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MULTILEVEL MONTE CARLO FOR LÉVY-DRIVEN SDEs:
CENTRAL LIMIT THEOREMS FOR ADAPTIVE EULER SCHEMES

BY STEFFEN DEREICH AND SANGMENG LI1

Westfälische Wilhelms-Universität Münster

In this article, we consider multilevel Monte Carlo for the numeri-
cal computation of expectations for stochastic differential equations driven
by Lévy processes. The underlying numerical schemes are based on jump-
adapted Euler schemes. We prove stable convergence of an idealised scheme.
Further, we deduce limit theorems for certain classes of functionals depend-
ing on the whole trajectory of the process. In particular, we allow depen-
dence on marginals, integral averages and the supremum of the process. The
idealised scheme is related to two practically implementable schemes and
corresponding central limit theorems are given. In all cases, we obtain errors
of order N−1/2(logN)1/2 in the computational time N which is the same
order as obtained in the classical set-up analysed by Giles [Oper. Res. 56
(2008) 607–617]. Finally, we use the central limit theorems to optimise the
parameters of the multilevel scheme.

1. Introduction. The numerical computation of expectations E[F(X)] for so-
lutions (Xt)t∈[0,T ] of stochastic differential equations (SDEs) is a classical prob-
lem in stochastic analysis and numerous numerical schemes were developed and
analysed within the last twenty years; see, for instance, the textbooks by Kloeden
and Platen [21] and Glasserman [13]. Recently, a new very efficient class of Monte
Carlo algorithms was introduced by Giles [12]; see also Heinrich [14] for an ear-
lier variant of the computational concept. Central to these multilevel Monte Carlo
algorithms is the use of whole hierarchies of approximations in numerical simu-
lations. For SDEs, multilevel algorithms often achieve errors of order N−1/2+o(1)

in the computational time N (see [10, 12]) despite the infinite-dimensional nature
of the stochastic differential equation. Further, the algorithms are in many cases
optimal in a worst case sense [7]. So far, the main focus of research was concerned
with asymptotic error estimates, whereas central limit theorems have only found
minor attention yet. Beyond the central limit theorem, developed by Ben Alaya and
Kebaier [4] for the Euler scheme for diffusions no further results are available yet.
In general, central limit theorems illustrate how the choice of parameters affects
the efficiency of the scheme and they are a central tool for tuning the parameters.

Received March 2014; revised November 2014.
1Supported by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Programme 1324

in the project “Constructive Quantization and Multilevel Algorithms for Quadrature of SDEs.”
MSC2010 subject classifications. Primary 65C05; secondary 60G51, 60F05.
Key words and phrases. Multilevel Monte Carlo, central limit theorem, Lévy-driven stochastic

differential equation, Euler scheme, jump-adapted scheme, stable convergence.

136

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/14-AAP1087
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


MLMC FOR ADAPTIVE EULER SCHEMES 137

In this article, we focus on central limit theorems for Lévy-driven stochastic
differential equations. We prove stable convergence of the error process of an ide-
alised jump-adapted Euler schemes. Based on this result, we derive central limit
theorems for multilevel schemes for the approximate computation of expectations
of functionals depending on marginals, integral averages and the supremum of the
SDE. We then introduce implementable jump-adapted Euler schemes that inherit
the properties of the idealised schemes so that the main results prevail. Finally, we
use our new results to optimise over the parameters of the scheme, and thereby
complement the research conducted in [12]. In the Parameter Optimisation 1.13
below, we find that often it is preferable to increase the number of Euler steps
from level to level by a factor of 6. For ease of presentation, we restrict atten-
tion to the one-dimensional setting although a generalisation to finite-dimensional
stochastic differential equations is canonical.

In the following, (�,F,P) denotes a probability space that is sufficiently
rich to ensure existence of all random variables used in the exposition. We let
Y = (Yt )t∈[0,T ] be a square integrable Lévy-process and note that there exist
b ∈ R (drift), σ 2 ∈ [0,∞) (diffusion coefficient) and a measure ν on R \ {0} with∫

x2ν(dx) < ∞ (Lévy measure) such that

E
[
eizYt

]= exp
{
t

(
ibz − 1

2
σ 2z +

∫ (
eizx − 1 − izx

)
ν(dx)

)}
for t ∈ [0, T ] and z ∈R. We call the unique triplet (b, σ 2, ν) the Lévy triplet of Y .
We refer the reader to the textbooks by Applebaum [2], Bertoin [5] and Sato [31]
for a concise treatment of Lévy processes. The process X = (Xt)t∈[0,T ] denotes
the solution to the stochastic integral equation

Xt = x0 +
∫ t

0
a(Xs−)dYs, t ∈ [0, T ],(1.1)

where a :R → R is a continuously differentiable Lipschitz function and x0 ∈ R.
Both processes Y and X attain values in the space of càdlàg functions on [0, T ]
which we will denote by D(R) and endow with the Skorokhod topology. We will
analyse multilevel algorithms for the computation of expectations E[F(X)], where
F :D(R) →R is a measurable functional such that F(x) depends on the marginals,
integrals and/or supremum of the path x ∈ D(R). Before we state the results, we
introduce the underlying numerical schemes.

1.1. Jump-adapted Euler scheme. In the context of Lévy-driven stochastic dif-
ferential equations, there are various Euler-type schemes analysed in the literature.
We consider jump-adapted Euler schemes. For finite Lévy measures, these were in-
troduced by Platen [27] and analysed by various authors; see, for example, [6, 25].
For infinite Lévy measures, an error analysis is conducted in [10] and [8] for two
multilevel Monte Carlo schemes. Further, weak approximation is analysed in [22]
and [26]. In general, the simulation of increments of the Lévy-process is delicate.
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One can use truncated shot noise representations as in [30]. These perform well
for Blumenthal–Getoor indices smaller than one, but are less efficient when the
BG-index gets larger than one [10], even when combined with a Gaussian com-
pensation in the spirit of [3]; see [9]. A faster simulation technique is to do an
inversion of the characteristic function of the Lévy process and to establish direct
simulation routines in a precomputation. Certainly, this approach is more involved
and its realisation imposes severe restrictions on the dimension of the Lévy pro-
cess; see [11].

In this article, we analyse one prototype of adaptive approximations that is in-
timately related to implementable adaptive schemes and we thus believe that our
results have a universal appeal. The approximations depend on two positive pa-
rameters:

• h, the threshold for the size of the jumps being considered large and causing
immediate updates, and

• ε with T ∈ εN, the length of the regular update intervals.

For the definition of the approximations, we use the simple Poisson point pro-
cess � on the Borel sets of (0, T ] × (R \ {0}) associated to Y , that is,

� = ∑
s∈(0,T ] : �Ys �=0

δ(s,�Ys),

where we use the notation �xt = xt − xt− for x ∈ D(R) and t ∈ (0, T ]. It has
intensity 	(0,T ] ⊗ ν, where 	(0,T ] denotes Lebesgue measure on (0, T ]. Further, let
�� be the compensated variant of � that is the random signed measure on (0, T ] ×
(R \ {0}) given by

�� = � − 	(0,T ] ⊗ ν.

The process (Yt )t∈[0,T ] admits the representation

Yt = bt + σWt + lim
δ↓0

∫
(0,t]×B(0,δ)c

x d��(s, x),(1.2)

where (Wt)t∈[0,T ] is an appropriate Brownian motion that is independent of � and
the limit is to be understood uniformly in L

2. We enumerate the random set(
εZ∩ [0, T ])∪ {t ∈ (0, T ] : |�Yt | ≥ h

}= {T0, T1, . . .}
in increasing order and define the approximation Xh,ε = (X

h,ε
t )t∈[0,T ] by X

h,ε
0 =

x0 and, for n = 1,2, . . . and t ∈ (Tn−1, Tn]
X

h,ε
t = X

h,ε
Tn−1

+ a
(
X

h,ε
Tn−1

)
(Yt − YTn−1).(1.3)
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1.2. Multilevel Monte Carlo. In general, multilevel schemes make use of
whole hierarchies of approximate solutions and we choose decreasing sequences
(εk)k∈N and (hk)k∈N with:

(ML1) εk = M−kT , where M ∈ {2,3, . . .} is fixed,
(ML2) limk→∞ ν(B(0, hk)

c)εk = θ for a θ ∈ [0,∞) and limk→∞ hk/
√

εk = 0.

We remark that whenever θ in (ML2) is strictly positive, then one automatically
has that hk = o(

√
εk); see Lemma A.10.

For every k ∈ N, we denote by Xk := Xhk,εk the corresponding adaptive Eu-
ler approximation with update rule (1.3). Once this hierarchy of approximations
has been fixed, a multilevel scheme Ŝ is parameterised by a N-valued vector
(n1, . . . , nL) of arbitrary finite length L: for a measurable function F :D(R) → R

we approximate E[F(X)] by

E
[
F
(
X1)]+E

[
F
(
X2)− F

(
X1)]+ · · · +E

[
F
(
XL)− F

(
XL−1)]

and denote by Ŝ(F ) the random output that is obtained when estimating the in-
dividual expectations E[F(X1)],E[F(X2) − F(X1)], . . . ,E[F(XL) − F(XL−1)]
independently by classical Monte Carlo with n1, . . . , nL iterations and summing
up the individual estimates. More explicitly, a multilevel scheme Ŝ associates to
each measurable F a random variable

Ŝ(F ) = 1

n1

n1∑
i=1

F
(
X1,i)+ L∑

k=2

1

nk

nk∑
i=1

(
F
(
Xk,i,f )− F

(
Xk−1,i,c)),(1.4)

where the pairs of random variables (Xk,i,f ,Xk−1,i,c), respectively, the random
variables X1,i , appearing in the sums are all independent with identical distribution
as (Xk,Xk−1), respectively, X1. Note that the upper indices f and c refer to fine
and coarse and that the entries of each pair are not independent.

1.3. Implementable schemes. We give two implementable schemes. The first
one relies on precomputation for direct simulation of Lévy increments. The second
one ignores jumps of size smaller than a threshhold which leads to schemes of
optimal order only in the case where—roughly speaking—the Blumenthal–Getoor
index is smaller than one.

Schemes with direct simulation of small jumps. For h > 0, we let Yh =
(Y h

t )t∈[0,T ] denote the Lévy process given by

Yh
t = bt + σWt +

∫
(0,t]×B(0,h)c

x d��(s, x).(1.5)

Using the shot noise representation (see [3]), we can simulate Yh on arbitrary
(random) time sets. The remainder Mh = (Mh

t )t∈[0,T ], that is,

Mh
t = lim

δ↓0

∫
(0,t]×(B(0,h)\B(0,δ))

x d��(s, x) = Y − Yh,
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can be simulated on a fixed time grid ε′
Z ∩ [0, T ] with ε′ ∈ εN denoting an

additional parameter of the scheme. A corresponding approximation is given by
X̂h,ε,ε′ = (X̂

h,ε,ε′
t )t∈[0,T ] via X̂

h,ε,ε′
0 = x0 and, for n = 1,2, . . . and t ∈ (Tn−1, Tn],

X̂
h,ε,ε′
t = X̂

h,ε,ε′
Tn−1

+ a
(
X̂

h,ε,ε′
Tn−1

)(
Yh

t − Yh
Tn−1

)
(1.6)

+ 1ε′Z(t)a
(
X̂

h,ε,ε′
t−ε′

)(
Mh

t − Mh
t−ε′

)
.

We call X̂h,ε,ε′
the continuous approximation with parameters h, ε, ε′. Further, we

define the piecewise constant approximation �Xh,ε,ε′ = (�Xh,ε,ε′
t )t∈[0,T ] via demand-

ing that for n = 1,2, . . . and t ∈ [Tn−1, Tn),

�Xh,ε,ε′
t = X̂

h,ε,ε′
Tn−1

(1.7)

and �Xh,ε,ε′
T = X̂

h,ε,ε′
T .

In corresponding multilevel schemes, we choose (εk)k∈N and (hk)k∈N as before.
Further, we choose monotonically decreasing parameters (ε′

k)k∈N with ε′
k ∈ εkN

and:

(ML3a) ε′
k

∫
B(0,hk)

x2ν(dx) log2(1 + 1/ε′
k) = o(εk),

(ML3b) h2
k log2(1 + 1/ε′

k) = o(εk).

REMARK 1.1. If ∫
x2 log2

(
1 + 1

x

)
ν(dx) < ∞,(1.8)

there exist appropriate parameters (hk, εk, ε
′
k)k∈N satisfying (ML1), (ML2),

(ML3a) and (ML3b). More precisely, in the case where ν is infinite, appropriate pa-
rameters are obtained by choosing ε′

k = εk and (hk) with limk→∞ εkν(B(0, hk)
c)=

θ > 0; see Lemma A.10.

In analogy to before, we denote by (X̂k :k ∈ N) and (�Xk :k ∈ N) the corre-
sponding approximate continuous and piecewise constant solutions. We state a
result of [24] which implies that in most cases the central limit theorems to be
provided later are also valid for the continuous approximations.

LEMMA 1.2. If assumptions (ML1), (ML3a) and (ML3b) are satisfied, then

lim
k→∞ ε−1

k E

[
sup

t∈[0,T ]
∣∣Xk

t − X̂k
t

∣∣2]= 0.

Practical issues of numerical schemes with direct simulation of increments are
discussed in [11].
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Truncated shot noise scheme. The truncated shot noise scheme is parame-
terised by two positive parameters h, ε as above. The continuous approxima-
tions X̂h,ε = (X̂

h,ε
t )t∈[0,T ] are defined via X̂

h,ε
0 = x0 and, for n = 1,2, . . . and

t ∈ (Tn−1, Tn],
X̂

h,ε
t = X̂

h,ε
Tn−1

+ a
(
X̂

h,ε
Tn−1

)(
Yh

t − Yh
Tn−1

)
(1.9)

and the piecewise constant approximations �Xh,ε = (�Xh,ε
t )t∈[0,T ] are defined as

before by demanding that, for n = 1,2, . . . and t ∈ [Tn−1, Tn),

�Xh,ε
t = X̂

h,ε
Tn−1

(1.10)

and �Xh,ε
T = X̂

h,ε
T . Again we will use decreasing sequences (εk) and (hk) as before

to specify sequences of approximations (X̂k) and (�Xk). In the context of truncated
shot noise schemes, we will impose as additional assumption:

(ML4)
∫
B(0,hk)

x2ν(dx) = o(εk).

REMARK 1.3. If
∫ |x|ν(dx) < ∞, then (ML1), (ML2) and (ML4) are satisfied

for appropriate parameters.

The following result is a minor modification of [10], Proposition 1; see also [24].

LEMMA 1.4. If assumptions (ML1) and (ML4) are satisfied, then

lim
k→∞ ε−1

k E

[
sup

t∈[0,T ]
∣∣Xk

t − X̂k
t

∣∣2]= 0.

1.4. Main results. In the following, we will always assume that Y = (Yt )t∈[0,T ]
is a square integrable Lévy process with Lévy triplet (b, σ 2, ν) satisfying σ 2 > 0
and that X = (Xt)t∈[0,T ] solves the SDE

dXt = a(Xt−)dYt

with X0 = x0, where a :R→R is a continuously differentiable Lipschitz function.
Further, for each k ∈ N, Xk denotes the jump-adapted Euler scheme with updates
at all times in (

εkN∩ [0, T ])∪ {t ∈ (0, T ] : |�Yt | ≥ hk

};
see (1.3). The decreasing sequences of parameters (εk) and (hk) are assumed to
satisfy (ML1) and (ML2) from Section 1.2.
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Convergence of the error process. We consider the normalised sequence
of error processes associated to the multilevel scheme that is the sequence
(ε

−1/2
k (Xk+1 − Xk) :k ∈ N). Let us introduce the process appearing as a limit.

We equip the points of the associated point process � with independent marks and
denote for a point (s, x) ∈ �:

• by ξs , a standard normal random variable,
• by Us , an independent uniform random variable on [0,1], and

• by Eθ
s and E (M−1)θ

s independent Exp(θ) and Exp((M −1)θ)-distributed random
variables, respectively.

Further, we denote by B = (Bt )t∈[0,T ] an independent standard Brownian motion.
The idealised error process U = (Ut )t∈[0,T ] is defined as the solution of the

integral equation

Ut =
∫ t

0
a′(Xs−)Us− dYs + σ 2ϒ

∫ t

0

(
aa′)(Xs−)dBs

(1.11)
+ ∑

s∈(0,t] : �Ys �=0

σsξs

(
aa′)(Xs−)�Ys,

where ϒ2 = e−θ−1+θ
θ2 (1 − 1

M
), if θ > 0, and ϒ2 = 1

2(1 − 1
M

), if θ = 0, and the
positive marks (σs) are defined by

σ 2
s = σ 2

∑
1≤m≤M

1{(m−1)/M≤Us<m/M}
[
min

(
Eθ

s ,Us

)
− min

(
Eθ

s ,E (M−1)θ
s ,Us − m − 1

M

)]
.

Note that the above infinite sum has to be understood as an appropriate martingale
limit. More explicitly, denoting by L = (Lt )t∈[0,T ] the Lévy process

Lt = σ 2ϒBt + lim
δ↓0

∑
s∈(0,t] : |�Ys |≥δ

σsξs�Ys

we can rewrite (1.11) as

Ut =
∫ t

0
a′(Xs−)Us− dYs +

∫ t

0

(
aa′)(Xs−)dLs.

Strong uniqueness and existence of the solution follow from Jacod and Memin
[16], Theorem 4.5.

THEOREM 1.5. Under the above assumptions, we have weak convergence(
Y, ε−1/2

n

(
Xn+1 − Xn))⇒ (Y,U) in D

(
R

2).(1.12)
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Central limit theorem for linear functionals. We consider functionals
F :D(R) →R of the form

F(x) = f (Ax)

with f :Rd →R and A :D(R) →R
d being linear and measurable. We set

Df := {
z ∈ R

d :f is differentiable in z
}
.

THEOREM 1.6. Suppose that f is Lipschitz continuous and that A is Lipschitz
continuous with respect to supremum norm and continuous with respect to the
Skorokhod topology in PU -almost every path. Further suppose that AX ∈ Df ,
almost surely, and that α ≥ 1

2 is such that the limit

lim
n→∞ ε−α

n E
[
F
(
Xn)− F(X)

]=: κ
exists. We denote for δ ∈ (0,1) by Ŝδ the multilevel Monte Carlo scheme with
parameters (n

(δ)
1 , n

(δ)
2 , . . . , n

(δ)
L(δ)), where

L(δ) =
⌈

log δ−1

α logM

⌉
and nk(δ) = ⌈

δ−2L(δ)εk−1
⌉
,(1.13)

for k = 1,2, . . . ,L(δ). Then we have,

δ−1(Ŝδ(F ) −E
[
F(X)

])⇒ N
(
κ,ρ2) as δ → 0,

where N (κ, ρ2) is the normal distribution with mean κ and variance

ρ2 = Var
(∇f (AX) · AU

)
.

EXAMPLE 1.7. (a) For any finite signed measure μ, the integral Ax =∫ T
0 xs dμ(s) satisfies the assumptions of the theorem. Indeed, for every path

x ∈ D(R) with

μ
({

s ∈ [0, T ] :�xs �= 0
})= 0(1.14)

one has for xn → x in the Skorokhod space that

Axn =
∫ T

0
xn
s dμ(s) →

∫ T

0
xs dμ(s) = Ax

by dominated convergence and (1.14) is true for PU -almost all paths since μ has at
most countably many atoms. Hence, the linear maps Ax = xt and Ax = ∫ T

0 xs ds

are allowed choices in Theorem 1.6 since U is almost surely continuous in t .
(b) All combinations of admissible linear maps A1, . . . ,Am satisfy again the

assumptions of the theorem.

In view of implementable schemes, we state a further version of the theorem.
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THEOREM 1.8. Suppose that either (X̂k :k ∈ N) and (�Xk :k ∈ N) denote the
continuous and piecewise constant approximations of the scheme with direct simu-
lation and that (ML1), (ML2) and (ML3) are fulfilled or that they are the approxi-
mations of the truncated shot noise scheme and that (ML1), (ML2) and (ML4) are
fulfilled. Then Theorem 1.6 remains true when replacing the family (Xk :k ∈N) by
(X̂k :k ∈N). Further, if A is given by

Ax =
(
xT ,

∫ T

0
xs ds

)
,

the statement of the central limit theorem remains true, when replacing the family
(Xk :k ∈N) by (�Xk :k ∈N).

Central limit theorem for supremum-dependent functionals. In this section, we
consider functionals F :D(R) →R of the form

F(x) = f
(

sup
t∈[0,T ]

xt

)
with f :R →R measurable.

THEOREM 1.9. Suppose that f :R → R is Lipschitz continuous and that the
coefficient a does not attain zero. Further, suppose that supt∈[0,T ] Xt ∈ Df , almost

surely, and that α ≥ 1
2 is such that the limit

lim
n→∞ ε−α

n E
[
F
(
Xn)− F(X)

]=: κ
exists. We denote for δ ∈ (0,1) by Ŝδ the multilevel Monte Carlo scheme with
parameters (n

(δ)
1 , n

(δ)
2 , . . . , n

(δ)
L(δ)), where

L(δ) =
⌈

log δ−1

α logM

⌉
and nk(δ) = ⌈

δ−2L(δ)εk−1
⌉
,

for k = 1,2, . . . ,L(δ). Then we have

δ−1(Ŝδ(F ) −E
[
F(X)

])⇒N
(
κ,ρ2) as δ → 0,

where N (κ, ρ2) is the normal distribution with mean κ and variance

ρ2 = Var
(
f ′( sup

t∈[0,T ]
Xt

)
US

)
,

and S denotes the random time at which X attains its supremum.

THEOREM 1.10. Theorem 1.9 remains true for the continuous approxima-
tions for the scheme with direct simulation of increments or the truncated shot
noise scheme under the same assumptions as imposed in Theorem 1.8.
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Optimal parameters. We use the central limit theorems to adjust the parame-
ters of the multilevel scheme. Here, we use the following result.

THEOREM 1.11. Let F be as in Theorems 1.6 or 1.9 and assume that the
assumptions of the respective theorem are fulfilled. Further assume in the first case
that A is of integral type meaning that there exist finite signed measures μ1, . . . ,μd

on [0, T ] such that A = (A1, . . . ,Ad) with

Ajx =
∫ T

0
xs dμj(s) for x ∈ D(R) and j = 1, . . . , d

and generally suppose that a′(Xs−)�Ys �= −1 for all s ∈ [0, T ], almost surely.
Then there exists a constant κ depending on F and the underlying SDE, but not on
M and θ such that the variance ρ2 appearing as variance is of the form

ρ = κϒ,

where as before ϒ2 = e−θ−1+θ
θ2 (1 − 1

M
), if θ > 0, and ϒ2 = 1

2(1 − 1
M

), if θ = 0.

REMARK 1.12. The assumption that a′(Xs−)�Ys �= −1 for all s ∈ [0, T ],
almost surely, is automatically fulfilled if ν has no atoms. For every s ∈ (0, T ] with
a′(Xs−)�Ys = −1, the error process jumps to zero causing technical difficulties
in our proofs. In general, the result remains true without this assumption, but for
simplicity we only provide a proof under this technical assumption.

PARAMETER OPTIMISATION 1.13. We use Theorem 1.11 to optimise the pa-
rameters. We assume that θ of (ML2) and the bias κ are zero. Multilevel schemes
are based on iterated sampling of F(Xk) − F(Xk−1), where (Xk−1,Xk) are cou-
pled approximate solutions. Typically, one simulation causes cost (has runtime) of
order

Ck = (
1 + o(1)

)
κcostε

−1
k−1(M + β),

where κcost is a constant that does not depend on M , and β ∈ R is an appropriate
constant typically with values between zero and one: one coupled path simulation
needs:

• to simulate ε−1
k−1T M increments of the Lévy process,

• to do ε−1
k−1T M Euler steps to gain the fine approximation,

• to concatenate ε−1
k−1T (M − 1) Lévy increments, and

• to do ε−1
k−1T Euler steps to gain the coarse approximation.

If every operation causes the same computational cost, one ends up with β = 0. If
the concatenation procedure is significantly less expensive, the parameter β rises.
Using that

δ−1(Ŝδ(F ) −E
[
F(X)

])⇒ N
(
0, κ2

err(1 − 1/M)
)

as δ ↓ 0,
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we conclude that for δ̄ := δ̄(δ) := δ/(κerr
√

1 − 1/M) one has

δ−1(Ŝδ̄(F ) −E
[
F(X)

])⇒ N (0,1) as δ ↓ 0.

Hence, the asymptotics of Ŝδ̄(F ) do not depend on the choice of M and we can
compare the efficiency of different choices of M by looking at the cost of a simu-
lation of Ŝδ̄(F ). It is of order(

1 + o(1)
)
κcostL(δ̄)2(M + β)δ̄−2

= (
1 + o(1)

)κcostκ
2
err

α2

(M − 1)(M + β)

M(logM)2 δ−2(log δ−1)2.
A plot illustrating the dependence on the choice of M is provided in Figure 1.
There we plot the function M �→ (M−1)(M+β)

M(logM)2 for β being 0 or 1. The plot indicates

that in both cases 6 is a good choice for M . In particular, it is not necessary to
know β explicitly in order to find a “good” M . For numerical tests concerning
appropriate choices of β , we refer the reader to [11].

The article is outlined as follows. In Section 2, we analyse the error process
and prove Theorem 1.5. In Section 3, we prepare the proofs of the central limit
theorems for integral averages for the piecewise constant approximations and for
supremum dependent functionals. In Section 4, we provide the proofs of all re-
maining theorems, in particular, of all central limit theorems. The article ends
with an Appendix where we summarise known and auxiliary results. In particular,
we provide a brief introduction to stable convergence and perturbation estimates
mainly developed in articles by Jacod and Protter.

FIG. 1. Impact of M on the computational cost for β = 0 (green) and β = 1 (red).
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2. The error process (Theorem 1.5). In this section, we prove Theorem 1.5.
We assume that properties (ML1) and (ML2) are fulfilled. At first, we introduce
the necessary notation and outline our strategy of proof. All intermediate results
will be stated as propositions and their proofs are deferred to later subsections. We
denote for n ∈N and t ∈ [0, T ]

ιn(t) = sup[0, t] ∩ In,

where In = {s ∈ (0, T ] :�Y
hn
s �= 0} ∪ (εnZ ∩ [0, T ]) is the random set of update

times and recall that Xn solves

dXn
t = a

(
Xn

ιn(t−)

)
dYt(2.1)

with Xn
0 = x0. We analyse the (normalised) error process of two consecutive

Xn-levels that is the process Un,n+1 = (U
n,n+1
t )t∈[0,T ] given by

U
n,n+1
t = ε−1/2

n

(
Xn+1 − Xn).

The error process satisfies the SDE

dU
n,n+1
t = ε−1/2

n

(
a
(
Xn+1

t−
)− a

(
Xn

t−
))

dYt + ε−1/2
n

(
a
(
Xn

t−
)− a

(
Xn

ιn(t−)

))
dYt

− ε−1/2
n

(
a
(
Xn+1

t−
)− a

(
Xn+1

ιn+1(t−)

))
dYt .

In order to rewrite the SDE, we introduce some more notation. We let

∇a(u, v) =
⎧⎨⎩

a(v) − a(u)

v − u
, if u �= v,

a′(u), if u = v

for u, v ∈ R and consider the processes(
Dn

t

)= (∇a
(
Xn

ιn(t),X
n
t

))
,

(
D

n,n+1
t

)= (∇a
(
Xn

t ,Xn+1
t

))
,(

An
t

)= a
(
Xn

ιn(t)

)
.

In terms of the new notation, we have

dU
n,n+1
t = D

n,n+1
t− U

n,n+1
t− dYt + ε−1/2

n Dn
t−An

t−(Yt− − Yιn(t−))dYt
(2.2)

− ε−1/2
n Dn+1

t− An+1
t− (Yt− − Yιn+1(t−))dYt .

Clearly, the processes (Dn
t ) and (D

n,n+1
t ) converge in ucp to (Dt) :=

(a′(Xt))t∈[0,T ] and the processes (An
t ) to (At ) := (a(Xt ))t∈[0,T ]. It often will be

useful that the processes Dn,n+1 and D are uniformly bounded by the Lipschitz
constant of the coefficient a.

For technical reasons, we introduce a further approximation. For every ε > 0,
we denote by Un,n+1,ε = (U

n,n+1,ε
t )t∈[0,T ] the solution of the SDE

dU
n,n+1,ε
t = Dt−U

n,n+1,ε
t− dYt

(2.3)
+ ε−1/2

n Dt−At−σ(Wιn+1(t−) − Wιn(t−))dY ε
t
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with U
n,n+1,ε
0 = 0, where Y ε is as in (1.5). Further, let Uε = (Uε

t )t∈[0,T ] denote
the solution of

Uε
t =

∫ t

0
Ds−Uε

s− dYs + σ 2ϒ

∫ t

0
Ds−As− dBs

(2.4)
+ ∑

s∈(0,t] : �Yε
s �=0

σsξsDs−As−�Yε
s .

We will show that the processes Uε,U1,2,ε,U2,3,ε, . . . are good approximations
for the processes U,U1,2,U2,3, . . . in the sense of Remark A.7. As a consequence
of Lemma A.6, we then get:

PROPOSITION 2.1. If for every ε > 0,(
Y,Un,n+1,ε)⇒ (

Y,Uε) in D
(
R

2),
then one has (

Y,Un,n+1)⇒ (Y,U) in D
(
R

2).
The proof of the proposition is carried out in Section 2.1. It then remains to

prove the following proposition which is the task of Section 2.2.

PROPOSITION 2.2. For every ε > 0,(
Y,Un,n+1,ε)⇒ (

Y,Uε) in D
(
R

2).
2.1. The approximations Un,n+1,ε are good. In this subsection, we prove

Proposition 2.1. By Lemma A.6, it suffices to show that the approximations are
good in the sense of Remark A.7. In this section, we will work with an additional
auxiliary process: for n ∈N and ε > 0 we denote by �Un,n+1,ε := (�Un,n+1,ε

t )t∈[0,T ]
the solution of

d�Un,n+1,ε
t = D

n,n+1
t− �Un,n+1,ε

t− dYt + ε−1/2
n Dn

t−An
t−σ(Wt− − Wιn(t−))dY ε

t
(2.5)

− ε−1/2
n Dn+1

t− An+1
t− (Wt− − Wιn+1(t−))dY ε

t

with �Un,n+1,ε
0 = 0.

LEMMA 2.3. For every δ, ε > 0, we have:

1. limε↓0 lim supn→∞E[supt∈[0,T ] |Un,n+1
t − �Un,n+1,ε

t |2] = 0,

2. limn→∞ P(supt∈[0,T ] |�Un,n+1,ε
t − U

n,n+1,ε
t | > δ) = 0,

3. limε↓0 P(supt∈[0,T ] |Ut − Uε
t | > δ) = 0.
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It is straightforward to verify that Lemma 2.3 implies that the approximations
are good.

PROOF OF LEMMA 2.3. (1) Recalling (2.2) and (2.5) and noting that Dn,n+1

is uniformly bounded, we conclude with Lemma A.14 that the first statement is
true if

lim
ε↓0

lim sup
n→∞

ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ys− − Yιn(s−))dYs

(2.6)

− σ

∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dY ε

s

∣∣∣∣2]= 0.

Let Mε denote the martingale Y − Y ε . The above term can be estimated against
the sum of

ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ys− − Yιn(s−) − σWs− + σWιn(s−))dYs

∣∣∣∣2](2.7)

and

ε−1
n σ 2

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dMε

s

∣∣∣∣2].(2.8)

We start with estimating the former expression. For t ∈ [0, T ], one has

Yt − Yιn(t) = σ(Wt − Wιn(t)) + M
hn
t − M

hn

ιn(t)

+
(
b −

∫
B(0,hn)c

xν(dx)

)(
t − ιn(t)

)
.

By Lemma A.10, one has

ε−1
n E

[|Yt − Yιn(t) − σWt + σWιn(t)|2|ιn]
≤ 2

∫
B(0,hn)

x2ν(dx) + 2
(
b −

∫
B(0,hn)c

xν(dx)

)2

εn

=: δn → 0

as n → ∞. Further, by Lemma A.11 and the uniform boundedness of Dn, there is
a constant κ1 not depending on n such that

ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ys− − Yιn(s−) − σWs− + σWιn(s−))dYs

∣∣∣∣2]

≤ κ1ε
−1
n

∫ T

0
E
[(

An
s−
)2

(Ys− − Yιn(s−) − σWs− + σWιn(s−))
2]ds(2.9)

≤ κ1δn

∫ T

0
E
[∣∣An

s−
∣∣2]ds,
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where we have used conditional independence of An
s− and Ys− −Yιn(s−) −σWs− +

σWιn(s−) given ιn in the last transformation. By Lemma A.12 and the Lipschitz
continuity of a, the latter integral is uniformly bounded over all n ∈N so that (2.7)
tends to zero as n → ∞.

Next, consider (2.8). Note that Mε is a Lévy martingale with triplet (0,0,

ν|B(0,ε)). By Lemma A.11 and the uniform boundedness of Dn, there exists a
constant κ2 not depending on ε and n such that

ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dMε

s

∣∣∣∣2]

≤ κ2ε
−1
n

∫
B(0,ε)

x2ν(dx)

∫ T

0
E
[∣∣An

s−
∣∣2|Ws− − Wιn(s−)|2]ds(2.10)

≤ κ2

∫
B(0,ε)

x2ν(dx)

∫ T

0
E
[∣∣An

s−
∣∣2]ds,

where we used in the last step that conditionally on ιn the random variables An
s−

and Ws− − Wιn(s−) are independent and E[(Ws− − Wιn(s−))
2|ιn] = s − ιn(s) ≤

εn. As noted above,
∫ T

0 E[|An
s−|2]ds is uniformly bounded, and hence (2.8) tends

uniformly to zero over all n ∈ N as ε ↓ 0.
(2) We will use Lemma A.15 to prove that

�Un,n+1,ε − Un,n+1,ε → 0 in ucp, as n → ∞.(2.11)

We rewrite the SDE (2.3) as

dU
n,n+1,ε
t = Dt−U

n,n+1,ε
t− dYt + ε−1/2

n Dt−At−σ(Wt− − Wιn(t−))dY ε
t

− ε−1/2
n Dt−At−σ(Wt− − Wιn+1(t−))dY ε

t .

Recalling (2.5), it suffices by part one of Lemma A.15 to show that:

1. Dn,n+1 → D, in ucp,
2. ε

−1/2
n

∫ ·
0(D

n
s−An

s− − Ds−As−)(Ws− − Wιn(s−))dY ε
s → 0, in ucp,

3. the families (supt∈[0,T ] |Dn,n+1
t | :n ∈ N) and(

ε−1/2
n sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dY ε

s

∣∣∣∣ :n ∈ N

)
are tight.

The tightness of (supt∈[0,T ] |Dn,n+1
t | :n ∈ N) follows by uniform boundedness.

Further, the tightness of the second family follows by observing that in analogy
to the proof of (1) one has

ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dY ε

s

∣∣∣∣2]

≤ κ3ε
−1
n

∫ T

0
E
[∣∣An

s−
∣∣2|Ws− − Wιn(s−)|2]ds ≤ κ3

∫ T

0
E
[∣∣An

s−
∣∣2]ds
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for an appropriate constant κ3 not depending on n. Furthermore, convergence
Dn,n+1 → D follows from ucp convergence of Xn → X and Lipschitz continu-
ity of a. To show the remaining property, we let δ > 0 and Tn,δ denote the stopping
time

Tn,δ = inf
{
s ∈ [0, T ] :

∣∣Dn
s An

s − DsAs

∣∣≥ δ
}
.

Then by Lemma A.11, there exists a constant κ4 not depending on n and δ with

E

[
sup

t∈[0,T ∧Tn,δ]
ε−1
n

(∫ t

0

(
Dn

s−An
s− − Ds−As−

)
(Ws− − Wιn(s−))dY ε

s

)2]

≤ κ4δ
2ε−1

n

∫ T

0
E
[
(Ws− − Wιn(s−))

2]ds ≤ κ4δ
2T .

Since for any δ > 0, P(Tn,δ = ∞) → 1 by ucp convergence DnAn − DA → 0, we
immediately get the remaining property by choosing δ > 0 arbitrarily small and
applying the Markov inequality.

(3) The proof of the third statement can be achieved by a simplified version of
the proof of the first statement. It is therefore omitted. �

2.2. Weak convergence of Un,n+1,ε . In this subsection, we prove Proposi-
tion 2.2 for fixed ε > 0. We first outline the proof. We will make use of results
of [17] summarised in the Appendix; see Section A.1. We consider processes
Zn,ε = (Z

n,ε
t )t∈[0,T ] and Zε = (Zε

t )t∈[0,T ] given by

Z
n,ε
t = ε−1/2

n

∫ t

0
(Wιn+1(s−) − Wιn(s−))dY ε

s(2.12)

and

Zε
t = ϒBt + ∑

s∈(0,t] : |�Ys |≥ε

σs

σ
ξs�Ys,(2.13)

where (σs) and (ξs) are the marks of the point process � as introduced in Sec-
tion 1.1.

In view of Theorem A.5, the statement of Proposition 2.2 follows, if we show
that(

Y,

∫ ·
0

Dt− dYt ,

∫ ·
0

Dt−At− dZ
n,ε
t

)
⇒

(
Y,

∫ ·
0

Dt− dYt ,

∫ ·
0

Dt−At− dZε
t

)
in D

(
R

3).
Further, by Theorem A.4, this statement follows once we showed that (Zn,ε :n ∈
N) is uniformly tight and(

Y,D,DA,Zn,ε)⇒ (
Y,D,DA,Zε) in D

(
R

4).(2.14)
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We first prove that ((Y,D,DA,Zn,ε) :n ∈ N) is tight which shows that, in par-
ticular, (Zn,ε :n ∈ N) is uniformly tight; see Lemma 2.4. Note that (Y,D,DA) is
σ(Y )-measurable. To identify the limit and complete the proof of (2.14), it suffices
to prove stable convergence

Zn,ε stably�⇒ Zε

with respect to the σ -field σ(Y ); see Section A.1 in the Appendix for a brief intro-
duction of stable convergence. The latter statement is equivalent to(

Y,Zn,ε)⇒ (
Y,Zε) in D(R) ×D(R),

by Theorem A.2. We prove the stronger statement that this is even true in the finer
topology D(R2): the sequence ((Y,Zn,ε) :n ∈ N) is tight by Lemma 2.4 and we
will prove convergence of finite-dimensional marginals in Lemma 2.6. The proof
of the latter lemma is based on a perturbation result provided by Lemma 2.5.

LEMMA 2.4. For ε > 0, the family ((Y,D,DA,Zn,ε) :n ∈ N) taking values
in D(R4) is tight. In particular, (Zn,ε :n ∈ N) is uniformly tight.

PROOF. One has by Lemma A.11

E

[
sup

t∈[0,T ]
(
Z

n,ε
t

)2]≤ κ1ε
−1
n

∫ t

0
E
[
(Wιn+1(t−) − Wιn(t−))

2]dt ≤ κ1

for an appropriate constant κ1 so that by the Markov inequality

lim
K→∞ sup

n∈N
P

(
sup

t∈[0,T ]
|Yt | ∨

∣∣Zn,ε
t

∣∣∨ |Dt | ∨ |DtAt | ≥ K
)

= 0.

It remains to verify Aldous’ criterion for tightness [18], Theorem VI.4.5, which
can be checked componentwise. It is certainly fulfilled for Y , A and DA and it
remains to show that for every K > 0 there exists for every δ > 0 a constant cδ > 0
such that for arbitrary stopping times S1, S2, . . .

lim sup
n→∞

P

(
sup

t∈[Sn,(Sn+δ)∧T ]
∣∣Zn,ε

t − Z
n,ε
Sn

∣∣≥ K
)

≤ cδ

and limδ↓0 cδ = 0.
First, suppose that S1, S2, . . . denote stopping times taking values in the respec-

tive sets εnZ. Then as above

E

[
sup

t∈[Sn,(Sn+δ)∧T ]
∣∣Zn,ε

t − Z
n,ε
Sn

∣∣2]

≤ κ1ε
−1
n

∫ T

0
E
[
1[Sn,(Sn+δ)](t)(Wιn+1(t−) − Wιn(t−))

2]dt

≤ κ1ε
−1
n

∫ T

0
E
[
1[Sn,(Sn+δ)]

(
ιn(t)

)
(Wιn+1(t−) − Wιn(t−))

2]dt(2.15)
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≤ κ1E

[∫ T

0
1[Sn,(Sn+δ)]

(
ιn(t)

)
dt

]
≤ κ1(εn + δ) → κ1δ,

where we have used that E[(Wιn+1(t−) − Wιn(t−))
2|Fιn(t)] ≤ εn and 1[Sn,(Sn+δ)](t)

is Fιn(t)-measurable. It remains to estimate for general stopping times S1, S2, . . .

E

[
sup

t∈[Sn,�Sn]

∣∣Zn,ε
t − Z

n,ε
Sn

∣∣2],
where �Sn = inf[Sn,∞) ∩ εnZ. As in (2.15), we conclude with �Sn − Sn ≤ ε that

E

[
sup

t∈[Sn,�Sn]

∣∣Zn,ε
t − Z

n,ε
Sn

∣∣2]

≤ κ1ε
−1
n E

[∫ T

0
1[Sn,�Sn](t)(Wιn+1(t−) − Wιn(t−))

2 dt

]
≤ κ1E

[
sup

k=1,...,ε−1
n

s,t∈[(k−1)ε−1
n ,kε−1

n )

|Ws − Wt |2
]
→ 0.

By the Markov inequality, this estimate together with (2.15) imply Aldous’ crite-
rion. �

To control perturbations, we will use the following lemma.

LEMMA 2.5. For j = 1,2, let (α
(j)
t )t∈[0,T ] and (β

(j)
t )t∈[0,t] optional pro-

cesses being square integrable with respect to P⊗ 	[0,T ] and let

ϒ
n,j
t = ε−1/2

n

∫ t

0

(�W(j)
ιn+1(s−) − �W(j)

ιn(s−)

)
d�Y (j)

s ,

where

�W(j)
t = Wt +

∫ t

0
α(j)

s ds, �Y (j)
t = Mt +

∫ t

0
β(j)

s ds

and

Mt = σWt +
∫
(0,t]×B(0,ε)c

x d��(s, x).

For t ∈ D = ⋃
n∈N εnZ ∩ [0, T ], the sequences (ϒ

n,1
t )n∈N and (ϒ

n,2
t )n∈N are

equivalent in probability, that is, for every δ > 0

lim
n→∞P

(∣∣ϒn,1
t − ϒ

n,2
t

∣∣> δ
)= 0.
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PROOF. We prove the statement in three steps.

1st step. First, we show a weaker perturbation estimate. Using the bilinearity of
the stochastic integral, we get that

ϒ
n,1
t − ϒ

n,2
t = ε−1/2

n

∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
dudMs

+ ε−1/2
n

∫ t

0
(Wιn+1(s−) − Wιn(s−))

(
β(1)

s − β(2)
s

)
ds

(2.16)

+ ε−1/2
n

∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
duβ(1)

s ds

+ ε−1/2
n

∫ t

0

∫ ιn+1(s−)

ιn(s−)
α(2)

u du
(
β(1)

s − β(2)
s

)
ds.

We analyse the terms individually. By Itô’s isometry, the fact that s −
εn ≤ ιn(s−) ≤ ιn+1(s−) ≤ s and Fubini’s theorem one has that for κ = σ 2 +∫
B(0,ε)c x2ν(dx)

E

[(
ε−1/2
n

∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
dudMs

)2]

= κε−1
n E

[∫ t

0

(∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
du

)2

ds

]

≤ κE

[∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)2 duds

]
(2.17)

≤ κE

[∫ t

0

∫ s

(s−εn)∨0

(
α(1)

u − α(2)
u

)2 duds

]

≤ κεnE

[∫ t

0

(
α(1)

s − α(2)
s

)2 ds

]
.

By the Cauchy–Schwarz inequality and Fubini, it follows that the second term
satisfies

E

[
ε−1/2
n

∣∣∣∣∫ t

0
(Wιn+1(s−) − Wιn(s−))

(
β(1)

s − β(2)
s

)
ds

∣∣∣∣]

≤ ε−1/2
n E

[∫ t

0
(Wιn+1(s−) − Wιn(s−))

2 ds

]1/2

E

[∫ t

0

(
β(1)

s − β(2)
s

)2 ds

]1/2

≤ tE

[∫ t

0

(
β(1)

s − β(2)
s

)2 ds

]1/2

,

where we have used in the last step that ιn+1
s− − ιns− is independent of the Brownian

motion and smaller or equal to εn. The third term is estimated similarly as the first
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term:

E

[
ε−1/2
n

∣∣∣∣∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
duβ(1)

s ds

∣∣∣∣]

≤ ε1/2
n E

[∫ t

0

(∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)
du

)2

ds

]1/2

E

[∫ T

0

(
β(1)

s

)2 ds

]1/2

≤ E

[∫ t

0

∫ ιn+1(s−)

ιn(s−)

(
α(1)

u − α(2)
u

)2 duds

]1/2

E

[∫ T

0

(
β(1)

s

)2 ds

]1/2

≤ ε1/2
n E

[∫ t

0

(
α(1)

s − α(2)
s

)2 ds

]1/2

E

[∫ T

0

(
β(1)

s

)2 ds

]1/2

.

In complete analogy, the fourth term satisfies

E

[
ε−1/2
n

∣∣∣∣∫ t

0

∫ ιn+1(s−)

ιn(s−)
α(2)

u du
(
β(1)

s − β(2)
s

)
ds

∣∣∣∣]

≤ ε1/2
n E

[∫ t

0

(
α(2)

s

)2 ds

]1/2

E

[∫ T

0

(
β(1)

s − β(2)
s

)2 ds

]1/2

.

By the Markov inequality, the first, third and fourth term of (2.16) tend to zero in
probability as n → ∞.

2nd step. Next, we analyse the case where β(2) = 0 and β := β(1) is sim-
ple in the following sense. There exist l ∈ N, increasingly ordered times 0 =
t0, t1, . . . , tl = t ∈ D = ⋃

n∈N εnZ ∩ [0, T ] such that β is almost surely constant
on each of the time intervals [t0, t1), . . . , [tl−1, tl). For n ∈ N and j = 1, . . . , l, we
let

Mj,n := ε−1/2
n

∫ tj

tj−1

(Wιn+1(s−) − Wιn(s−))ds.

We suppose that n ∈ N is sufficiently large to ensure that {t1, . . . , tl} ⊂ εnZ. The
Brownian motion W is independent of � so that for u, s ∈ [0, t]

E
[
(Wιn+1(s−) − Wιn(s−))(Wιn+1(u−) − Wιn(u−))|�]

= 	
([

ιn(s−), ιn+1(s−)
]∩ [ιn(u−), ιn+1(u−)

])
≤ εn1{|s−u|≤εn}.

Consequently, we obtain with Fubini that

E
[
M2

j,n

]= ε−1
n E

[∫ tj

tj−1

∫ tj

tj−1

(Wιn+1(s−) − Wιn(s−))(Wιn+1(u−) − Wιn(u−))ds du

]
≤ 2εn(tj − tj−1).
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Since Mj,n is independent of Ftj−1 and has mean zero, we conclude that

(
∑k

j=1 βtj−1Mj,n)k=0,...,l is a square integrable martingale so that

E

[(
ε−1/2
n

∫ t

0
(Wιn+1(s−) − Wιn(s−))βs ds

)2]

=
l∑

j=1

E
[
β2

tj−1
M2

j,n

]= l∑
j=1

E
[
β2

tj−1

]
E
[
M2

j,n

]

≤ 2εn

l∑
j=1

β2
tj−1

(tj − tj−1) = 2εnE

[∫ t

0
β2

s ds

]
.

3rd step. We combine the first and second step. Let α(2) and β(2) be as in the
statement of the theorem and let δ > 0 be arbitrary. The simple functions as defined
in step two are dense in the space of previsible processes with finite L2-norm with
respect to P ⊗ 	[0,T ]. By part one, we can choose α(1) = 0 and a simple process
β(1) such that

P
(∣∣ϒn,2

t − ϒ
n,1
t

∣∣≥ δ/2
)≤ δ/2

for n sufficiently large. Next, let ϒn,0 denote the process that is obtained in analogy
to ϒn,1 and ϒn,2 when choosing α = β = 0. By the second step, (ϒn,1

t :n ∈ N) and
(ϒ

n,0
t :n ∈N) are asymptotically equivalent in probability implying that

P
(∣∣ϒn,1

t − ϒ
n,0
t

∣∣≥ δ/2
)≤ δ/2

for sufficiently large n ∈ N. Altogether, we arrive at

P
(∣∣ϒn,2

t − ϒ
n,0
t

∣∣≥ δ
)≤ δ

for sufficiently large n ∈ N. Since δ > 0 is arbitrary, (ϒ
n,2
t :n ∈ N) and (ϒ

n,0
t :n ∈

N) are equivalent in probability. The general statement follows by transitivity of
equivalence in probability. �

LEMMA 2.6. For any finite subset T ⊂ D =⋃
n∈N εnN0, one has convergence(

Yt ,Z
n,ε
t

)
t∈T ⇒ (

Yt ,Z
ε
t

)
t∈T.

PROOF. 1st step. In the first step, we derive a simpler sufficient criterion which
implies the statement. Fix l ∈ N, increasing times 0 = t0 ≤ t1 < · · · < tl ≤ T and
consider T = {t1, . . . , tl}. The statement follows if for A ∈ σ(Yt : t ∈ T) and con-
tinuous compactly supported f :Rl → R

E
[
1Af

(
Z

n,ε
t1

, . . . ,Z
n,ε
tl

)]→ E
[
1Af

(
Zε

t1
, . . . ,Zε

tl

)]
.

By the Stone–Weierstrass theorem, the linear hull of functions of the form

R
l → R, x �→ f1(x1) × · · · × fl(xl)



MLMC FOR ADAPTIVE EULER SCHEMES 157

with continuous compactly supported functions f1, . . . , fl :R → R is dense in the
space of compactly supported continuous functions on R

l equipped with supre-
mum norm. Hence, it suffices to verify that

E
[
1Af1

(
Z

n,ε
t1

) · · ·fl

(
Z

n,ε
tl

− Z
n,ε
tl−1

)]
(2.18)

→ E
[
1Af1

(
Zε

t1

) · · ·fl

(
Zε

tl
− Zε

tl−1

)]
for arbitrary continuous compactly supported functions f1, . . . , fl :R →R.

For fixed set T, the family of sets A ∈ σ(Yt : t ∈ T) for which (2.18) is valid is
a Dynkin system provided that the statement is true for A = �. Consequently, it
suffices to prove (2.18) on the ∩-stable generator

E = {A1 ∩ · · · ∩ Al :A0 ∈ A0, . . . ,Al ∈ Al},
where A1 = σ(Yt1), . . . ,Al = σ(Ytl −Ytl−1). We note that for A = A1 ∩ · · · ∩Al ∈
E the random variables

1A1f1
(
Z

n,ε
t1

)
, . . . ,1Al

fl

(
Z

n,ε
tl

− Z
n,ε
tl−1

)
are independent if T ⊂ εnN0 which is fulfilled for sufficiently large n since T is
finite and a subset of D. Likewise this holds for (Z

n,ε
t ) replaced by (Zε

t ). Conse-
quently, it suffices to prove that for k = 1, . . . , l

E
[
1Ak

fk

(
Z

n,ε
tk

− Z
n,ε
tk−1

)]→ E
[
1Ak

fk

(
Zε

tk
− Zε

tk−1

)]
.

Due to the time homogeneity of the problem, we can and will restrict attention to
the case k = 1 and set t = t1. Note that σ(W) ∩⋃

ε′>0 σ(
∑

s∈(0,t] : |�Ys |≥ε′ δ�Ys ) is
∩-stable, contains � and generates a σ -field that contains σ(Yt ).

We conclude that the statement of the lemma is true, if for all t ∈ D, ε′ > 0,
all A ∈ σ(W) and A′ ∈ σ(

∑
s∈(0,t] : |�Ys |≥ε′ δ�Ys ) and all continuous compactly

supported f :R →R, one has

lim
n→∞E

[
1A∩A′f

(
Z

n,ε
t

)]= E
[
1A∩A′f

(
Zε

t

)]
.(2.19)

2nd step. In this step, we prove that for A ∈ σ(W) and A′ ∈ σ(�)

lim
n→∞

∣∣E[1A∩A′f
(
Z

n,ε
t

)]− P(A)E
[
1A′f

(�Zn,ε
t

)]∣∣= 0,

where (�Y ε
s ) and (�Zn,ε

s ) are given by

�Y ε
s = σWs +

∫
(0,s]×B(0,ε)c

x d�(u,x)

and

�Zn,ε
s = ε−1/2

n

∫ s

0
(Wιn+1(u−) − Wιn(u−))d�Y ε

u .

It suffices to consider the case P(A) > 0. We use results of enlargements of filtra-
tions; see [19], Theorem 2, page 47, or [1], Example 2: there exists a previsible
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process (αs)s∈[0,T ] being square integrable with respect to P ⊗ 	[0,T ] such that
given A the process (WA

s )s∈[0,T ]

WA
s := Ws −

∫ s

0
αu du

is a Wiener process. By Lemma 2.5, the processes (Z
n,ε
t ) and

�Zn,ε,A
s = ε−1/2

n

∫ s

0

(
WA

ιn+1(u−) − WA
ιn(u−)

)
d�Y ε,A

u

with �Y ε,A = (σWA
s +∫

(0,s]×B(0,ε)c x d�(u,x))s∈[0,T ] are equivalent in probability.
Hence, ∣∣E[1A∩A′f

(
Z

n,ε
t

)]−E
[
1A∩A′f

(�Zn,ε,A
t

)]∣∣→ 0.

The set A is independent of �. Further, conditionally on A the process WA is a
Brownian motion that is independent of � which implies that

E
[
1A∩A′f

(�Zn,ε,A
t

)]= P(A)E
[
1A′f

(�Zn,ε
t

)]
.

3rd step. Let � denote the finite Poisson point process on B(0, ε′)c with

� = ∑
s∈(0,t]

|�Ys |≥ε′

δ�Ys =
∫
(0,t]×B(0,ε)c

δx d�(u,x).

In the third step, we prove that for every A′ ∈ σ(�) and every continuous and
bounded function f :R→R one has

lim
n→∞E

[
1A′f

(�Zn,ε
t

)]= E
[
1A′f

(
Zε

t

)]
.

By dominated convergence, it suffices to show that, almost surely,

lim
n→∞E

[
f
(�Zn,ε

t

)|�]= E
[
f
(
Zε

t

)|�].(2.20)

The regular conditional probability of �|(0,t]×B(0,ε′)c given � can be made pre-
cise: the distribution of �|(0,t]×B(0,ε′)c given {� = γ := ∑m

k=1 δym} with m ∈ N

and y1, . . . , ym ∈ B(0, ε′)c is the same as the distribution of
m∑

k=1

δSk,yk

with independent on (0, t] uniformly distributed random variables S1, . . . , Sm.
Since, furthermore, �|(0,t]×B(0,ε′)c is independent of �|(0,t]×B(0,ε′)\{0} and the
Brownian motion W , we conclude that the distribution of �Zn,ε

t conditioned on
{� = γ } equals the distribution of the random variable

�Zn,ε,γ
t = ε−1/2

n

∫ t

0
(Wι

γ
n+1(u−) − Wι

γ
n (u−))d�Yn,γ

u
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with �Yn,γ
s = σWs +∑m

k=1 ym1{|ym|≥ε}1{Sk≤s} and

ιγn (s) = sup
[(

εnZ∩ [0, t])∪ {s ∈ (0, t] :hn ≤ |�Ys | < ε′}∪ {S1, . . . , Sm}].
Here, the random variables S1, . . . , Sm are independent of �|(0,t]×B(0,ε′) and W .
Likewise the random variable Zε

t given {� = γ } has the same distribution as the
unconditional random variable

Z
ε,γ
t = ϒBt +

m∑
j=1

σj

σ
ξjyj1{|yj |≥ε}

with σ1, . . . , σm and ξ1, . . . , ξm being independent (also of B) with the same distri-
bution as the marks of the point process �. Consequently, statement (2.20) follows
if for every γ as above,

lim
n→∞E

[
f
(�Zn,ε,γ

t

)]= E
[
f
(
Z

ε,γ
t

)]
.

We keep γ fixed and analyse �Zn,ε,γ
t for n ∈ N sufficiently large, that is, with

t ∈ εnZ. We partition (0, t] into t/εn n-windows. We call the kth n-window to be
occupied by Sj if Sj is the only time in the window ((k − 1)εn, kεn]. Further, we
call a window to be empty, if none of the times S1, . . . , Sm is in the window. For
each window k = 1, . . . , t/εn that is empty, we set

Zn,γ
k = ε−1/2

n σ

∫ kεn

(k−1)εn

(Wι
γ
n+1(u−) − Wι

γ
n (u−))dWu,

and for a window ((k − 1)εn, kεn] being occupied by j

Zn,γ
k = ε−1/2

n (Wι
γ
n+1(Sj−) − Wι

γ
n (Sj−))yj1{|yj |≥ε}.

The remaining Zn,γ
k can be defined arbitrarily since we will make use of the fact

that the event Tn that all windows are either empty or occupied satisfies P(Tn) → 1.
We first analyse the contribution of the occupied windows. Given that Tn

occurs and that S1, . . . , Sm are in windows k1, . . . , km, the random variables
Zn,γ

k1
, . . . ,Zn,γ

km
are independent. We consider their conditional distributions: con-

ditionally, each Sj is uniformly distributed on the respective window and the last
displacement in B(0, ε′) \ B(0, hn), respectively, B(0, hn) \ B(0, hn+1) has oc-
curred an independent exponentially distributed amount of time ago; with parame-
ter λn = ν(B(0, ε′)\B(0, hn)), respectively, λn+1 −λn. Therefore, the conditional
distribution of (Sj − ιn(Sj ), Sj − ιn+1(Sj )) is the same as the one of(

min
(
Uεn,Eλn

)
,

M∑
i=1

1((i−1)εn,iεn]
(
Uεn

)
min

(
Uεn − i − 1

M
,Eλn,Eλn+1−λn

))
,

where Uεn,Eλn and Eλn+1 are independent random variables with Uεn being uni-
formly distributed on [0, εn] and Eλn,Eλn+1−λn being exponentially distributed
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with parameters λn and λn+1 − λn. Consequently, conditionally, one has that

Zn,γ
kj

d= ε−1/2
n

(
min

(
Uεn,Eλn

)

− min

(
M∑
i=1

1((i−1)εn,iεn]
(
Uεn

)(
Uεn − i − 1

M

)
,Eλn,Eλn+1−λn

))1/2

× ξyj1{|yj |≥ε},
where ξ denotes an independent standard normal. By assumption, λn/εn → θ as
n → ∞ so that the latter distribution converges to the one of σj

σ
ξjyj . Hence, con-

ditionally on Tn one has ∑
k∈N∩[0,t/εn]

kth n-window occupied

Zn,γ
k ⇒

m∑
j=1

σj

σ
ξjyj1{|yj |≥ε}.

Next, we analyse the contribution of all empty windows. Given Tn, there are
t/εn − m empty windows and the corresponding random variables Zn,γ

k are inde-
pendent and identically distributed. We have

E
[
Zn,γ

1 |(0, εn] empty, Tn

]= 0

since W is independent of the event we condition on. Further, by Itô’s isometry
and the scaling properties of Brownian motion one has

Var
(
Zn,γ

1 |(0, εn] empty, Tn

)
= ε−1

n σ 2
E

[∫ εn

0
(Wι

γ
n+1(u) − Wι

γ
n (u))

2 du|(0, εn] empty, Tn

]
(2.21)

= εnσ
2
E
[
(W

ε−1
n ι

γ
n+1(Uεn )

− W
ε−1
n ι

γ
n (Uεn )

)2|(0, εn] empty, Tn

]
= εnσ

2
E
[
ε−1
n ι

γ
n+1

(
Uεn

)− ε−1
n ιγn

(
Uεn

)]|(0, εn] empty, Tn

]
.

Here, we denote again by Uεn an independent uniform random variable on [0, εn]
and we used that conditionally the processes ι

γ
n and ι

γ
n+1 are independent of the

Brownian motion W . As above, we note that the distributions of ε−1
n ι

γ
n+1(Uεn) and

ε−1
n ι

γ
n (Uεn) are identically distributed as

ε−1
n

(
Eλn+1 ∧ Uεn

M

)
and ε−1

n

(
Eλn ∧ Uεn

)
.

By assumption (ML2), these converge in L1 to EMθ ∧U1/M and Eθ ∧ U1, respec-
tively. Hence, computing the respective expectations gives with (2.21)

ε−1
n Var

(
Zn,γ

1 |(0, εn] empty, Tn

)→ σ 2 M − 1

M

e−θ − (1 − θ)

θ2 =: ϒ2.



MLMC FOR ADAPTIVE EULER SCHEMES 161

The uniform L2-integrability of L(ε
−1/2
n Zn,γ

1 |(0, εn] empty, Tn) follows by notic-
ing that by the Burkhölder–Davis–Gundy inequality there exists a universal con-
stant κ such that

E
((
Zn,γ

1

)4|(0, εn] empty, Tn

)
≤ κε−2

n σ 4
E

[(∫ εn

0
(Wι

γ
n+1(u) − Wι

γ
n (u))

2 du

)2∣∣∣(0, εn] empty, Tn

]
≤ 4κσ 4

E

[
sup

u∈[0,εn]
W 4

u

]
= 4κσ 4ε2

nE

[
sup

u∈[0,1]
W 4

u

]
.

Hence, conditionally on Tn one has∑
k∈N∩(0,t/εn]

kth n-window empty

Zn,γ
k ⇒ N

(
0,ϒ2t

)
.

Given Tn the contribution of the empty and occupied windows are independent,
so that since P(Tn) → 1, generally

t/εn∑
k=1

Zn,γ
k ⇒ Z

ε,γ
t .

It remains to show that

lim
n→∞

(
�Zn,ε,γ

t −
t/εn∑
k=1

Zn,γ
k

)
= 0 in probability.

This follows immediately by noticing that, given Tn, one has

�Zn,ε,γ −
t/εn∑
k=1

Zn,γ
k

= σε−1/2
n

∑
k∈N∩[0,t/εn]

kth n-window occupied

∫ kεn

(k−1)εn

(Wιn+1(u−) − Wιn(u−))dWu,

where the sum on the right-hand side is over m independent and identically dis-
tributed summands each having second moment smaller than ε2

n.
4th step. In the last step, we combine the results of the previous steps. By step

one, it suffices to verify equation (2.19). Provided that the statement is true for
A = �, the system of sets A for which (2.19) is satisfied is a Dynkin system.
Consequently, it suffices to verify validity for sets A ∩ A′ with A ∈ σ(Wt) and
A′ ∈ σ(�). By step two, one has

lim
n→∞

∣∣E[1A∩A′f
(
Z

n,ε
t

)− P(A)E
[
1A′f

(�Zn,ε
t

)]∣∣→ 0
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and by step three

lim
n→∞E

[
1A′f

(�Zn,ε)]= E
[
1A′f

(
Zε

t

)]
so that

lim
n→∞E[1A∩A′f

(
Z

n,ε
t

)= P(A)E
[
1A′f

(
Zε

t

)]
.

The proof is complete by noticing that σ(Wt) is independent of σ(�,Zε
t ) so that

P(A)E
[
1A′f

(�Zε
t

)]= E
[
1A∩A′f

(�Zε
t

)]
. �

3. Scaled errors of derived quantities. In this section, we collect results that
will enable us to deduce the main central limit theorems with the help of Theo-
rem 1.5.

3.1. The integrated processes. The following lemma is central to the proof of
Theorems 1.9 and 1.10.

LEMMA 3.1. If assumptions (ML1) and (ML2) hold, then one has

lim
n→∞ ε−1

n E

[∣∣∣∣∫ T

0

(
X̂n

t − �Xn
t

)
dt

∣∣∣∣2]= 0.

PROOF. With bn := b − ∫
B(0,hn)c xν(dx) we have for t ∈ [0, T ]

X̂n
t − �Xn

t = a(X̂ιn(t))
(
Yh

t − Yh
ιn(t)

)
(3.1)

= a(X̂ιn(t))
(
bn

(
t − ιn(t)

)+ σ(Wt − Wιn(t))
)
.

We estimate

E

[∣∣∣∣∫ T

0
a(X̂ιn(t))bn

(
t − ιn(t)

)
dt

∣∣∣∣2]≤ b2
nε

2
nTE

[∫ T

0

∣∣a(X̂n
ιn(t−)

)∣∣2 dt

]
.

The latter expectation is uniformly bounded over all n; see Lemma A.12. Further,
b2
n = o(ε−1

n ) by Lemma A.10. Consequently, the first term is of order o(εn). By
Fubini,

E

[(∫ T

0
a(X̂ιn(t))σ (Wt − Wιn(t))dt

)2]

= σ 2
∫ T

0

∫ T

0
E
[
a(X̂ιn(t))(Wt − Wιn(t))a(X̂ιn(u))(Wu − Wιn(u))

]
dt du.

Further, for 0 ≤ t ≤ u ≤ T ,

E
[
a(X̂ιn(t))(Wt − Wιn(t))a(X̂ιn(u))(Wu − Wιn(u))|ιn, X̂ιn(t)

]
= 1{ιn(t)=ιn(u)}a(X̂ιn(t))

2((t ∧ u) − ιn(t)
)



MLMC FOR ADAPTIVE EULER SCHEMES 163

and since the statement is symmetric in the variables t, u also for 0 ≤ u ≤ t ≤ T .
Consequently,

E

[(∫ T

0
a(X̂ιn(t))σ (Wt − Wιn(t))dt

)2]
≤ 2ε2

nσ
2
∫ T

0
E
[
a(X̂ιn(t))

2]dt.

We recall that the latter expectation is uniformly bounded so that this term is also
of order o(εn). �

3.2. The supremum. The results of this subsection are central to the proof of
Theorem 1.8. We first give some qualitative results for solutions X = (Xt)t∈[0,T ]
of the stochastic differential equation

dXt = a(Xt−)dYt

with arbitrary starting value. We additionally assume that a does not attain zero.

LEMMA 3.2. One has for every t ∈ [0, T ] that, almost surely,

sup
s∈[0,t]

Xs > X0 ∨ Xt.

PROOF. We only prove that

sup
s∈[0,t]

Xs > Xt

and remark that the remaining statement follows by similar simpler considerations.

1st step. In the first step, we show that

1√
ε
(Xt−ε+εs − Xt−ε)s∈[0,1]

stably�⇒ (
σa(Xt)Bs

)
s∈[0,1].

We show the statement in two steps: first note that

1√
ε
(Xt−ε+εs − Xt−ε)s∈[0,1] and

1√
ε

(
a(Xt−ε)(Yt−ε+εs − Yt−ε)

)
s∈[0,1]

are equivalent in ucp. Further, Zε := (ε−1/2(YT −ε+εs − Yt−ε))s∈[0,1] is indepen-
dent of a(Xt−ε) and a(Xt−ε) tends to a(Xt), almost surely. Hence, it remains
to show that Zε converges for ε ↓ 0 in distribution to σB . Note that Zε is a
Lévy-process with triplet (b

√
ε, σ 2, νε), where νε(A) = εν(

√
εA) for Borel sets

A ⊂ R \ {0}. It suffices to show that Lévy-processes �Zε with triplet (0,0, νε) con-
verge to the zero process.

We uniquely represent �Zε as

�Zε
t = �Zε,r

t + ��Zε,r − bε,r t



164 S. DEREICH AND S. LI

with independent Lévy processes �Zε,r
t and ��Zε,r

, the first one with triplet
(0,0, νε|B(0,r)), the second one being a compound Poisson process with intensity
ν|B(0,r)c , and with bε,r := ∫

B(0,r)c x dνε(x). Clearly, for δ > 0

P

(
sup

t∈[0,1]
∣∣�Zε

t

∣∣> δ
)

≤ 1{|bε,r |>δ/2}+P

(
sup

t∈[0,1]
∣∣�Zε,r

t

∣∣> δ/2
)
+P

(��Zε,r �= 0
)
.(3.2)

For r > 0, one has

rν
(
B(0, r)c

)≤
∫
B(0,r)c

|x|dνε(x) = ε

∫
B(0,

√
εr)c

|x|√
ε

dν(x)

≤ √
ε

∫
B(0,

√
εr)

x2
√

εr
ν(dx) ≤ 1

r

∫
x2ν(dx).

Hence, |bε,r | ≤ δ/2, for sufficiently large r , and P(��Zε,r �= 0) ≤ ν(B(0, r)c) ≤
1
r2

∫
x2ν(dx). Further,∫

B(0,r)
x2 dνε(x) =

∫
B(0,

√
εr)

x2 dν(x) → 0

so that Doob’s L2-inequality yields

lim
ε↓0

P

(
sup

t∈[0,1]
∣∣�Zε,r

t

∣∣> δ/2
)

= 0.

Plugging these estimates into (3.2) gives

lim sup
ε↓0

P

(
sup

t∈[0,1]
∣∣�Zε

t

∣∣> δ
)

≤ 1

r2

∫
x2ν(dx)

and the statement of step one follows by noticing that r > 0 can be chosen arbi-
trarily large.

2nd step. Clearly, for ε ∈ (0, t],
P

(
sup

s∈[0,t]
Xs = Xt

)
≤ P

(
ε−1/2 sup

s∈[0,1]
(Xt−ε+εs − Xt−ε) = ε−1/2(Xt − Xt−ε)

)
.

The set of all càdlàg functions x : [0,1] → R with sups∈[0,1] xs = x1 is closed in
the Skorokhod space so that

P

(
sup

s∈[0,t]
Xs = Xt

)
≤ lim sup

ε↓0
P

(
ε−1/2 sup

s∈[0,1]
(Xt−ε+εs − Xt−ε) = ε−1/2(Xt − Xt−ε)

)
≤ P

(
a(Xt) sup

s∈[0,1]
σBs = a(Xt)B1

)
= 0.

�
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LEMMA 3.3. Suppose that a(x) �= 0 for all x ∈ R. There is a unique random
time S (up to indistinguishability) such that, almost surely,

sup
s∈[0,T ]

Xs = XS

and one has �XS = 0. Further, for every ε > 0, almost surely,

sup
s∈[0,S] : |s−S|≥ε

Xs < XS.

PROOF. 1st step. First we prove that the supremum supt∈[0,T ] Xt is almost
surely attained at some random time S with �XS = 0. By compactness of the time
domain, we can find an almost surely convergent [0, T ]-valued sequence (Sn)n∈N
of random variables, say with limit S, with

lim
n→∞XSn = sup

t∈[0,T ]
Xt.

Let h > 0. We represent Y as sum

Yt = Yh
t +

N∑
k=1

1[Tk,T ](t)�YTk
,

where T1, . . . , TN are the increasingly ordered times of the discontinuities of Y

being larger than h. Further, Yh is a Lévy process that is independent of �Yh := Y −
Yh. Given �Yh, for every k = 1, . . . ,N , the process (Xt)t∈[Tk−1,Tk) solves the SDE

dXt = a(Xt−)dYh
t

and we have, almost surely, that

XTk− = XTk−1 +
∫ Tk

Tk−1

a(Xs)dYh
s .

Consequently, we can apply Lemma 3.2 and conclude that, almost surely, for each
k = 1, . . . ,N + 1,

sup
s∈[Tk−1,Tk)

Xs > XTk−1 ∨ XTk−

with T0 = 0 and TN+1 = T . Hence, almost surely,

sup
s∈[0,T ]

Xs > sup
k=1,...,N+1

XTk−1 ∨ XTk−.

Consequently, S is almost surely not equal to 0 or T or a time with displacement
larger than h. Since h > 0 was arbitrary, we get that, almost surely, �XS = 0, so
that

XS = lim
n→∞XSn = sup

t∈[0,T ]
Xt almost surely.
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2nd step. We prove that for every t ∈ [0, T ] the distribution of sups∈[0,t] Xs has
no atom. Suppose that it has an atom in z ∈ R. We consider the stopping time

T{z} = inf
{
t ∈ [0, T ] :Xt = z

}
with the convention T{z} = ∞ in the case when z is not hit. For ε > 0, conditionally
on the event {T{z} ≤ T − ε} the process (X̃s)s∈[0,ε] with

X̃s = XT{z}+s

starts in z and solves dX̃s = a(X̃s)dỸs with Ỹ denoting the T{z}-shifted Lévy pro-
cess Y . Hence, by Lemma 3.2, one has almost surely on {T{z} ≤ T − ε} that

z = X̃0 < sup
s∈[0,ε]

X̃s ≤ sup
s∈[0,T ]

Xs.

Since ε > 0 is arbitrary and X does not attain its supremum in T , it follows that
P(sups∈[0,T ] Xs = z) = 0.

3rd step. We prove that the supremum over two disjoint time windows [u, v)

and [w,z) with 0 ≤ u < v ≤ w < z ≤ T , satisfies

sup
s∈[u,v)

Xs �= sup
s∈[w,z)

Xs,

almost surely. By the Markov property, the random variables sups∈[u,v) Xs and
sups∈[w,z) Xs are independent given Xw and we get

P

(
sup

s∈[u,v)

Xs = sup
s∈[w,z)

Xs

)
=
∫

P

(
sup

s∈[w,z)

Xs = y
∣∣Xw = x

)
dP(Xw,sups∈[u,v) Xs)(x, y),

were P(Xw,sups∈[u,v) Xs) denotes the distribution of (Xw, sups∈[u,v) Xs). We note that
the conditional process (Xs)s∈[w,z) is again a solution of the SDE started in x and
by step two the inner conditional probability equals zero.

4th step. We finish the proof of the statement. For given ε > 0, we choose de-
terministic times 0 = t0 < t1 < · · · < tm = T with tk − tk−1 ≤ ε. By step three,
there is, almost surely, one window in which the supremum is attained, say in
[tM−1, tM), and

sup
s∈[0,T ] : |S−s|≥ε

Xs ≤ sup
k∈{1,...,m}\{M}

sup
s∈[tk−1,tk)

Xs < sup
s∈[tM−1,tM)

Xs = XS.
�

LEMMA 3.4. Suppose that a(x) �= 0 for all x ∈ R and denote by S the random
time at which X attains its maximum. One has

ε−1/2
n

(
sup

t∈[0,T ]
Xn+1

t − sup
t∈[0,T ]

Xn
t

)
− U

n,n+1
S → 0 in probability.
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PROOF. With Lemma 3.3 we conclude that, for every ε > 0, one has with high
probability that ∣∣∣ε−1/2

n

(
sup

t∈[0,T ]
Xn+1

t − sup
t∈[0,T ]

Xn
t

)
− U

n,n+1
S

∣∣∣
≤ sup

t : |t−S|≤ε

∣∣ε−1/2
n

(
Xn+1

t − Xn
t

)− U
n,n+1
S

∣∣
= sup

t : |t−S|≤ε

∣∣Un,n+1
t − U

n,n+1
S

∣∣.
For ε, δ > 0, consider

Aε,δ =
{
(s, x) ∈ [0, T ] ×D(R) : sup

(t,u) : s−ε≤t≤u≤s+ε

: |xt − xu| ≥ δ
}
.

Note that cl(Aε,δ) ⊂ A2ε,δ and recall that (S,Un,n+1) ⇒ (S,U). Hence,

lim sup
n→∞

P

(∣∣∣ε−1/2
n sup

t∈[0,T ]
Xn+1

t − ε−1/2
n sup

t∈[0,T ]
Xn

t − U
n,n+1
S

∣∣∣≥ δ
)

≤ lim sup
n→∞

P
((

S,Un,n+1) ∈ Aε,δ

)≤ P
(
(S,U) ∈ A2ε,δ

)
.

Note that U is almost surely continuous in S so that for ε ↓ 0, P((S,U) ∈
A2ε,δ) → 0. �

4. Proofs of the central limit theorems. In this section, we prove all central
limit theorems and Theorem 1.11. We will verify the Lindeberg conditions for the
summands of the multilevel estimate Ŝ(F ); see (1.4). As shown in Lemma A.9
in the Appendix, a central limit theorem holds for the idealised approximations
X1,X2, . . . , if:

(1) limn→∞ Var(ε−1/2
n (F (Xn+1) − F(Xn)) = ρ2 and

(2) (ε
−1/2
n (F (Xn+1) − F(Xn)) :k ∈N) is uniformly L2-integrable.

The section is organised as follows. In Section 4.1, we verify uniform L2-in-
tegrability of the error process in supremum norm which will allow us to verify
property (2) in the central limit theorems. In Section 4.2, we prove Theorems 1.6
and 1.9, essentially by verifying property (1).

It remains to deduce Theorems 1.8 and 1.10 from the respective theorems for the
idealised scheme. By Lemmas 1.2, 1.4 and 3.1, switching from the idealised to the
continuous or piecewise constant approximation leads to asymptotically equivalent
L2-errors. Hence, the same error process can be used and, in particular, uniform
L2-integrability prevails due to Lemma A.8. Consequently, the identical proofs
yield the statements.

Finally, we prove Theorem 1.11 in Section 4.3.
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4.1. Uniform L2-integrability.

PROPOSITION 4.1. The sequence (ε
−1/2
n supt∈[0,T ] |Xn+1

t − Xn
t |)n∈N is uni-

formly L2-integrable.

To prove the proposition, we will make use of the perturbation estimates given
in the Appendix; see Section A.4. Recall that Un,n+1 = ε

−1/2
n (Xn+1 −Xn) satisfies

the equation

U
n,n+1
t =

∫ t

0
D

n,n+1
s− U

n,n+1
s− dYs + ε−1/2

n

∫ t

0
Dn

s−An
s−(Ys− − Yιn(s−))dYs

− ε−1/2
n

∫ t

0
Dn+1

s− An+1
s− (Ys− − Yιn+1(s−))dYs.

We use approximations indexed by m ∈ N: we denote by

Un,n+1,m = (
Un,n+1,m

t

)
t∈[0,T ]

the solution of the equation

Un,n+1,m
t =

∫ t

0
D

n,n+1
s− Un,n+1,m

s dYm
s

+ ε−1/2
n σ

∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s(4.1)

− ε−1/2
n σ

∫ t

0
Dn+1

s− An,m
s− (Ws− − Wιn+1(s−))dYm

s ,

where Ym = (Ym
t )t∈[0,T ] is given by

Ym
t = bt + σWt + lim

δ↓0

∫
(0,t]×(B(0,m)\B(0,δ))

x d��(s, x),

and An,m = (An,m
t )t∈[0,T ] is the simple adapted càdlàg process given by

An,m
t =

{
An

t , if
∣∣An

t

∣∣≤ m,
0, else.

The proof of the proposition is achieved in two steps. We show that:

1. limm↑∞ lim supn→∞E[supt∈[0,T ] |Un,n+1
t − Un,n+1,m

t |2] = 0 and

2. for every p ≥ 2 and m ∈ N, E[supt∈[0,T ] |Un,n+1,m
t |p] < ∞.

Then the uniform L2-integrability of (supt∈[0,T ] |Un,n+1
t |)n∈N follows with

Lemma A.8.

LEMMA 4.2. One has

lim
m↑∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣Un,n+1

t − Un,n+1,m
t

∣∣2]= 0.
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PROOF. The processes Un,n+1,m are perturbations of Un,n+1 as analysed in
Lemma A.14. More explicitly, the result follows if there exists a constant κ > 0
such that

E

[
sup

t∈[0,T ]

∣∣∣∣ε−1/2
n

∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s

∣∣∣∣2]≤ κ,(4.2)

for all n,m ∈ N, and

lim
m→∞ lim sup

n→∞
ε−1
n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ys− − Yιn(s−))dYs

(4.3)

− σ

∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s

∣∣∣∣2]= 0.

Using Lemma A.11, the uniform boundedness of Dn, conditional independence of
An,m

s− and Ws− − Wιn(s−) given ιn, there exists a constant κ1 > 0 such that

ε−1
n E

[
sup

0≤r≤t

∣∣∣∣∫ r

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s

∣∣∣∣2]

≤ κ1

∫ T

0
ε−1
n E

[∣∣An,m
s−

∣∣2|Ws− − Wιn(s−)|2]ds

≤ κ1

∫ T

0
E
[∣∣An,m

s−
∣∣2]ds ≤ κ1

∫ T

0
E
[∣∣An

s−
∣∣2]ds

for all n,m ∈ N. The latter integral is uniformly bounded by Lemma A.12 and the
Lipschitz continuity of a.

We proceed with the analysis of (4.3). The expectation in (4.3) is bounded by
twice the sum of

�(1)
n,m := ε−1

n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ys− − Yιn(t−))dYs

− σ

∫ t

0
Dn

s−An
s−(Ws− − Wιn(s−))dYm

s

∣∣∣∣2]
and

�(2)
n,m := ε−1

n E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−An
s−(Ws− − Wιn(t−))dYm

s

−
∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(t−))dYm

s

∣∣∣∣2].
The term �

(1)
n,m is the same as the one appearing in (2.6) when replacing Y ε by Ym.

One can literally translate the proof of (2.6) to obtain that

lim
m→∞ lim sup

n→∞
�(1)

n,m = 0.
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By uniform boundedness of Dn and Lemma A.11, there exists a constant κ2 not
depending on n,m ∈ N with

�(2)
n,m ≤ κ2ε

−1
n

∫ T

0
E
[(

An
s− −An,m

s−
)2

(Ws− − Wιn(s−))
2]ds

≤ κ2

∫ T

0
E
[(

An
s− −An,m

s−
)2]ds

≤ 2κ2

∫ T

0
E
[(

An
s− − a(Xs−)

)2]ds + 2κ2

∫ T

0
E
[(

a(Xs−) −An,m
s−

)2]ds,

where we have used again that given ιn the random variables An
s− − An,m

s− and
Ws− −Wιn(s−) are independent. The first integral in the previous line tends to zero
by Lipschitz continuity of a and L2-convergence of supt∈[0,T ] |Xn

t − Xt | → 0 (see
Proposition 4.1 of [11]). Further, the second integral satisfies

lim sup
n→∞

∫ T

0
E
[(

a(Xs−) −An,m
s−

)2]ds ≤
∫ T

0
E
[
1[m,∞)

(|Xs−|)a(Xs−)2]ds

which tends to zero as m → ∞ since supt∈[0,T ] |Xt | is square integrable. �

LEMMA 4.3. For every m ∈ N and p ≥ 2, one has

sup
n∈N

E

[
sup

t∈[0,T ]
∣∣Un,n+1,m

t

∣∣p]< ∞.

PROOF. Since Yh has bounded jumps, it has finite pth moment. Dn,n+1 is
uniformly bounded and by part one of Lemma A.15 it suffices to prove that

E

[
sup

t∈[0,T ]

∣∣∣∣ε−1/2
n

∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s

∣∣∣∣p]
is uniformly bounded over all n ∈ N for fixed m ∈ N. Using Lemma A.11 and the
uniform boundedness of Dn and An,m over all n ∈ N, we conclude existence of a
constant κ3 such that for every n ∈ N

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Dn

s−A
n,m
s− (Ws− − Wιn(s−))dYm

s

∣∣∣∣p]

≤ κ3

∫ T

0
E
[|Ws− − Wιn(s−)|p]ds ≤ κ3T εp/2

n . �

4.2. Proof of the central limit theorems for X1,X2, . . . . In this section we
prove Theorems 1.6 and 1.9. By Proposition 4.1 and the Lipschitz continuity of F

with respect to supremum norm, we conclude that (ε
−1/2
n (F (Xn+1)−F(Xn)) :n ∈

N) is uniformly L2-integrable in both settings. In view of the discussion at the
beginning of Section 4 it suffices to show that

lim
n→∞ Var

(
ε−1/2
n

(
F
(
Xn+1)− F

(
Xn)))= Var

(∇f (AX) · AU
)
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in the first setting and

lim
n→∞ Var

(
ε−1/2
n

(
F
(
Xn+1)− F

(
Xn)))= Var

(
f ′(XS) · US

)
in the second setting. By dominated convergence it even suffices to show weak
convergence of the distributions appearing in the variances. Theorem 1.6 follows
from the following lemma.

LEMMA 4.4. Under the assumptions of Theorem 1.6, one has

ε−1/2
n

(
F
(
Xn+1)− F

(
Xn))⇒ ∇f (AX) · AU.

PROOF. For n ∈ N, let Zn := AXn and set Z = AX. Since Z ∈ Df , almost
surely, we conclude that

lim
n→∞ ε−1/2

n

(
f (Zn) − f (Z) − ∇f (Z)(Zn − Z)

)= 0 in probability.(4.4)

Indeed, one has f (Zn) − f (Z) − ∇f (Z)(Zn − Z) = Rn(Zn − Z) for appropriate
random variables Rn that converge in probability to zero since Zn − Z → 0, in
probability, and f is differentiable in Z. Further, for fixed ε > 0 we choose δ > 0
large and estimate

P
(∣∣ε−1/2

n Rn(Zn − Z)
∣∣> ε

)≤ P
(|Rn| > ε/δ

)+ P
(∣∣ε−1/2

n (Zn − Z)
∣∣> δ

)
.

The first summand converges to zero as n → ∞ and the second term can be made
uniformly arbitrarily small over n by choosing δ sufficiently large due to tightness
of the sequence (ε

−1/2
n (Zn − Z))n∈N. Equation (4.4) remains true when replacing

Zn by Zn+1 and we conclude that

lim
n→∞ ε−1/2

n

(
f (Zn+1) − f (Zn) − ∇f (Z)(Zn+1 − Zn)

)= 0 in probability.

By Theorem 1.5 and the fact that A is continuous in PU -almost every point, we
conclude that (

Y,Aε−1/2
n

(
Xn+1 − Xn))⇒ (Y,AU)

and, hence,

ε−1/2
n (Zn+1 − Zn)

stably�⇒ AU,

by Lemma A.2. Consequently, since ∇f (Z) is σ(Y )-measurable we get(∇f (Z), ε−1/2
n (Zn+1 − Zn)

)⇒ (∇f (Z),AU
)

and the proof is completed by noticing that the scalar product is continuous. �

Analogously, Theorem 1.9 is a consequence of the following lemma.
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LEMMA 4.5. Under the assumptions of Theorem 1.9, one has

ε−1/2
n

(
f
(

sup
s∈[0,T ]

Xn+1
s

)
− f

(
sup

s∈[0,T ]
Xn

s

))
⇒ f ′(XS) · US,

where S denotes the time where X attains its maximum.

PROOF. By Lemma 3.3, there exists s unique time S at which X attains its
maximum and by Lemma 3.4 one has

ε−1/2
n

(
sup

s∈[0,T ]
Xn+1

s − sup
s∈[0,T ]

Xn
s

)
− U

n,n+1
S → 0 in probability.

By Theorem 1.5 and Lemma A.2, one has(
Y,S,Un,n+1)⇒ (Y, S,U)

and the function [0, T ]×D(R) →R, (s, u) �→ us is continuous in PS,U -almost all
(s, u) since U is almost surely continuous in S by Lemma 3.3. Consequently,(

Y,U
n,n+1
S

)⇒ (Y,US)

and, hence,

ε−1/2
n

(
sup

s∈[0,T ]
Xn+1

s − sup
s∈[0,T ]

Xn
s

) stably�⇒ US.

The rest follows as in the proof of Lemma 4.4. �

4.3. Proof of Theorem 1.11. 1st step. Denote by E = (Et )t∈[0,T ] the stochastic
exponential of (

∫ t
0 a′(Xs−)dYs)t∈[0,T ]. In particular, E does not hit zero with prob-

ability one; see, for instance, [18], Theorem 1.4.61. In the first step, we show that
E[UsUt |Y ] = ϒ2φs,t (Y ), where

φs,t (Y ) = σ 4EsEt

∫ s

0

(aa′)(Xu−)2

E2
u−

du

(4.5)

+ σ 2 lim
δ↓0

EsEt

∑
u∈(0,s]:
|�Yu|≥δ

(aa′)(Xu−)2�Y 2
u

(1 + a′(Xu−)�Yu)2E2
u−

and the limit is taken in ucp.
We define �L = (�Lt)t∈[0,T ] by

�Lt = σ 2ϒBt + lim
δ↓0

∑
s∈(0,t]:
|�Ys |≥δ

1

1 + a′(Xs−)�Ys

�Ls
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and note that the process is well-defined since the denominator does not attain the
value zero by assumption. Using the product rule and independence of W and B ,
it is straight forward to verify that(

Et

∫ t

0

(aa′)(Xs−)

Es−
d�Ls

)
t∈[0,T ]

solves the stochastic integral equation (1.11) and by strong uniqueness of the so-
lution equals U , almost surely. We write

Ut = σ 2ϒ Et

∫ t

0

(aa′)(Xs−)

Es−
dBs︸ ︷︷ ︸

=:Zt

+ lim
δ↓0

Et

∑
s∈(0,t]:
|�Ys |≥δ

(aa′)(Xs−)

(1 + a′(Xs−)�Ys)Es−
�Ls

︸ ︷︷ ︸
Z

(δ)
t

and note that given Y the processes Z and Z(δ) are independent and have expecta-
tion zero. Further, for 0 ≤ s ≤ t ≤ T one has

E[ZsZt |Y ] = EsEt

∫ s

0

(aa′)(Xu−)2

E2
u−

du

and

E
[
Z(δ)

s Z
(δ)
t |Y ]= EsEt

∑
u∈(0,s]:
|�Yu|≥δ

(aa′)(Xu−)2�Y 2
u

(1 + a′(Xu−)�Yu)2E2
u−

E
[
σ 2

u

]
.

One easily computes that E[σ 2
u ] = σ 2ϒ2. Altogether, it follows the wanted state-

ment.
2nd step. Let A = (A1, . . . ,Ad) :D(R) → R

d be a linear map of integral type
meaning that there are finite signed measures μ1, . . . ,μd on [0, T ] with

Ajx =
∫ T

0
xs dμj(s).

Then by conditional Fubini and step one,

Var
[∇f (AX) · AU

]
=

d∑
i,j=1

E
[
∂if (AX)AiU ∂jf (AX)AjU

]

=
d∑

i,j=1

E

[
∂if (AX)∂jf (AX)E

[∫
[0,T ]2

UuUv dμi ⊗ μj(u, v)
∣∣∣Y]]

= ϒ2
d∑

i,j=1

E

[
∂if (AX)∂jf (AX)

∫
[0,T ]2

φu,v(Y )dμi ⊗ μj(u, v)

]
.
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3rd step. The supremum dependent case follows by noticing that step one re-
mains valid when choosing s = t = S since S is σ(Y )-measurable.

APPENDIX

A.1. Stable and weak convergence. We briefly introduce the concept of sta-
ble convergence first appearing in Rényi [29].

DEFINITION A.1. Let F0 denote a sub-σ -field of F . A sequence (Zn)n∈N
of F0-measurable random variables taking values in a Polish space E converges
stably with respect to F0 to an E-valued F -measurable random variable Z, if for
every A ∈F0 and continuous and bounded function f :E →R

lim
n→∞E

[
1Af (Zn)

]= E
[
1Af (Z)

]
.

We briefly write Zn stably�⇒ Z.

Stable convergence admits various equivalent definitions.

THEOREM A.2. Let (Zn) and Z be F0-measurable, respectively, F -measu-
rable, random variables taking values in a Polish space E. The following state-
ments are equivalent:

1. Zn
stably�⇒ Z with respect to F0,

2. for all bounded F0-measurable random variables U and all bounded and
continuous functions f :E →R one has

lim
n→∞E

[
Uf (Zn)

]= E
[
Uf (Z)

]
.(A.1)

If F0 = σ(Y ) for a random variable Y taking values in a Polish space E′, then
stable convergence is equivalent to weak convergence

(Y,Zn) ⇒ (Y,Z) in E × E′.(A.2)

PROOF. The first equivalence is an immediate consequence of the fact that the
set of F0-measurable random variables U for which

lim
n→∞E

[
Uf (Zn)

]= E
[
Uf (Z)

]
is true is linear and closed with respect to L1-norm. Further, (A.2) implies

Zn
stably�⇒ Z since the L1-closure of random variables g(Y ) with g :E′ → R

bounded and continuous contains all indicators 1A with A ∈ F0. Conversely, as-

suming Zn
stably�⇒ Z, the sequence of random variables ((Y,Zn) :n ∈ N) is tight in

the product topology and for any g :E′ → R bounded and continuous one has
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E[g(Y )f (Zn)] → E[g(Y )f (Z)] which implies that (Y,Zn) ⇒ (Y,Z). The last
statement is proved in complete analogy with the proof of the corresponding state-
ment for weak convergence. �

As the latter theorem shows, stable and weak convergence are intimately con-
nected and we will make use of results of Jacod and Protter [17] on weak conver-
gence for stochastic differential equations. For the statement, we need the concept
of uniform tightness.

DEFINITION A.3. Let (Ft )t∈[0,T ] be a filtration and (Zn :n ∈ N) be a se-
quence of càdlàg (Ft )-semimartingales. For δ > 0 we represent each semi-
martingale uniquely in the form

Zn
t = Zn

0 + A
n,δ
t + M

n,δ
t +∑

s≤t

�Zn
s 1{|�Zn

s |>δ} for t ∈ [0, T ],

where An,δ = (A
n,δ
t )t∈[0,T ] is a càdlàg predictable process of finite variation and

M = (M
n,δ
t )t∈[0,T ] is a càdlàg local martingale, both processes starting in zero. We

say that (Zn :n ∈N) is uniformly tight, if the sequence,〈
Mn,δ,Mn,δ 〉

T +
∫ T

0

∣∣dAn,δ
s

∣∣+ ∑
0≤s≤T

∣∣�Zn,i
∣∣1{|�Z

n,i
s |>δ}

is tight. The definition does not depend on the particular choice of δ. Multivariate
processes are called uniformly tight if each component is uniformly tight.

We cite [17], Theorem 2.3, which is a consequence of [23].

THEOREM A.4. Let Z,Z1,Z2, . . . be càdlàg one-dimensional semimartin-
gales and H be a càdlàg one-dimensional adapted process. If:

(i) (Zn :n ∈ N) is uniformly tight and
(ii) ((H,Zn) :n ∈ N) ⇒ (H,Z) in D(R2),

then (
H,Zn,

∫ ·
0

Hs− dZn
s :n ∈ N

)
⇒

(
H,Z,

∫ ·
0

Hs− dZs

)
in D

(
R

3).
We state a consequence of [23], Theorem 8.2.

THEOREM A.5. Let H,Z,Z1,Z2, . . . be as in the previous theorem. Further,
let Y be an adapted càdlàg semimartingale. We define Un := (Un

t )t∈[0,T ] and U :=
(Ut )t∈[0,T ] by

Un
t = Zn

t +
∫ t

0
Un

s−Hs− dYs, Ut = Zt +
∫ t

0
Us−Hs− dYs for t ∈ [0, T ].
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If (
Zn,

∫ ·
0

Hs− dYs

)
⇒

(
Z,

∫ ·
0

Hs− dYs

)
in D

(
R

2),
then (

Zn,

∫ ·
0

Hs− dYs,U
n

)
⇒

(
Z,

∫ ·
0

Hs− dYs,U

)
in D

(
R

3).
The definition of uniform tightness and the two theorems above have natural

extension to the multivariate setting and we refer the reader to [23] for more details.
Further results about stable convergence of stochastic process can be found in [15]
and [18].

A helpful lemma in the treatment of weak convergence is the following.

LEMMA A.6. Let A,A1,A2, . . . be processes with trajectories in D(Rd).

1. Suppose that for every m ∈ N, Am,A1,m,A2,m, . . . are processes with trajecto-
ries in D(Rd) such that:

(a) ∀δ > 0: limm→∞ lim supn→∞P(supt∈[0,T ] |An,m
t − An

t | > δ) = 0,
(b) limm→∞ P(supt∈[0,T ] |Am

t − At | > δ) = 0.

Provided that one has convergence An,m ⇒ Am for every m ∈ N, it is also true
that

An ⇒ A.

2. Suppose that B1,B2, . . . are processes with trajectories in D(Rd) such that for
all δ > 0

lim
n→∞P

(
sup

t∈[0,T ]
∣∣Bn

t − An
t

∣∣> δ
)

= 0.

Then one has weak convergence An ⇒ A if and only if Bn ⇒ A.

PROOF. To prove weak convergence on D(Rd) it suffices to consider bounded
and continuous test functions f :D(Rd) → R that are additionally Lipschitz con-
tinuous with respect to supremum norm. Using this, it is elementary to verify the
first statement. Further, the second statement is an immediate consequence of the
first one. �

REMARK A.7. In general, we call approximations Am,A1,m,A2,m, . . . with
properties (a) and (b) of part one of the lemma good approximations for
A,A1,A2, . . . . Further, approximations B1,B2, . . . as in part two will be called
asymptotically equivalent in ucp to A1,A2, . . . .
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A.2. Auxiliary estimates. We will make use of the following analogue of
Lemma A.6 for tightness.

LEMMA A.8. Let (An)n∈N and, for every m ∈ N, (A
(m)
n )n∈N be sequences of

L2-integrable random variables. If

lim
m→∞ lim sup

n→∞
E
[∣∣An − A(m)

n

∣∣2]= 0

and, for every m ∈ N, the sequence (A
(m)
n )n∈N is uniformly L

2-integrable, then
also the sequence (An)n∈N is uniformly L

2-integrable. In particular, if there is a
sequence (Bn)n∈N of uniformly L

2-integrable random variables with

lim
n→∞E

[|Bn − An|2]= 0,

then (An)n∈N is uniformly L
2-integrable.

PROOF. For η > 0 and n,m ∈ N, one has

E
[|An|21{|An|≥η}

]≤ 2E
[∣∣An − A(m)

n

∣∣2]+ 2E
[∣∣A(m)

n

∣∣21{|An|≥η}
]

≤ 2E
[∣∣An − A(m)

n

∣∣2]+ 2E
[∣∣A(m)

n

∣∣21{|A(m)
n |≥η/2}

]
+ 2E

[∣∣A(m)
n

∣∣21{|A(m)
n |<η/2,|An−A

(m)
n |≥η/2}

]
≤ 2E

[∣∣An − A(m)
n

∣∣2]+ 2E
[∣∣A(m)

n

∣∣21{|A(m)
n |≥η/2}

]
+ η2

2
P
(∣∣An − A(m)

n

∣∣≥ η/2
)

≤ 4E
[∣∣An − A(m)

n

∣∣2]+ 2E
[∣∣A(m)

n

∣∣21{|A(m)
n |≥η/2}

]
,

where we used Chebychew’s inequality in the last step. Let now ε > 0. By assump-
tion, we can choose m sufficiently large such that for all large n, say for n ≥ n0,
4E[|An − A

(m)
n |2] ≤ ε/2. Further, by the uniform L2-integrability of (A

(m)
n )n∈N

we can choose η large to ensure that for all n ∈ N, 2E[|A(m)
n |21{|A(m)

n |≥η/2}] ≤ ε/2

so that E[|An|21{|An|≥η}] ≤ ε for n ≥ n0. For n = 1, . . . , n0 − 1 this estimate re-
mains true for a sufficiently enlarged η, since finitely many L2-integrable random
variables are always uniformly L2-integrable. �

LEMMA A.9. Let A1,A2, . . . be real random variables and let (εk)k∈N satisfy
(ML1) (see Section 1.2), and L(δ) and nk(δ) be as in (1.13). Suppose that:

1. Var(ε−1/2
k−1 Ak) → ζ and

2. (ε
−1/2
k−1 Ak :k ∈ N) is L2-uniformly integrable.
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Denote by (Ak,j :k, j ∈ N) independent random variables with L(Ak,j ) = L(Ak).
The random variables (Ŝδ : δ ∈ (0,1)) given by

Ŝδ :=
L(δ)∑
k=1

1

nk(δ)

nk(δ)∑
j=1

Ak,j

satisfy

δ−1(Ŝδ −E[Ŝδ])⇒ N (0, ζ ).

PROOF. Without loss of generality, we can and will assume that the random
variables A1,A2, . . . have zero mean.

1st step. We first show that the variance of Ŝδ converges. One has

Var(Ŝδ) =
L(δ)∑
k=1

1

nk(δ)
Var(Ak) =

L(δ)∑
k=1

⌊
δ2

L(δ)εk−1

⌋
εk−1︸ ︷︷ ︸

=:ak,δ

Var(Ak)

εk−1
.

It is elementary to verify that
∑L(δ)

k=1 (ak,δδ
−2 − L(δ)−1) → 0 as δ ↓ 0. By the

boundedness of (Var(Ak)/εk−1)k∈N one has∣∣∣∣∣δ−2 Var(Ŝδ) − 1

L(δ)

L(δ)∑
k=1

Var(Ak)

εk−1

∣∣∣∣∣→ 0

and we get that limδ↓0 Var(δ−1Ŝδ) = ζ since the Césaro mean of a convergent
sequence converges to its limit.

2nd step. In view of the Lindeberg condition (see, e.g., [20], Theorem 5.12), it
suffices to verify that for arbitrarily fixed κ > 0 one has

�(δ) :=
L(δ)∑
k=1

n
(δ)
k∑

j=1

E

[(
Ak,j

δn
(δ)
k

)2

1{|Ak,j /(δn
(δ)
k )|>κ}

]
→ 0 as δ ↓ 0.

We estimate

�(δ) ≤ δ−2
L(δ)∑
k=1

εk−1

n
(δ)
k

E

[
A2

k

εk−1
1{|Ak |/√εk−1>κδn

(δ)
k /

√
εk−1}

]
and note that for k = 1, . . . ,L(δ)

εk−1 ≥ εL(δ)−1 = T M−L(δ)+1 ≥ T δ2,

where we used that α ≥ 1/2 in the previous step. Hence, for these k, one has
δn

(δ)
k /

√
εk−1 ≥ δ−1√εk−1L(δ) ≥ √

T L(δ). Consequently,

�(δ) ≤ δ−2
L(δ)∑
k=1

εk−1

n
(δ)
k

E

[
A2

k

εk−1
1{|Ak |/√εk−1>κ

√
T L(δ)}

]
.
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By uniform L2-integrability of (Ak/
√

εk−1)k∈N and the fact that L(δ) → ∞, we
get that

E

[
A2

k

εk−1
1{|Ak |/√εk−1>κ

√
T L(δ)}

]
≤ a(δ) for k = 1, . . . ,L(δ),

with (aδ)δ∈(0,1) being positive reals with limδ↓0 aδ = 0. Hence, �(δ) ≤
aδδ

−2∑L(δ)
k=1

εk−1

n
(δ)
k

and we remark that the analysis of step one yields equally well

that δ−2∑L(δ)
k=1

εk−1

n
(δ)
k

converges to a finite limit. �

A.3. Estimates for Lévy-driven SDEs. Let Y = (Yt )t∈[0,T ] denote a square
integrable Lévy process with triplet (b, σ 2, ν).

LEMMA A.10. Let (εn) and (hn) be positive decreasing sequences such that

sup
n∈N

ν
(
B(0, hn)

c)εn < ∞.

One has

εn

(∫
B(0,hn)c

xν(dx)

)2

→ 0 as n → ∞.(A.3)

Further, if the limit limn→∞ ν(B(0, hn))
cεn =: θ exists and is strictly positive, then

limn→∞ hn/
√

εn = 0. If additionally
∫

x2 log2(1 + 1/x)ν(dx) < ∞, then

lim
n→∞

∫
B(0,hn)

x2ν(dx) log2
(

1 + 1

εn

)
= 0 and

(A.4)

lim
n→∞

h2
n

εn

log2
(

1 + 1

εn

)
= 0.

PROOF. One has for fixed h > 0 for all n ∈ N that

εn

(∫
B(0,hn)c

xν(dx)

)2

≤ 2εn

(∫
B(0,h)c

xν(dx)

)2

+ 2εn

(∫
B(0,h)\B(0,hn)

xν(dx)

)2

.

The first term on the right-hand side tends to zero since εn tends to zero. Further,
the Cauchy–Schwarz inequality yields for the second term

εn

(∫
B(0,h)\B(0,hn)

xν(dx)

)2

≤ εnν
(
B(0, hn)

c) ∫
B(0,h)

x2ν(dx).

By assumption, (εnν(B(0, hn)
c)) is uniformly bounded and by choosing h arbi-

trarily small we can make the integral as small as we wish. This proves (A.3).
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We assume that limn→∞ ν(B(0, hn))
cεn =: θ > 0. The second statement fol-

lows by noting that

θ2 h2
n

εn

∼ εnh
2
nν
(
B(0, hn)

c)2 ≤ εn

(∫
B(0,hn)c

xν(dx)

)2

→ 0.

The first estimate in (A.4) follows from∫
B(0,hn)

x2ν(dx) ≤
∫
B(0,hn)

x2 log2
(

1 + 1

x

)
ν(dx)︸ ︷︷ ︸

→0

(
log(1 + 1/hn)

)−2

and recalling that hn/
√

εn → 0. The second estimate in (A.4) follows in complete
analogy to the proof of (A.3). �

LEMMA A.11. Let p ≥ 2 and suppose that E[|YT |p] < ∞. Then there exists
a finite constant κ such that for every predictable process H one has

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Hs dYs

∣∣∣∣p]≤ κ

∫ T

0
E
[|Hs |p]ds.

If p = 2, one can choose κ = 2b2T + 8(σ 2 + ∫
x2ν(dx)).

PROOF. The proof is standard; see, for instance, [28], Theorem V.66. The ex-
plicit constant in the p = 2 case can be deduced with Doob’s L2-inequality and
the Cauchy–Schwarz inequality. �

LEMMA A.12. Irrespective of the choice of the parameters (εn) and (hn), one
has

sup
n∈N

E

[
sup

t∈[0,T ]
∣∣Xn

t

∣∣2]< ∞.

The proof of the lemma is standard and can be found, for instance, in [22],
Lemma 8.

A.4. Perturbation estimates for SDEs. In this section, we collect perturba-
tion estimates for solutions of stochastic differential equations. For n,m ∈ N, we
denote by Zn, �Zn, Zn,m and �Zn,m càdlàg semimartingales and by Y a square in-
tegrable Lévy process all with respect to the same filtration. Further, let Hn, Hn,m

and H be càglàd adapted processes. We represent Y as in (1.2) and consider as
approximations the processes Ym = (Ym

t )t∈[0,T ] given by

Ym
t = bt + σWt + lim

δ↓0

∫
(0,t]×(Vm\B(0,δ))

x d��(s, x),

where V1,V2, . . . denote an increasing sequence of Borel sets with
⋃

m∈N Vm =
R \ {0}.
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In the first part of the subsection, we derive perturbation estimates for the pro-
cesses Un,m = (Un,m

t )t∈[0,T ] and �Un,m = (�Un,m
t )t∈[0,T ] given as solutions to

Un,m
t =

∫ t

0
Un,m

s− Hn,m
s dYm

s +Zn,m
t

and

�Un,m
t =

∫ t

0
�Un,m

s− Hn,m
s dYs + �Zn,m

t .

LEMMA A.13. Suppose that

sup
t∈[0,T ]

∣∣Hn,m
t

∣∣ and E

[
sup

t∈[0,T ]
∣∣Zn,m

t

∣∣2](A.5)

are uniformly bounded over all n,m ∈ N. Then

sup
n,m∈N

E

[
sup

t∈[0,T ]
∣∣Un,m

t

∣∣2]< ∞.

PROOF. Suppose that the expressions in (A.5) are bounded by κ1, denote
by T a stopping time and define zT (t) = E[sups∈[0,t∧T ] |Un,m

s |2] for t ∈ [0, T ].
By Lemma A.11, there exists a finite constant κ2 such that

zT (t) ≤ 2κ2

∫ t

0
E
[
1{s≤T }

∣∣�Un,m
s−

∣∣2∣∣Hn,m
s

∣∣2]ds + 2E
[

sup
s∈[0,t]

∣∣Zn,m
s

∣∣2]
≤ 2κ2κ

2
1

∫ t

0
zT (s)ds + 2κ1.

We replace T by a localising sequence (Tk)k∈N of stopping times for which each
zTk

is finite and conclude with Gronwall’s inequality that zTk
is uniformly bounded

over all k ∈ N and n,m ∈ N. The result follows by monotone convergence. �

LEMMA A.14. Suppose that

sup
t∈[0,T ]

∣∣Hn,m
t

∣∣
is uniformly bounded over all n,m and that Ym = Y for all m ∈ N or

sup
n,m∈N

E

[
sup

t∈[0,T ]
∣∣Zn,m

t

∣∣2]< ∞.

If additionally

lim
m→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣Zn,m

t − �Zn,m
t

∣∣2]= 0,(A.6)

then,

lim
m→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣Un,m

t − �Un,m
t

∣∣2]→ 0 as n → ∞.
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PROOF. We rewrite, for t ∈ [0, T ],

Un,m
t − �Un,m

t =
∫ t

0

(
Un,m

s− − �Un,m
s−

)
Hn,m

s dYs −
∫ t

0
Un,m

s− Hn,m
s d

(
Y − Ym)

s

+Zn,m
t − �Zn,m

t .

We fix n,m ∈ N and consider z(t) = E[sups∈[0,t] |Un,m
s − �Un,m

s |2] for t ∈ [0, T ].
Further, denote by κ1 a uniform bound for supn,m∈N sup |Ht |n,m and, if applicable,
for supn,mE[supt∈[0,T ] |Zn,m

t |2]. Using that (a1 + a2 + a3)
2 ≤ 3(a2

1 + a2
2 + a2

3)

(a1, a2, a3 ∈ R) and Lemma A.11, we get that

z(t) ≤ 3κ2κ
2
1

∫ t

0
z(s)ds + 3E

[
sup

s∈[0,t]

∣∣∣∣∫ s

0
Un,m

s− Hn,m
u d

(
Y − Ym)

u

∣∣∣∣2]
+ 3E

[
sup

s∈[0,t]
∣∣Zn,m

s − �Zn,m
s

∣∣2]
with κ2 being uniformly bounded. In view of (A.6), the statement follows with
Gronwall’s inequality, once we showed that

lim
m→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Un,m

s− Hn,m
s d

(
Y − Ym)

s

∣∣∣∣2]= 0.

If Y = Ym, this is trivially true. In the remaining case, we can apply Lemma A.13
due to the uniform boundedness of E[supt∈[0,T ] |Zn,m

t |2] and conclude with
Doob’s L2-inequality and the martingale property of Y − Ym that

E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
Un,m

s− Hn,m
s d

(
Y − Ym)

s

∣∣∣∣2]≤ 4
∫ T

0
E
[∣∣Un,m

s−
∣∣2∣∣Hn,m

s

∣∣2]d
〈
Y − Ym〉

s

≤ 4κ2
1κ3T

∫
V c

m

x2ν(dx)

with κ3 denoting the constant appearing in Lemma A.13. All constants do not
depend on n,m and the latter integral tends to 0 as m → ∞. �

We denote by τ1, τ2, . . . adapted càdlàg processes with τn(t) ≤ t for all t ∈
[0, T ] and focus on perturbation estimates for the processes Un = (Un

t )t∈[0,T ] and
�Un = (�Un

t )t∈[0,T ] given as solutions to

Un
t =

∫ t

0
Un

τn(s−)H
n
s dYs +Zn

t

and

�Un
t =

∫ t

0
�Un

τn(s−)Hs dYs + �Zn
t .
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LEMMA A.15. 1. (Stochastic convergence) If:

(a) τn(t) = t , for t ∈ [0, T ],
(b) Zn − �Zn → 0 and Hn − H → 0 in ucp, as n → ∞, and
(c) the sequences (supt∈[0,T ] |Zn

t | :n ∈ N) and (supt∈[0,T ] |Hn
t | :n ∈ N) are

tight,

then

Un − �Un → 0 in ucp, as n → ∞.

2. (Moment estimates) Let p ≥ 2. If:

(a) Y has Lévy measure ν satisfying
∫ |x|pν(dx) < ∞, and

(b) the expressions

sup
t∈[0,T ]

∣∣Hn
t

∣∣ and E

[
sup

t∈[0,T ]
∣∣Zn

t

∣∣p]
are uniformly bounded over n ∈ N,

then

sup
n∈N

E

[
sup

t∈[0,T ]
∣∣Un

t

∣∣p]< ∞.

PROOF. (1) Statement 1 follows when combining Theorems 2.5(b) and 2.3(d)
in [17].

(2) Since
∫ |x|pν(dx) < ∞ the process (Yt ) has bounded pth moment and the

statement can be proved similarly as Lemma A.13 by using Lemma A.11 and
Gronwall’s inequality. �
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