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EXTINCTION WINDOW OF MEAN FIELD BRANCHING
ANNIHILATING RANDOM WALK1

BY IDAN PERL2, ARNAB SEN3 AND ARIEL YADIN2

Ben-Gurion University of the Negev, University of Minnesota
and Ben-Gurion University of the Negev

We study a model of growing population that competes for resources. At
each time step, all existing particles reproduce and the offspring randomly
move to neighboring sites. Then at any site with more than one offspring,
the particles are annihilated. This is a nonmonotone model, which makes the
analysis more difficult.

We consider the extinction window of this model in the finite mean-field
case, where there are n sites but movement is allowed to any site (the com-
plete graph). We show that although the system survives for exponential time,
the extinction window is logarithmic.

1. Introduction.

1.1. The model. Perhaps the most classical population model is the Galton–
Watson branching process. Originally devised to model the survival of aristocratic
patrilineal surnames, the Galton–Watson process may be described as follows: start
with one existing particle. At every time step, all existing particles reproduce an
independent number of offspring and die out. The main question is then, what is
the probability that the system survives forever? By use of generating functions it
is fairly simple to analyze this model, and in fact it is well known that in a Galton–
Watson process with offspring distribution L, the probability of extinction is given
by the unique minimal solution of the equation s = E[sL] in the interval (0,1].
Moreover, the solution q satisfies q = 1 if and only if E[L] ≤ 1; see, for example,
[3, 12] for a thorough treatment.

To make matters more interesting, one might add some geometry, by having
the particles not only branch (reproduce) but also move in some underlying graph.
This is the branching random walk model, which is described as follows: start
with one particle at some origin vertex o in graph G. At each time step, all existing
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particles reproduce an independent number of offspring and die out. All offspring
now independently choose a random neighbor of their parent’s vertex, and move
to that new position. Thus a specific lineage of particles performs a random walk
on G. A different way to view this model is as a tree-indexed random walk (see
[4, 5] for more on tree-indexed random walks) where the domain tree is the tree of
lineage formed by a Galton–Watson process. See the pioneering work of Biggins
[6] and the survey by Shi [14].

Both models mentioned above exhibit some sort of monotonicity, enabling cou-
pling arguments. For example, put in an imprecise way, if one has more particles,
the branching random walk is more likely to be recurrent. The additional particles
only help it return to the origin.

Let us now introduce the model we work with, which we dub branching-
annihilating random walk, or BARW for short. Start with a single particle at some
origin vertex o of a graph G. At each time step, all particles independently repro-
duce (or branch) into a random number of offspring. These offspring then each
choose independently a random neighbor of their parent’s vertex and move to that
neighbor. (So far, everything is identical to the branching random walk.) Finally, at
every vertex at which there is more than one particle, these particles are eliminated
(this is the annihilation phase).

BARW is a model for population reproduction in some geometry, with a com-
petition for resources. The annihilation phase can be viewed as there being only
enough resources for one particle at every vertex of the underlying graph.

Let us stress that the difficulty in analyzing BARW stems mainly from the lack
of monotonicity. Adding particles may on the one hand assist in the ultimate sur-
vival of the system, but may also hinder the survival, as these additional particles
may compete for resources and annihilate others, resulting in too few particles to
survive.

It is most convenient to work with Poisson distributed offspring, so for simplic-
ity we will restrict to this distribution.

DEFINITION 1. Let λ > 1 be a real number. Let G be a graph, and let o ∈ G be
some vertex. We define branching-annihilating random walk on G, starting at o,
with parameter λ, or BARWG,o(λ), as the following Markov process on subsets
of G.

Let (Lt,j )
∞
t,j=1 be i.i.d. Poisson-λ random variables. Start with B0 = {o}. For

every t ≥ 0, given Bt �= ∅, define Bt+1 as follows.
Suppose that Bt = {x1, . . . , xm}. For every 1 ≤ j ≤ m, let yj,1, . . . , yj,Lt,j

be
independent vertices chosen uniformly from the set {y :y ∼ xj } (the neighbors

of xj in G). Define Zt+1 :G → R by Zt+1(x) = ∑m
j=1

∑Lt,j

i=1 1{yj,i=x}. This is the
number of offspring that have moved to x.

Finally, let Bt+1 = {x :Zt+1(x) = 1}. In the case that Bt =∅, then Bt+1 =∅ as
well.
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1.2. Main questions and results. As stated above, BARW lacks monotonicity,
and thus it is not easy to analyze. However, it seems reasonable to ask the following
immediate questions regarding the long-term behavior. Some of these questions are
being studied by the authors in a separate work, for the case of G being the infinite
d-regular tree.

Suppose G is an infinite transitive graph. If λ is either too big or too small,
one may dominate BARW by a sub-critical Galton–Watson process. Thus we are
guaranteed extinction in either case. (This is not surprising, as too little offspring
do not give a good enough chance of survival, and too many offspring create too
much annihilation, thus again ruining the chance of survival.)

The immediate questions that arise regard a super-critical interval of survival:

• Do there exist λ−
c ≤ λ+

c such that for λ ∈ (λ−
c , λ+

c ) there is positive probability
of survival forever, and for λ /∈ [λ−

c , λ+
c ] there is extinction a.s.?

• If such an interval exists, what happens at the critical values λ = λ−
c and λ = λ+

c ?
• Can λ−

c , λ+
c be identified?

In this paper we consider BARW in the finite graph setting, and specifically on
the complete graph. Of course, there is always a positive probability of extinction
in one step on a finite graph, so on a finite graph BARW will a.s. die out at some
finite time. However, we may consider BARW on a sequence of finite graphs with
size tending to infinity, and try to understand asymptotic properties of the process
for large graphs.

In this work we consider the mean-field case, where the sequence under consid-
eration is the complete graph on n vertices as n → ∞.

Our first result states that BARW on the complete graph has an exponentially
large expected lifetime.

THEOREM 2. For every λ > 1 there exists c = c(λ) > 0 such that the following
holds for all n ∈ N. Consider BARW on the complete graph on n vertices, and let
Xt = |Bt | be the number of particles at time t . Let

T0 = inf{t ≥ 0 :Xt = 0}.
Then, for each 0 < x < n,

E[T0|X0 = x] ≥ cecn.

Our main result regards the “window” of extinction. It is not difficult to see
that for BARW on the complete graph on n vertices, the number of particles will
oscillate for a long time around the value eq := logλ

λ
n. We call it the quasi-stable

state, which is obtained by solving for the state x such that E[X1|X0 = x] = x.
Below it the chain has an upward drift whereas there is a downward drift if the
chain goes above the quasi-stable state. Our next result considers how long it takes
the process to go extinct, once it has been conditioned to do so; that is, how many



3142 I. PERL, A. SEN AND A. YADIN

steps did it take the process to reach 0 particles, at the last excursion it made below
the equilibrium point logλ

λ
n?

THEOREM 3. For every λ > 1 and 0 < ε <
logλ

λ
, there exists C = C(λ, ε) > 0

such that the following holds for all n ∈ N.
Consider BARW on the complete graph on n vertices, and let Xt = |Bt | be the

number of particles at time t . Let

T0 = inf{t ≥ 0 :Xt = 0} and T +
eq−εn = inf

{
t ≥ 0 :Xt ≥ logλ

λ
n − εn

}
.

Then for each 0 ≤ x <
logλ

λ
n − εn,

C−1 log(1 + x) ≤ E
[
T0|X0 = x,T0 < T +

eq−εn

] ≤ C log(1 + x).

REMARK 4. Though the above theorem holds for any λ > 1, the conditioned
chain (Xt)t≥0|T0 < T +

eq−εn exhibits remarkably different behaviors in two distinct
regimes of the parameter λ: (i) λ is close to 1, and (ii) λ is large; see Figures
1 and 2. Our proof is general enough to tackle both regimes simultaneously.

It would be interesting to find out whether, for a fixed n, the expected extinc-
tion time of the conditioned chain E[T0|X0 = x,T0 < T +

eq−εn] is decreasing with
respect to λ.

1.3. Similar models and further questions. BARW, or rather a continuous time
versions, have been studied before; see, for example, [7, 8, 15]. However, most
focus on survival of the process, or stationary measures.

On the other hand, recently there has been considerable interest among the
physicists to study the behavior of a finite population evolving under some stochas-
tic dynamics near its extinction time and particularly to find “most probable or
optimal path to extinction” [10, 13].

To best of our knowledge this is the first work to study the “extinction window”
for BARW; that is, the length of the last path to extinction. As our results show, at
least in the mean-field case, this window is much smaller than the lifetime of the
system, indicating that extinction is a “catastrophic” phenomenon, meaning that it
occurs abruptly in a very short time frame.

Our analysis makes heavy use of the fact that on the complete graph, the ge-
ometry plays no role, so that BARW can actually be seen as a Markov chain on
{0,1, . . . , n}, making the model simpler. It would be very interesting to understand
the expected lifetime and extinction window in other finite graph settings. More
specifically:

QUESTION 5. Let (Gn, on)n be a sequence of finite rooted graphs converging
in the local weak topology [2] to a limiting rooted graph (G,o). Consider BARW
on Gn with Poisson-λ offspring:
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FIG. 1. Plot of logh(x) vs x where h(x) = Px [T0 < T +
eq−εn] for n = 1200, ε = 0.05 and λ = 1.5

(left) and λ = 6 (right). Note that for λ = 1.5, h is monotonically decreasing, but logh is not linear,
so h can not be expressed as C exp(−cx). On the other hand, for λ = 6, the function h is not even
monotone—it first decreases, and then it increases near eq − εn.

• Is it true that there exist critical λ−
c ≤ λ+

c such that if λ ∈ (λ−
c , λ+

c ), then the ex-
pected lifetime is exponentially large in |Gn|, and if λ /∈ [λ−

c , λ+
c ], the expected

lifetime is much smaller (perhaps logarithmic)?
• For which λ does BARW on Gn have a logarithmically small extinction window?

That is, for which λ does there exist small enough η > 0 so that conditioned on
extinction before reaching above η|Gn| particles, the conditioned process has
logarithmically small expected lifetime?

The above question is open even for a sequence of finite d-regular graphs with
increasing girths (whose local limit is the infinite d-regular tree).
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FIG. 2. Transition probabilities of the tilted chain P(·, ·|T0 < T +
eq−εn) for n = 1200, ε = 0.05 and

λ = 1.5 (left) and λ = 6 (right). The probabilities are represented by colors—the blue represents high
values, and the red represents small values. For λ = 1.5, from any x in the tilted chain, the walker
goes down by a multiplicative factor with high probability. But for λ = 6, the transition matrix is
highly concentrated. For some x, the tilted chain goes up with high probability. For some x, it goes
down with high probability. For a few x’s, the transition distribution is bimodal!

1.4. Comparison with SIS model and variants. It has been suggested that the
BARW is similar in spirit to the SIS infection model. In the SIS model, all vertices
in a graph are either infected or not. The infected vertices infect their neighbors at a
certain rate, and every vertex recovers from infection at a different rate, these rates
being parameters of the model. The discrete time version of this model may have
two interpretations: we may allow only one particle to act at every time step, which
is the discrete time backbone of the continuous time chain, or allow all particles to
act at the same time. A similar variant may have been used in the BARW model.
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It turns out that the SIS and BARW models are sensitive to these kind of local
modifications, and we do not see a way to relate them. In the one-particle-at-a-
time versions on complete graphs, the chains are birth and death chains, meaning
that they are Markov chains on {0,1, . . . , n} with transition probabilities restricting
movement only between states at distance 1. This makes the analysis simpler using
the available tools for such chains; see, for example, [1], [9], Chapter XVII.5, [11],
Chapter 2.4. Let us give a brief account of this analysis.

1.4.1. BARW one particle at a time. In the continuous time BARW model,
particles die at rate 1 and give off a particle to a uniform vertex at rate λ > 1. When
two particles are at a vertex, they instantly annihilate one another. Consider the
number of living individuals and the discrete backbone of this continuous chain as
a discrete time Markov process. Note that at each time step either one particle dies
or a new one is added, or nothing is changed. If there are x living individuals, with
probability λ

1+λ
· (1 − x

n
), a particle is added to an empty vertex, and the number

of individuals increases by 1; with probability 1
1+λ

, a living individual dies and

the number of total individuals decreases by 1; with remaining probability λ
1+λ

· x
n

,
a particle is added to an occupied vertex, resulting in annihilation, so the number
of total living individuals decreases by 1.

To sum up, the transition probabilities of this chain are given by

PB(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1 + λ
+ λ

1 + λ
· x

n
, x > 0, y = x − 1,

λ

1 + λ
·
(

1 − x

n

)
, x > 0, y = x + 1,

1, y = x = 0.

1.4.2. SIS one particle at a time. In the SIS model the difference is that anni-
hilation is replaced by coalescence. Analogously to the above, infected individuals
recover with rate 1 and infect a neighbor at rate λ > 1. So considering the discrete
backbone of the total number of infected vertices, with probability 1

1+λ
, a vertex

recovers and the total number decreases by 1; with probability λ
1+λ

· x
n

, an infected
vertex is infected, resulting in no change to the total number of infected vertices;
with probability λ

1+λ
· (1 − x

n
), a healthy vertex is infected, and the total number

increases by 1. The following is a summary of the transition probabilities for the
SIS model:

PS(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + λ
, x > 0, y = x − 1,

λ

1 + λ
· x

n
, x > 0, y = x,

λ

1 + λ
·
(

1 − x

n

)
, x > 0, y = x + 1,

1, y = x = 0.
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One now sees that there is an additional drift downward for the BARW model
that is not present in the SIS model.

1.4.3. Extinction window. In this subsection, whenever we talk about the
BARW and the SIS model, we refer to their one-particle-at-a-time version. For
BARW and the SIS model, the quasi-stable states are given by eqB = λ−1

2λ
n and

eqS = λ−1
λ

n, respectively. Clearly, for both these chains, the expected extinction
time is at least exponential in n, that is, Ex[T0] ≥ cecn for any x, since we can
find δ > 0 such that between the states 0 and δn each of the chains can be coupled
from below with a simple random walk with bias away from zero. Thanks to the
standard results on birth and death chains regarding hitting probabilities ([1], [9],
Chapter XVII.5, [11], Chapter 2.4), the extinction window is also easy to calculate
for these models. Let us first talk about the SIS model. The transition probabilities
of the chain conditioned on the event {T0 < TeqS−εn} can be obtained via Doob’s
h-transform,

P̂S(x, y) = PS(x, y)
Py[T0 < TeqS−εn]
Px[T0 < TeqS−εn] .

Let M = eqS − εn. We will use the following standard notation for the jump
probabilities of a birth and death chain: px = PS(x, x + 1), qx = PS(x, x − 1)

and rx = PS(x, x). Then Px[T0 < TM ] = ϕ(M)−ϕ(x)
ϕ(M)

where ϕ(x) = ∑x−1
m=0

∏m
j=1 θj

for x > 1 and ϕ(0) = 0 and θx = qx/px . Note that the tilted chain P̂S is again a
birth and death chain on 0,1,2, . . . ,M with jump probabilities p̂x = P̂S(x, x + 1),
q̂x = P̂S(x, x − 1) and r̂x = P̂S(x, x) = rx .

We have

p̂x

q̂x

= px

qx

·
∑M

m=x+1
∏m

j=1 θj∑M
m=x−1

∏m
j=1 θj

(1)

= θx+1 + θx+1θx+2 + · · · + θx+1θx+2 · · · θM

1 + θx + θxθx+1 + · · · + θxθx+1 · · · θM

for 0 < x < M , 1
λ

< θx < 1
1+λε

. Writing z = min(x + C1 logn,M) for sufficiently
large C1, we can approximate the ratio in (1) by

θx+1 + θx+1θx+2 + · · · + θx+1θx+2 · · · θz

1 + θx + θxθx+1 + · · · + θxθx+1 · · · θz

+ O
(
n−1)

.(2)

Using the fact that |θx − θy | ≤ C2
|x−y|

n
for all x, y < M , we can write (2) as

θx + θ2
x + · · · + θz−x

x

1 + θx + θ2
x + · · · + θz−x+1

x

+ o(1) = θx + o(1),

where the error term o(1) is uniform in 0 < x < M .
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Hence, for sufficiently large n, the tilted chain P̂S can be coupled from above by
a lazy simple random walk with holding probability 1

1+λ
and with a bias toward 0.

Therefore, we conclude that there exists a constant C > 0 such that

x ≤ Ex[T0|T0 < TeqS−εn] ≤ Cx for each 0 < x < eqS − εn.

We can prove a similar result on the extinction window for the BARW one-particle-
at-a-time model following exactly the same arguments as above.

1.4.4. SIS all particles at once. As mentioned, in this note we consider BARW
with all particles reproducing at once. The analogous SIS version could be defined
as follows. At every time step, every infected vertex infects Poi(λ) uniformly cho-
sen neighbors (perhaps some chosen more than once). Vertices not re-infected then
recover. This is the same as replacing annihilation in BARW with coalescence. So
the SIS model is the same as a branching-coalescing random walk.

When considered on the complete graph, if there are x infected vertices, every
vertex receives Poi(λx

n
) infections, so is left infected at the next time step with

probability (1 − e−λx/n), independently for all vertices. Thus, given that there are
x infected vertices at time t , the number of infected vertices at time t + 1 has
Bin(n, (1 − e−λx/n)) distribution.

Note that the equation n(1 − e−λx/n) = x has exactly two solutions in [0, n],
one which is at x = 0, and the other being the equilibrium of this model. Since
n(1 − e−λx/n) − x is maximized at x = eq = n

logλ
λ

and since this maximum is
positive, we have that the equilibrium of SIS is larger than eq, the equilibrium of
BARW.

Analysis of the SIS model’s extinction window is another possible future direc-
tion of research.

1.5. Preliminaries and notation. It will be much simpler to use the following
equivalent form of BARW on the complete graph on n vertices. (Here is where the
mean-field structure makes the analysis much simpler.) Given that |Bt | = x, that
is, there are x particles at time t , every particle branches into Poisson-λ particles,
and each of these chooses a new vertex, independently, and uniformly among all n

vertices. Thus, due to the summability of the Poisson distribution, at the branching
phase every vertex receives an independent Poisson-λx

n
number of particles. In the

annihilation phase only those vertices with exactly one particle survive to the next
step, which happens at a given vertex with probability b(x) := λx

n
e−λx/n.

Thus, we have just shown that if (Xt)t is the number of existing particles in
BARW on the complete graph on n vertices, then (Xt)t is a Markov chain with
transitions given by

P[Xt+1 = y|Xt = x] = P
[
Bin

(
n,b(x)

) = y
] =

(
n

y

)
b(x)y

(
1 − b(x)

)n−y
.

This observation will be central in what follows.
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We use the notation Px and Ex to denote the probability measure and expec-
tation of BARW on the complete graph on n vertices with (Poissonian) offspring
mean λ and with X0 = x.

Let λ > 1. Consider the Galton–Watson process with offspring distribution L ∼
Poi(λ). It is well known that there exists a number q = q(λ) ∈ (0,1) such that
the process dies out with probability q , and that q is the unique fixed point of
the equation s = E[sL] = e−λ(1−s) in (0,1). Also, since q is the probability of
extinction, it is clear that q(λ) is a continuous strictly decreasing function of λ;
see, for example, [12].

Throughout, we make extensive use of the following inequalities, which are
easy to verify:

• For any t ∈ (0,1) and n ∈ N, e−nt ≥ (1 − t)n.
• For any 0 ≤ t ≤ 1

2 , we have
√

1 − 2t ≥ 1 − t − 2t2.

• For any 0 ≤ t ≤ 1
2 , we have 1 − t ≥ e−1+√

1−2t .
• The last two inequalities can be combined to deduce 1 − t ≥ e−t (1+2t).

x ∧ y denotes the minimum of x, y, and x ∨ y denotes the maximum of x, y.
We also make use of the stopping times

T +
x = inf{t ≥ 0 :Xt ≥ x}.

Another tool we will use is the following standard large deviations result con-
cerning binomial random variables. For 0 < ξ < 1,

P
[
Bin(n, b) < ξnb

] ≤ exp
(
−nb · (1 − ξ)2

4

)
.

2. The extinction time for unconditional chain. In this section we prove
Theorem 2.

Let τ+
εn be the return time to one of the sites in [εn,n],

τ+
εn := inf{t ≥ 1 :Xt ≥ εn}.

For the proof of Theorem 2 we do not require the full strength of the following
lemma, but it will also be required in the sequel. Recall from Section 1.5 that given
λ > 1, q = q(λ) ∈ (0,1) is the Poisson dual parameter, that is, the unique number
satisfying λe−λ = qe−q .

LEMMA 6. Let 0 < ε < 1
2λ

and small enough such that λe−λε > 1. Let λ1 =
λe−λε, λ2 = λ(1 + 2λε), and define q1 = q(λ1), q2 = q(λ2). Then

qx
2 − qεn

2

1 − qεn
2

≤ g(x) ≤ qx
1 − qn

1

1 − qn
1

, 0 ≤ x < εn,

where g(x) := Px[T0 < T +
εn].
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PROOF. Denote b(x) = λx
n

e−λx/n. On Xt = x, we have that Xt+1 ∼ Bin(n,

b(x)). So

E
[
q

Xt+1
1 |Xt = x

] = (
b(x)q1 + 1 − b(x)

)n = (
1 − b(x)(1 − q1)

)n
≤ e−nb(x)(1−q1) = [

e−λ(1−q1)e
−λx/n]x ≤ qx

1 ,

where the last inequality follows by the definition of q1. This implies that (q
Xt

1 )
T +

εn

t=0
is a supermartingale. We may apply the optional stopping theorem,

qx
1 ≥ E

[
q

X
T0∧T

+
εn

1

] = E
[
q

XT0
1 1{T0<T +

εn}
]+E

[
q

X
T

+
εn

1 1{T0>T +
εn}

] ≥ g(x)+ (
1−g(x)

)
qn

1 ,

and therefore g(x) ≤ qx
1 −qn

1
1−qn

1
.

We obtain the lower bound similarly:

E
[
q

Xt+1
2 |Xt = x

] = (
b(x)q2 + 1 − b(x)

)n = (
1 − b(x)(1 − q2)

)n
.

Now, b(x)(1 − q2) = λx
n

e−λx/n(1 − q2) ≤ λεe−λx/n(1 − q2) ≤ λε < 1
2 , so a short

calculation gives

E
[
q

Xt+1
2 |Xt = x

] ≥ e−nb(x)(1−q2)(1+2b(x)(1−q2))

= [
e−λe−λx/n(1−q2)(1+2b(x)(1−q2))

]x
≥ [

e−λ(1−q2)(1+2λε)]x = qx
2 .

This implies that (q
Xt

2 )
T +

εn

t=0 is a submartingale. As before, by the optional stopping
theorem,

qx
2 ≤ Ex

[
q

X
T0∧T

+
εn

x

] = E
[
q

XT0
2 1{T0<T +

εn}
] +E

[
q

X
T

+
εn

2 1{T0>T +
εn}

]
≤ g(x) + (

1 − g(x)
)
qεn
x

and therefore
qx

2 −qεn
2

1−qεn
2

≤ g(x). �

PROOF OF THEOREM 2. Fix ε = ε(λ) > 0 small enough so that:

• It meets the requirements of Lemma 6.
• It satisfies b(εn) ≤ b(n), or equivalently, ε ≤ eλ(1−ε). It follows that b(εn) ≤

b(x) for all x ≥ εn.
• It satisfies εn

√
λ ≤ nb(εn), or equivalently, eλε ≤ √

λ.

Keeping in mind that Py[T0 < T +
εn] = 0 for any y ≥ εn, by the Markov property

we have that Px[T0 < τ+
εn] ≤ Px[X1 < εn] for all x.

Next, we bound the term Px[X1 < εn] using standard large deviations for the
binomial distribution. Note that by our choice of ε, for any x ≥ εn we have that
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Ex[X1] = nb(x) ≥ nb(εn) ≥ εn
√

λ. Therefore, for any x ≥ εn,

Px

[
T0 < τ+

εn

] ≤ Px[X1 < εn] ≤ Px

[
X1 < λ−1/2 ·Ex[X1]] ≤ exp(−cεn),(3)

where c = √
λ · (1−λ−1/2)2

4 .
Note that by Lemma 6 we have that for all x > 0, Px[T +

εn < T0] ≥ c′ := 1 −
q1(1 − q1)

−1 > 0 where q1 = q(λe−λε). Thus, for x < εn we have that

Ex[T0] ≥ c′ · inf
y≥εn

Ey[T0].
So it remains to consider x ≥ εn.

By (3) and the strong Markov property, on the event X0 ≥ εn, the random
time T0 dominates a geometric random variable with success probability e−cεn.
Thus, for all x,

Ex[T0] ≥ c′ · ecεn,

which proves the theorem. �

3. Bounds on hitting probabilities.

3.1. Probability of extinction before going above level εn. Throughout this
subsection we denote g(x) := Px[T0 < T +

εn].
Let α = α(λ) ∈ (0,1) such that the following inequalities hold: (1 − α)λ >

1, λe−αλ < 1. This is equivalent to logλ
λ

< α < 1 − λ−1 which is possible since
λ > 1.

Next, let p(x, y) be the transition function of our Markov chain. Explicitly, for
any 0 ≤ x, y ≤ n, p(x, y) = P[Bin(n, b(x)) = y]. Let m(x) := E[Bin(n, b(x))] =
nb(x) and m0(x) := (1 − α)m(x).

LEMMA 7. For any 0 < ε < 1
λ

, 0 ≤ x < εn − 1 and 0 ≤ y ≤ m0(x), we have
that

p(x + 1, y) ≤ γ · p(x, y),

where γ = γε,α := e−αλe−λε(1−λε) < 1.

PROOF. Recall that b(x) = λx
n

e−λx/n. The function te−t is increasing for 0 ≤
t < 1, which implies that b(x) is increasing while λx

n
< 1, and thus increasing as

long as x < εn. It now follows that p(x+1,y)
p(x,y)

is increasing in y,

p(x + 1, y)

p(x, y)
=

(
b(x + 1)

b(x)

)y(
1 − b(x + 1)

1 − b(x)

)n−y

,

and since b(x + 1) > b(x), this expression is indeed increasing in y. It follows that

max
0≤y≤m0(x)

p(x + 1, y)

p(x, y)
= p(x + 1,m0(x))

p(x,m0(x))
.
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So we want to bound from above the expression p(x+1,m0(x))
p(x,m0(x))

with a bound that is
independent of x.

It can be simply checked that for

f (t) = fx(t) := m0(x) logb(t) + (
n − m0(x)

)
log

(
1 − b(t)

)
,

we have

log
p(x + 1,m0(x))

p(x,m0(x))
= f (x + 1) − f (x).

So we want to bound f (t + 1) − f (t). By the mean value theorem, it will be
sufficient to bound f ′(t).

Recall that x + 1 < εn, and ε < λ−1, so b(·) is monotone increasing for t ≤
x + 1. Upon differentiation, we get for all t ∈ [x, x + 1],

f ′(t) = b′(t)
(

m0(x)

b(t)
− n − m0(x)

1 − b(t)

)
≤ b′(t)

(
m0(x)

b(x)
− n − m0(x)

1 − b(x)

)

= λ

(
1 − λt

n

)
e−λt/n · (−α) ·

(
1 + m(x)

n − m(x)

)
≤ −αλ(1 − λε)e−λε.

Thus

max
0≤y≤m0(x)

p(x + 1, y)

p(x, y)
= p(x + 1,m0(x))

p(x,m0(x))
= ef (x+1)−f (x)

≤ e−αλe−λε(1−λε) = γε,α. �

LEMMA 8. There exist constants η = η(λ) > 0 and 0 < β = β(λ) < 1
λ

such
that for any 0 < ε ≤ η there exists n0 = n0(ε) such that for all n > n0, we have
that

g(x + 1) ≤ βg(x) ∀x ≥ 0.

PROOF. Recall that g(x) = Px[T0 < T +
εn]. It follows immediately that g(x) =

0 for x ≥ εn. Therefore, we only consider 0 ≤ x < εn.
We have by the Markov property, for x + 1 < εn,

g(x + 1) = ∑
y

p(x + 1, y)g(y)

(4)
≤ ∑

y≤m0(x)

p(x + 1, y)g(y) + ∑
m0(x)<y<εn

p(x + 1, y)g(y).

We bound the first term in (4) using Lemma 7:
∑

y≤m0(x)

p(x + 1, y)g(y) ≤ γε,α · ∑
y≤m0(x)

p(x, y)g(y) ≤ γε,α · g(x).
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For the second term, we use the upper bound of Lemma 6 to obtain

∑
m0(x)<y<εn

p(x + 1, y)g(y) ≤ ∑
m0(x)<y<εn

p(x + 1, y) · q
y
1

1 − qn
1

≤ q
m0(x)
1

1 − qn
1
.

Also by Lemma 6,

q
m0(x)
1

1 − qn
1

· 1

g(x)
≤ 1 − qεn

2

(1 − qn
1 )(1 − qεn−x

2 )
· q

m0(x)
1

qx
2

≤ 1

(1 − q1)(1 − q2)
· (

q
(1−α)λe−λε

1 /q2
)x

.

Note that as ε → 0 we have that q1 → q(λ), q2 → q(λ) and e−λε → 1. Com-
bined with the assumption that (1−α)λ > 1, we can deduce that there exists η′ > 0

such that q
(1−α)λe−λε

1 /q2 is bounded away from 1 uniformly in 0 < ε ≤ η′. More-

over, since γε,α = e−αλe−λε(1−λε), and since we assume that λe−αλ < 1, we may
take η′ small enough so that for all 0 < ε ≤ η′ we have λγε,α < 1. Consequently,
we can find K large enough (that depends only on η′) such that

β ′ := sup
ε≤η′

(
γε,α + 1

(1 − q1)(1 − q2)
·
(

q
(1−α)λe−λε

1

q2

)K)
<

1

λ
.

Plugging all this into (4), we conclude that there exist η′ and K ≥ 1 and β ′ <

λ−1 such that for all 0 < ε ≤ η′ and for every K ≤ x < εn−1, we have h(x +1) ≤
β ′h(x). This proves the lemma for x ≥ K .

As for 0 ≤ x < K , by Lemma 6 we have

g(x + 1)

g(x)
≤ qx+1

1 − qn
1

1 − qn
1

· 1 − qεn
2

qx
2 − qεn

2
≤ q1 ·

(
q1

q2

)x

· 1

(1 − qεn−K
2 )(1 − qn

1 )
.

Recall that q1 > q2 so (q1/q2)
x ≤ (q1/q2)

K → 1 as ε → 0. Also, 1/((1 −
qεn−K

2 )(1 − qn
1 )) → 1 as n → ∞ and λq1 → λq(λ) < 1 as ε → 0.

Therefore, we may choose η′′ such that for all 0 < ε ≤ η′′, λq1 · (q1/q2)
K <

λq(λ)+1
2 . Thus there exists n0 = n0(ε) such that if n ≥ n0, we have

λq1 ·
(

q1

q2

)K

· 1

(1 − qεn−K
2 )(1 − qn

1 )
< 1.

So we can take

β ′′ = sup
ε≤η′′

q1 ·
(

q1

q2

)K

· 1

(1 − q
εn0−K
2 )(1 − q

n0
1 )

to obtain that λβ ′′ < 1, and for all 0 < ε ≤ η′′, sufficiently large n and 0 ≤
x < K , we have g(x + 1) ≤ β ′′g(x). Wrap up by setting η = min{η′, η′′} and
β = max{β ′, β ′′}. �
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3.2. Probability of extinction before going above level u � εn.

LEMMA 9 (Uniform lower bound). Fix λ > 1. There exists κ = κ(λ) > 0 such
that for all 0 < u < n and 0 < x + 1 < u,

Px+1
[
T0 < T +

u

] ≥ κPx

[
T0 < T +

u

]
.

PROOF. Let X = (Xk)k≥0, Y = (Yk)k≥0 be two Markov chains starting from
X0 = x,Y0 = x + 1, respectively, and with Markov transition kernel p(·, ·). Con-
sider the following coupling:

• if b(x) ≤ b(x + 1), then let X1 ∼ Bin(n, b(x)), and given X1,

Y1 = X1 + Bin
(
n − X1,

b(x + 1) − b(x)

1 − b(x)

)
;

• if b(x) > b(x + 1), then let Y1 ∼ Bin(n, b(x + 1)), and given Y1,

X1 = Y1 + Bin
(
n − Y1,

b(x) − b(x + 1)

1 − b(x + 1)

)
.

Next, given Xk,Yk for k ≥ 1, if Xk = Yk , then couple Xk+1 = Yk+1, and otherwise
let Xk+1, Yk+1 evolve independently. Note that X1 = Y1 implies Xk = Yk for all
k ∈N.

By the mean value theorem,
∣∣b(x + 1) − b(x)

∣∣ ≤ sup
y∈[x,x+1]

∣∣b′(y)
∣∣ = sup

y∈[x,x+1]

∣∣∣∣λne−λy/n

(
1 − λy

n

)∣∣∣∣ ≤ λ

n
,

and since b(z) ≤ e−1, we get that b(x+1)−b(x)
1−b(x)

, b(x)−b(x+1)
1−b(x+1)

≤ eλ
(e−1)n

. We have

P[Y ∈ {T0 < T +
u }]

P[X ∈ {T0 < T +
u }] ≥ P[Y1 = X1,X ∈ {T0 < T +

u }]
P[X ∈ {T0 < T +

u }]
= P

[
Y1 = X1|X ∈ {

T0 < T +
u

}]
.

Now, if b(x) ≤ b(x + 1), then as n → ∞,

P
[
Y1 = X1|X ∈ {

T0 < T +
u

}]

≥ ∑
k

P
[
X1 = k|X ∈ {

T0 < T +
u

}] · P
[
Bin

(
n − k,

b(x + 1) − b(x)

1 − b(x)

)
= 0

]

≥ P

[
Bin

(
n,

eλ

(e − 1)n

)
= 0

]
→ e−eλ/(e−1) > 0.

Similarly when b(x) > b(x + 1),

P
[
Y1 = X1|X ∈ {

T0 < T +
u

}] ≥ P

[
Bin

(
n,

eλ

(e − 1)n

)
= 0

]
.

We may take κ := infn P[Bin(n, eλ
(e−1)n

) = 0] to complete the proof. �
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LEMMA 10 (Geometric upper bound). Fix λ > 1 and ε > 0 small. Then there
exists θ = θ(λ, ε) ∈ (0,1) such that for all 0 ≤ x < u ≤ eq − εn,

Px

[
T0 < T +

u

] ≤ θx.

PROOF. Consider the probability generating function of a Poi(eλε) random
variable. Since eλε > 1, this function has a unique nontrivial fixed point 0 < θ < 1,
satisfying θ = e−eλε(1−θ). [Here θ = q(eλε) is the probability of extinction of a
Galton–Watson process with Poisson-eλε offspring distribution.]

Note that for any 0 ≤ x < u ≤ eq − εn, we have λe−λx/n ≥ eλε , so

E
[
θXk+1 |Xk = x

] = (
1 − b(x)(1 − θ)

)n ≤ e−nb(x)(1−θ)

= [
e−λe−λx/n(1−θ)]x ≤ [

e−eλε(1−θ)]x = θx.

This implies (θXk )
T +

u

k=0 is a supermartingale. Since it is bounded, and T0 ∧ T +
u is

a.s. finite, we may apply the optional stopping theorem to this supermartingale
with X0 = x for some 0 ≤ x < u. We obtain

θx ≥ Ex

[
θ

X
T0∧T

+
u

] = Ex

[
θXT0 1{T0<T +

u }
] +Ex

[
θ

X
T

+
u 1{T0>T +

u }
]

≥ Px

[
T0 < T +

u

]
. �

3.3. Coupling with subcritical branching process. We want to investigate
what our process behaves like when conditioned on T0 < T +

u for u = εn and
u = eq − εn. Let ϕ(x) = ϕu(x) := Px[T0 < T +

u ]. We denote the transition matrix
of the tilted chain as pϕ(·, ·) which is obtained by applying Doob’s h-transform to
the original transition matrix p(·, ·) w.r.t. the harmonic function ϕ. The matrix pϕ

is given by

pϕ(x, y) = Px

[
X1 = y|T0 < T +

u

] = Px[X1 = y,T0 < T +
u ]

Px[T0 < T +
u ] = ϕ(y)p(x, y)

ϕ(x)
.(5)

LEMMA 11. Let 0 < u < n and ϕ(x) = Px[T0 < T +
u ]. Suppose ϕ(y + 1) ≤

βϕ(y) for some β > 0 and for all y ≥ 0. Then for any 0 ≤ x < u, the probability
measure pϕ(x, ·) is stochastically dominated by the probability measure μx , where

μx(y) ∝ βyp(x, y), y ≥ 0.

PROOF. Let Y ∼ pϕ(x, ·),Z ∼ μx . We need to show that for any 0 ≤ x < u

and k ≥ 0, P[Y ≤ k] ≥ P[Z ≤ k], or equivalently,
∑k

y=0 p(x, y)ϕ(y)

ϕ(x)
−

∑k
y=0 p(x, y)βy

∑∞
z=0 p(x, z)βz

≥ 0.
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Since ϕ(x) is harmonic with respect to p(·, ·), this is equivalent to showing that∑k
y=0 p(x, y)ϕ(y)∑∞
z=0 p(x, z)ϕ(z)

−
∑k

y=0 p(x, y)βy

∑∞
z=0 p(x, z)βz

≥ 0.

So we write
k∑

y=0

p(x, y)ϕ(y)

∞∑
z=0

p(x, z)βz −
k∑

y=0

p(x, y)βy
∞∑

z=0

p(x, z)ϕ(z)

=
k∑

y=0

∞∑
z=k+1

p(x, y)p(x, z)
(
ϕ(y)βz − ϕ(z)βy)

.

Note that for 0 ≤ y < z, by the assumption,

ϕ(z)βy ≤ ϕ(y)βz−yβy = ϕ(y)βz,

which implies that each term of the above sum is nonnegative. �

LEMMA 12. Let 0 < u < n and ϕ(x) = Px[T0 < T +
u ]. Suppose ϕ(y) ≥

κϕ(y − 1) for some κ > 0 and for all 0 < y < u. Then for any 0 ≤ x < u, the
probability measure pϕ(x, ·) stochastically dominates the probability measure νx ,
where

νx(y) ∝ κyp(x, y)1{y<u}.

PROOF. The proof is exactly similar to that of Lemma 11 where we replace
“∞” in the bounds of the summands by u − 1. We omit the details. �

LEMMA 13. (a) Fix 0 < p < 1. Let X ∼ Bin(n,p) and Y ∼ Poi(−n log(1 −
p)). Then X ≤st Y .

(b) Fix 0 < p1 < p2 < 1. Let X ∼ Bin(n,p1) and X ∼ Bin(n,p2). Then for any
m ≥ 0, we have X|{X ≤ m} ≤st Y |{Y ≤ m}.

PROOF. (a) We exhibit a coupling such that X ≤ Y . Note that X = X1 + · · ·+
Xn where X1, . . . ,Xn are i.i.d. Ber(p) random variables, and Y = Y1 + · · · + Yn

where Y1, . . . , Yn are i.i.d. Poi(− log(1 − p)) random variables. So let Y1, . . . , Yn

be as such, and let Xj := 1{Yj>0}. It follows that Xj ≤ Yj and P[Xj = 0] = P[Yj =
0] = (1 − p), suggesting that indeed X1, . . . ,Xn are i.i.d. Ber(P ), and X ≤ Y a.s.

(b) It suffices to show for any k ≤ m,

P[X ≤ k]
P[X ≤ m] ≥ P[Y ≤ k]

P[Y ≤ m] ,
which, in turn, is implied by P[X = i]P[Y = j ] ≥ P[X = j ]P[Y = i] for all 0 ≤
i < j ≤ m. Upon rearrangement of terms, the above is equivalent to

(p1/(1 − p1))
i

(p2/(1 − p2))i
≥ (p1/(1 − p1))

j

(p2/(1 − p2))j
,

which is obviously true. �
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LEMMA 14. Denote the Markov chain conditioned on T0 < T +
εn by (X′

m)m≥0.
There exists ε0 > 0 and 0 < γ̄ < 1 such that for all ε < ε0 there exists n0 = n0(ε)

such that for all n > n0 the following holds. For any 0 ≤ x0 < εn, we can couple
(X′

m)m≥0 with a sub-critical Galton–Watson process (Wm)m≥0 having offspring
distribution Poi(γ̄ ), such that

X′
0 = W0 = x0, X′

m ≤ Wm ∀m ≥ 1.

PROOF. Recall that the transition matrix of the conditioned chain X′ is given
by pϕ(·, ·) with ϕ(x) = Px[T0 < T +

εn]. It suffices to show that for any nonnega-
tive integers x ≤ w, pϕ(x, ·) is stochastically dominated by a Poi(wγ ) random
variable.

By Lemmas 8 and 11, we know that for small enough ε > 0 and large enough
n, pϕ(x, ·) is stochastically dominated by μx(·). Fix 0 ≤ x < εn. Note that

μx(y) ∝ βyp(x, y) ∝
(

n

y

)(
βb(x)

1 − b(x)

)y

, 0 ≤ y ≤ n,

which implies that μx(·) is binomially distributed with n trials and success proba-
bility θ(x) that satisfies

θ(x)

1 − θ(x)
= βb(x)

1 − b(x)
or θ(x) = βb(x)

1 − b(x)(1 − β)
.

Further, by Lemma 13(a), μx(·) is stochastically dominated by a Poisson ran-
dom variable with mean g(x) = −n log(1 − θ(x)). Note that b(x) ≤ e−1 < 1

2 . So
βb(x) < 1 − b(x), and thus θ < 1

2 . Also, one easily checks that − log(1 − t) ≤
t + 2t2 for t ∈ [0, 1

2 ]. We thus obtain g(x) ≤ nθ(x)(1 + 2θ(x)). Recall that
b(x) = λx

n
e−λx/n is monotone on [0, εn] so for x < εn, we have b(x) ≤ λε. Hence

g(x) ≤ x · βλ

1 − λε
·
(

1 + 2λε

1 − λε

)
.

Denote γ̄ := βλ
1−λε

(1 + λε
1−λε

). Note that for ε → 0 we have that γ̄ → λβ < 1 by
Lemma 8. So choose ε0 small enough so that γ̄ < 1. Putting all the ingredients
together, we get that for all 0 ≤ x < εn,

pϕ(x, ·) ≤st Poi(xγ̄ ),

and keeping in mind that for any two nonnegative integers x ≤ w we have
Poi(xγ̄ ) ≤st Poi(wγ̄ ), the proof is complete. �

COROLLARY 15. Fix λ > 1. There exist ε0 > 0 such that for all ε < ε0 there
exists C > 0 such that the following holds for all n ≥ 1:

Ex

[
T0|T0 < T +

εn

] ≤ C log(1 + x), 0 ≤ x < εn.
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LEMMA 16. Denote the Markov chain conditioned on T0 < T +
eq−εn by

(X′′
m)m≥0. Given λ > 1 and 0 < ε <

logλ
λ

, there exists 0 < γ < 1 such that the
following holds. For any 0 ≤ x0 < eq − εn, we can couple (X′′

m)m≥0 with a sub-
critical Galton–Watson process (Vm)m≥0 having offspring distribution Ber(γ ),

such that with probability at least 1 − e−(1−κ)2(λ−1 logλ−ε)2n,

X′′
0 = V0 = x0, X′′

m ≥ Vm ∀1 ≤ m ≤ e(1−κ)2(λ−1 logλ−ε)2n,

where κ ∈ (0,1) is as given in Lemma 9 with u = eq − εn.

PROOF. By Lemma 9 and Lemma 12, for any 0 < x < eq − εn, the transition
distribution pϕ(x, ·) stochastically dominates νx(y) ∝ (n

y

)
( b(x)κ

1−b(x)
)y1{y<eq−εn}. In

other words,

Y |{Y < eq − εn} ≤st pϕ(x, ·),
where Y is distributed as Bin(n, θ(x)), where θ(x) = κb(x)

1−b(x)(1−κ)
. By

Lemma 13(b) and from the simple inequality θ(x) ≥ κx
n

, we further have Z|{Z <

eq−εn} ≤st pϕ(x, ·), where Z is distributed as Bin(n, κx
n

). Clearly,
∑x

i=1 Zi ≤st Z

where Zi are i.i.d. Bin(�n
x
�, κx

n
). We can find γ < 1 such that for any n ≥ 1 and

any 0 < x < eq − εn,

P[Zi = 0] =
(

1 − κx

n

)�n/x�
≤ 1 − γ .

Consequently, Zi stochastically dominates Ber(γ ) and hence Bin(x, γ ) ≤st Z.
On the other hand, by Hoeffding’s inequality,

P[Z ≥ eq − εn] ≤ exp
(−2(1 − κ)2(

λ−1 logλ − ε
)2

n
)
.

Thus, on the event {Z < eq − εn}, which happens with probability at least
1−exp(−2(1−κ)2(λ−1 logλ−ε)2n), the distribution pϕ(x, ·) stochastically dom-
inates Bin(x, γ ). So, a simple union bound allows us to couple the conditioned
chain X′′ with a subcritical Galton–Watson process having offspring distribution
Ber(γ ) so that with probability at least 1 − exp(−(1 − κ)2(λ−1 logλ − ε)2n),
the subcritical Galton–Watson process is dominated by X′′ for the first exp((1 −
κ)2(λ−1 logλ − ε)2n) steps. This completes the proof. �

COROLLARY 17 (Lower bound on transition window). Given λ > 1 and 0 <

ε <
logλ

λ
, there exists C > 0 such that the following holds for all n ≥ 1:

Ex

[
T0|T0 < T +

eq−εn

] ≥ C−1 log(1 + x), 0 ≤ x < eq − εn.

PROOF. By Lemma 16, the conditioned chain X′′ can be coupled with the sub-
critical Galton–Watson process V with mean offspring γ such that X′′

0 = V0 = x
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and X′′
t ≥ Vt for all 1 ≤ t ≤ ecn with probability at least 1−e−cn. Let S be the time

of extinction for the process V . It follows from the standard theory of branching
process that Ex[S] ≥ c′ log(1 + x) for all x ≥ 0. On the other hand,

Px[S > t] ≤ xE1[Vt ] ≤ xγ t .

By choosing t = D logn with a sufficiently large constant D = D(γ ) > 0, we ob-

tain that Ex[S1{S≤D logn}] ≥ c′
2 log(1+x) for all 0 ≤ x ≤ n. By the above coupling,

Ex

[
T0|T0 < T +

eq−εn

] ≥ Ex[S1{S≤D logn}] − D logn · e−cn,

which completes the proof. �

4. Upper bound on extinction window. Throughout this section we set ε > 0
and h(x) = Px[T0 < T +

eq−εn].
The next lemma bootstraps the result from Corollary 15.

LEMMA 18. Given λ > 1 and ε > 0, there exist C > 0 and η > 0 such that for
all 0 ≤ x < ηn,

Ex

[
T0|T0 < T +

eq−εn

] ≤ C log(1 + x).

PROOF. By Lemmas 9 and 10, there exist κ < 1 and θ < 1 such that for all
0 ≤ x < eq − εn, κx ≤ h(x) ≤ θx . We choose r > 1 so that θr/2 < κ

2 .
By Corollary 15, there exist C > 0, η′ > 0 small enough such that for all x <

η′n,

Ex

[
T0|T0 < T +

η′n
] ≤ C log(1 + x).

Then, taking η = η′/r , by the strong Markov property, for any 0 ≤ x < ηn,

Px

[
T +

η′n < T0 < T +
eq−εn

] ≤ sup
x≥η′n

h(x) ≤ θrηn <

(
κ

2

)2ηn

≤ inf
x≤ηn

h(x)2 · 2−2ηn.

Note that since for x ≤ eq − εn,

nb(x) = x · λe−λx/n ≥ eλε · x,

we have that if Xk < u − εn, then E[Xk+1|Xk] ≥ eλε · Xk . Let A = eλε/2 > 1,

and let p = exp(− (A−1)2

4 ) < 1. By standard large deviations of binomial random
variables,

Px[X1 ≤ Ax] ≤ Px

[
X1 ≤ A−1

Ex[X1]] ≤ exp
(
−(1 − A−1)2

4
·Ex[X1]

)

≤ exp
(
−(A − 1)2

4
· x

)
= px.
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Let m > 1 be an integer such that Am ≥ e. Then

Px

[
T +

ex ≤ m
] ≥ Px

[∀1 ≤ j ≤ m ∧ T +
ex,Xj ≥ AXj−1

] ≥ (
1 − px)m

.

This holds for any x. Thus inductively, for k = �logn�,

Px

[
T +

eq−εn ≤ km
] ≥ Px

[
T +

ex ≤ m
] · inf

y≥ex
Py

[
T +

eq−εn ≤ (k − 1)m
]

≥ · · · ≥ (1 − p)m logn.

Again this holds for all x > 0. Thus 1
km

· (T0 ∧T +
eq−εn) is dominated by a geometric

random variable of mean (1 − p)−m logn. So we conclude that

Ex

[(
T0 ∧ T +

eq−εn

)2] ≤ (km)2 · 2(1 − p)−2 logn,

which is polynomial in n as n → ∞.
Let E(u) denote the event {T0 < T +

u }. Putting everything together, we obtain
that for 0 < x < ηn,

Ex

[
T0|E(eq − εn)

]
= Ex

[
T01E(η′n)|E(eq − εn)

]
+Ex

[
T0 ∧ T +

eq−εn · 1{T +
η′n<T0<T +

eq−εn}|E(eq − εn)
]

≤ Ex

[
T0|E(

η′n
)] · Px[E(η′n)]

Px[E(eq − εn)]

+
√
Ex[(T0 ∧ T +

eq−εn)
2] · Px[Tη′n < T0 < T +

eq−εn]
h(x)

≤ C log(1 + x) + km
√

2(1 − p)− logn · 2−ηn ≤ C′ log(1 + x),

for some constant C′ > 0. �

LEMMA 19. Given λ > 1 and ε, δ > 0, there exists a constant C = C(ε,λ,

δ) > 0 such that for all 0 ≤ x < eq − εn,

Ex

[
H |T0 < T +

eq−εn

] ≤ C,

where H := ∑∞
k=0 1{δn<Xk<eq−εn} is the total time spent by X in the interval

(δn, eq − εn).

PROOF. We start with the observation that for 0 < x < eq − εn, since
λe−λeq/n = 1,

nb(x)

x
= λe−λx/n ≥ λe−(λ(eq−εn))/n = eλε > 1.
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Choose m = m(ε,λ, δ) ≥ 1 large enough such that δe(λε/2)m >
eq−εn

n
. Call a

step k of the Markov chain X unusual if δn < Xk < eq − εn and Xk+1 <

eλε/2Xk . By standard large deviations of binomial random variables, for 0 < ξ < 1,

P[Bin(n, b) < ξnb] ≤ exp(−nb · (1−ξ)2

4 ). Since nb(Xk) ≥ eλεXk , the probability
of step k being unusual is bounded by

P
[
Bin

(
n,b(Xk)

)
< e−λε/2nb(Xk)|δn < Xk < eq−εn

] ≤ exp
(
−(

eλε/2−1
)2 · δn

4

)
.

Note that if δn < Xj < u− εn and for all k = j, j + 1, . . . , j +m− 1 the step k

is not unusual, then by our choice of m,

Xj+m ≥ e(λε/2)mXj >
eq − εn

δn
· δn = eq − εn.

That is, if all steps j, j +1, . . . , j +m−1 are not unusual, then T0 > T +
eq−εn. Thus

T0 < T +
eq−εn implies that every time j that δn < Xj < eq − εn, we must have that

there exists j ≤ k ≤ j + m − 1 such that k is an unusual step. In conclusion, for
any 0 < x < eq − εn,

Px

[
T0 < T +

eq−εn,H > d
] ≤ Px

[
X takes at least �d/m� unusual steps

]

≤ exp
(
−(

eλε/2 − 1
)2 · δ

4
·
⌊

d

m

⌋
· n

)
.

On the other hand, by Lemma 9, h(x) ≥ κn. Combining the above two observa-
tions, we obtain that for any 0 < x < eq − εn,

Px

[
H ≥ d|T0 < T +

eq−εn

] ≤ e(K1−dK2)n

for constants K1 and K2 which are functions of δ,m, ε and λ. Now the assertion
of the lemma follows immediately from the representation

Ex

[
H |T0 < T +

eq−εn

] =
∞∑

d=0

Px

[
H ≥ d|T0 < T +

eq−εn

]
.

�

PROOF OF THEOREM 3. The lower bound is established in Corollary 17.
Let us now prove the upper bound. Let η > 0 be as in Lemma 18. For x < ηn,

Theorem 3 follows directly from Lemma 18. For x ≥ ηn, by the strong Markov
property,

Ex

[
T0|T0 < T +

eq−εn

] ≤ Ex

[
T −

ηn|T0 < Teq−εn

] + sup
y<ηn

Ey

[
T0|T0 < T +

eq−εn

]
.(6)

We can bound Ex[T −
ηn|T0 < Teq−εn] ≤ 1 + Ex[H |T0 < Teq−εn] where H =∑∞

k=0 1{ηn<Xk<eq−εn}, and hence by Lemma 19, Ex[T −
ηn|T0 < Teq−εn] ≤ C1.

Therefore, from (6) and by Lemma 18,

Ex

[
T0|T0 < T +

eq−εn

] ≤ C1 + C log(ηn) ≤ C′ log(1 + x),

which completes the proof of Theorem 3. �
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