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GAMBLING IN CONTESTS WITH RANDOM INITIAL LAW

BY HAN FENG AND DAVID HOBSON

University of Warwick

This paper studies a variant of the contest model introduced in Seel and
Strack [J. Econom. Theory 148 (2013) 2033–2048]. In the Seel–Strack con-
test, each agent or contestant privately observes a Brownian motion, absorbed
at zero, and chooses when to stop it. The winner of the contest is the agent
who stops at the highest value. The model assumes that all the processes
start from a common value x0 > 0 and the symmetric Nash equilibrium is
for each agent to utilise a stopping rule which yields a randomised value for
the stopped process. In the two-player contest, this randomised value has a
uniform distribution on [0,2x0].

In this paper, we consider a variant of the problem whereby the starting
values of the Brownian motions are independent, nonnegative random vari-
ables that have a common law μ. We consider a two-player contest and prove
the existence and uniqueness of a symmetric Nash equilibrium for the prob-
lem. The solution is that each agent should aim for the target law ν, where
ν is greater than or equal to μ in convex order; ν has an atom at zero of the
same size as any atom of μ at zero, and otherwise is atom free; on (0,∞) ν

has a decreasing density; and the density of ν only decreases at points where
the convex order constraint is binding.

1. Introduction. Seel and Strack (2013) introduced a contest model in which
each agent chooses a stopping rule to stop a privately observed stochastic process.
The contestant who stops her process at the highest value wins a prize. The ob-
jective of each agent is not to maximise the expected stopping value, but rather to
maximise the probability that her stopping value is the highest amongst the set of
stopping values of all the contestants.

The Seel–Strack contest is a stylised model of a contest between agents in which
agents compete to win a single prize. Examples include certain internet casino
games (where competitors ante a fixed amount, then play independently with no-
tional funds, with the prize awarded to the contestant with the highest notional
fortune at the end of the game), competitions between fund managers (where each
manager aims to outperform all the others in order to obtain more funds to invest
over the next time period) and competitions between company CEOs (only the
most successful of whom, in relative terms, will be offered an executive position
at a larger company); see Seel and Strack (2013) for further details and examples.
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The key feature of these contests is that the cost in terms of effort is not dependent
on the riskiness of the strategy, and that agents do not earn rewards from the value
of their entry into the contest, but only from the relative value or rank order of the
entry.

The modelling assumptions of Seel and Strack (2013) include the fact that con-
testants are unable to observe both the realisations and the stopping times of their
rivals and the fact that the privately observed stochastic processes are independent
realisations of a drifting Brownian motion absorbed at zero. As argued by Feng
and Hobson (2015), the setting can be generalised to allow for independent real-
isations of any nonnegative, time-homogeneous diffusion process since a change
of scale and time reduces the problem to the martingale case of Brownian motion
without drift. Henceforth, we will concentrate on the case of drift-free Brownian
motion, absorbed at zero. We will focus on the two-player case.

Seel and Strack (2013) studied the symmetric case where the contestants ob-
serve processes which all start from the same strictly positive constant. In this
paper, we will discuss an extension of the Seel–Strack problem to randomised
initial values, whereby the starting values of the Brownian motions are drawn
independently from the (commonly known) distribution μ, where μ is any inte-
grable probability measure on R

+. This might correspond to casino gamblers who
are obliged to participate in a minimum number of bets before closing out their
position, fund managers with different initial portfolios (which are unknown to
competing agents) or to newly installed CEOs taking positions in companies of
different strengths.

A very attractive feature of the Seel–Strack contest model is that it has an ex-
plicit symmetric Nash equilibrium, as constructed in Seel and Strack (2013). Stop-
ping rules are identified with target laws for the entry into the contest and in equi-
librium players use randomised strategies, so that the level at which the player
should stop is stochastic. Moreover, the set of values at which the agent should
stop forms an interval which is bounded above. In the two-player case, the target
law is a uniform distribution (so that if the initial wealth of both agents is x then
the target law has constant density 1/2x on [0,2x]); see Example 3.1 below. Our
results extend Seel and Strack (2013) to the case where the initial values of the
Brownian motions are independent draws from a common initial law. As in the
Seel–Strack contest, stopping rules are identified with target laws, and in equilib-
rium players use randomised strategies, so that the level at which the player should
stop is stochastic. Now, however, the set of values at which the agent should stop
forms an interval which can be unbounded above (if the initial law has unbounded
support). Since terminal laws are obtained from stopping a nonnegative martin-
gale, it is clear that any attainable terminal law has a mean which is equal to or less
than the mean of the initial law, and it is natural to expect that an optimal terminal
law has highest mean possible, or equivalently we expect that for an optimal stop-
ping rule the mean of the terminal law should equal that of the initial law. Then
the candidate terminal laws are precisely those which are greater than or equal to
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the initial law in convex order. In fact, we show that the optimal law has the twin
properties that (with the possible exception of an atom at zero of the same size
as the inital law) the target law has a density which is decreasing, and the density
decreases only at those levels where the convex order constraint, expressed via the
potential of the distributions, is binding. We have two main results: first, we show
that any distribution with these properties characterises a symmetric Nash equi-
librium for the problem (Theorem 3.1); and second we show that for any initial
law there is exactly one target law with these properties (Theorem 3.2), and hence
there is a unique symmetric Nash equilibrium for the problem.

The Seel–Strack contest is a recent addition to the literature in economics and
has not yet been greatly studied. However, as Seel and Strack (2013) emphasise,
there are strong connections between their contest model and all-pay auctions [see,
e.g., Baye, Kovenock and de Vries (1996)], wars of attrition [Hendricks, Weiss and
Wilson (1988)] and silent timing games [Park and Smith (2008)]. Indeed in the set-
ting of n exchangeable agents with fixed initial wealth (equal to 1/n), the solution
of the Seel–Strack contest is identical to that of n-agents in an all-pay auction with
cost equal to bid size. In both situations, agents randomise their strategy in order to
introduce uncertainty into the value they enter into the contest/auction. This makes
it more difficult (and in equilibrium, impossible) for opponents to take advantage
of knowledge of the distribution of the entry. If in the two-player Seel–Strack con-
test an agent chooses an entry which is a point mass (at the initial wealth x), then
the opponent can play until his wealth is x + ε or he goes bankrupt; thus winning
the contest with probability x/(x + ε). Since ε can be chosen arbitrarily the oppo-
nent can choose a strategy for which the probability of him winning is arbitrarily
close to unity, and thus the strategy of the first player cannot be optimal.

In contrast to the Seel–Strack contest, the all-pay auction is much studied. The
all-pay auction is used as a model of technological competition, political lobbying
and job promotion (with effort). Several generalisations of the all-pay auction have
been studied. Sometimes in these auctions one or more of the agents has a headstart
[Konrad (2002)], perhaps from prior effort, or from being the incumbent in an
election campaign. In recent work, Seel (2014) studies the all-pay auction with
random head starts, which is the direct analogue of the problem studied here. Seel
finds the Nash equilibrium in an asymmetric, two player all-pay auction where
one of the players has a random headstart, and the ideas can be extended to the
symmetric case where both players have random headstarts.

Relative to the main results of Seel (2014) on all-pay auctions with random
headstarts, we find that the symmetric Nash equilibrium in the Seel–Strack contest
with random initial law is more subtle. In the symmetric two-player all-pay auction
with random headstart, the target law for the total bid has a density taking values in
{0,1}. In particular, there may be gaps in the support of the distribution. In contrast,
in the symmetric two-player Seel–Strack contest with random initial law, we find
that the support of the target law has no holes, and that the density is monotonic
decreasing. This indicates that the Seel–Strack contest and the all-pay auction are
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perhaps less closely linked than might be expected from considering the base case
alone. In the case without headstarts/with point mass initial law, the Nash equlibria
in the two settings are identical, but this does not carry over to generalisations
of the two problems. Even in the standard setting we learn that the fundamental
property of the uniform distribution which leads to optimality in the two-player
Seel–Strack contest is that it has a decreasing density, whereas in the context of
the all-pay auction it is the fact that the uniform distribution has a density which
takes values in {0,1}.

Seel and Strack (2013) solved their problem by proposing a candidate value
function for the problem, and then verifying that this candidate is a martingale
under an optimal stopping rule for each agent. We solve the problem in a different
way using a Lagrangian approach. Our solution methods allow us to characterise
the target laws which correspond to a candidate equilibrium quite easily, but some
effort is required to show that there is a measure with these characteristics, and that
for a given initial law, this measure is unique.

The paper is structured as follows. In Section 2, we introduce the mathematical
model of the contest. We will see that a Nash equilibrium is identified with a pair
of probability measures. In Section 3, we state the main theorems which charac-
terise the unique symmetric Nash equilibrium and give some examples. A proof of
the characterisation theorem is given in Section 4. Following some preliminary re-
sults in Section 5, which are potentially of independent interest, Section 6 includes
an explicit construction of the symmetric Nash equilibrium in the case where the
starting random variable takes only a finite number of distinct values, and then an
extension of the existence result to general measures. Uniqueness of the equilib-
rium is proved in Section 7.

2. The model. Consider a contest between two agents. Agent i ∈ {1,2}
privately observes the continuous-time realisation of a Brownian motion Xi =
(Xi

t )t∈R+ absorbed at zero, where the processes Xi are independent. Seel and
Strack assume Xi

0 = x0 for some positive real number x0 which does not depend
on i. The innovation in this paper is that we assume Xi

0 ∼ μ, where μ is the law of a
nonnegative random variable with finite mean μ ∈ (0,∞). The values of (Xi

0)i=1,2
are assumed to be independent draws from the law μ.

Let F i
t = σ({Xi

s : s ≤ t}) and set F
i = (F i

t )t≥0. A strategy of agent i is a
F

i-stopping time τ i . Since zero is absorbing for Xi , without loss of generality
we may restrict attention to τ i ≤ Hi

0 = inf{t ≥ 0 :Xi
t = 0}. Both the process Xi

and the stopping time τ i are private information to agent i. That is, Xi and τ i

cannot be observed by the other agent.
The agent who stops at the highest value wins a prize, which we normalise to

one without loss of generality. In the case of a tie in which both agents stop at
the equal highest value, we assume that each of them wins θ , where θ ∈ [0,1).
Therefore, player i with stopping value Xi

τ i receives payoff

1{Xi

τi >X3−i

τ3−i } + θ1{Xi

τi =X3−i

τ3−i }.
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Seel and Strack (2013) observed that since the payoffs to the agents only depend
upon τ i via the distribution of Xi

τ i , the problem of choosing the optimal stopping

time τ i can be reduced to a problem of finding the optimal distribution of Xi
τ i or

equivalently an optimal target law. Once we have found the optimal target law νi ,
the remaining work is to verify that there exists τ i such that Xi

τ i ∼ νi . This is the
classical Skorokhod embedding problem [Skorokhod (1965)] for which solutions
are well known [see Obłój (2004) and Hobson (2011) for surveys]. Note that there
are typically multiple solutions to the embedding problem for a given target law,
and any of these solutions can be used to construct an optimal stopping rule. We
will identify a solution with the distribution of Xi

τ i , rather than with the stopping
rule itself, so that when we talk about a unique equilibrium the uniqueness will
refer to the target distribution and not to the stopping rule.

We now introduce some notation which will be used throughout the paper. Let
M be the set of integrable measures on R

+ = [0,∞) with finite total mass, and
let P be the subset of M consisting of integrable probability measures on R

+. Let
δx ∈ P be the unit mass at x and let �x ∈ P be the uniform distribution on [0,2x]
(with mean x).

For 	 ∈ M, let 	 = ∫ ∞
0 x	(dx), and define the right-continuous distri-

bution function F	 : [0,∞) �→ [0,	(R+)] by F	(x) = 	([0, x]). In the se-
quel, we occasionally want to consider F	 as a function on (−∞,∞) in which
case we set F	(x) = 0 for x < 0. Define also the call and put price functions
C	 : [0,∞) �→ [0,	 ] and P	 : [0,∞) �→ [0,∞) by

C	(x) =
∫ ∞
x

(y − x)	(dy) =
∫ ∞
x

(
	

(
R

+) − F	(y)
)
dy,

P	 (x) =
∫ x

0
(x − y)	(dy) =

∫ x

0
F	(y)dy.

Note that C	(x) − P	(x) = ∫ ∞
0 y	(dy) − x

∫ ∞
0 	(dy) = 	 − x	(R+) and if

χ ∈ M and if 	(R+) = χ(R+) then

lim
x↑∞

(
P	(x) − Pχ(x)

)
= lim

x↑∞
(
P	(x) − x	

(
R

+)) − lim
x↑∞

(
Pχ(x) − xχ

(
R

+))
(1)

= χ − 	.

Then χ is less than or equal to 	 in convex order (written χ 
cx 	 ) if and only
if χ(R+) = 	(R+), χ = 	 and Cχ(x) ≤ C	(x) for all x ≥ 0. This last condition
can be rewritten in terms of puts as Pχ(x) ≤ P	(x) for all x ≥ 0.

Note that if χ 
cx 	 , then Cχ(0) = C	(0) and χ({0}) = Fχ(0) = χ(R+) +
C′

χ(0+) ≤ 	(R+) + C′
	(0+) = F	(0) = 	({0}).

Suppose χ,	 ∈ P , then it is well known [see, e.g., Chacon and Walsh (1976)]
that for Brownian motion X with X0 ∼ χ , there exists a stopping time τ for which
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(Xt∧τ )t≥0 is uniformly integrable and Xτ ∼ 	 if and only if χ 
cx 	 . In our
context, we do not necessarily want to insist on uniform integrability, but rather
that the stopping time occurs before the first hit of X on zero.

LEMMA 2.1. Suppose χ,	 ∈ P . Let X be a Brownian motion absorbed at
zero with initial law χ . Then there exists a stopping time τ with Xτ ∼ 	 if and
only if Pχ(x) ≤ P	(x) for all x ≥ 0.

PROOF. Since (Xt∧H0)t≥0 is a nonnegative supermartingale, by a conditional
version of Jensen’s inequality,

E
[
(x − Xτ)

+|F0
] ≥ (

x −E[Xτ |F0])+ ≥ (x − X0)
+

and then

Pτ (x) = E
[
(x − Xτ)

+] = E
[
E

[
(x − Xτ)

+|F0
]] ≥ E

[
(x − X0)

+] = Pχ(x).

Conversely, the existence follows from results of Rost (1971). �

DEFINITION 2.1. Given μ ∈ M, we say that ν ∈ M is weakly admissible
(with respect to μ) if ν(R+) = μ(R+) and Pν(x) ≥ Pμ(x) for all x ≥ 0.

We say that ν is strongly admissible (with respect to μ) if ν is weakly admissible
and ν = μ.

Note that if ν is weakly admissible then necessarily ν({0}) ≥ μ({0}) and ν ≤ μ

by (1). If ν is strongly admissible, then μ 
cx ν.
These definitions are motivated by the fact that if X is Brownian motion with

X0 ∼ μ ∈ P and if ν ∈ P is weakly admissible with respect to μ then there exists
τ ≤ H0 := inf{u > 0 :Xu = 0} such that Xτ ∼ ν, and if ν is strongly admissible
then there exists τ such that Xτ ∼ ν and (Xt∧τ )t≥0 is uniformly integrable.

DEFINITION 2.2. The pair of weakly admissible measures (ν1, ν2) with νi ∈
P forms a Nash equilibrium if, for each i ∈ {1,2}, given that the other agent j =
3 − i uses a stopping rule τ j such that X

j

τj ∼ νj , then any stopping rule τ i such

that Xi
τ i ∼ νi is optimal.

If (ν, ν) forms a Nash equilibrium, then the equilibrium is symmetric.

A Nash equilibrium may be characterised as follows. Let V i
χ,	 denote the value

of the game to player i if Player 1 uses a stopping rule which yields law χ for X1
τ 1

and Player 2 uses a stopping rule which yields law 	 for X2
τ 2 . It follows that

V 1
χ,	 =

∫
[0,∞)

χ(dx)
{
F	(x−) + θ

(
F	(x) − F	(x−)

)}
,

V 2
χ,	 =

∫
[0,∞)

	(dx)
{
Fχ(x−) + θ

(
Fχ(x) − Fχ(x−)

)}
.
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Then (σ, ν) is a Nash equilibrium if V 1
σ,ν = supπ V 1

π,ν and V 2
σ,ν = supπ V 2

σ,π , where
the suprema are taken over the set of weakly admissible measures. A symmetric
Nash equilibrium is a weakly admissible measure ν such that V 1

ν,ν = supπ V 1
π,ν

and V 2
ν,ν = supπ V 2

ν,π , where again the supremum is taken over weakly admissible
measures π . Note that since V 1

χ,	 = V 2
	,χ the definition can be simplified to a

symmetric Nash equilibrium is a weakly admissible measure ν such that V 1
ν,ν =

supπ V 1
π,ν from which is follows that supπ V 2

ν,π = supπ V 1
π,ν = V 1

ν,ν = V 2
ν,ν and ν

is also optimal for Player 2.
Our paper investigates the existence and uniqueness of a symmetric Nash equi-

librium. It seems natural that a Nash equilibrium is symmetric, since the contest
is symmetric in the sense that each agent observes a martingale process started
from the same law μ. Then simple arguments over rearranging mass can be used
to show that it is never optimal for two agents to put mass at the same positive
point x, and further that any symmetric Nash equilibrium must be strongly admis-
sible. The proof of Theorem 2.1 is in the Appendix.

THEOREM 2.1. Suppose (ν, ν) is a Nash equilibrium. Then ν is strongly ad-
missible, Fν(x) is continuous on (0,∞) and Fν(0) = Fμ(0).

3. Main results and examples. In this section, we describe the main results
concerning existence and uniqueness of a symmetric Nash equilibrium for the con-
test, and give examples.

DEFINITION 3.1. Suppose μ ∈ M. Let A∗
μ ⊆ M be the set of measures ν

satisfying:

(i) ν(R+) = μ(R+), Fν(0) = Fμ(0), Fν is continuous on (0,∞), ν = μ, and
Cν(x) ≥ Cμ(x) for all x ≥ 0;

(ii) Fν(x) is concave on [0,∞);
(iii) if Cν(x) > Cμ(x) on some interval J ⊂ [0,∞) then Fν(x) is linear on J .

The two main results in this article are a theorem which characterises symmetric
Nash equilibria, and a theorem which proves that a symmetric Nash equilibrium
exists and is unique.

THEOREM 3.1. If μ ∈ P , then (ν∗, ν∗) is a symmetric Nash equilibrium for
the problem if and only if ν∗ ∈ A∗

μ.

THEOREM 3.2. For μ ∈M, |A∗
μ| = 1. In particular, if μ ∈ P then there exists

a unique symmetric Nash equilibrium for the problem.

Before proving Theorems 3.1 and 3.2, we present some examples.
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EXAMPLE 3.1. Recall that �x = U[0,2x], where U stands for the continuous
uniform distribution. Suppose μ ∈ P satisfies Cμ ≤ C�μ . Then it is easy to see
that �μ ∈ A∗

μ, and thus (�μ,�μ) is the unique symmetric Nash equilibrium for the
problem. In the case μ = δ0, this is the Seel and Strack (2013) result.

EXAMPLE 3.2. Suppose μ ∈ P is atom-free, except perhaps for an atom at
zero. Set bμ = sup{x :Fμ(x) < 1}. If Fμ is concave on [0, bμ], then μ ∈ A∗

μ and
(μ,μ) is the unique symmetric Nash equilibrium for the problem. If Fμ is convex
on [0, bμ] and Fμ(0) = 0, then it can be verified that Cμ ≤ C�μ (see Proposition 5.1
for a detailed proof), and thus (�μ,�μ) is the unique symmetric Nash equilibrium
for the problem.

EXAMPLE 3.3 (Beta distribution). Suppose μ is a Beta distribution on [0,1]
with shape parameters α = 2 and β = 3, that is μ = Beta(2,3). Then, the mean
of μ is 2/5, Cμ(x) = (3

5x5 − 2x4 + 2x3 − x + 2
5)1{x≤1}, and Fμ(x) = min{3x4 −

8x3 + 6x2,1}. Then Fμ(x) is convex on (0, 1
3) and concave on (1

3 ,1), or equiv-
alently the density fμ = F ′

μ is increasing on [0,1/3] and decreasing on [1/3,1].
Hence, μ itself is not a candidate Nash equilibrium. Instead we expect to find
a symmetric Nash equilibrium ν with a constant density fν(x) = 2c1 on [0, c2],
and fν(x) = fμ(x) on [c2,1], where c1 and c2 are constants to be determined.
Since ν has constant density 2c1 on [0, c2] it follows that Cν(x) = c1x

2 − x + 2
5

on this interval. Moreover, c1 and c2 satisfy Cμ(c2) = Cν(c2) = c1c
2
2 − c2 + 2

5
and C′

μ(c2) = C′
ν(c2) = 2c1c2 − 1. Solving the system of equations, we ob-

tain c1 = 4
√

10+140
243 and c2 = 10−√

10
9 . For this choice of c1, c2 it follows that

ν ∈ A∗
μ. Thus, (ν, ν) is the unique symmetric Nash equilibrium for the prob-

lem.

EXAMPLE 3.4 (Atomic measure). Suppose that μ = 1
2δ1−ε + 1

2δ1+ε , where
ε ∈ (0,1). Then

Cμ(x) = (1 − x) · 1x∈[0,1−ε) + 1
2(1 + ε − x) · 1x∈[1−ε,1+ε).

Suppose ε ∈ (0,1/2]. Then Cμ ≤ C�1 , where �1 = U[0,2], and then (�1, �1) is
the unique symmetric Nash equilibrium for the problem.

Now suppose ε ∈ (1/2,1). Define the function C by

C(x) = x2 − 8(1 − ε)(x − 1)

8(1 − ε)
· 1x∈[0,2(1−ε)) + x2 − 8εx + 16ε2

8(3ε − 1)
· 1x∈[2(1−ε),4ε),

and let ν be given by Cν(x) = C(x). Then ν ∈ A∗
μ. Hence, (ν, ν) is the unique

symmetric Nash equilibrium for the problem if ε ∈ (1/2,1).
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4. Sufficiency.

PROOF OF REVERSE IMPLICATION OF THEOREM 3.1. We show that if μ ∈ P
and ν ∈ A∗

μ then (ν, ν) is a symmetric Nash equilibrium. The statement that if
(ν, ν) is a symmetric Nash equilibrium then ν ∈ A∗

μ is given in the Appendix.
Given μ ∈ P , define the classes of measures Aw

μ = {ν ∈ M, ν weakly admissi-
ble with respect to μ} and As

μ = {ν ∈ M, ν strongly admissible with respect to μ}.
Recall also the definition of A∗

μ in (3.1).
Using the properties of Theorem 2.1 we find that a symmetric Nash equilib-

rium is identified with a measure ν∗ ∈ As
μ with the property that, for any ν ∈ Aw

μ ,
V 1

ν∗,ν∗ ≥ V 1
ν,ν∗ . Since again by Theorem 2.1 we have that ν∗ has no atoms on

(0,∞), for a symmetric Nash equilibrium we must have that for any ν ∈ Aw
μ∫

(0,∞)
Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0)

(2)
≥

∫
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0).

Fix ν∗ ∈ A∗
μ and suppose ν ∈ M. Suppose that λ, γ and ζ are finite constants

and η is a measure on (0,∞), and suppose λ and ζ are nonnegative. Define

Lν∗(ν;λ,γ, ζ, η)

=
∫
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0) + λ

(
μ −

∫
(0,∞)

xν(dx)

)

+ γ

(
1 −

∫
(0,∞)

ν(dx) − Fν(0)

)
+ ζ

(
Fν(0) − Fμ(0)

)

+
∫
(0,∞)

(
Pν(z) − Pμ(z)

)
η(dz)(3)

=
∫
(0,∞)

(
Fν∗(x) − λx − γ +

∫
(x,∞)

(z − x)η(dz)

)
ν(dx)

+
(
θFν∗(0) − γ + ζ +

∫
(0,∞)

zη(dz)

)
Fν(0)

+ λμ + γ −
∫
(0,∞)

Pμ(z)η(dz) − ζFμ(0),(4)

where we use∫
(0,∞)

Pν(z)η(dz) =
∫
(0,∞)

η(dz)

[
zν

({0}) +
∫
(0,z)

(z − x)ν(dx)

]

= Fν(0)

∫
(0,∞)

zη(dz) +
∫
(0,∞)

ν(dx)

∫
(x,∞)

(z − x)η(dz).
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Equivalently, we have∫
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0)

= Lν∗(ν;λ,γ, ζ, η) − λ(μ − ν) − γ
(
1 − ν

(
R

+)) − ζ
(
Fν(0) − Fμ(0)

)
−

∫
(0,∞)

(
Pν(z) − Pμ(z)

)
η(dz).

Now suppose ν ∈ Aw
μ . Then since λ ≥ 0, ζ ≥ 0 and η(dz) ≥ 0 and since ν ∈ Aw

μ

implies that ν(R+) = μ(R+) = 1, Fν(0) ≥ Fμ(0) and Pν(z) ≥ Pμ(z) ∀z ≥ 0, we
find ∫

(0,∞)
Fν∗(x)ν(dx) + θFν∗(0)Fν(0) ≤ Lν∗(ν;λ,γ, ζ, η).(5)

Furthermore, if η is such that η(J ) = 0 for every interval J for which Pν∗(z) >

Pμ(z) on J , then since ν∗ has unit mass and mean μ and since Fν∗(0) = Fμ(0),∫
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0) = Lν∗
(
ν∗;λ,γ, ζ, η

)
.(6)

Define b∗ = sup{x :Fν∗(x) < 1} so that b∗ ≤ ∞. Since Fν∗ is continuous and
concave, it is absolutely continuous, which means that there exists a function fν∗
such that Fν∗(x) = ∫ x

0 fν∗(y) dy + Fν∗(0). By concavity of Fν∗ , fν∗ is monotonic
and we may take it to be right-continuous. Then fν∗(x) = ∫

(x,b∗] ψ(dz), where the
measure ψ is given by ψ((z1, z2]) = fν∗(z1) − fν∗(z2) for any z1 < z2.

Let λ∗ = 0, γ ∗ = 1, ζ ∗ = (1 − θ)Fν∗(0) and η∗ = ψ . Then
∫
(0,∞) zη

∗(dz) =
1 −Fν∗(0). Since ν∗ ∈ A∗

μ we have that if η∗ places mass on every neighbourhood
of x then Pν∗(x) = Pμ(x).

Define � on [0,∞) by �(x) = λ∗x + γ ∗ − ∫
(x,∞)(z − x)η∗(dz). Then, for any

x > 0,

�(x) = 1 −
∫
(x,∞)

ψ(dz)

∫ z

x
dy = 1 −

∫ ∞
x

dy fν∗(y) = Fν∗(x).

Observe that θFν∗(0) − γ ∗ + ζ ∗ + ∫
(0,∞) zη

∗(dz) = 0. Thus, by (5) and (4), for
ν ∈ Aw

ν , ∫
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0)

(7)
≤ λ∗μ + γ ∗ −

∫
(0,∞)

Pμ(z)η∗(dz) − ζ ∗Fμ(0),

and by (6) and (4),∫
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0)

(8)
= λ∗μ + γ ∗ −

∫
(0,∞)

Pμ(z)η∗(dz) − ζ ∗Fμ(0).
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Note
∫
(0,∞) Pμ(z)η∗(dz) = ∫

(0,b∗] Pν∗(z)ψ(dz) = ∫
(0,b∗] fν∗(z)Fν∗(z) dz = (1 −

Fν∗(0)2)/2 < 1 so that the right-hand side of (7) and (8) is well defined and posi-
tive. Furthermore, for any ν ∈Aw

μ ,∫
(0,∞)

Fν∗(x)ν(dx) + θFν∗(0)Fν(0) ≤
∫
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0).

Hence, (ν∗, ν∗) is a symmetric Nash equilibrium for the problem. �

REMARK 4.1. Substituting for the values of the optimal Lagrange multipliers,
we find

V 1
ν∗,ν∗ =

∫
(0,∞)

Fν∗(x)ν∗(dx) + θFν∗(0)Fν∗(0)

= 1 − (1 − θ)Fν∗(0)Fμ(0) − 1

2

(
1 − Fν∗(0)2)

= 1

2
+

(
θ − 1

2

)
Fμ(0)2.

Note that this is as expected, since for any law π with no atom on (0,∞) we have
by symmetry that V 1

π,π = (1 − π({0})2)/2 + θπ({0})2.

5. Preliminaries. In the previous section, we characterised the symmetric
Nash equilibria. In this section, we state and prove some auxiliary results which
will be required for proofs of existence and uniqueness in later sections. The first
result is of independent interest. Note that Fν∗ is a concave function on [0,∞), but
the case we will want in the following theorem is for convex distribution functions.

PROPOSITION 5.1. Fix y ∈ (0,∞). Let P(y) ⊆ P be the set of probability
measures π on R

+ with mean π = y. For π ∈ P , recall that Fπ is the distribution
function of π , and extend this definition to (−∞,∞). Let aπ = inf{u :Fπ(u) >

0} ≥ 0 and bπ = sup{u :Fπ(u) < 1} ≤ ∞.

(i) Let Pcx(y) = {π ∈ P(y) :Fπ is convex on (−∞, bπ ]}. Then, for π ∈ Pcx(y),
π({0}) = 0. Moreover:

(a) suppose H is convex; then,

sup
π∈Pcx(y)

∫
π(dz)H(z) =

∫ 2y

0

1

2y
H(v)dv;

(b) suppose H is concave; then, supπ∈Pcx(y)

∫
π(dz)H(z) = H(y).

(ii) Let Pcv(y) = {π ∈ P(y) :Fπ is concave on [0,∞)}. Then, for π ∈ Pcv(y),
aπ = 0. Moreover:
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(a) suppose H is convex; then, supπ∈Pcv(y)

∫
π(dz)H(z) = H(0) +

y limx↑∞ H(x)
x

;
(b) suppose H is concave; then

sup
π∈Pcv(y)

∫
π(dz)H(z) =

∫ 2y

0

1

2y
H(v)dv.

The suprema in (i)(a) and (ii)(b) are attained by π ∼ U[0,2y]. The supremum
in (i)(b) is attained by π ∼ δy . The suprema in (i)(b) and (ii)(a) are valid for all
distributions on R

+ with mean y and not just those with convex (or concave) dis-
tribution functions.

REMARK 5.1. This result is stated for completeness; the result we will use
and prove is (i)(a).

PROOF OF PROPOSITION 5.1. Let U be a U[0,1] random variable.
Suppose π ∈ Pcx(y) and let Y have law π . It is obvious that F = Fπ , is strictly

increasing on (aπ , bπ), and F(aπ) = 0. Hence, the inverse function G � F−1

exists on [0,1]. Since G(U) is distributed as Y , E[H(Y)] = E[H(G(U))] =∫ 1
0 H(G(u)) du and

∫ 1
0 G(u)du = E[G(U)] = E[Y ] = y.

It is clear that G is concave on [0,1] and G(0) = aπ ≥ 0. Since
∫ 1

0 2yudu =∫ 1
0 G(u)du, then either G(u) = 2yu and Y ∼ 2yU , or there exists a unique

u∗ ∈ (0,1) such that G(u∗) = 2yu∗ (see Figure 1). In the latter case, 2yu ≤
G(u) ≤ 2yu∗ for u ∈ [0, u∗] and 2yu∗ ≤ G(u) ≤ 2yu for u ∈ [u∗,1]. Then if
D � E[H(Y)] −E[H(2yU)] we have

D =
∫ u∗

0

(
H

(
G(u)

) − H(2yu)
)
du +

∫ 1

u∗
(
H

(
G(u)

) − H(2yu)
)
du.

FIG. 1. Comparison of G(u) and 2yu. Since G is the inverse of the CDF of a random variable
with mean y, the area under G is y. Then the areas under G and the line �(u) = 2yu are the same.
Hence, if G is concave on [0,1] (and not a straight line passing through the origin), there is a unique
crossing point u∗ of G and the line �.
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Let H ′− denote the left derivative of the convex function H . Then H(u2) −
H(u1) ≤ (u2 −u1)H

′−(u2) for any u1 and u2, and setting u1 = 2yu and u2 = G(u)

and using the fact that H ′− is increasing,

D ≤
∫ u∗

0

(
G(u) − 2yu

)
H ′−

(
G(u)

)
du +

∫ 1

u∗
(
G(u) − 2yu

)
H ′−

(
G(u)

)
du

≤ H ′−
(
2yu∗) ∫ 1

0

(
G(u) − 2yu

)
du = 0.

Thus, E[H(Y)] ≤ E[H(2yU)] = ∫ 2y
0

1
2y

H(u)du. Moreover, it is obvious that the
bound is attained by Y ∼ U[0,2y]. �

PROPOSITION 5.2. Suppose that H is such that H is twice differentiable and
h = H ′ is concave. Suppose that H(0) = 0, h(0) > 0, h′(0) ≤ 0 and h is not con-
stant. Then, for ŵ > 0 such that H(ŵ) = 0, we have h(ŵ) + h(0) ≤ 0, that is,
|h(ŵ)| ≥ h(0).

PROOF. Since h is not constant and h is concave, there is a solution w = w̃

say, to h(w) = −h(0). Let δ = −2h(0)/w̃ be the slope of the line joining (0, h(0))

to (w̃,−h(0)). Then, on (0, w̃), h(w) ≥ h(0) + δw and H(w) = ∫ w
0 h(x) dx ≥

h(0)w + δw2/2, so that H(w̃) ≥ 0. Then, by concavity of H and since H(ŵ) = 0,
ŵ ≥ w̃. Thus, h(ŵ) ≤ h(w̃) = −h(0) and the result follows. �

PROPOSITION 5.3. For any measure ν ∈ A∗
μ, if Cν(x) = Cμ(x) for some

x > 0, then Cμ(·) is differentiable at x and C′
ν(x) = C′

μ(x).

PROOF. Suppose that ν ∈ A∗
μ. Then Cν is continuously differentiable on

(0,∞) and Cν ≥ Cμ. Since Cν(y) − Cμ(y) ≥ 0 = Cν(x) − Cμ(x) for any y < x,
we deduce C′

ν(x−) − C′
μ(x−) ≤ 0. Similarly, we have C′

ν(x+) − C′
μ(x+) ≥ 0.

Thus, C′
μ(x+) ≤ C′

ν(x+) = C′
ν(x−) ≤ C′

μ(x−). Conversely, convexity of Cμ im-
plies C′

μ(x−) ≤ C′
μ(x+), and hence C′

μ(x−) = C′
μ(x+), and the results follow.

�

PROPOSITION 5.4. Fix any measure ν ∈ A∗
μ. Suppose that Cν(x) = φ(x) on

some interval J = [j1, j2), where 0 ≤ j1 < j2 ≤ ∞ and where φ(·) is a quadratic
function defined on (−∞,∞) with φ′′ > 0. Then j2 < ∞ and Cν(x) ≤ φ(x) on
[j2,∞).

PROOF. Assume that j2 = ∞. Then Cν is quadratic on [j1,∞) with strictly
positive quadratic coefficient. This means that Cν is not ultimately decreasing,
which is a contradiction. Thus, j2 < ∞. Since C′

ν is continuous and concave on
(0,∞) and since φ′ is linear, it is clear that Cν(x) ≤ φ(x) on [j2,∞). �
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6. Existence of a Nash equilibrium.

6.1. Atomic initial measure. We start with the case where the initial law μ is
an atomic probability measure. We will construct a put function Q(x) that satisfies
certain conditions, and then define a measure ν via ν((−∞, x]) = Q′(x). It will
then follow that ν belongs to A∗

μ.
We state the theorem for the case of a measure χ as we will need the more

general result in subsequent sections. In the case of X0 ∼ μ, where μ is a purely
atomic probability measure with finitely many atoms, the theorem gives existence
of a symmetric Nash equilibrium.

THEOREM 6.1. Suppose χ ∈ M consists of finitely many atoms, that is, χ =∑N
j=1 pjδξj

, where 0 ≤ ξ1 < ξ2 < · · · < ξN and pj > 0 for all 1 ≤ j ≤ N . Then
A∗

χ is nonempty.

PROOF. If χ is a point mass at zero, then set π({0}) = χ({0}). Then π ∈ A∗
χ

and the construction is complete.
Otherwise, set Q1(r, y) = yFχ(0) + ry2/2. Then there exists a unique value of

r (r1 say) such that

Q1(r1, y) ≥ Pχ(y) ∀y ≥ 0 and

Q1(r1, y) = Pχ(y) for some y > 0.

Let y1 = max{y > 0 :Q1(r1, y) = Pχ(y)}. That y1 is finite is one of the con-
clusions of Proposition 5.4, but also follows from the fact that Q1(r1, ·) is
quadratic, whereas Pχ(·) is ultimately linear. Then necessarily P ′

χ(y1) exists

and ∂
∂y

Q1(r1, y1) = P ′
χ(y1) (see the proof of Proposition 5.3). Note that y1 /∈

{ξ1, ξ2, . . . , ξN } since P ′
χ has a kink at these points. Set ξ0 = 0 and ξN+1 = ∞ and

let n1 be such that ξn1 < y1 < ξn1+1. If n1 = N [equivalently P ′
χ(y1) = ∑N

j=1 pj =
χ(R+)] then stop. Otherwise, we proceed inductively.

Let y0 = 0. Suppose we have found 0 < y1 < y2 < · · · < yk < ξN (yi /∈
{ξ1, ξ2, . . . , ξN } ∀1 ≤ i ≤ k) and Q(·) on [0, yk] such that (i) Q is continu-
ously differentiable, (ii) Q(yi) = Pχ(yi) and Q′(yi) = P ′

χ(yi) for any 1 ≤ i < k,
(iii) Q(yk) = Pχ(yk) and Q′(yk−) = P ′

χ(yk) and (iv) Q′′ is defined everywhere
except at the points 0, y1, y2, . . . , yk and is piecewise constant and decreasing.
In particular, Q is quadratic on {(yi−1, yi)}1≤i≤k with representation Q(y) =
Qi(ri, y) for y ∈ [yi−1, yi] where

Qi(ri, y)� Pχ(yi−1) + (y − yi−1)P
′
χ(yi−1) + 1

2ri(y − yi−1)
2,

and where (ri)1≤i≤k is a strictly decreasing sequence. Let Qk+1(r, y) = Pχ(yk) +
(y − yk)P

′
χ(yk) + 1

2r(y − yk)
2; then there exists a unique r (rk+1 say) such that

Qk+1(rk+1, y) ≥ Pχ(y) ∀y ≥ yk
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FIG. 2. The construction of Q(y). The piecewise linear curve is Pχ (y). The functions Q3(·, y) are

quadratic functions of y on [y2,∞) such that Q3(·, y2) = Pχ(y2) and ∂
∂y

Q3(·, y2) = P ′
χ (y2). Then

r3 is the unique value of r such that Q3(r3, y) ≥ Pχ(y) for all y ≥ y2 and Q3(r3, y) = Pχ (y) for
some y > y2. The dashed curve is Q3(r, y) with r < r3.

and

Qk+1(rk+1, y) = Pχ(y) for some y > yk.

See Figure 2. Since Qk(rk, y) > Pχ(y) for all y > yk , it is clear that 0 <

rk+1 < rk . Set yk+1 = max{y > yk :Qk+1(rk+1, y) = Pχ(y)}. Then P ′
χ(yk+1) ex-

ists, P ′
χ (yk+1) = ∂

∂y
Qk+1(rk+1, yk+1), and yk+1 /∈ {ξ1, ξ2, . . . , ξN } since Pχ has

changes in slope at these points. Set Q(y) = Qk+1(rk+1, y) on [yk, yk+1].
We repeat the construction up to and including the index k = T − 1 for which

yk+1 > ξN . Then yT −1 < ξN < yT . Finally, we set Q(y) = Pχ(y) = χ(R+)y − χ

for y ≥ yT .
For y > 0, let ρ(y) = Q′′(y). Then ρ is defined almost everywhere and ρ(y) =

ri on (yi−1, yi)1≤i≤T and ρ(y) = 0 on (yT ,∞). Furthermore, ρ is decreasing
and ρ only decreases at points where Pχ(y) = Q(y). Let π be the measure with
an atom at 0 of size Fχ(0) and density ρ on (0,∞), and recall that yT > ξN .
Then Fπ(0) = Fχ(0); for any y ≥ yT , Fπ(y) = P ′

π(yT ) = P ′
χ(yT ) = χ(R+) and

π = ∫ ∞
0 yπ(dy) = yT Fπ(yT ) − Pπ(yT ) = yT Fχ(yT ) − Pχ(yT ) = χ . Further-

more, Pπ(y) = Q(y) ≥ Pχ(y). It follows that π ∈ A∗
χ . �

REMARK 6.1. Fix any k ∈ {1,2, . . . , T }. Let nk be such that ξnk
< yk < ξnk+1.

Then, in the mapping χ �→ π , the atoms (ξ1, ξ2, . . . , ξnk
) of χ are mapped to

[0, yk], and π([0, yk]) = P ′
χ(yk) = ∑nk

j=1 pj . Moreover,
∫ yk

0 yπ(dy) = ykFπ(yk)−
Pπ(yk) = yk

∑nk

j=1 pj −Pχ(yk) = yk

∑nk

j=1 pj −∑nk

j=1 pj (yk − ξj ) = ∑nk

j=1 pjξj .
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EXAMPLE 6.1. Suppose that χ = pδξ with ξ > 0. Then Pχ(y) = p(y − ξ)+.
Let Q1(r, y) = ry2/2. Then, Q1(r, y) ≥ Pχ(y) if and only if r ≥ p/(2ξ) � r1, and
for r = r1 we have Q1(r1, y) ≥ Pχ(y) with equality at y = 0 and y = y1 = 2ξ .
Then y1 > ξ so that the construction ends and π = pU[0,2ξ ].

The rest of this subsection is devoted to the proof of a useful proposition which
will be used in the next subsection to find the optimal target law for a general initial
measure.

For 	 ∈ M, let X	 be a random variable with law 	 . Denote by 	̆ the law of
a random variable X̆	 where conditional on X	 = x, X̆	 has law �x = U[0,2x].

LEMMA 6.1. For x ≥ 0, and 	 ∈ M,

F	̆ (x) = F	(x/2) +
∫
(x/2,∞)

	(dy)
x

2y
;

(9)

P	̆ (x) =
∫ ∞
x/2

P	(u)
x2

2u3 du.

PROOF. We prove the second result. We have

P	̆ (x) = xF	(0) +
∫
(0,∞)

	(du)

∫ 2u

0

(x − z)+

2u
dz

= xF	(0) +
∫
(0,x/2)

(x − u)	(du) +
∫
[x/2,∞)

x2

4u
	(du),

and integrating by parts we find

P	̆ (x) =
∫
(0,x/2)

F	 (u)du +
∫
[x/2,∞)

F	 (u)
x2

4u2 du.

The result follows from a further integration by parts. �

COROLLARY 6.1. If π 
cx 	 , then π̆ 
cx 	̆ .

PROPOSITION 6.1. Suppose μ ∈ M consists of finitely many atoms. Denote
by ν the element of A∗

μ which is constructed using the algorithm in Theorem 6.1.
Suppose 	 is any measure such that 	 has mass μ(R+), mean μ and μ 
cx 	 .
Then ν 
cx 	̆ .

PROOF. By Corollary 6.1, it is sufficient to prove the proposition in the case
	 = μ.

Suppose μ = ∑N
j=1 pjδξj

, where 0 ≤ ξ1 < ξ2 < · · · < ξN , pi > 0 and∑N
j=1 pjξj = μ. By construction, μ̆ = ∑N

j=1 pjU[0,2ξj ] where U[0,0] can more
simply be written as δ0.
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For any m ∈ {1,2, . . . ,N}, define μm = ∑m
j=1 pjδξj

and suppose νm is the cor-
responding measure derived using the algorithm in Theorem 6.1.

If N = 1, then μ = p1δξ1 and ν = p1U[0,2ξ1] = μ̆ and the result holds.
Now suppose that N ≥ 2. Then ν = νN = ∑N−1

m=1(νm+1 − νm) + ν1. Note that
μm+1 − μm ∼ pm+1δξm+1 and hence νm+1 − νm has mass pm+1 and mean ξm+1.
Provided we can show that (νm+1 − νm) has a nondecreasing density, then it fol-
lows from Proposition 5.1 that (νm+1 − νm) 
cx pm+1U[0,2ξm+1]. Then, since
convex order is preserved under addition, if (νm+1 − νm) has a nondecreasing
density for every m with 1 ≤ m ≤ N − 1, then ν 
cx

∑N
m=1 pmU[0,2ξm] = μ̆.

We use a suffix m to label quantities constructed in Theorem 6.1, to show that
they are constructed from measure μm. The idea of the proof is that in calculating
νm and νm+1 using the algorithm of Theorem 6.1, the early parts of the construc-
tion will be the same, and indeed νm and νm+1 will differ only over the final
nonzero element of νm+1.

Fix m with 1 ≤ m ≤ N . Define Bm ⊆ {1,2, . . . , T m} by Bm = {k :Qm
k (rm

k , y) ≥
Pμm+1(y) on (ym

k−1,∞)}.
Case (a). Bm = {1,2, . . . , T m}.
Then (Qm

j (rm
j , y), ym

j )1≤j≤T m and (Qm+1
j (rm+1

j , y), ym+1
j )1≤j≤T m are the

same. Then also T m+1 = T m + 1, ym
T m < ym+1

T m+1 and the densities ρm+1 and

ρm satisfy that ρm+1 = ρm on the interval (0, ym
T m = ym+1

T m ), ρm+1 is constant

on (ym+1
T m , ym+1

T m+1) and ρm is zero on (ym+1
T m , ym+1

T m+1). In particular, νm+1 − νm =
pm+1U[ym+1

T m , ym+1
T m ] 
cx pm+1U[0,2ξm+1].

Case (b). inf{k :k /∈ Bm} = T m.
Then it must be that in the construction we have T m = T m+1, ρm+1 = ρm

on the interval (0, ym
T m−1 ≡ ym+1

T m−1), ρm+1 is constant (with value denoted by

rm+1
T m+1 say) on (ym+1

T m−1, y
m+1
T m+1), and ρm is constant and strictly less than rm+1

T m+1 on

(ym+1
T m−1, y

m
T m), ρm is zero on (ym

T m,∞). We want to argue that ym
T m < ym+1

T m , which

then implies that (ρm+1 − ρm) is nondecreasing on (0, ym+1
T m ). See case (b) of

Figure 3.
Note that in the construction of νm the masses at points (ξnm

T m−1+1, . . . , ξm)

are embedded in the interval (ym
T m−1, y

m
T m), and in the construction of νm+1 the

masses at points (ξnm
T m−1+1, . . . , ξm+1) are embedded in (ym

T m−1, y
m+1
T m ). Moreover,

νm has constant density over (ym
T m−1, y

m
T m) and νm+1 has constant density over

(ym
T m−1, y

m+1
T m ). Consider the means of νm and νm+1; by Remark 6.1, we have

1

2

(
ym
T m−1 + ym

T m

) m∑
j=nm

T m−1+1

pj =
m∑

j=nm
T m−1+1

pjξj
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FIG. 3. Graph of the decreasing, piecewise constant functions ρm(y) and ρm+1(y). Observe that
ρm ≤ ρm+1 and (ρm+1 − ρm) is nondecreasing on (0, ym+1

T m+1 ). The three cases correspond to the

three cases in the proof. In case (c) the density ρ̃m+1 is also shown.

and

1

2

(
ym
T m−1 + ym+1

T m

) m+1∑
j=nm

T m−1+1

pj =
m+1∑

j=nm
T m−1+1

pjξj .
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Hence,

ym
T m − ym

T m−1 =
2

∑m
j=nm

T m−1+1 pj (ξj − ym
T m−1)∑m

j=nm
T m−1+1 pj

<
2

∑m+1
j=nm

T m−1+1 pj (ξj − ym
T m−1)∑m+1

j=nm
T m−1+1 pj

= ym+1
T m − ym

T m−1

and then ym
T m < ym+1

T m .
Case (c). inf{k :k /∈ Bm} < T m.
Define k̂ � inf{k :k /∈ Bm}. Then it must be that in the construction we have

T m+1 = k̂, ρm+1 = ρm on the interval (0, ym

k̂−1
≡ ym+1

k̂−1
), ρm+1 is constant (with

value denoted by rm+1
T m+1 say) on (ym+1

k̂−1
, ym+1

T m+1), ρm is decreasing and strictly less

than rm+1
T m+1 on (ym+1

k̂−1
, ym

T m) and ρm is zero on (ym
T m,∞). Similarly to case (b), we

want to argue that ym
T m < ym+1

T m+1 , which then implies that (ρm+1 − ρm) is zero on

(0, ym

k̂−1
) and nondecreasing on (ym

k̂−1
, ym+1

T m+1). See case (c) of Figure 3.

We first construct a new measure ν̃m+1. Define Q̃m+1 on [0, ym
T m−1] by

Q̃m+1(y) = Qm(y) = Pνm(y). Let Lm+1 be the line Lm+1(y) = ∑m+1
j=1 pj (y − ξj )

so that Pμm+1(y) = max{Pμm(y),Lm+1(y)} and for y ≥ ym
T m−1 define

Q̃m+1
T m (r, y)� Pμm

(
ym
T m−1

) + (
y − ym

T m−1
)
P ′

μm

(
ym
T m−1

) + 1
2r

(
y − ym

T m−1
)2

.

Then there exists a unique r (denoted by r̃m+1 say) such that

Q̃m+1
T m

(
r̃m+1, y

) ≥ Lm+1(y) ∀y ≥ ym
T m−1

and

Q̃m+1
T m

(
r̃m+1, y

) = Lm+1(y) for some y > ym
T m−1.

Note that in the construction of ν̃m+1 (unlike in the construction of νm or νm+1)
there is no requirement that r̃m+1 ≤ rm

T m−1. Let ỹm+1 be the point such that

Q̃m+1
T m (r̃m+1, ỹm+1) = Lm+1(ỹ

m+1). Then ỹm+1 > ym
T m−1 and ∂

∂y
Q̃m+1

T m (r̃m+1,

ỹm+1) = L′
m+1(ỹ

m+1) = ∑m+1
j=1 pj . Now let Q̃m+1(·) be given by (see Figure 4)

Q̃m+1(y) = Pνm(y) · 1[0,ym
T m−1)

+ Q̃m+1
T m

(
r̃m+1, y

) · 1[ym
T m−1,ỹ

m+1)

+ Lm+1(y) · 1[ỹm+1,∞).

Let ρ̃m+1 = (Q̃m+1)′′, and let ν̃m+1 be the measure with density ρ̃m+1 on
(0,∞) and an atom at 0 of size Fμ(0). Then Pν̃m+1(y) = Q̃m+1(y), and for
y ≥ ỹm+1 we have Fν̃m+1(y) = L′

m+1(ỹ
m+1) = ∑m+1

j=1 pj and
∫ ∞

0 yν̃m+1(dy) =
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FIG. 4. Graph of Q̃m+1(y). The dashed curve Q̃m+1
T m (r̃m+1, y) is a quadratic function of y over

the interval [ym
T m−1, ỹm+1].

ỹm+1Fν̃m+1(ỹm+1)−Pν̃m+1(ỹm+1) = ∑m+1
j=1 pjξj . In particular, ν̃m+1 has the same

mass and first moment as μm+1, and hence as νm+1.
The point about the intermediate measure ν̃m+1 is that as in case (b) the masses

at points (ξnm
T m−1+1, . . . , ξm+1) are embedded in the interval (ym

T m−1, ỹ
m+1). In

particular, νm has constant density over (ym
T m−1, y

m
T m) and ν̃m+1 has constant den-

sity over (ym
T m−1, ỹ

m+1). Then, exactly as in the proof of case (b), considering the
means of νm and ν̃m+1, we have ym

T m < ỹm+1.
Next, we wish to compare the supports of ν̃m+1 and νm+1. Recall that

ν̃m+1(R+) = νm+1(R+) = ∑m+1
j=1 pj and ν̃m+1 and νm+1 have the same mean.

Moreover, Fνm+1(y) = Fνm(y) = Fν̃m+1(y) on [0, ym

k̂−1
], and Fνm+1(y) > Fνm(y) =

Fν̃m+1(y) on (ym

k̂−1
, ym

T m−1]. This implies that ỹm+1 < ym+1
T m+1 since the means of

ν̃m+1 and νm+1 are the same [and hence the area between Fνm+1 and the horizontal
line at height νm+1(R+) is equal to the area between Fν̃m+1 and the same horizon-
tal line (see Figure 5)]. Hence, ym

T m < ỹm+1 < ym+1
T m+1 and we find that (ρm+1 −ρm)

is nondecreasing on (0, ym+1
T m+1), and (νm+1 − νm) is a positive measure with in-

creasing density on its support. Hence, νm+1 − νm 
cx pm+1U[0,2ξm+1]. �

6.2. General initial measure. Our first result shows that if μ is a general mea-
sure in M then A∗

μ is nonempty, and hence a symmetric Nash equilibrium exists.
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FIG. 5. Graph of Fνm+1 , Fνm and Fν̃m+1 in the case k̂ < T m. By the constructions,

Fνm+1(y) = Fνm(y) = Fν̃m+1(y) on [0, ym+1
k̂−1

], Fνm+1(y) > Fνm(y) = Fν̃m+1(y) on (ym+1
k̂−1

, ym
T m−1]

and Fν̃m+1 is linear on (ym
T m−1, ỹm+1). Since Fνm+1 and Fν̃m+1 have the same mean, the area be-

tween the horizontal line at ν̃m+1(R) and Fνm+1 must be equal to the area between the line at

ν̃m+1(R) and Fν̃m+1 . Hence, ỹm+1 < ym+1
T m+1 .

THEOREM 6.2. Suppose μ ∈M. Then A∗
μ is nonempty.

PROOF. Let {μn}n≥1 be a sequence of atomic probability measures with finite
support such that Fμn(0) = Fμ(0), μn has total mass μ(R+) and mean μ and
μn ↑ μ in convex order. Theorem 6.1 implies that for every n, there exists νn ∈
A∗

μn
. Define Dn : [0,∞) �→ [0,μ(R+)] by

Dn(x) = −C′
νn

(x) = μ
(
R

+) − Fνn(x)

and let bn = sup{x :Fνn(x) < μ(R+)}. From the construction of νn in the proof
of Theorem 6.1 it can be seen that bn is finite. Thus, Dn is a decreasing, convex
function with Dn(0) = μ(R+) − Fμ(0), Dn(bn) = 0, Dn ≥ 0 and

∫ ∞
0

Dn(x)dx =
∫ bn

0
Dn(x)dx =

∫ bn

0
xνn(dx) = νn = μn = μ.(10)

Helly’s Theorem [see Helly (1912) or Filipów et al. (2012), Theorem 1.3] states
that if {fn}n≥1 is a uniformly bounded sequence of monotone real-valued functions
defined on R then there is a subsequence {fnk

}k≥1 which is pointwise convergent.
Hence, there exists a convergent subsequence of {Dn}n≥1 and moving to a subse-
quence as necessary, we may assume {Dn}n≥1 is pointwise convergent. Let D∞
denote the limit function. Since Dn is decreasing and convex for any n ≥ 1, D∞ is
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also decreasing and convex. Moreover, by Fatou’s lemma and (10),∫ ∞
0

D∞(x) dx =
∫ ∞

0
lim inf
n→∞ Dn(x)dx ≤ lim inf

n→∞

∫ ∞
0

Dn(x)dx = μ.

In particular, since D∞ is decreasing and
∫ ∞

0 D∞(x) dx < ∞, we must have
limx↑∞ D∞(x) = 0.

Define a measure ν via ν((−∞, x]) = μ(R+)−D∞(x). It is clear that ν(R+) =
μ(R+), Fν(0) = Fμ(0), Fν(x) is continuous and ν has a nonincreasing density ρ.
Moreover, νn converges in distribution to ν.

We wish to show that ν has mean μ. Note that νn 
cx μ̆n (Proposition 6.1 ap-
plied to μn) and μn 
cx μ from which it follows that νn 
cx μ̆. Hence, elements νn

in the sequence have a uniform bound (in the sense of convex order) and it follows
that the sequence is uniformly integrable and μ = limn νn = ν.

Since νn converges to ν in distribution, it follows that Pνn(x) converges point-
wise to Pν . Then since νn → ν it follows that Cνn(x) converges pointwise to Cν .
Hence, Cν(x) = limn Cνn(x) ≥ limn Cμn(x) = Cμ(x).

Suppose Cν(x) > Cμ(x) on some interval J : we show that ν has constant den-
sity on J . It is sufficient to prove the result on every closed subinterval of J , so
we assume J = [a, b]. Then, by continuity of Cν and Cμ, there exists ε such that
Cν(x) ≥ Cμ(x) + ε on J . Let κ = −C′

μ(a+) ≤ μ(R+); then C′
μ(x+) ≥ −κ for

all x ∈ J . Fix K ∈ N such that K > 2(b − a)κ/ε and set JK = {aj }0≤j≤K where
aj = a + (b − a)j/K . Since there is pointwise convergence, there exists N0 > 0
such that Cνn(x) > Cμ(x) + ε/2 for all x ∈ JK and all n ≥ N0. Then, for n ≥ N0,
if aj−1 ≤ x ≤ aj ,

Cμ(x) ≤ Cμ(aj−1) ≤ Cμ(aj ) + κ(aj − aj−1) < Cμ(aj ) + ε/2 < Cνn(aj )

≤ Cνn(x).

Finally, Cμn(x) ≤ Cμ(x) everywhere, and we conclude that for sufficiently large n,
Cμn(x) < Cνn(x) on J , and hence Dn(x) is a linear function on J . It is easy to see
that D∞(x) = limn↑∞ Dn(x) is also linear on J , and thus ν has constant density
on J as required. Thus, the density of ν only decreases when Cν(x) = Cμ(x).
Hence, ν ∈A∗

μ. �

7. Uniqueness of a Nash equilibrium. Section 6 shows that set A∗
μ is

nonempty. In this section, we prove that |A∗
μ| ≤ 1, which thus completes the proof

of Theorem 3.2.

PROPOSITION 7.1. Suppose μ ∈ M. Then |A∗
μ| ≤ 1.

PROOF. Assume to the contrary that there exists two distinct elements ν and σ

in the set A∗
μ. Recall that if Cν(x) > Cμ(x) then Cν is locally a quadratic function

near x, similarly for Cσ . Moreover, both C′
ν and C′

σ are concave.
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Observe that, for any x ≥ 0, we cannot have Cν(y) > Cσ (y) for all y ∈ (x,∞):
if so then Cν(y) > Cσ (y) ≥ Cμ(y) on (x,∞) and Cν is quadratic on (x,∞),
which is impossible by Proposition 5.4.

Let x0 > 0 be such that Cν(x0) �= Cσ (x0). Without loss of generality, suppose
that Cν(x0) > Cσ (x0). Define x1 = inf{x > x0 :Cν(x) = Cσ (x)}. By the observa-
tion above x1 < ∞. Also note that Cν(x) > Cσ (x) for all x ∈ [x0, x1).

Suppose that Cν(x1) = Cσ (x1) > Cμ(x1). Then, near x1,{
Cν(x) = Cν(x1) + βν,1(x − x1) + γν,1(x − x1)

2,

Cσ (x) = Cσ (x1) + βσ,1(x − x1) + γσ,1(x − x1)
2,

for some constants βν,1 < 0, βσ,1 < 0, γν,1 > 0 and γσ,1 > 0. Since Cν(x) > Cσ (x)

to the left of x1, it is clear that βν,1 ≤ βσ,1.
Assume that βν,1 = βσ,1. Then since Cν(x) > Cσ (x) on [x0, x1), we have

γν,1 > γσ,1. Let x̂ν,1 = inf{x > x1 :Cν(x) = Cμ(x)}, then Cν(x) = Cν(x1) +
βν,1(x−x1)+γν,1(x−x1)

2 on [x1, x̂ν,1] and x̂ν,1 < ∞ by Proposition 5.4. Further,
by Proposition 5.4, Cσ (x) ≤ Cσ (x1) + βσ,1(x − x1) + γσ,1(x − x1)

2 on (x1,∞).
Thus, Cσ (x̂ν,1) < Cν(x̂ν,1) = Cμ(x̂ν,1), which is a contradiction. Hence, βν,1 <

βσ,1 < 0. Now let x̂σ,1 = inf{x > x1 :Cσ (x) = Cμ(x)} < ∞ (by Proposition 5.4).
If γν,1 ≤ γσ,1 then Cν(x̂σ,1) < Cσ (x̂σ,1) = Cμ(x̂σ,1), which is a contradiction. So
we conclude that βν,1 < βσ,1 < 0 and γν,1 > γσ,1 > 0. Set ϑ = βσ,1 − βν,1 > 0.

Now we introduce a useful lemma.

LEMMA 7.1. Suppose ν and σ are distinct elements of A∗
μ. Suppose xk is

such that Cν(xk) = Cσ (xk) > Cμ(xk). Then xk > 0 and in a neighbourhood of xk

we can write {
Cν(x) = Cν(xk) + βν,k(x − xk) + γν,k(x − xk)

2,

Cσ (x) = Cσ (xk) + βσ,k(x − xk) + γσ,k(x − xk)
2.

Suppose βν,k �= βσ,k . Then there is an interval to the left of xk on which
Cν(x) − Cσ (x) is either strictly positive or strictly negative. Suppose that
Cν(x) − Cσ (x) > 0 on some interval (xk − ε, xk): if not then interchange the roles
of ν and σ . Then βν,k < βσ,k < 0 and γν,k > γσ,k > 0.

Define xk+1 = sup{x < xk :Cν(x) = Cσ (x)}. Then, 0 < xk+1 < xk , Cν(xk+1) =
Cσ (xk+1) > Cμ(xk+1), and hence in a neighbourhood of xk+1 we can write{

Cν(x) = Cν(xk+1) + βν,k+1(x − xk+1) + γν,k+1(x − xk+1)
2,

Cσ (x) = Cσ (xk+1) + βσ,k+1(x − xk+1) + γσ,k+1(x − xk+1)
2.

(11)

Further, βσ,k+1 < βν,k+1 < 0, γσ,k+1 > γν,k+1 > 0 and βν,k+1 − βσ,k+1 > βσ,k −
βν,k > 0.

PROOF. Exactly as in the case k = 1 from the proof of Proposition 7.1, we
conclude that βν,k < βσ,k < 0 and γν,k > γσ,k > 0.
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Assume that Cν(xk+1) = Cσ (xk+1) = Cμ(xk+1). If xk+1 = 0, then C′
ν(xk+1) =

Fμ(0) − μ(R+) = C′
σ (xk+1). Otherwise, if xk+1 > 0 then C′

ν(xk+1) = C′
σ (xk+1)

by Proposition 5.3. In either case, since Cν(x) > Cσ (x) ≥ Cμ(x) on (xk+1, xk),
C′

ν is linear on [xk+1, xk]. Then because βσ,k = C′
σ (xk) > C′

ν(xk) = βν,k and C′
σ is

concave, it is clear that C′
σ (x) ≥ C′

ν(x) on (xk+1, xk). This contradicts the fact that
Cσ (·) = Cν(·) at both xk and xk+1. Hence, Cν(xk+1) = Cσ (xk+1) > Cμ(xk+1).

It then follows that xk+1 ∈ (0, xk) and both Cν and Cσ are quadratic in a neigh-
bourhood of xk+1. In particular, Cν is quadratic on (xk+1, xk) and γν,k = γν,k+1.
Using a similar argument to that described in the case k = 1, we get that βσ,k+1 <

βν,k+1 < 0 and γσ,k+1 > γν,k+1 > 0.
Denote by ρν the density function of the measure ν. Then ρν is constant on

(xk+1, xk). In contrast, ρσ is nonincreasing, ρσ (xk) = 2γσ,k < 2γν,k = ρν(xk) and
ρσ (xk+1) = 2γσ,k+1 > 2γν,k+1 = ρν(xk+1). Set yk = sup{y < xk :ρσ (y) ≥ ρν(y)},
then yk ∈ (xk+1, xk). Further, R(x) � Cν(x)− Cσ (x) defined on [xk+1, xk] is zero
at the endpoints, has nondecreasing second derivative and is concave on [xk+1, yk]
and strictly convex on [yk, xk] (see Figure 6).

Let zk ∈ (xk+1, yk) be the unique value such that R(zk) = R(yk). Then
R′(xk+1) ≥ R′(zk) > 0 and R′(yk) < R′(xk) ≤ 0. Set H(x) = R(yk − x) − R(yk)

on [0, yk − zk]. Then using Proposition 5.2, we obtain R′(zk) ≥ |R′(yk)|. Hence,
βν,k+1 − βσ,k+1 = R′(xk+1) ≥ R′(zk) ≥ |R′(yk)| > |R′(xk)| = βσ,k − βν,k > 0.

�

Return to the proof of Proposition 7.1. Using Lemma 7.1, we construct a de-
creasing sequence of points (xk)k≥1 at which Cν − Cσ changes sign. Moreover,
|C′

ν(xk)−C′
σ (xk)| = |βν,k −βσ,k| ≥ ϑ . Let x∞ = limk↑∞ xk then x∞ ≥ 0. Observe

that limk↑∞(βν,k −βσ,k) = C′
ν(x∞)−C′

σ (x∞) exists. However, lim supk↑∞(βν,k −
βσ,k) ≥ ϑ > 0 and lim infk↑∞(βν,k − βσ,k) ≤ −ϑ < 0, which is a contradiction.
Hence, there cannot be distinct elements ν and σ in set A∗

μ.

FIG. 6. Graph of R(x). Since R′′(x) = ρν(x) − ρσ (x) is nondecreasing on (xk+1, xk)

and R′′(yk) = 0, R is concave on [xk+1, yk] and strictly convex on [yk, xk]. Since
R′(x) = C′

ν(x) − C′
σ (x), R′(xk+1) = βν,k+1 − βσ,k+1 > 0 and R′(xk) = βν,k − βσ,k < 0. Then

R′(yk) < R′(xk) < 0, and there exists a unique zk ∈ (xk+1, yk) such that R(zk) = R(yk). Further,
R′(xk+1) ≥ R′(zk) > 0.



210 H. FENG AND D. HOBSON

The above is predicated on the assumption that Cν(x1) = Cσ (x1) > Cμ(x1).
Now suppose Cν(x1) = Cσ (x1) = Cμ(x1). Recall that Cν > Cσ on an interval
to the left of x1. Let x2 = sup{x < x1 :Cν(x) = Cσ (x)}. Then x2 ∈ [0, x0) and
Cν(x) > Cσ (x) on (x2, x1).

Assume that Cν(x2) = Cσ (x2) = Cμ(x2). Then, by Proposition 5.3, C′
ν(x1) =

C′
σ (x1) and C′

ν(x2) = C′
σ (x2). Since C′

ν is linear and C′
σ is concave on (x2, x1), it

follows that C′
ν(x) ≤ C′

σ (x) for all x ∈ [x2, x1], which is a contradiction. Hence,
Cν(x2) = Cσ (x2) > Cμ(x2).

Now starting the construction at x2, rather than x1, we are in the same case as
discussed previously. In particular, there cannot be distinct elements ν and σ in
set A∗

μ. �

APPENDIX: NECESSITY OF CONDITIONS FOR A SYMMETRIC
NASH EQUILIBRIUM

PROOF OF THEOREM 2.1. First, we argue that for ν ∈ P to be a symmetric
Nash equilibrium we must have that ν = μ. Suppose not. Then ν < μ.

Let α be the unique solution of T (·) = 0 where T (x) = Pμ(x) − x + ν. There
are two cases; either Pν(α) = Pμ(α) = α − ν or Pν(α) > Pμ(α). We consider the
second case first; the first case is degenerate and will be treated subsequently.

So suppose Pν(α) > Pμ(α). Then Pν(x) ≥ x − ν > Pμ(x) on (α,∞) and
ε := infx≥α[Pν(x) − Pμ(x)] > 0. The aim is to construct an interval (γ,β) and
to modify ν by moving the mass of ν in this interval to the right-hand endpoint,
whilst preserving the admissibility property. Then the modified measure is pre-
ferred to ν when playing against an agent with target law ν.

Consider Q(·) defined on x ≥ α by Q(x) = Pν(x) − ε. Then Q is nonnegative.
Fix β > α and define γ via

γ = arg sup
c<β

{
Q(β) − Pν(c)

β − c

}
, � = Q(β) − Pν(γ )

β − γ
.

(Note γ may not be uniquely defined, but � is.) Then Fν(γ−) ≤ � ≤ Fν(γ ) <

Fν(β−).
Let Pσ be defined by

Pσ (x) =
⎧⎨
⎩

Pν(x), 0 ≤ x < γ ;
Pν(γ ) + (x − γ )�, γ ≤ x < β;
Q(x), x ≥ β.

If σ is the measure associated with the put price function Pσ then σ ≥ ν in the
sense of first-order stochastic dominance, and Pσ ≥ Pμ so that σ is weakly admis-
sible.
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For any admissible strategy π ,

V 1
σ,π − V 1

ν,π =
∫ ∞

0
π(dx)

{[(
1 − Fσ (x)

) + θ
(
Fσ (x) − Fσ (x−)

)]
− [(

1 − Fν(x)
) + θ

(
Fν(x) − Fν(x−)

)]}
= π

({γ })(1 − θ)
[
Fν(γ ) − �

]
+

∫
(γ,β)

π(dx)
{
(1 − θ)

[
Fν(x) − �

] + θ
[
Fν(x−) − �

]}
+ π

({β})θ(
Fν(β−) − �

)
≥ (1 − θ)

{
π

({γ })[Fν(γ ) − �
] +

∫
(γ,β)

π(dx)
[
Fν(x) − �

]}
.

Then since ν assigns positive mass to [γ,β) it follows that V 1
σ,ν − V 1

ν,ν > 0 and
(ν, ν) cannot be a symmetric Nash equilibrium.

Now consider the degenerate case Pν(α) = α − ν. Then ν has support on [0, α]
and an atom at α and μ assigns positive mass to (α,∞).

Define σ via the put price function Pσ where Pσ (x) = Pν(x) for x ≤ α and
Pσ (x) = Pμ(x) for x > α. Note that Pν and Pμ are convex and P ′

σ (α−) =
P ′

ν(α−) ≤ P ′
μ(α−) ≤ P ′

μ(α+) = P ′
σ (α+), and hence Pσ is convex. Then also σ

is admissible and

V 1
σ,π − V 1

ν,π = π
({α})(1 − θ)

[
1 − Fμ(α)

] +
∫
(α,∞)

π(dx)
{[

1 − Fμ(x)
]}

+ θ
[
Fμ(x) − Fμ(x−)

]
and V 1

σ,ν −V 1
ν,ν > ν({α})(1 − θ)μ((a,∞)) > 0. We conclude in this case also that

(ν, ν) cannot be a symmetric Nash equilibrium.
Second, we show that for ν to be a symmetric Nash equilibrium we must have

that ν has no atoms at points above zero. Assume that ν is strongly admissible
and that ν places an atom of size p > 0 at z > 0. We aim to show that ν cannot
correspond to a symmetric Nash equilibrium by considering the impact of splitting
the mass at z into a mass of size q at z − ε1 and a mass of size p − q at z + ε2
where q � p and ε1 � ε2, in such a way that the mean is preserved.

Let the measure σ be given by

Fσ (x) =
⎧⎨
⎩

Fν(x), if x ∈ [0, z − ε1) ∪ [z + ε2,∞),
Fν(x) + q, if x ∈ [z − ε1, z),
Fν(x) − (p − q), if x ∈ [z, z + ε2),

where ε2 ∈ (0,
(1−θ)zp

1+θp
), ε1 ∈ (

(1+θp)ε2
(1−θ)p

, z) and q = ε2p
ε1+ε2

∈ (0,p). Observe that
(z− ε1)q + (z+ ε2)(p −q) = zp, and hence Fν and Fσ have the same mean. Then
Cσ (x) = Cν(x) if x ∈ [0, z − ε1) ∪ [z + ε2,∞), Cσ (x) = Cν(x) + [x − (z − ε1)]q
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if x ∈ [z− ε1, z), and Cσ (x) = Cν(x)+ (z+ ε2 −x)(p −q) if x ∈ [z, z+ ε2). This
implies that Cσ (x) ≥ Cν(x) ≥ Cμ(x). Thus, σ is strongly admissible.

Suppose that Player 2 chooses law ν. Then

V 1
σ,ν − V 1

ν,ν = Fν

(
(z − ε1)−)

q + Fν

(
(z + ε2)−)

(p − q) − Fν(z−)p − θp2

+ θν
({z − ε1})q + θν

({z + ε2})(p − q)

≥ Fν

(
(z − ε1)−)

q + Fν

(
(z + ε2)−)

(p − q) − Fν(z−)p − θp2

= p

{[
Fν

(
(z + ε2)−) − Fν(z−)

] ε1

ε1 + ε2

− [
Fν(z−) − Fν

(
(z − ε1)−)] ε2

ε1 + ε2
− θp

}
.

Since Fν((z + ε2)−) − Fν(z−) ≥ p and 0 ≤ Fν(z−) − Fν((z − ε1)−) ≤ 1,

V 1
σ,ν − V 1

ν,ν ≥ p

[
ε1

ε1 + ε2
p − ε2

ε1 + ε2
− θp

]
= p

ε1(1 − θ)p − (1 + θp)ε2

ε1 + ε2
> 0,

which contradicts the assumption that (ν, ν) is a Nash equilibrium. Thus, Fν(x) is
continuous on (0,∞).

Third, we consider the possibility of an atom at zero. Suppose (ν, ν) is a sym-
metric Nash equilibrium and set p = Fν(0) and pμ = Fμ(0). Since ν must be
strongly (and not merely weakly) admissible by the first part of the theorem,
μ 
cx ν and we must have p ≥ pμ. Suppose that p > pμ; we aim to derive a
contradiction. Fix any q such that 0 < q < min{p√

1 − θ,1 − p}. Since by the
arguments above we must have that Fν is continuous on (0,∞), there exists ε > 0
such that ν((0, ε)) = q , and then Fν(ε) = p + q . For any φ ∈ (0,1), let measure
σφ be given by

Fσφ (x) =
⎧⎨
⎩

(1 − φ)Fν(x), if x ∈ [0, δ),
φ(p + q) + (1 − φ)Fν(x), if x ∈ [δ, ε),
Fν(x), if x ∈ [ε,∞),

where δ = ∫ ε
0 yν(dy)/(p + q). Then σφ is a probability measure with the same

mean as ν. It follows that

V 1
σφ,ν − V 1

ν,ν = φ

{
(p + q)Fν(δ) − θp2 −

∫ ε

0
Fν(y)ν(dy)

}

≥ φ
{
(p + q)p − θp2 − (p + q)q

} = φ
{
(1 − θ)p2 − q2}

> 0.

Hence, if σφ is strongly admissible then Player 1 would prefer strategy σφ to ν.
Making q and ε smaller if necessary, and using the fact that C′

ν(0+) = p −
1 > pμ − 1 = C′

μ(0+), we can insist that Cν(x) − Cμ(x) > (p − pμ)x/2 for x ∈
(0, ε). Observe that Cν(x) − Cσφ(x) = 0 for x ≥ ε. Moreover, for x ∈ [0, ε), since
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Fν(x) − Fσφ(x) ≤ φFν(δ), Cν(x) − Cσφ(x) ≤ φFν(δ)x. Then, if φ ≤ p−pμ

2Fν(δ)
, we

have

Cσφ(x) − Cμ(x) = (
Cν(x) − Cμ(x)

) − (
Cν(x) − Cσφ(x)

)
> 1

2(p − pμ)x − φFν(δ)x ≥ 0

for all x ∈ (0, ε), and thus μ 
cx σφ . Hence, σφ is admissible for small enough φ

and (ν, ν) cannot be a symmetric Nash equilibrium. It follows that p = pμ and
Fν(0) = Fμ(0). �

PROOF OF FORWARD IMPLICATION OF THEOREM 3.1. We have shown that
if ν is a symmetric Nash equilibrium then ν must be strongly admissible with re-
spect to μ. It remains to show, first that ν must have a decreasing density, and
second that the density can only decrease at points where the convex order con-
straint is binding.

Let (π,π) be a candidate symmetric Nash equilibrium, and suppose π has the
properties given in Theorem 2.1. Suppose that π is such that Fπ is not concave on
(0,∞). Then there exist a, b with 0 < a < b < ∞ such that Fπ(b) − Fπ(a) > 0
and for x ∈ (a, b),

Fπ(x) < Fπ(a) + x − a

b − a

[
Fπ(b) − Fπ(a)

]
.

Let σ be such that Fσ (x) = Fπ(x) for x outside [a, b) and for x ∈ [a, b), Fσ (x) =
Fπ(a)+φ[Fπ(b)−Fπ(a)], where φ is chosen so that the means of σ and π agree.
Then

∫ b
a (Fπ(x)−Fπ(a)) dx = ∫ b

a (Fσ (x)−Fπ(a)) dx = φ[Fπ(b)−Fπ(a)](b−a)

and it follows that φ < 1/2. Then

V 1
σ,π − V 1

π,π =
∫
[a,b)

Fπ(x)
[
σ(dx) − π(dx)

]

=
∫
[a,b)

(
Fπ(x) − Fπ(a)

)[
σ(dx) − π(dx)

]

= (1 − φ)
(
Fπ(b) − Fπ(a)

)2 − (Fπ(x) − Fπ(a))2

2

∣∣∣∣
b

x=a

=
(

1

2
− φ

)(
Fπ(b) − Fπ(a)

)2
> 0,

and hence (π,π) cannot be a symmetric Nash equilibrium.
Now suppose that ν is strongly admissible, has no atoms on (0,∞) and Fν

is concave on (0,∞). Then the density fν � F ′
ν is decreasing. Without loss of

generality we take fν to be right-continuous. Suppose that z is such that fν(x) >

fν(z) for all x < z and that Cν(z) > Cμ(z). Then there exists ε ∈ (0, z) such that
Cν(z − ε) + 2εC′

ν(z − ε) > Cμ(z + ε) and Cν(z + ε) − 2εC′
ν(z + ε) > Cμ(z − ε),

and it follows that if σ is any measure such that Cσ = Cν outside (z − ε, z + ε)

then Cσ (x) > Cμ(x) on the interval [z − ε, z + ε] and σ is strongly admissible.
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FIG. 7. Plot of the concave function Fν(·). By concavity of Fν we have w > z − ε. If
Fν(w̃) = Fν(z) − {Fν(z + ε) − Fν(z)}, then the area A−(Fν(w̃)) is strictly less than the area of
the triangle which lies above the horizontal line at Fν(w̃), to the left of the vertical line at z and
below the tangent to Fν at z with slope fν(z), as represented by the sloping line. This area is equal
to the area of the triangle delimited by the vertical line at z, the horizontal line at Fν(z + ε) and
the same tangent to Fν . In turn, this area is less than or equal to A+. It follows that w < w̃ and
v = Fν(w) < Fν(w̃) = 2Fν(z) − Fν(z + ε).

Given z and ε as in the previous paragraph, let A+ = ∫ z+ε
z (Fν(z + ε) −

Fν(x)) dx and let A−(x) = ∫ Fν(z)
x (z − F−1

ν (u)) du. Let v solve A−(v) = A+ and
set w = F−1

ν (v). Note that A−(Fν(z − ε)) ≥ A+ by the concavity of Fν . Then
w ≥ z − ε and v ≥ Fν(0). Note further that A−(Fν(z) − {Fν(z + ε) − Fν(z)}) <

fν(z){Fν(z + ε) − Fν(z)}/2 ≤ A+ and, therefore, v < 2Fν(z) − Fν(z + ε), see
Figure 7.

Then by construction,
∫ z+ε
w xν(dx) = z

∫ z+ε
w ν(dx), and if we define σ by Fσ =

Fν outside (w, z + ε) and Fσ (x) = Fν(w) for w < x < z and Fσ (x) = Fν(z + ε)

for z ≤ x < z + ε we have that σ has the same mean as ν. [In effect, σ replaces
the mass of ν on (w, z + ε) with a point mass at z.] Then, by the remarks of the
previous paragraph, σ is strongly admissible with respect to μ.

Finally,

V 1
σ,ν − V 1

ν,ν =
∫
(w,z+ε)

Fν(x)
[
σ(dx) − ν(dx)

]

= (
Fν(z + ε) − v

)
Fν(z) − Fν(z + ε)2 − v2

2

= (Fν(z + ε) − v)

2

[
2Fν(z) − v − Fν(z + ε)

]
> 0

and hence (ν, ν) cannot be a symmetric Nash equilibrium. �
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