Al vil =o().  [EviiAp vi| =o(D).
inequalities (B.21) and (B.22) imply that
(B.23) Eles(&)| = o(1).

Combining (B.17), (B.18), (B.19), (B.20) and (B.23), the first conclusion of
Lemma 3.11 is proved when log>n <k < T —log?n. If k > T — log®n, by Lem-
mas 3.7(b1) and 3.8(a), one may modify the right-hand sides of (B.21)—(B.22) as
O(1). This also proves the lemma. The conclusion for k < log?n can be proved
similarly.

The second conclusion of the lemma can be proved similarly. The proof of the
lemma is complete.

B.12. Proof of Lemma 3.7(b2). We assume that k < T — log?n and prove
the first statement only, as the second follows by symmetry. As in the proof
of Lemma 3.7(a), write Wy = y;’(‘HAk_lka and Wi g4z, k+st = Vi+(s+1>r X

Alc_,ll<+r,,.,,k+sryk+(s+l)r‘ Then by (B.2), we have

a, +ritk+s1)
k+st + ra(k +57)

Wi, .. k+(s—Dr =

.....
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where

* —1
ri(k+5T) = Vi Ap ks Y kst — ns

—1 —1
ra(k +5T) = —(Vitse Al kst Vhtst — )V ke 41 A% kbst Y k41T

* -1 * -1
+ Vit A% kst Vst T VirseAb kb s+1)r Vktst

* —1 * —1
+ yk+(s+1)rAk,...,k+sr Yi+tst yk+srAk,...,k+(s+1)7: Yitst

Therefore, we have

Wi — Gn
Xnl
. an +ritk+1) _ an
1 _aan,k-i—r +r2(k+71) Xnl
(B.24)
ritk +1) anra(k + 1)

T l—a Wik Ak +1)  xp1(1—anWisir +ralk+1))

ayzl(Wk,k—i-‘L' — (an/xn1))
X1 (1 = an Wi g +r2(k + 7))

n n

Using this estimate together with Lemmas 3.4 and 3.9, one can prove that

E(jr1(k +s7)|7)
<K([Eri(k +s7)|” +E|ri(k +57) — Eri(k +s57)|")

(B25) —p 2p —-p —1 * —1\p/2
= K(n log n+n E(trAk k+sr(Ak k+sr) ) )

<Kn~ "2,
which implies that for any fixed 6 > 0,
(B.26) P(|ri(k +s7)| >n %) =o(n™").
By this and Lemmas 3.7(b1) and 3.4, one can prove that
(B.27) P(|ra(k +s7)| > n7 %) = o(n™").

In Section 4, we have proved that with probability 1 — o(n™"), |Wikir —
%l < vs. Also by Lemma 3.6(ii)(b), we have |x,1| > % which implies that

| = Wei +1r ey (e | is bounded by 3 with probability 1 — o(n™").
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Moreover, by the fact that I;’T"ll = /V%? <JI—-n<1- %17, we have, with
probability 1 —o(n™"),

an |y | - (I = (1/2)m)|xn1l
1 —ayWiggr +ratk+ )| 7 |xpi| — vt — |Xn1| — vt
- 1—-(1/2)n <1-».
- o1=2vr T

for some 0 < ' < %n. In (B.24), split the first term as

rl(k+ ‘L')
1 —ay Wk,k—|—r +rk+1)
_ ritk + 1) B ritk +rytk +1)
1 —anWiksr (1= ayWiggo) (I — an Wi ke + 120k + 1))

and the second term as
aan(k + T)
X1 (1 — an Wi kyo +r2(k + 7))

_ anktn anr3 (k + 1)
xp1 (1 — aan,k+T) Xp1(1 — aan,k—l—‘E)(l - aan,k-i-T +rak+1)) .

Noting that |Wy| < Kv,; ! we have

EW, — —

Xn1

< Kn 2 L K|Er(k +1)| + K [Era(k + 1)|

a
+ (1 — U/)Z'EWk,kH: - =

Xnl

(B.28)

4 14
<Ken P 4 K> |Eri(k+57)|+ K Y |Era(k + s7)|

S:l s=1

+ (1 — n/)zz‘EWk ..... ket — — |-

By choosing ¢ = [logn] and § < 1/106, we can show that Zle |[Eri(k +s7)| =
o(1/(nvy)), i = 1,2 and that (1 — 7')*|[EWg __ krer — | = 0(1/(nvy)). Substi-
tuting all the above into (B.28), we have [EW; — ;1—”1| =o(1/(nvy)).
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B.13. Proof of Lemma 3.7(b3). Again, we assume that k < T — log”n and
prove the first statement only, as the second follows by symmetry. As in the proof
of Lemma 3.7(b2), we have

2
E‘Wk _
Xnl
2 2 n4 an 2
< KE}rl(k—i-‘L')’ +KE|I”2(k+‘L’)| + (1 — 7]) E‘Wk’k_;_r - —
nl
(B.29)

12
<K Y Elrtk+s0) + K Y Elntk+s0)
s=1 s=1
a 2
+(1- 77/)4EE‘Wk,...,k+h - x—"

nl

< Ken™ 12 = o(1/(nvy)).

The proof of the lemma is complete.

B.14. Proof of Lemma 3.8(b1). By symmetry, we only consider the case k <
T /2. As in the proof of Lemma 3.8(a), write

e Ak —1
Wk ..... k+st -— yk—TAk,k—l—r ,,,,, k+(s_1)t)’k+st'
Then we have

_ 71 (k -W v 72 (k
B30) W pree = LEFSD = Weookrtorye (n + 12k +57))
1+rk+st)—anWk, . k+st

where

~ ~1 -1
ri(k +s7) = yZ—tAk,...,k—i—sryk-i-st(l + ylt—i—srAk,,..,k+sryk+(S+l)r)’

~ * —1
ra(k +5T) = ViqseAx . kst Vitst — dn-

Similar to the proof of (B.27), one has
(B.31) P(|Fik+ )| =n ) =0o(n™), i=1,2.

Similar to the proof of (B.28), one can prove that for some 7’ > 0,

.....

,,,,,

.....

s=1

=o(1/(nvy)).

The proof of the lemma is complete.
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B.15. Proof of Lemma 3.8(b2). Using the notation of Lemma 3.8(b1), by
triangle inequality, we have

(ENWiys ) < K @R K +50P)? + (0= 1)EIWe ki)
Therefore, when k < T/2 and ¢ = [log” n],

L
EIW?) 2 <K S EF G450+ 0 =) PEIW_grec)?

s=1
< Klogznn_l/%‘s.
Therefore, when 2§ < 1/212,
E[Wi|? < K log* nn™ 12 = o(1/(nv,))

and the proof of the lemma is complete.
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