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Spatial and Spatio-Temporal Log-Gaussian
Cox Processes: Extending the
Geostatistical Paradigm
Peter J. Diggle, Paula Moraga, Barry Rowlingson and Benjamin M. Taylor

Abstract. In this paper we first describe the class of log-Gaussian Cox pro-
cesses (LGCPs) as models for spatial and spatio-temporal point process data.
We discuss inference, with a particular focus on the computational challenges
of likelihood-based inference. We then demonstrate the usefulness of the
LGCP by describing four applications: estimating the intensity surface of
a spatial point process; investigating spatial segregation in a multi-type pro-
cess; constructing spatially continuous maps of disease risk from spatially
discrete data; and real-time health surveillance. We argue that problems of
this kind fit naturally into the realm of geostatistics, which traditionally is
defined as the study of spatially continuous processes using spatially dis-
crete observations at a finite number of locations. We suggest that a more
useful definition of geostatistics is by the class of scientific problems that it
addresses, rather than by particular models or data formats.

Key words and phrases: Cox process, epidemiology, geostatistics, Gaus-
sian process, spatial point process.

1. INTRODUCTION

Spatial statistics has been one of the most fertile
areas for the development of statistical methodology
during the second half of the twentieth century. A
striking, if slightly contrived, illustration of the pace
of this development is the contrast between the 90
pages of Bartlett (1975) and the 900 pages of Cressie
(1991). Cressie’s book established a widely used clas-
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sification of spatial statistics into three subareas: geo-
statistical data, lattice data, spatial patterns (meaning
point patterns). Within this classification, geostatistical
data consist of observed values of some phenomenon
of interest associated with a set of spatial locations
xi : i = 1, . . . , n, where, in principle, each xi could have
been any location x within a designated spatial region
A ⊂ R

2. Lattice data consist of observed values associ-
ated with a fixed set of locations xi : i = 1, . . . , n, that
is, the phenomenon of interest exists only at those n

specific locations. Finally, in a spatial pattern the data
are a set of spatial locations xi : i = 1, . . . , n presumed
to have been generated as a partial realisation of a point
process that is itself the object of scientific interest. Al-
most 20 years later, Gelfand et al. (2010) used the same
classification but with a different terminology focused
more on the underlying process than on the extant data:
continuous spatial variation, discrete spatial variation,
and spatial point processes. With this process-based
terminology in place, continuous spatial variation im-
plies a stochastic process {Y(x) :x ∈R

2}, discrete spa-
tial variation implies only a finite-dimensional random
variable, Y = {Yi : i = 1, . . . , n}, and a point pattern
implies a counting measure, {dN(x) :x ∈ R

2}.
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In this paper, we argue first that the most impor-
tant theoretical distinction within spatial statistics is
between spatially continuous and spatially discrete
stochastic processes, and second that most natural pro-
cesses are spatially continuous and should be modelled
accordingly. One consequence of this point of view
is that in many applications, maintaining a one-to-one
linkage between data formats (geostatistical, lattice,
point pattern) and associated model classes (spatially
continuous, spatially discrete, point process) is inap-
propriate. In particular, we suggest a redefinition of
geostatistics as the collection of statistical models and
methods whose purpose is to enable predictive infer-
ence about a spatially continuous, incompletely ob-
served phenomenon, S(x), say.

Classically, geostatistical data Yi : i = 1, . . . , n corre-
spond to noisy versions of S(xi). A standard geostatis-
tical model, expressed here in hierarchical form, is that
S = {S(x) :x ∈ R

2} is a Gaussian stochastic process,
whilst conditional on S , the Yi are mutually indepen-
dent, Normally distributed with means S(xi) and com-
mon variance τ 2. A second scenario, and the focus of
the current paper, is when S determines the intensity,
λ(x), say, of an observed Poisson point process. An
example that we will consider in detail is a log-linear
specification, λ(x) = exp{S(x)}, where S is a Gaussian
process. A third form is when the point process is re-
duced to observations of the numbers of points Yi in
each of n regions Ai that form a partition (or subset) of
the region of interest A. Hence, conditional on S , the
Yi are mutually independent, Poisson-distributed with
means

μi =
∫
Ai

λ(x) dx.(1)

In the remainder of the paper we show how the log-
Gaussian Cox process can be used in a range of appli-
cations where S(x) is incompletely observed through
the lens of point pattern or aggregated count data. Sec-
tions 2 to 4 concern theoretical properties, inference
and computation. Section 5 describes several appli-
cations. Section 6 discusses the extension to spatio-
temporal data. Section 7 gives an outline of how this
approach to modelling incompletely observed spatial
phenomena extends naturally to the joint analysis of
multivariate spatial data when the different data ele-
ments are observed at incommensurate spatial scales.
Section 8 is a short, concluding discussion.

2. THE LOG-GAUSSIAN COX PROCESS

A (univariate, spatial) Cox process (Cox, 1955) is a
point process defined by the following two postulates:

CP1: � = {�(x) :x ∈ R
2} is a nonnegative-valued

stochastic process;
CP2: conditional on the realisation �(x) = λ(x) :

x ∈ R
2, the point process is an inhomogeneous Pois-

son process with intensity λ(x).

Cox processes are natural models for point process
phenomena that are environmentally driven, much less
natural for phenomena driven primarily by interactions
amongst the points. Examples of these two situations in
an epidemiological context would be the spatial distri-
bution of cases of a noninfectious or infectious disease,
respectively. In a noninfectious disease, the observed
spatial pattern of cases results from spatial variation in
the exposure of susceptible individuals to a combina-
tion of observed and unobserved risk-factors. Condi-
tional on exposure, cases occur independently. In con-
trast, in an infectious disease the observed pattern is at
least partially the result of infectious cases transmitting
the disease to nearby susceptibles. Notwithstanding
this phenomenological distinction, it can be difficult,
or even impossible, to distinguish empirically between
processes representing stochastically independent vari-
ation in a heterogeneous environment and stochastic
interactions in a homogeneous environment (Bartlett,
1964).

The moment properties of a Cox process are inher-
ited from those of the process �(x). For example, in
the stationary case the intensity of the Cox process is
equal to the expectation of �(x) and the covariance
density of the Cox process is equal to the covariance
function of �(x). Hence, writing λ = E[�(x)] and
C(u) = Cov{�(x),�(x −u)}, the reduced second mo-
ment measure or K-function (Ripley 1976, 1977) of
the Cox process is

K(u) = πu2 + 2πλ−2
∫ u

0
C(v)v dv.(2)

Møller, Syversveen and Waagepetersen (1998) intro-
duced the class of log-Gaussian processes (LGCPs).
As the name implies, an LGCP is a Cox process with
�(x) = exp{S(x)}, where S is a Gaussian process.
This construction has an elegant simplicity. One of its
attractive features is that the tractability of the multi-
variate Normal distribution carries over, to some ex-
tent, to the associated Cox process.

In the stationary case, let μ = E[S(x)] and C(u) =
σ 2r(u) = Cov{S(x), S(x−u)}. It follows from the mo-
ment properties of the log-Normal distribution that the
associated LGCP has intensity λ = exp(μ+0.5σ 2) and
covariance density g(u) = λ2[exp{σ 2r(u)} − 1]. This



544 DIGGLE, MORAGA, ROWLINGSON AND TAYLOR

makes it both convenient and natural to re-parameterise
the model as

�(x) = exp
{
β + S(x)

}
,(3)

where E[S(x)] = −0.5σ 2, so that E[exp{S(x)}] = 1
and λ = exp(β). This re-parameterisation gives a
clean separation between first-order (mean value) and
second-order (variation about the mean) properties.
Hence, for example, if we wished to model a spatially
varying intensity by including one or more spatially
indexed explanatory variables z(x), a natural first ap-
proach would be to retain the stationarity of S(x) but
replace the constant intensity λ by a regression model,
λ(x) = λ{z(x);β}. The resulting Cox process is now
an intensity-reweighted stationary point process (Bad-
deley, Møller and Waagepetersen, 2000), which is the
analogue of a real-valued process with a spatially vary-
ing mean and a stationary residual.

The definition of a multivariate LGCP is imme-
diate—we simply replace the scalar-valued Gaussian
process S(x) by a vector-valued multivariate Gaus-
sian process—and its moment properties are equally
tractable. For example, if S(x) is a stationary bivariate
Gaussian process with intensities λ1 and λ2, and cross-
covariance function C12(u) = σ1σ2r12(u), the cross-
covariance density of the associated Cox process is
g12(u) = λ1λ2[exp{σ1σ2r12(u)} − 1].

There is an extensive literature on parametric spec-
ifications for the covariance structure of real-valued
processes S(x); for a recent summary, see Gneiting
and Guttorp (2010a). The theoretical requirement for
a function C(x, y) to be a valid covariance function is
that it be positive-definite, meaning that for all positive
integers n, any associated set of points xi ∈ R

2 : i =
1, . . . , n, and any associated set of real numbers ai : i =
1, . . . , n,

n∑
i=1

n∑
j=1

aiajC(xi, xj ) ≥ 0.(4)

Checking that (4) holds for an arbitrary candidate
C(x, y) is not straightforward. In practice, we choose
covariance functions from a catalogue of parametric
families that are known to be valid. In the stationary
case, a widely used family is the Matérn (1960) class
C(u) = σ 2r(u;φ,κ), where

r(u;φ,κ)
(5)

= {
2κ−1
(κ)

}−1
(u/φ)κKκ(u/φ) u ≥ 0.

In (5), 
(·) is the complete Gamma function, Kκ(·)
is a modified Bessel function of order κ , and φ > 0

and κ > 0 are parameters. The parameter φ has units
of distance, whilst κ is a dimensionless shape param-
eter that determines the differentiability of the corre-
sponding Gaussian process; specifically, the process is
k-times mean square differentiable if κ > k. This phys-
ical interpretation of κ is useful because κ is difficult
to estimate empirically (Zhang, 2004), hence, a widely
used strategy is to choose between a small set of val-
ues corresponding to different degrees of differentia-
bility, for example, κ = 0.5,1.5 or 2.5. Estimation of
φ is more straightforward.

In summary, the LGCP is the natural analogue for
point process data of the linear Gaussian model for
real-valued geostatistical data (Diggle and Ribeiro,
2007). Like the linear Gaussian model, it lacks any
mechanistic interpretation. Its principal virtue is that it
provides a flexible and relatively tractable class of em-
pirical models for describing spatially correlated phe-
nomena. This makes it extremely useful in a range of
applications where the scientific focus is on spatial pre-
diction rather than on testing mechanistic hypotheses.
Section 5 gives several examples.

3. INFERENCE FOR LOG-GAUSSIAN COX
PROCESSES

In this section we distinguish between two infer-
ential targets, namely, estimation of model parame-
ters and prediction of the realisations of unobserved
stochastic processes. Within the Bayesian paradigm,
this distinction is often blurred, because parameters are
treated as unobserved random variables and the formal
machinery of inference is the same in both cases, con-
sisting of the calculation of the conditional distribution
of the target given the data. However, from a scien-
tific perspective parameter estimation and prediction
are fundamentally different, because the former con-
cerns properties of the process being modelled whereas
the latter concerns properties of a particular realisation
of that process.

3.1 Parameter Estimation

For parameter estimation, we consider three ap-
proaches: moment-based estimation, maximum likeli-
hood estimation, and Bayesian estimation. The first ap-
proach is typically very simple to implement and is
useful for the initial exploration of candidate models.
The second and third are more principled, both being
likelihood-based.
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3.1.1 Moment-based estimation. In the stationary
case, moment-based estimation consists of minimis-
ing a measure of the discrepancy between empirical
and theoretical second-moment properties. One class
of such measures is a weighted least squares criterion,

D(θ) =
∫ u0

0
w(u)

{
K̂(u)c − K(u; θ)c

}2
du.(6)

In the intensity-re-weighted case, (6) can still be used
after separately estimating a regression model for a
spatially varying λ(x) under the working assumption
that the data are a partial realisation of an inhomoge-
neous Poisson process.

This method of estimation has an obviously ad hoc
quality. In particular, it is difficult to give generally ap-
plicable guidance on appropriate choices for the values
of u0 and c in (6). Because the method is intended only
to give preliminary estimates, there is something to be
said for simply matching K̂(u) and K(u; θ) by eye.
The R (R Core Team, 2013) package lgcp (Taylor et
al., 2013) includes an interactive graphics function to
facilitate this.

3.1.2 Maximum likelihood estimation. The general
form of the Cox process likelihood associated with data
X = {xi ∈ A : i = 1, . . . , n} is

�(θ;X) = P(X|θ) =
∫
�

P(X,�|θ) d�

(7)
= E�|θ

(
�∗(�;X)

)
,

where

�∗(�;X) =
n∏

i=1

�(xi)

{∫
A

�(x)dx

}−n

(8)

is the likelihood for an inhomogeneous Poisson pro-
cess with intensity �(x). The evaluation of (7) involves
integration over the infinite-dimensional distribution of
�. In Section 4.1 below we describe an implementation
in which the continuous region of interest A is approx-
imated by a finely spaced regular lattice, hence replac-
ing � by a finite set of values �(gk) :k = 1, . . . ,N ,
where the points g1, . . . , gN cover A. Even so, the high
dimensionality of the implied integration appears to
present a formidable obstacle to analytic progress. One
solution, easily stated but hard to implement robustly
and efficiently, is to use Monte Carlo methods.

Monte Carlo evaluation of (7) consists of approxi-
mating the expectation by an empirical average over
simulated realisations of some kind. A crude Monte
Carlo method would use the approximation

�MC(θ) = s−1
s∑

j=1

�
(
θ;X,λ(j)),(9)

where λ(j) = {λ(j)(gk) :k = 1, . . . ,N} : j = 1, . . . , s

are simulated realisations of � on the set of grid-points
gk . In practice, this is hopelessly inefficient. A better
approach is to use an ingenious method due to Geyer
(1999), as follows.

Let f (X,�; θ) denote the un-normalised joint den-
sity of X and �. Then, the associated likelihood is

�(θ;X,�) = f (X,�; θ)/a(θ),(10)

where

a(θ) =
∫

f (X,�; θ) d�dX(11)

is the intractable normalising constant for f (·). It fol-
lows that

Eθ0

[
f (X,�; θ)/f (X,�; θ0)

]
=

∫ ∫
f (X,�; θ)/f (X,�; θ0)

× f (X,�; θ0)

a(θ0)
d�dX(12)

= 1

a(θ0)

∫
f (X,�; θ) d�dX

= a(θ)/a(θ0),

where θ0 is any convenient, fixed value of θ , and Eθ0

denotes expectation when θ = θ0. However, the func-
tion f (X,�; θ) in (10) is also an un-normalised con-
ditional density for � given X. Under this second in-
terpretation, the corresponding normalised conditional
density is f (X,�; θ)/a(θ |X), where

a(θ |X) =
∫

f (X,�; θ) d�,(13)

and the same argument as before gives

Eθ0

[
f (X,�; θ)/f (X,�; θ0)|X]

(14)
= a(θ |X)/a(θ0|X).

It follows from (7), (10) and (13) that the likelihood for
the observed data, X, can be written as

�(θ;X) =
∫

f (x,�; θ)

a(θ)
d� = a(θ |X)/a(θ).(15)

Hence, the log-likelihood ratio between any two pa-
rameter values, θ and θ0, is

L(θ;X) − L(θ0;X)

= log
{
a(θ |X)/a(θ)

} − log
{
a(θ0|X)/a(θ0)

}
(16)

= log
{
a(θ |X)/a(θ0|X)

} − log
{
a(θ)/a(θ0)

}
.
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Substitution from (12) and (14) gives the result that

L(θ;X) − L(θ0;X)

= log Eθ0

[
r(X,�, θ, θ0)|X]

(17)

− log Eθ0

[
r(X,�, θ, θ0)

]
,

where r(X,�, θ, θ0) = f (X,�; θ)/f (X,�; θ0). For
any fixed value of θ0, a Monte Carlo approximation to
the log-likelihood, ignoring the constant term L(θ0) on
the left-hand side of (17), is therefore given by

L̂(θ) = log

{
s−1

s∑
j=1

r
(
X,λ(j), θ, θ0

)}

(18)

− log

{
s−1

s∑
j=1

r
(
X(j), λ(j), θ, θ0

)}
.

The result (18) provides a Monte Carlo approxima-
tion to the log-likelihood function, and therefore to the
maximum likelihood estimate θ̂ , by simulating the pro-
cess only at a single value, θ0. The accuracy of the ap-
proximation depends on the number of simulations, s,
and on how close θ0 is to θ̂ .

Note that in the second term on the right-hand side
of (18) the pairs (X(j), λ(j)) are simulated joint re-
alisations of X and � at θ = θ0, whilst in the first
term X is held fixed at the observed data and the sim-
ulated realisations λ(j) are conditional on X. Condi-
tional simulation of � requires Markov chain Monte
Carlo (MCMC) methods, for which careful tuning is
generally needed. We discuss computational issues, in-
cluding the design of a suitable MCMC algorithm, in
Section 4.

3.1.3 Bayesian estimation. One way to implement
Bayesian estimation would be directly to combine
Monte Carlo evaluation of the likelihood with a prior
for θ . However, it turns out to be more efficient to
incorporate Bayesian estimation and prediction into a
single MCMC algorithm, as described in Section 4.

3.2 Prediction

For prediction, we consider plug-in and Bayesian
prediction. Suppose, quite generally, that data Y are to
be used to predict a target T under an assumed model
with parameters θ . Then, plug-in prediction consists of
a series of probability statements within the conditional
distribution [T |Y ; θ̂ ], where θ̂ is a point estimate of θ ,
whereas Bayesian prediction replaces [T |Y ; θ̂ ] by

[T |Y ] =
∫

[T |Y ; θ ][θ |Y ]dθ.(19)

This shows that Bayesian prediction is a weighted av-
erage of plug-in predictions, with different values of
θ weighted according to the Bayesian posterior for θ .
The Bayesian solution (19) is the more correct in that
it incorporates parameter uncertainty in a way that is
both natural, albeit on its own terms, and elegant.

4. COMPUTATION

Inference for LGCPs is a computationally challeng-
ing problem. Throughout this section we will use the
notation and language of purely spatial processes on
R

2, but the discussion applies in more general settings
including spatio-temporal LGCPs.

4.1 The Computational Grid

Although we model the latent process S as a spa-
tially continuous process, in practice, we work with
a piecewise-constant equivalent to the LGCP model
on a collection of cells that form a disjoint partition
of the region of interest, A. In the limit as the num-
ber of cells tends to infinity, this process behaves like
its spatially continuous counterpart. We call the col-
lection of cells on which we represent the process the
computational grid. The choice of grid reflects a bal-
ance between computational complexity and accuracy
of approximation. The computational bottleneck arises
through the need to invert the covariance matrix, 
,
corresponding to the variance of S evaluated on the
computational grid.

Typically, we shall use a computational grid of
square cells. This is an example of a regular grid, by
which we mean that on an extension of the grid notion-
ally wrapped on a torus, a strictly stationary covari-
ance function of the process on R

2 will induce a block-
circulant covariance structure on the grid (Wood and
Chan, 1994; Møller, Syversveen and Waagepetersen,
1998). For simplicity of presentation, we make no dis-
tinction between the extended grid and the original
grid, since for extensions that at least double the width
and height of the original grid, the toroidal distance
between any two cells in the original observation win-
dow coincides with their Euclidean distance in R

2. For
a second-order stationary process S, inversion of 
 on
a regular grid is best achieved using Fourier methods
(Frigo and Johnson, 2011). On irregular grids, sparse
matrix methods in conjunction with an assumption of
low-order Markov dependence are more efficient (Rue
and Held, 2005; Rue, Martino and Chopin, 2009; Lind-
gren, Rue and Lindström, 2011). In this context, Lind-
gren, Rue and Lindström (2011) demonstrate a link
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between models assuming a Markov dependence struc-
ture and spatially continuous models whose covariance
function belongs to a restricted subset of the Matérn
class.

4.2 Implementing Bayesian Inference, MCMC or
INLA?

We now suppose that the computational grid has
been defined and the point process data X have been
converted to a set of counts, Y , on the grid cells; note
that we envisage using a finely spaced grid, for which
cell-counts will typically be 0 or 1. Our goal is to use
the data Y to make inferences about the latent process
S and the parameters β and θ , which, respectively, pa-
rameterise the intensity of the LGCP and the covari-
ance structure of S.

In the Bayesian paradigm we treat S, β and θ as ran-
dom variables, assign priors to the model parameters
(β, θ) and make inferential statements using the poste-
rior/predictive distribution,

[S,β, θ |Y ] ∝ [Y |S,β, θ ][S|θ ][β, θ ].
Two options for computation are as follows: MCMC,
which generates random samples from [S,β, θ |Y ], and
the integrated nested Laplace approximation (INLA),
which uses a mathematical approximation.

Taylor and Diggle (2013a) compare the performance
of MCMC and INLA for a spatial LGCP with constant
expectation β and parameters θ treated as known val-
ues. In this restricted scenario, they found that MCMC,
run for 100,000 iterations, delivered more accurate es-
timates of predictive probabilities than INLA. How-
ever, they acknowledged that “further research is re-
quired in order to design better MCMC algorithms that
also provide inference for the parameters of the latent
field”.

Approximate methods such as INLA have the ad-
vantages that they produce results quickly and circum-
vent the need to assess the convergence and mixing
properties of an MCMC algorithm. This makes INLA
very convenient for quick comparisons amongst multi-
ple candidate models, which would be a daunting task
for MCMC. Against this, MCMC methods are more
flexible in that extensions to standard classes of mod-
els can usually be accommodated with only a modest
amount of coding effort. Also, an important consider-
ation in some applications is that the currently avail-
able software implementation of INLA is limited to
the evaluation of predictive distributions for univari-
ate, or, at best, low-dimensional, components of the
underlying model, whereas MCMC provides direct ac-

cess to joint posterior/predictive distributions of non-
linear functions of the parameters and of the latent pro-
cess S. Mixing INLA and MCMC can therefore be
a good overall computational strategy. For example,
Haran and Tierney (2012) use a heavy-tailed approx-
imation similar in spirit to INLA to construct efficient
MCMC proposal schemes.

4.2.1 Markov Chain Monte Carlo inference for log-
Gaussian Cox processes. MCMC methods generate
samples from a Markov chain whose stationary distri-
bution is the target of interest, in our case [S,β, θ |Y ].
Such samples are inherently dependent but, subject to
careful checking of mixing and convergence proper-
ties, their empirical distribution is an unbiased estimate
of the target, and, in principle, the associated Monte
Carlo error can be made arbitrarily small by using a
sufficiently long run of the chain. In the current con-
text, we follow Møller, Syversveen and Waagepetersen
(1998) and Brix and Diggle (2001) in using a standard-
ised version of S, denoted 
, and transform θ to the
log-scale, so that the MCMC algorithm operates on the
whole of Rd , rather than on a restricted subset. We de-
note the ith sample from the chain by ζ (i) and write
π(ζ |Y) for the target distribution.

The aim in designing MCMC algorithms for any
specific class of problems is to achieve faster con-
vergence and better mixing than would be obtained
by generic off-the-shelf methods. Gilks, Richardson
and Spiegelhalter (1995) and Gamerman and Lopes
(2006) give overviews of the extensive literature on
this topic. We focus our discussion on the Metropolis-
Hastings (MH) algorithm, which includes as a spe-
cial case the popular Gibbs sampler (Metropolis et
al., 1953; Hastings, 1970; Geman and Geman, 1984;
Spiegelhalter, Thomas and Best, 1999). In order to
use the MH algorithm, we require a proposal density,
q(·|ζ (i−1)). At the ith iteration of the algorithm, we
sample a candidate, ζ (i∗), from q(·), and set ζ (i) = ζ (i∗)

with probability

min
{

1,
π(ζ (i∗)|Y)

π(ζ (i−1)|Y)

q(ζ (i−1)|ζ (i∗))

q(ζ (i∗)|ζ (i−1))

}
,

otherwise set ζ (i) = ζ (i−1). The choice of q(·) is crit-
ical. Previous research on inferential methods for spa-
tial and spatio-temporal log-Gaussian Cox processes
has advocated the Metropolis-adjusted Langevin al-
gorithm (MALA), which mimics a Langevin diffu-
sion on the target of interest; see Roberts and Tweedie
(1996), Møller, Syversveen and Waagepetersen (1998)
and Brix and Diggle (2001); note also Brix and Diggle
(2003) and Taylor and Diggle (2013b). Alternatives to



548 DIGGLE, MORAGA, ROWLINGSON AND TAYLOR

MH include Hamiltonian Monte Carlo methods, as dis-
cussed in Girolami and Calderhead (2011).

The Metropolis-adjusted Langevin algorithm ex-
ploits gradient information to identify efficient pro-
posals. The algorithms in this article make use of a
“pre-conditioning matrix”, � (Girolami and Calder-
head, 2011), to define the proposal

q
(
ζ (i∗)|ζ (i−1))
= N

[
ζ (i∗);(20)

ζ (i−1) + h2

2
�∇ log

{
π

(
ζ (i−1)|Y )}

, h2�

]
,

where h is a scaling constant. Ideally, � should be the
negative inverse of the Fisher information matrix eval-
uated at the maximum likelihood estimate of ζ , that
is, �opt = {−E[I(ζ̂ )]}−1 where I is the observed in-
formation. However, this matrix is massive, dense and
intractable. In practice, we can obtain an efficient al-
gorithm by choosing � to be an approximation of �opt
and further by changing h during the course of the al-
gorithm using adaptive MCMC (Andrieu and Thoms,
2008; Roberts and Rosenthal, 2007). In MALA algo-
rithms, h can be tuned adaptively to achieve an approx-
imately optimal acceptance rate of 0.574 (Roberts and
Rosenthal, 2001).

Since the gradient of logπ with respect to θ can be
both difficult to compute and computationally costly,
we instead suggest a random walk proposal for the θ -
component of ζ . In the examples described in Section 5
we used the following overall proposal:

q
(
ζ (i∗)|ζ (i−1))

= N

⎡
⎢⎢⎢⎢⎢⎣ζ (i∗);

(21) ⎛
⎜⎜⎜⎜⎜⎝


(i−1) + h2h2



2
�


∂ log
{
π

(
ζ (i−1)|Y )}
∂


β(i−1) + h2h2
β

2
�β

∂ log
{
π

(
ζ (i−1)|Y )}
∂β

θ(i−1)

⎞
⎟⎟⎟⎟⎟⎠ ,

h2

⎛
⎜⎝

h2

�
 0 0

0 h2
β�β 0

0 0 ch2
θ�θ

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ .

In (21), �
 is an approximation to {−E[I(
̂)]}−1, and
similarly for �β and �θ . The constants h2


 , h2
β and

h2
θ are the approximately optimal scalings for Gaus-

sian targets explored by the Gaussian random walk or
MALA proposals (Roberts and Rosenthal, 2001); these
are, respectively, 1.652/dim(
)1/3, 1.652/dim(β)1/3

and 2.382/dim(θ), where dim is the dimension.
The acceptance rate for a random walk proposal is

often tuned to around 0.234, which is optimal for a
Gaussian target in the limit as the dimension of the tar-
get goes to infinity. At each step in our algorithm, we
jointly propose new values for (S,β) and for θ using,
respectively, a MALA and a random walk component
in the overall proposal, but we also seek to maintain an
acceptance rate of 0.574 to achieve optimality for the
MALA parts of the proposal. As a compromise, in our
proposal we scale the matrix �θ by a constant factor
c and the proposal covariance matrix by a single adap-
tive h. In the examples described in Section 5 we used
a value of c = 0.4, which appears to work well across
a range of scenarios.

5. APPLICATIONS

5.1 Smoothing a Spatial Point Pattern

The intensity, λ(x), of an inhomogeneous spatial
point process is the unique nonnegative valued function
such that the expected number of points of the process,
called events, that fall within any spatial region B is

μ(B) =
∫
B

λ(x) dx.(22)

Suppose that we wish to estimate λ(x) from a partial
realisation consisting of all of the events of the process
that fall within a region A, hence, X = {xi ∈ A : i =
1, . . . , n}. Figure 1 shows an example in which the
data are the locations of 703 hickory trees in a 19.6
acre (281.6 by 281.6 metre) square region A (Gerrard,
1969), which we have re-scaled to be of dimension 100
by 100.

An intuitively reasonable class of estimators for λ(x)

is obtained by counting the number of events that lie
within some fixed distance, h, say, of x and dividing by
πh2 or, to allow for edge-effects, by the area, B(x, t),
of the intersection of A and a circular disc with centre
x and radius h, hence,

λ̃(x;h) = B(x;h)−1
n∑

i=1

I
(‖x − xi‖ ≤ h

)
.(23)

This estimate is, in essence, a simple form of bivari-
ate kernel smoothing with a uniform kernel function
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FIG. 1. Locations of 703 hickories in a 19.6 acre square plot,
re-scaled to 100 by 100 units (Gerrard, 1969).

(Silverman, 1986). Berman and Diggle (1989) derived
the mean square error of (23) as a function of h under
the assumption that the underlying point process is a
stationary Cox process. They then showed how to es-
timate, and thereby approximately minimise, the mean
square error without further parametric assumptions.

A different way to formalise the smoothing prob-
lem is as a prediction problem associated with the log-
Gaussian Cox process, (3). In this formulation, �(x) =
exp{β +S(x)}, where S(·) is a stationary Gaussian pro-
cess indexed by a parameter θ and the target for predic-
tion is �(x). The formal solution is the predictive dis-
tribution of �(·) given X. For a smooth estimate, anal-
ogous to (23), we take λ̂(x) to be a suitable summary of
the predictive distribution, for example, its point-wise

expectation or median. This is still a nonparametric so-
lution, in the sense that no parametric form is specified
in advance for λ̂(x). The parameterisation of the Gaus-
sian process S(·) is the counterpart of the choices made
in the kernel estimation approach, namely, the specifi-
cation of the uniform kernel in (23) and the value of the
bandwidth, h.

For this application, we specify that S(·) has mean
−0.5σ 2, variance σ 2 and exponential correlation func-
tion, r(u) = exp(−u/φ), hence, θ = (σ 2, φ). We
conduct Bayesian predictive inference using MCMC
methods implemented in an extension of the R package
lgcp (Taylor et al., 2013). For β we chose a diffuse
prior, β ∼ N(0,106). For σ and φ, we chose Normal
priors on the log scale: logσ ∼ N(log(1),0.15) and
logφ ∼ N(log(10),0.15). We initialised the MCMC
as follows. For σ and φ, we minimised∫ 25

0

(
K̂(r)0.25 − K(r;σ,φ)0.25)2

dr,

where K(r;σ,φ) is the K-function of the model and
K̂(r) is Ripley’s estimate (Ripley 1976, 1977), result-
ing in initial values of σ = 0.50 and φ = 12.66. The
initial value of 
 was set to a 256×256 matrix of zeros
and β was initialised using estimates from an overdis-
persed Poisson generalised linear model fitted to the
cell counts, ignoring spatial correlation.

For the MCMC, we used a burn-in of 100,000 itera-
tions followed by a further 900,000 iterations, of which
we retained every 900th iteration so as to give a weakly
dependent sample of size 1000. Convergence and mix-
ing diagnostics are shown in the supplementary mate-
rial [Diggle et al. (2013)]. Figure 2 compares the prior

FIG. 2. Prior (continuous curve) and posterior (histogram) distributions for the parameters β , σ and φ in the LGCP model for the hickory
data.
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FIG. 3. Left: 50% posterior percentiles of �(x) = exp{β +S(x)} for the hickory data. Middle: plot of posterior P{exp[S(x)] < 1/2}. Right:
plot of posterior P{exp[S(x)] > 2}. Middle and right plots also show the locations of the trees.

and posterior distributions of the three model parame-
ters showing, in particular, that the data give only weak
information about the correlation range parameter, φ.
This is well known in the classical geostatistical con-
text where the data are measured values of S(x) (see,
e.g., Zhang, 2004), and is exacerbated in the point pro-
cess setting.

The left plot in Figure 3 shows the pointwise 50th
percentiles of the predictive distribution for the target,
�(x) over the observation window; this clearly identi-
fies the pattern of the spatial variation in the intensity.
The LGCP-based solution also enables us to map areas
of particularly low or high intensity. The middle and
right plots in Figure 3 are maps of P{exp[S(x)] < 1/2}
and P{exp[S(x)] > 2}. The areas in these plots where
the posterior probabilities are high correspond, respec-
tively, to areas where the density of trees is less than
half and more than double the mean density.

The LGCP-based solution to the smoothing problem
is arguably over-elaborate by comparison with simpler
methods such as kernel smoothing. Against this, ar-
guments in its favour are that it provides a principled
rather than an ad hoc solution, probabilistic predic-
tion rather than point prediction, and an obvious ex-
tension to smoothing in the presence of explanatory
variables by specifying �(x) = exp{u(x)′β + S(x)},
where u(x) is a vector of spatially referenced explana-
tory variables.

5.2 Spatial Segregation: Genotypic Diversity of
Bovine Tuberculosis in Cornwall, UK

Our second application concerns a multivariate ver-
sion of the smoothing problem described in Sec-
tion 5.1. Events are now of k types, hence, the data
are X = {Xj : j = 1, . . . , k}, where Xj = {xij ∈ A : i =
1, . . . , nj } and the corresponding intensity functions

are λj (x) : j = 1, . . . , k. Write λ(x) = ∑k
j=1 λj (x)

for the intensity of the superposition. Under the ad-
ditional assumption that the underlying process is
an inhomogeneous Poisson process, then conditional
on the superposition, the labellings of the events are
a sequence of independent multinomial trials with
position-dependent multinomial probabilities,

pj (x) = λj (x)/λ(x)

= P(event at location x is of type j)

j = 1, . . . , k.

A basic question for any multivariate point process
data is whether the type-specific component processes
are independent. When they are not, further questions
of interest are context-specific. Here, we describe an
analysis of data relating to bovine tuberculosis in the
county of Cornwall, UK.

Bovine tuberculosis (BTB) is a serious disease of
cattle. It is endemic in parts of the UK. As part of the
national control strategy, herds are regularly inspected
for BTB. When disease in a herd is detected and at least
one tuberculosis bacterium is successfully cultured, the
genotype that is responsible for the BTB breakdown
can be determined. Here, we re-visit an example from
Diggle, Zheng and Durr (2005) in which the events are
the locations of cattle herds in the county of Cornwall,
UK, that have tested positive for bovine BTB over the
period 1989 to 2002, labelled according to their geno-
types. The data, shown in Figure 4, are limited to the
873 locations with the four most common genotypes;
six less common genotypes accounted for an additional
46 cases.

The question of primary interest in this example
is whether the genotypes are randomly intermingled
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FIG. 4. Locations of cattle herds in Cornwall, UK, that have
tested positive for bovine tuberculosis (BTB) over the period 1989
to 2002. Points are coded according to the genotype of the infecting
BTB organism.

amongst the locations and, if not, to what extent spe-
cific genotypes are spatially segregated. This question
is of interest because the former would be consistent
with the major transmission mechanism being cross-
infection during the county-wide movement of animals
to and from markets, whereas the latter would be in-
dicative of local pools of infection, possibly involving
transmission between cattle and reservoirs of infection
in local wildlife populations (Woodroffe et al., 2005;
Donnelly et al., 2006).

To model the data, we consider a multivariate log-
Gaussian Cox process with

�k(x) = exp
(
βk + S0(x) + Sk(x)

)
(24)

k = 1, . . . ,m.

In (24), m = 4 is the number of genotypes, the pa-
rameters βk relate to the intensities of the component
processes, S0(x) is a Gaussian process common to all
types of points and the Sk(x) :k = 1, . . . ,m are Gaus-
sian processes specific to each genotype. Although
S0(x) is not identifiable from our data without addi-
tional assumptions, its inclusion helps the interpreta-
tion of the model, in particular, by emphasising that
the component intensities �k(x) are not mutually in-
dependent processes.

In this example, we used informative priors for the
model parameters: logσ ∼ N(log 1.5,0.015), logφ ∼
N(log 15,000,0.015) and βk ∼ N(0,106). Because the
algorithm mixes slowly, this proved to be a very chal-
lenging computational problem. For the MCMC, we

used a burn-in of 100,000 iterations followed by a fur-
ther 18,000,000 iterations, of which we retained every
18,000th iteration so as to give a sample of size 1000.
Convergence, mixing diagnostics and plots of the prior
and posterior distributions of σ and φ are shown in the
supplementary material [Diggle et al. (2013)]. These
plots show that the chain appeared to have reached sta-
tionarity with low autocorrelation in the thinned out-
put. The plots also illustrate that there is little informa-
tion in the data on σ and φ.

Within (24) the hypothesis of randomly intermingled
genotypes corresponds to Sk(x) = 0 :k = 1, . . . ,4, for
all x. Were it the case that farms were uniformly dis-
tributed over Cornwall, S0(x) would then represent the
spatial variation in the overall risk of BTB, irrespec-
tive of genotype. Otherwise, S0(x) conflates spatial
variation in overall risk with the spatial distribution of
farms. For the Cornwall BTB data the evidence against
randomly intermingled genotypes is overwhelming and
we focus our attention on spatial variation in the prob-
ability that a case at location x is of type k, for each of
k = 1, . . . ,4. These conditional probabilities are

pk(x) = �k(x)∑m
j=1 �j(x)

= exp
[
− ∑

j �=k

{
βj + Sj (x)

}]

and do not depend on the unidentifiable common com-
ponent S0(x). Figure 5 shows point predictions of the
four genotype-specific probability surfaces, defined as
the conditional expectations p̂k(x) = E[pk(x)|X] for
each of k = 1, . . . ,4.

As argued earlier, one advantage of a model-based
approach to spatial smoothing is that results can be pre-
sented in ways that acknowledge the uncertainty on the
point predictions. We could replace each panel of Fig-
ure 5 by a set of percentile plots, as in Figure 3. For
an alternative display that focuses more directly on the
core issue of spatial segregation, let Ak(c, q) denote
the set of locations x for which P{pk(x) > c|X} > q .
As c and q both approach 1, each Ak(c,p) shrinks to-
wards the empty set, but more slowly in a highly segre-
gated pattern than in a weakly segregated one. In Fig-
ure 6 we show the areas Ak(0.8, q) for each of q =
0.6,0.7,0.8 and 0.9. Genotype 9, which contributes
494 to the total of 873 cases, dominates strongly in an
area to the east and less strongly in a smaller area to
the west. Genotype 15 contributes 166 cases and dom-
inates in a single, central area. Genotypes 12 and 20
each contribute a proportion of approximately 0.12 to
the total, with only small pockets of dominance to the
south-west.
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FIG. 5. Genotype-specific probability surfaces for the Cornwall BTB data. Upper-left panel corresponds to genotype 9, upper-right to
genotype 12, lower-left to genotype 15, lower-right to genotype 20.

If infection times were known, we could perform in-
ference via MCMC under a spatio-temporal version of
the model,

�k(x, t) = exp
(
Zk(x, t)βk + S0(x, t) + Sk(x, t)

)
k = 1, . . . ,m,

with �k(x, t), and Sk(x, t) for k = 0, . . . ,m spatio-
temporal versions of the purely spatial processes in
(24) and Zk(x, t) a vector of spatio-temporal covari-
ates. Unlike purely spatial models, spatio-temporal

models are potentially able to investigate mechanistic
hypotheses about disease transmission. For example,
in the context of this example a spatio-temporal anal-
ysis could distinguish between segregated patches that
are stable over time or that grow from initially isolated
cases.

5.3 Disease Atlases

Figure 7 is a typical example of the kind of map
that appears in a variety of cancer atlases. This ex-
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FIG. 6. k-dominant areas for each of the four genotypes in the
Cornwall data.

ample is taken from a Spanish national disease atlas
project (López-Abente et al., 2006). The map estimates
the spatial variation in the relative risk of lung cancer
in the Castile-La Mancha Region of Spain and some
surrounding areas. It is of a type known to geogra-
phers as a choropleth map, in which the geographical
region of interest, A, is partitioned into a set of subre-

gions Ai and each subregion is colour-coded accord-
ing to the numerical value of the quantity of interest.
The standard statistical methodology used to convert
data on case-counts and the number of people at risk in
each subregion is the following hierarchical Poisson-
Gaussian Markov random field model, due to Besag,
York and Molié (1991).

Let Yi denote the number of cases in subregion
Ai and Ei a standardised expectation computed as
the expected number of cases, taking into account
the demographics of the population in subregion Ai

but assuming that risk is otherwise spatially homoge-
neous. Assume that the Yi are conditionally indepen-
dent Poisson-distributed conditional on a latent random
vector S = (S1, . . . , Sm), with conditional means μi =
Ei exp(α + Si). Finally, assume that S is multivariate
Gaussian, with its distribution specified as a Gaussian
Markov random field (Rue and Held, 2005). A Markov
random field is a multivariate distribution specified in-
directly by its full conditionals, [Si |Sj : j �= i]. In the
Besag, York and Molié (1991) model the full condi-
tionals take the so-called intrinsic autoregressive form,

Si |Sj : j �= i ∼ N
(
S̄i , τ

2/ni

)
,(25)

where S̄i = n−1
i

∑
j∼i Sj is the mean of the Sj over

subregions Aj considered to be neighbours of Ai and
ni is the number of such neighbours. Typically, subre-
gions are defined to be neighbours if they share a com-
mon boundary.

FIG. 7. Lung Cancer mortality in the Castile-La Mancha Region of Spain. Figure reproduced from page 42 of López-Abente et al. (2006)
by kind permission of the authors.
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An alternative approach is to model the locations
of individual cancer cases as an LGCP with intensity
�(x) = d(x)R(x), where d(x) represents population
density, assumed known, and R(x) denotes disease
risk, R(x) = exp{S(x)}. Conditional on R(·), case-
counts in subregions Ai are independent and Poisson-
distributed with means

μi =
∫
Ai

d(x)R(x)dx.

This approach leads to spatially smooth risk-maps
whose interpretation is independent of the particular
partition of A into subregions Ai . This is an important
consideration when the Ai differ greatly in size and
shape, as the definition of neighbours in an MRF model
then becomes problematic; see, for example, Wall
(2004). Fitting a spatially continuous model also has
the potential to add information to an analysis of ag-
gregated data, for example, when data on environmen-
tal risk-factors are available at high spatial resolution.
A caveat is that the population density may only be
available in the form of small-area population counts,
implying a piece-wise constant surface d(x) that can
only be a convenient fiction. Note, however, that spa-
tially continuous modelled population density maps
have been constructed and are freely available; see,
for example, http://sedac.ciesin.columbia.edu/data/set/
gpw-v3-population-density.

For the Spanish lung cancer data, we have covariate
information available at small-area, which we incorpo-
rate by fitting the model

�(x) = d(x) exp
{
z(x)′β + S(x)

}
,(26)

treating the covariate surfaces z(x) as piece-wise con-
stant.

For Bayesian inference under the continuous model
(26) we follow Li et al. (2012) by adding standard data
augmentation techniques to the MCMC fitting algo-
rithm described earlier. Recall that for computational
purposes, we perform all calculations on a fine grid,
treating the cell counts in each grid cell as Poisson
distributed conditional on the latent process S(·). Pro-
vided the computational grid is fine enough, each Ai

can be approximated by the union of a set of grid cells,
and we can use a grid-based Gibbs sampling strat-
egy, repeatedly sampling first from [S,β, θ |N,Y+] =
[S,β, θ |N ] and then from [N |S,β, θ,Y+], where N

are the cell counts on the computational grid, Y+ =
{Yi = ∑

x∈Ai
N(x) : i = 1, . . . ,m} and θ parameterises

the covariance structure of S. Sampling from the first
of these densities can be achieved using a Metropolis-
Hastings update as discussed in Section 4. The second

density is a multinomial distribution and poses no dif-
ficulty.

Our priors for this example were as follows: logσ ∼
N(log 1,0.3), logφ ∼ N(log 3000,0.15) and β ∼
MVN(0,106I ). For the MCMC algorithm, we used
a burn-in of 100,000 iterations followed by a fur-
ther 18,000,000 iterations, of which we retained every
18,000th iteration so as to give a sample of size 1000.
Convergence, mixing diagnostics and plots of the prior
and posterior distributions of σ and φ are shown in
the supplementary material [Diggle et al. (2013)]. As
in the Cornwall BTB analysis, these plots indicated
convergence to the stationary distribution and low au-
tocorrelation in the thinned output.

In the analysis reported here, we base our offset
on modelled population data at 100 metre resolu-
tion obtained from the European Environment Agen-
cy; see http://www.eea.europa.eu/data-and-maps/data/
population-density-disaggregated-with-corine- land-
cover-2000-2. We projected this very fine population
information onto our computational grid, which con-
sisted of cells 3100 × 3100 metres in dimension. We
used an exponential model for the covariance function
of S(·) and estimated its parameters (posterior median
and 95% credible interval) to be σ = 1.57 (1.45,1.71)

and φ = 1294 (814,1849) metres. Figure 8 illustrates
the shape of the posterior covariance function; it can
be seen from this plot that the posterior dependence
between cells is over a relatively small range.

Table 1 summarises our estimation of covariate ef-
fects. Our results show that estimated (posterior me-
dian) mortality rates were higher in areas with higher

FIG. 8. Posterior covariance function.

http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2
http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2
http://www.eea.europa.eu/data-and-maps/data/population-density-disaggregated-with-corine-land-cover-2000-2


SPATIAL AND SPATIO-TEMPORAL LOG-GAUSSIAN COX PROCESSES 555

TABLE 1
Selected quantiles of the posterior distributions of standardised

covariate effects for the Spanish lung cancer data

Quantile

Parameter 0.50 0.025 0.975

Percentage illiterate 1.13 1.03 1.24
Percentage unemployed 0.92 0.8 1.03
Percentage farmers 0.88 0.76 1.00
Percentage of people over 65 years old 1.2 0.96 1.51
Income index 1.19 1.03 1.39
Average number of people per home 0.98 0.75 1.26

rates of illiteracy and higher income; these effects were
statistically significant at the 5% level, in the sense
that the Bayesian 95% credible intervals excluded zero.
The remaining covariates (unemployment, percentage
farmers, percentage of people over 65 and average
number of people per home) had a protective effect, but
only significantly so in the case of percentage farmers.

Figure 9 shows the resulting maps. The top left-hand
panel shows the predicted, covariate-adjusted relative
risk surface derived from the log-Gaussian Cox pro-
cess model (26). This predicted relative risk surface
reveals several small areas of raised risk that are not
apparent in Figure 7. The top right-hand panel shows
the log of the estimated variance of relative risk. To ac-
count for this variation, we produced a plot of the pos-
terior probability that relative risk exceeds 1.1, shown
in the bottom panel. This shows that higher rates of in-
cidence appear to be mainly confined to a number of
small townships, the largest of which is an area to the
north of Toledo and surrounding the Illescas munici-
pality, where there are a number of contiguous cells
for which the probability exceeds 0.6.

We acknowledge that this is an illustrative example.
In particular, we cannot guarantee the reliability of the
estimate of population density used as an offset.

In a discussion of Markov models for spatial data,
Wall (2004) investigated properties of the covariance
structure implied by the simultaneous and conditional
autoregressive models on an irregular lattice. She con-
cluded that the “implied spatial correlation [between
cells in these] models does not seem to follow an in-
tuitive or practical scheme” and advises “[using] other
ways of modelling lattice data . . . should be consid-
ered, especially when there is interest in understanding
the spatial structure”. Our approach is one such. Oth-
ers, which we discuss in Section 7, include proposals
in Best, Ickstadt and Wolpert (2000) and Kelsall and
Wakefield (2002).

Our spatially continuous formulation does not en-
tirely rescue us from the trap of the ecological fal-
lacy (Piantadosi, Byar and Green, 1988; Greenland and
Morgenstern, 1990). In a spatial context, this refers to
the fact that the association between a risk-factor and
a health outcome need not be, and usually is not, in-
dependent of the spatial scale on which the risk-factor
and outcome variables are defined. In our example, we
have to accept that treating covariate surfaces as if they
were piece-wise constant is a convenient fiction. How-
ever, our methodology avoids any necessity to aggre-
gate all covariate and outcome variables to a common
set of spatial units, but rather operates at the fine reso-
lution of the computational grid. In effect, this enables
us to place a spatially continuous interpretation on any
parameters relating to continuously measured compo-
nents of the model, whether covariates or the latent
stochastic process S(x).

6. SPATIO-TEMPORAL LOG-GAUSSIAN COX
PROCESSES

6.1 Models

A spatio-temporal LGCP is defined in the obvious
way, as a spatio-temporal Poisson point process condi-
tional on the realisation of a stochastic intensity func-
tion �(x, t) = exp{S(x, t)}, where S(·) is a Gaussian
process. Gneiting and Guttorp (2010b) review the liter-
ature on formulating models for spatio-temporal Gaus-
sian processes. They make a useful distinction between
physically motivated constructions and more empiri-
cal formulations. An example of the former is given
in Brown et al. (2000), who propose models based on
a physical dispersion process. In discrete time, with δ

denoting the time-separation between successive reali-
sations of the spatial field, their model takes the form

S(x, t)
(27)

=
∫

hδ(u)S(x − u, t − δ) du + Zδ(x, t),

where hδ(·) is a smoothing kernel and Zδ(·) is a noise
process, in each case with parameters that depend on
the value of δ in such a way as to give a consistent
interpretation in the spatio-temporally continuous limit
as δ → 0.

Amongst empirical spatio-temporal covariance mod-
els, a basic distinction is between separable and non-
separable models. Suppose that S(x, t) is stationary,
with variance σ 2 and correlation function r(u, v) =
Corr{S(x, t), S(x − u, t − v)}. In a separable model,
r(u, v) = r1(u)r2(v), where r1(·) and r2(·) are spatial
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FIG. 9. Lung Cancer mortality in the Castile-La Mancha Region of Spain. The top left panel shows covariate-adjusted relative risk. The
range of values was restricted to lie between 0.5 and 1.5 to allow comparison with Figure 7. Inside the Castile-La Mancha region, cells with
mean relative risk greater than 1.5 appear dark red and cells with relative risk below 0.5 appear white. The top right panel shows the log of
the estimated variance of relative risk. The bottom panel shows the predictive probability that the covariate-adjusted relative risk exceeds 1.1.

and temporal correlation functions. The separability
assumption is convenient, not least because any valid
specification of r1(u) and r2(v) guarantees the valid-
ity of r(u, v), but it is not especially natural. Paramet-
ric families of nonseparable models are discussed in
Cressie and Huang (1999), Gneiting (2002), Ma (2003,
2008) and Rodrigues and Diggle (2010).

As noted by Gneiting and Guttorp (2010b), whilst
spatio-temporally continuous processes are, in formal
mathematical terms, simply spatially continuous pro-
cesses with an extra dimension, from a scientific per-
spective models need to reflect the fundamentally dif-
ferent nature of space and time, and, in particular,
time’s directional quality. For this reason, in applica-

tions where data arise as a set of spatially indexed time-
series, a natural way to formulate a spatio-temporal
model is as a multivariate time series whose cross-
covariance functions are spatially structured. For ex-
ample, a spatially discrete version of (27) on a finite set
of spatial locations xi : i = 1, . . . , n and integer times t

would be

Sit =
n∑

j=1

hijSi,t−1 + Zit ,(28)

where the hij are functions of the corresponding loca-
tions, xi and xj . For a review of models of this kind,
see Gamerman (2010).
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6.2 Spatio-Temporal Prediction: Real-Time
Monitoring of Gastrointestinal Disease

An early implementation of spatio-temporal log-
Gaussian process modelling was used in the AEGISS
project (Ascertainment and Enhancement of Gastroen-
teric Infection Surveillance Statistics, see http://www.
maths.lancs.ac.uk/~diggle/Aegiss/day.html%3fyear=
2002). The overall aim of the project was to investi-
gate how health-care data routinely collected within the
UK’s National Health Service (NHS) could be used to
spot outbreaks of gastro-intestinal disease. The project
is described in detail in Diggle et al. (2003), whilst
Diggle, Rowlingson and Su (2005) give details of the
spatio-temporal statistical model.

As part of the government’s modernisation pro-
gramme for the NHS, the nonemergency NHS Direct
telephone service was launched in the late 1990s, and
by 2000 was serving all of England and Wales (http://
www.nhsdirect.nhs.uk/About/WhatIsNHSDirect/
History). Callers to this 24-hour system were ques-
tioned about their problem and advised accordingly.
This process reduced calls to an “algorithm code”
which was a broad classification of the problem. Ba-
sic information on the caller, including age, sex and
postal code, was also recorded. Cooper and Chinemana
(2004) give a more detailed description of the NHS Di-
rect system. Mark and Shepherd (2004) analyse its im-
pact on the demand for primary care in the UK. Cooper
et al. (2003) report a retrospective analysis of 150,000
calls to NHS Direct classified as diarrhoea or vomiting,
and concluded that fluctuations in the rate of such calls
could be a useful proxy for monitoring the incidence
of gastrointestinal illness.

In the AEGISS project, residential postal codes as-
sociated with calls classified as relating to diarrhoea
or vomiting were converted to grid references using a
lookup table. Postal codes at this level are referenced
to 100 metre precision, which on the scale of the study
area (the county of Hampshire) is effectively continu-
ous. The data then formed a spatio-temporal point pat-
tern.

The daily extraction of data for Hampshire and the
location coding was done by the NHS at Southampton.
These data were encrypted and sent by email to Lan-
caster, where the emails were automatically filtered,
decrypted and stored. An overnight run of the MALA
algorithm described in Brix and Diggle (2001) took the
latest data and produced maps of predictive probabili-
ties for the risk exceeding multiples 2, 4 and 8 of the
baseline rate.

The specification of the model, based on an ex-
ploratory analysis of the data, was a spatio-temporal
LGCP with intensity

�(x, t) = λ0(x)μ0(t) exp
{
S(x, t)

}
.

The spatial baseline component, λ0(x), was calculated
by a kernel smoothing of the first two years of case
locations, whilst the temporal baseline, μ0(t), was ob-
tained by fitting a standard Poisson regression model to
the counts over time. This regression model included
an annual seasonal component, a factor representing
the day-of-the-week and a trend term to represent the
increasing take-up of the NHS Direct service during
the life-time of the project.

The parameters of S(x, t) were then estimated using
moment-based methods, as in Brix and Diggle (2001),
with a separable correlation structure. Uncertainty in
these parameter estimates was considered to have a
minimal effect on the predictive distribution of S(x, t)

because parameter estimates are informed by all of the
data, whereas prediction of S(x, t) given the model pa-
rameters benefits only from data points that lie close to
(x, t), that is, within the range of the spatio-temporal
correlation.

Plug-in predictive inference was then performed us-
ing the MALA algorithm on each new set of data arriv-
ing overnight. Instead of storing the outputs from each
of 10,000 iterations, only a count of where S(x, t) ex-
ceeded a threshold that corresponded to 2, 4 or 8 times
the baseline risk was retained. This range of thresholds
was chosen in consultation with clinicians; a doubling
of risk was considered of possible interest, whilst an
eightfold increase was considered potentially serious.
These exceedence counts were then converted into ex-
ceedence probabilities.

Presentation of these exceedence maps was an im-
portant aspect of the AEGISS project. At the time,
there were few implementations of maps on the inter-
net—UMN MapServer was released as open source in
1997 and the Google Maps service started in 2005.
A simpler approach was used where static images of
the exceedence probabilities were generated by R’s
graphics system. Regions where the exceedence prob-
ability was higher than 0.9 were outlined with a box
and displayed in a zoomed-in version below the main
graphic. Other page controls enabled the user to se-
lect the threshold value as 2, 4 or 8, and to select a
day or month. A traffic light system of green, amber
and red warnings dependent on the severity of excee-
dence threshold crossings was developed for rapid as-
sessment of conditions on any particular day. The left-
hand panel of Figure 10 shows a day where two clusters

http://www.maths.lancs.ac.uk/~diggle/Aegiss/day.html%3fyear=2002
http://www.nhsdirect.nhs.uk/About/WhatIsNHSDirect/History
http://www.maths.lancs.ac.uk/~diggle/Aegiss/day.html%3fyear=2002
http://www.maths.lancs.ac.uk/~diggle/Aegiss/day.html%3fyear=2002
http://www.nhsdirect.nhs.uk/About/WhatIsNHSDirect/History
http://www.nhsdirect.nhs.uk/About/WhatIsNHSDirect/History


558 DIGGLE, MORAGA, ROWLINGSON AND TAYLOR

FIG. 10. AEGISS web page design. Left-hand panel shows the original design, right-hand panel a modern redesign.

of grid cells show high predictive probability of at least
a doubling of risk relative to baseline.

With modern web-based technologies the user inter-
face could be constructed as a dynamic web-mapping
system that would allow the user freely to navigate
the study region. Layers of information, such as cases
or exceedence probability maps, can then be selected
by the user as overlays. The right-hand panel of Fig-
ure 10 shows the same day as the left-hand panel,
but uses the OpenLayers (http://www.openlayers.org)
web-mapping toolkit to superimpose the cases and risk
surface on a base map composed of data from Open-
StreetMap (http://www.openstreetmap.org). This also
shows the layer selector menu for further customisa-
tion.

Increases in computing power and algorithmic ad-
vances mean that longer MCMC runs can be performed
overnight or on finer spatial resolutions. However, in-
creasing ethical concerns over data use and patient con-
fidentiality mean that finely resolved spatio-temporal
data are becoming harder to obtain. Recent changes in
the organisation of the NHS 24-hour telephone helpline
has meant that several providers will now be respon-
sible for regional services contributing to a new sys-
tem, NHS111 (http://www.nhs.uk/111). AEGISS was
originally conceived as a pilot project that could be
rolled out to all of the UK, but obtaining data from
all the new providers and dealing with possible sys-
tematic differences between them in order to perform a
statistically rigorous analysis is now more challenging.

The future of health surveillance systems may lie in the
use of multivariate spatio-temporal models to combine
information from multiple data streams including non-
traditional proxies for health outcomes, such as non-
prescription medicine sales, counts of key words and
phrases used in search engine queries, and text-mining
of social media sites.

7. DATA SYNTHESIS: INTEGRATED ANALYSIS OF
EXPOSURE AND HEALTH OUTCOME DATA AT

MULTIPLE SPATIAL SCALES

The ubiquitous problem of dealing with exposure
and health outcome data recorded at disparate spa-
tial scales is known to geographers as the “modifi-
able areal unit problem.” See, for example, the re-
views by Gotway and Young (2002) and Dark and
Bram (2007). In the statistical literature, a more com-
mon term is “spatial misalignment.” See, for example,
Gelfand (2010). Several authors have considered spe-
cial cases of this problem in an epidemiological setting.
Mugglin, Carlin and Gelfand (2000) deal with data in
the form of disease counts on a partition of the region
of interest, A, into a discrete set of subregions, Ai , to-
gether with covariate information on a different parti-
tion, Bi , say. Their solution is based on creating a sin-
gle, finer partition that includes all nonzero intersec-
tions Ai ∩ Bj . Best, Ickstadt and Wolpert (2000) also
consider count data on a discrete partition of A, but as-
sume that covariate information on a risk factor of in-
terest is available throughout A. They consider count

http://www.openlayers.org
http://www.openstreetmap.org
http://www.nhs.uk/111
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data to be derived from an underlying Cox process
whose intensity varies in a spatially continuous manner
through the combination of a covariate effect and a la-
tent stochastic process modelled as a kernel-smoothed
gamma random field. They then derive the distribution
of the observed counts by spatial integration over the
Ai . Kelsall and Wakefield (2002) take a similar ap-
proach, but using a log-Gaussian latent stochastic pro-
cess rather than a gamma random field. The technical
and computational issues that arise when handling spa-
tial integrals of stochastic processes can be simplified
by using low-rank models, such as the class of Gaus-
sian predictive process models proposed by Banerjee et
al. (2008) and further developed by Finley et al. (2009).
Gelfand (2012) gives a useful summary of this and re-
lated work.

All of these approaches can be subsumed within
a single modelling framework for multiple exposures
and disease risk by considering these as a set of spa-
tially continuous processes, irrespective of the spatial
resolution at which data elements are recorded. For ex-
ample, a model for the spatial association between dis-
ease risk, R(x), and m exposures Tk(x) :k = 1, . . . ,m

can be obtained by treating individual case-locations as
an LGCP with intensity

R(x) = exp

{
α +

p∑
k=1

βkTk(x) + S(x)

}
,(29)

where S(x) denotes stochastic variation in risk that
is not captured by the p covariate processes Tk(x).
The inferential algorithms associated with model (29)
would then depend on the structure of the available
data.

Suppose, for example, that health outcome data are
available in the form of area-level counts, Yi : i =
1, . . . , n, in subregions Ai , whilst exposure data are ob-
tained as collections of unbiased estimates, Uik , of the
Tk(x) at corresponding locations xik : i = 1, . . . ,mk .
Suppose further that the Uik are conditionally indepen-
dent, with Uik|Tk(·) ∼ N(Tk(xik), τ

2
k ), the processes

Tk(·) are jointly Gaussian and the process S(·) is also
Gaussian and independent of the Tk(·). A possible in-
ferential goal is to evaluate the predictive distribution
of the risk surface R(·) given the data Yi : i = 1, . . . ,m

and Uik : i = 1, . . . ,mk;k = 1, . . . , p. In an obvious
shorthand, and temporarily ignoring the issue of pa-
rameter estimation, the required predictive distribution
is [S,T |U,Y ]. The joint distribution of S, T , U and Y

factorises as

[S,T ,U,Y ] = [S][T ][U |T ][Y |S,T ],(30)

where [S] and [T ] are multivariate Gaussian densities,
[U |T ] is a product of univariate Gaussian densities,
and [Y |S,T ] is a product of Poisson probability dis-
tributions with means

μi =
∫
Ai

R(x) dx.

Sampling from the required predictive distributions
can then proceed using a suitable MCMC algorithm.
For Bayesian parameter estimation, we would augment
(30) by a suitable joint prior for the model parameters
before designing the MCMC algorithm.

A specific example of data synthesis concerns an
ongoing leptospirosis cohort study in a poor commu-
nity within the city of Salvador, Brazil. Leptospirosis is
considered to be the most widespread of the zoonotic
diseases. This is due to the large number of people
worldwide, but especially in poor communities, who
live in close proximity to wild and domestic mam-
mals that serve as reservoirs of infection and shed the
agent in their urine. The major mode of transmission is
contact with contaminated water or soil (Levett, 2001;
Bharti et al., 2003; McBride et al., 2005). In the major-
ity of cases infection leads to an asymptomatic or mild,
self-limiting febrile illness. However, severe cases can
lead to potentially fatal acute renal failure and pul-
monary haemorrhage syndrome. Leptospirosis is tradi-
tionally associated with rural-based subsistence farm-
ing communities, but rapid urbanization and widening
social inequality have led to the dramatic growth of ur-
ban slums, where the lack of basic sanitation favours
rat-borne transmission (Ko et al., 1999; Johnson et al.,
2004).

The goals of the cohort study are to investigate the
combined effects of social and physical environmen-
tal factors on disease risk, and to map the unexplained
spatio-temporal variation in incidence. In the study,
approximately 1700 subjects i = 1, . . . , n at residen-
tial locations xi provide blood-samples on recruitment
and at subsequent times tij approximately 6, 12, 18
and 24 months later. At each post-recruitment visit,
sero-conversion is defined as a change from zero to
positive, or at least a fourfold increase in concentra-
tion. The resulting data consist of binary responses,
Yij = 0/1 : j = 1,2,3,4 (sero-conversion no/yes), to-
gether with a mix of time-constant and time-varying
risk-factors, rij .

A conventional analysis might treat the data from
each subject as a time-sequence of binary responses
with associated explanatory variables. Widely used
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methods for data of this kind include generalised es-
timating equations (Liang and Zeger, 1986) and gen-
eralised linear mixed models (Breslow and Clayton,
1993). An analysis more in keeping with the philos-
ophy of the current paper would proceed as follows.

Let ai and bi(t) denote time-constant and time-
varying explanatory variables associated with subject i,
and tij the times at which blood samples are taken, set-
ting ti0 = 0 for all i. Note that explanatory variables
can be of two distinct kinds: characteristics of an indi-
vidual subject, for example, their age; and character-
istics of a subject’s place of residence, for example,
its proximity to an open-sewer. In principle, the lat-
ter can be indexed by a spatially continuous location,
hence, ai = A(xi) and bi(t) = B(xi, t). A response
Yij = 1 indicates that at least one infection event has
occurred in the time-interval (ti,j−1, tij ). A model for
each subject’s risk of infection then requires the spec-
ification of a set of person-specific hazard functions,
�i(t). A model that allows for unmeasured risk factors
would be a set of LGCPs, one for each subject, with
respective stochastic intensities,

�i(t) = exp
{
a′
iα + bi(tij )

′β + Ui + S(xi, t)
}
,(31)

where the Ui are mutually independent N(0, ν2) and
S(x, t) is a spatio-temporally continuous Gaussian pro-
cess. It follows that

P
{
Yit = 1|�i(·)}

(32)

= 1 − exp
{
−

∫ tij

ti,j−1

�i(u)du

}
.

In practice, values of a(x) and b(x, t) may only be ob-
served incompletely, either at a finite number of lo-
cations or as small-area averages. For notational con-
venience, we consider only a single, incompletely ob-
served spatio-temporal covariate whose measured val-
ues, bk :k = 1, . . . ,m, we model as

bk = B(xk, tk) + Zk,(33)

where B(x, t) is a spatio-temporal Gaussian process
and the Zk are mutually independent N(0, τ 2) mea-
surement errors. Then, (31) becomes

�i(t) = exp
{
B(xi, tij )

′β + Ui + S(xi, t)
}
.(34)

Inference for the model defined by (32), (33) and (34),
based on data {yij : j = 1, . . . ,4; i = 1, . . . , n} and b =
{bk :k = 1, . . . ,m}, would require further development
of MCMC algorithms of the kind described in Sec-
tion 4.

8. DISCUSSION

In this paper we have argued that the LGCP pro-
vides a useful class of models, not only for point pro-
cess data but also for any problem involving prediction
of an incompletely observed spatial or spatio-temporal
process, irrespective of data format. Developments in
statistical computation have made the combination of
likelihood-based, classical or Bayesian parameter es-
timation and probabilistic prediction feasible for rela-
tively large data sets, including real-time updating of
spatio-temporal predictions.

In each of our applications, the focus has been on
prediction of the spatial or spatio-temporal variation in
a response surface, rather than on estimation of model
parameters. In problems of this kind, where parame-
ters are not of direct interest but rather are a means to
an end, Bayesian prediction in conjunction with diffuse
priors is an attractive strategy, as its predictions natu-
rally accommodate the effect of parameter uncertainty.
Model-based predictions are essentially nonparametric
smoothers, but embedded within a probabilistic frame-
work. This encourages the user to present results in a
way that emphasises, rather than hides, their inherent
imprecision.

In many public health settings, identifying where and
when a particular phenomenon, such as disease inci-
dence, is likely to have exceeded an agreed interven-
tion threshold is more useful than quoting either a point
estimate and its standard error or the statistical signifi-
cance of departure from a benchmark.

The log-linear formulation is convenient because of
the tractable moment properties of the log-Gaussian
distribution. It also gives the model a natural interpre-
tation as a multiplicative decomposition of the overall
intensity into deterministic and stochastic components.
However, it can lead to very highly skewed marginal
distributions, with large patches of near-zero intensity
interspersed with sharp peaks. Within the Monte Carlo
inferential framework, there is no reason why other,
less severe transformations from R to R

+ should not
be used.

Two areas of current methodological research are
the formulation of models and methods for princi-
pled analysis of multiple data streams that include data
of variable quality from nontraditional sources, and
the further development of robust computational algo-
rithms that can deliver reliable inferences for problems
of ever-increasing complexity.

Our general approach reflects a continuing trend in
applied statistics since the 1980s. The explosion in
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the development of computationally intensive methods
and associated complex stochastic models has encour-
aged a move away from a methods-based classifica-
tion of the statistics discipline and towards a multi-
disciplinary, problem-based focus in which statistical
method (singular) is thoroughly embedded within sci-
entific method.
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temporal log-Gaussian Cox processes: Extending
the geostatistical paradigm” (DOI: 10.1214/13-
STS441SUPP; .pdf). This material contains mixing,
convergence and inferential diagnostics for all of the
examples in the main article and is also available from
http://www.lancs.ac.uk/staff/taylorb1/statsciappendix.
pdf.

REFERENCES

ANDRIEU, C. and THOMS, J. (2008). A tutorial on adaptive
MCMC. Stat. Comput. 18 343–373. MR2461882

BADDELEY, A. J., MØLLER, J. and WAAGEPETERSEN, R.
(2000). Non- and semi-parametric estimation of interaction
in inhomogeneous point patterns. Stat. Neerl. 54 329–350.
MR1804002

BANERJEE, S., GELFAND, A. E., FINLEY, A. O. and SANG, H.
(2008). Gaussian predictive process models for large spatial
data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 825–848.
MR2523906

BARTLETT, M. S. (1964). The spectral analysis of two-
dimensional point processes. Biometrika 51 299–311.
MR0175254

BARTLETT, M. S. (1975). The Statistical Analysis of Spatial Pat-
tern. Chapman & Hall, London. MR0402886

BERMAN, M. and DIGGLE, P. (1989). Estimating weighted inte-
grals of the second-order intensity of a spatial point process.
J. R. Stat. Soc. Ser. B Stat. Methodol. 51 81–92. MR0984995

BESAG, J., YORK, J. and MOLLIÉ, A. (1991). Bayesian image
restoration, with two applications in spatial statistics. Ann. Inst.
Statist. Math. 43 1–59. MR1105822

BEST, N. G., ICKSTADT, K. and WOLPERT, R. L. (2000). Spa-
tial Poisson regression for health and exposure data measured
at disparate resolutions. J. Amer. Statist. Assoc. 95 1076–1088.
MR1821716

BHARTI, A. R., NALLY, J. E., RICALDI, J. N.,
MATTHIAS, M. A., DIAZ, M. M., LOVETT, M. A., LEV-
ETT, P. N., GILMAN, R. H., WILLIG, M. R., GOTUZZO, E.
and VINETZ, J. M. (2003). Leptospirosis: A zoonotic disease
of global importance. Lancet. Infect. Dis. 3 757–771.

BRESLOW, N. E. and CLAYTON, D. G. (1993). Approximate in-
ference in generalized linear mixed models. J. Amer. Statist. As-
soc. 88 9–25.

BRIX, A. and DIGGLE, P. J. (2001). Spatiotemporal prediction
for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B Stat.
Methodol. 63 823–841. MR1872069

BRIX, A. and DIGGLE, P. J. (2003). Corrigendum: Spatio-
temporal prediction for log-Gaussian Cox processes. J. R. Stat.
Soc. Ser. B Stat. Methodol. 65 946.

BROWN, P. E., KÅRESEN, K. F., ROBERTS, G. O. and TONEL-
LATO, S. (2000). Blur-generated non-separable space–time
models. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 847–860.
MR1796297

COOPER, D. and CHINEMANA, F. (2004). NHS direct derived
data: An exciting new opportunity or an epidemiological
headache? J. Public Health (Oxf.) 26 158–160.

COOPER, D. L., SMITH, G. E., O’BRIEN, S. J., HOL-
LYOAK, V. A. and BAKER, M. (2003). What can analysis of
calls to NHS direct tell us about the epidemiology of gastroin-
testinal infections in the community? J. Infect. 46 101–105.

COX, D. R. (1955). Some statistical methods connected with series
of events. J. R. Stat. Soc. Ser. B Stat. Methodol. 17 129–157;
discussion, 157–164. MR0092301

CRESSIE, N. A. C. (1991). Statistics for Spatial Data. Wiley, New
York. MR1127423

CRESSIE, N. and HUANG, H.-C. (1999). Classes of nonsepara-
ble, spatio-temporal stationary covariance functions. J. Amer.
Statist. Assoc. 94 1330–1340. MR1731494

DARK, S. J. and BRAM, D. (2007). The modifiable areal unit prob-
lem (MAUP) in physical geography. Progress in Physical Ge-
ography 31 471–479.

DIGGLE, P. J. and RIBEIRO, P. J. JR. (2007). Model-Based Geo-
statistics. Springer, New York. MR2293378

DIGGLE, P., ROWLINGSON, B. and SU, T.-L. (2005). Point pro-
cess methodology for on-line spatio-temporal disease surveil-
lance. Environmetrics 16 423–434. MR2147534

DIGGLE, P. J., ZHENG, P. and DURR, P. (2005). Non-parametric
estimation of spatial segregation in a multivariate point process.
Applied Statistics 54 645–658.

DIGGLE, P. J., KNORR-HELD, L., ROWLINGSON, B., SU, T.,
HAWTIN, P. and BRYANT, T. (2003). Towards on-line spatial
surveillance. In Monitoring the Health of Populations: Statis-
tical Methods for Public Health Surveillance (R. Brookmeyer
and D. Stroup, eds.). Oxford Univ. Press, Oxford.

DIGGLE, P. J., MORAGA, P., ROWLINGSON, B. and TAY-
LOR, B. M. (2013). Supplement to “Spatial and spatio-
temporal log-Gaussian Cox processes: Extending the geostatis-
tical paradigm.” DOI:10.1214/13-STS441SUPP.

http://dx.doi.org/10.1214/13-STS441SUPP
http://www.lancs.ac.uk/staff/taylorb1/statsciappendix.pdf
http://www.ams.org/mathscinet-getitem?mr=2461882
http://www.ams.org/mathscinet-getitem?mr=1804002
http://www.ams.org/mathscinet-getitem?mr=2523906
http://www.ams.org/mathscinet-getitem?mr=0175254
http://www.ams.org/mathscinet-getitem?mr=0402886
http://www.ams.org/mathscinet-getitem?mr=0984995
http://www.ams.org/mathscinet-getitem?mr=1105822
http://www.ams.org/mathscinet-getitem?mr=1821716
http://www.ams.org/mathscinet-getitem?mr=1872069
http://www.ams.org/mathscinet-getitem?mr=1796297
http://www.ams.org/mathscinet-getitem?mr=0092301
http://www.ams.org/mathscinet-getitem?mr=1127423
http://www.ams.org/mathscinet-getitem?mr=1731494
http://www.ams.org/mathscinet-getitem?mr=2293378
http://www.ams.org/mathscinet-getitem?mr=2147534
http://dx.doi.org/10.1214/13-STS441SUPP
http://dx.doi.org/10.1214/13-STS441SUPP
http://www.lancs.ac.uk/staff/taylorb1/statsciappendix.pdf


562 DIGGLE, MORAGA, ROWLINGSON AND TAYLOR

DONNELLY, C. A., WOODROFFE, R., COX, D. R.,
BOURNE, F. J., CHEESMAN, C. L., CLIFTON-HADLEY, R. S.,
WEI, G., GETTINBY, G., GILKS, P., JENKINS, H., JOHN-
STON, W. T., LE FEVRE, A. M., MCINERY, J. P. and
MORRISON, W. I. (2006). Positive and negative effects of
widespread badger culling on tuberculosis in cattle. Nature 485
843–846.

FINLEY, A. O., SANG, H., BANERJEE, S. and GELFAND, A. E.
(2009). Improving the performance of predictive process mod-
eling for large datasets. Comput. Statist. Data Anal. 53 2873–
2884. MR2667597

FRIGO, M. and JOHNSON, S. G. (2011). FFTW fastest Fourier
transform in the west. Available at http://www.fftw.org/.

GAMERMAN, D. (2010). Dynamic spatial models including spatial
time series. In Handbook of Spatial Statistics (A. E. Gelfand,
P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 437–448. CRC
Press, Boca Raton, FL. MR2730959

GAMERMAN, D. and LOPES, H. F. (2006). Markov Chain Monte
Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed.
Chapman & Hall/CRC, Boca Raton, FL. MR2260716

GELFAND, A. E. (2010). Misaligned spatial data: The change
of support problem. In Handbook of Spatial Statistics
(A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.)
517–539. CRC Press, Boca Raton, FL. MR2730964

GELFAND, A. E. (2012). Hierarchical modelling for spatial data
problems. Spatial Statistics 1 30–39.

GELFAND, A. E., DIGGLE, P. J., FUENTES, M. and GUTTORP, P.,
eds. (2010). Handbook of Spatial Statistics. CRC Press, Boca
Raton, FL. MR2761512

GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. IEEE
Trans. Pattern. Anal. Mach. Intell. 6 721–741.

GERRARD, D. J. (1969). Competition Quotient: A New Measure
of the Competition Affecting Individual Forest Trees. Research
Bulletin 20. Agricultural Experiment Station, Michigan State
Univ., East Lansing, MI.

GEYER, C. (1999). Likelihood inference for spatial point pro-
cesses: Likelihood and computation. In Stochastic Geometry
(Toulouse, 1996), (O. E. Barndorff-Nielsen, W. S. Kendall and
M. N. M. van Lieshout, eds.). Monogr. Statist. Appl. Probab. 80
79–140. Chapman & Hall/CRC, Boca Raton, FL. MR1673118

GILKS, W., RICHARDSON, S. and SPIEGELHALTER, D. (1995).
Markov Chain Monte Carlo in Practice. Chapman & Hall, Lon-
don.

GIROLAMI, M. and CALDERHEAD, B. (2011). Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. J. R. Stat.
Soc. Ser. B Stat. Methodol. 73 123–214. MR2814492

GNEITING, T. (2002). Nonseparable, stationary covariance func-
tions for space–time data. J. Amer. Statist. Assoc. 97 590–600.
MR1941475

GNEITING, T. and GUTTORP, P. (2010a). Continuous parame-
ter stochastic process theory. In Handbook of Spatial Statistics
(A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.)
17–28. CRC Press, Boca Raton, FL. MR2730952

GNEITING, T. and GUTTORP, P. (2010b). Continuous parameter
spatio-temporal processes. In Handbook of Spatial Statistics
(A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.)
427–436. CRC Press, Boca Raton, FL. MR2730958

GOTWAY, C. A. and YOUNG, L. J. (2002). Combining in-
compatible spatial data. J. Amer. Statist. Assoc. 97 632–648.
MR1951636

GREENLAND, S. and MORGENSTERN, H. (1990). Ecological bias,
confounding and effect modification. International Journal of
Epidemiology 18 269–274.

HARAN, M. and TIERNEY, L. (2012). On automating Markov
chain Monte Carlo for a class of spatial models. Available at
http://arxiv.org/abs/1205.0499.

HASTINGS, W. K. (1970). Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57 97–109.

JOHNSON, M. A., SMITH, H., JOSEPH, P., GILMAN, R. H.,
BAUTISTA, C. T., CAMPOS, K. J., CESPEDES, M.,
KLATSKY, P., VIDAL, C., TERRY, H., CALDERON, M. M.,
CORAL, C., CABRERA, L., PARMAR, P. S. and VINETZ, J. M.
(2004). Environmental exposure and leptospirosis, Peru.
Emerging Infectious Diseases 10 1016–1022.

KELSALL, J. and WAKEFIELD, J. (2002). Modeling spatial varia-
tion in disease risk: A geostatistical approach. J. Amer. Statist.
Assoc. 97 692–701. MR1941405

KO, A. I., REIS, M. G., DOURADO, C. M. R., JOHNSON, W. D.
JR. and RILEY, L. W. (1999). Urban epidemic of severe
leptospirosis in Brazil. Salvador Leptospirosis Study Group.
Lancet 354 820–825.

LEVETT, P. N. (2001). Leptospirosis. Clininical Microbiology Re-
views 14 296–326.

LI, Y., BROWN, P. E., GESINK, D. C. and RUE, H. (2012). Log
Gaussian Cox processes and spatially aggregated disease inci-
dence data. Stat. Methods Med. Res. 21 479–507.

LIANG, K. Y. and ZEGER, S. L. (1986). Longitudinal data anal-
ysis using generalized linear models. Biometrika 73 13–22.
MR0836430

LINDGREN, F., RUE, H. and LINDSTRÖM, J. (2011). An explicit
link between Gaussian fields and Gaussian Markov random
fields: The stochastic partial differential equation approach. J. R.
Stat. Soc. Ser. B Stat. Methodol. 73 423–498. MR2853727

LÓPEZ-ABENTE, G., RAMIS, R., POLLÁN, M., ARAGONÉS, N.,
PÉREZ-GÓMEZ, B., GÓMEZ-BARROSO, D., CAR-
RASCO, J. M., LOPE, V., GARCÍA-PÉREZ, J., BOLDO, E.
and GARCÍA-MENDIZÁBAL, M. J. (2006). ATLAS municipal
de mortalidad por cáncer en España, 1989–1998. Instituto de
Salud Carlos III, Madrid.

MA, C. (2003). Families of spatio-temporal stationary covariance
models. J. Statist. Plann. Inference 116 489–501. MR2000096

MA, C. (2008). Recent developments on the construction of spatio-
temporal covariance models. Stoch. Environ. Res. Risk Assess.
22 39–47. MR2418410

MARK, A. L. and SHEPHERD, D. H. (2004). NHS Direct: Manag-
ing demand for primary care? International Journal of Health
Planning and Management 19 79–91.

MATÉRN, B. (1960). Spatial Variation. Meddelanden fran Statens
Skogsforskningsinstitut, Stockholm. Band 49, number 5.
MR0169346

MCBRIDE, A. J., ATHANAZIO, D. A., REIS, M. G. and KO, A. I.
(2005). Leptospirosis. Current Opinions in Infectious Diseases
18 376–386.

METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N.,
TELLER, A. H. and TELLER, E. (1953). Equation of state cal-
culations by fast computing machines. The Journal of Chemical
Physics 21 1087–1092.

MØLLER, J., SYVERSVEEN, A. R. and WAAGEPETERSEN, R. P.
(1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451–
482. MR1650019

http://www.ams.org/mathscinet-getitem?mr=2667597
http://www.fftw.org/
http://www.ams.org/mathscinet-getitem?mr=2730959
http://www.ams.org/mathscinet-getitem?mr=2260716
http://www.ams.org/mathscinet-getitem?mr=2730964
http://www.ams.org/mathscinet-getitem?mr=2761512
http://www.ams.org/mathscinet-getitem?mr=1673118
http://www.ams.org/mathscinet-getitem?mr=2814492
http://www.ams.org/mathscinet-getitem?mr=1941475
http://www.ams.org/mathscinet-getitem?mr=2730952
http://www.ams.org/mathscinet-getitem?mr=2730958
http://www.ams.org/mathscinet-getitem?mr=1951636
http://arxiv.org/abs/1205.0499
http://www.ams.org/mathscinet-getitem?mr=1941405
http://www.ams.org/mathscinet-getitem?mr=0836430
http://www.ams.org/mathscinet-getitem?mr=2853727
http://www.ams.org/mathscinet-getitem?mr=2000096
http://www.ams.org/mathscinet-getitem?mr=2418410
http://www.ams.org/mathscinet-getitem?mr=0169346
http://www.ams.org/mathscinet-getitem?mr=1650019


SPATIAL AND SPATIO-TEMPORAL LOG-GAUSSIAN COX PROCESSES 563

MUGGLIN, A. S., CARLIN, B. P. and GELFAND, A. E. (2000).
Fully model-based approaches for spatially misaligned data.
J. Amer. Statist. Assoc. 95 877–887.

PIANTADOSI, S., BYAR, D. P. and GREEN, S. B. (1988). The eco-
logical fallacy. Am. J. Epidemiol. 127 893–904.

R CORE TEAM. (2013). R: A Language and Environment for Sta-
tistical Computing. Vienna, Austria.

RIPLEY, B. D. (1976). The second-order analysis of stationary
point processes. J. Appl. Probab. 13 255–266. MR0402918

RIPLEY, B. D. (1977). Modelling spatial patterns. J. R. Stat. Soc.
Ser. B Stat. Methodol. 39 172–212. MR0488279

ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Optimal scal-
ing for various Metropolis–Hastings algorithms. Statist. Sci. 16
351–367. MR1888450

ROBERTS, G. O. and ROSENTHAL, J. S. (2007). Coupling and
ergodicity of adaptive Markov chain Monte Carlo algorithms.
J. Appl. Probab. 44 458–475. MR2340211

ROBERTS, G. O. and TWEEDIE, R. L. (1996). Exponential con-
vergence of Langevin distributions and their discrete approxi-
mations. Bernoulli 2 341–363. MR1440273

RODRIGUES, A. and DIGGLE, P. J. (2010). A class of convolution-
based models for spatio-temporal processes with non-separable
covariance structure. Scand. J. Stat. 37 553–567. MR2779636

RUE, H. and HELD, L. (2005). Gaussian Markov Random Fields:
Theory and Applications. Monographs on Statistics and Ap-
plied Probability 104. Chapman & Hall/CRC, Boca Raton, FL.
MR2130347

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate
Bayesian inference for latent Gaussian models by using inte-
grated nested Laplace approximations. J. R. Stat. Soc. Ser. B
Stat. Methodol. 71 319–392. MR2649602

SILVERMAN, B. W. (1986). Density Estimation for Statistics and
Data Analysis. Chapman & Hall, London. MR0848134

SPIEGELHALTER, D. J., THOMAS, A. and BEST, N. G. (1999).
WinBUGS Version 1.2 User Manual.

TAYLOR, B. M. and DIGGLE, P. J. (2013a). INLA or MCMC?
A tutorial and comparative evaluation for spatial prediction in
log-Gaussian Cox processes. J. Stat. Comput. Simul. To appear.
Preprint available at http://arxiv.org/abs/1202.1738.

TAYLOR, B. M. and DIGGLE, P. J. (2013b). Corrigendum: Spa-
tiotemporal prediction for log-Gaussian Cox processes. J. R.
Stat. Soc. Ser. B Stat. Methodol. 75 601–602. MR3065481

TAYLOR, B. M., DAVIES, T. M., ROWLINGSON, B. S. and DIG-
GLE, P. J. (2013). lgcp: Inference with spatial and spatio-
temporal log-Gaussian Cox processes in R. Journal of Statis-
tical Software 52 Issue 4.

WALL, M. M. (2004). A close look at the spatial structure implied
by the CAR and SAR models. J. Statist. Plann. Inference 121
311–324. MR2038824

WOOD, A. T. A. and CHAN, G. (1994). Simulation of stationary
Gaussian processes in [0,1]d . J. Comput. Graph. Statist. 3 409–
432. MR1323050

WOODROFFE, R., DONNELLY, C. A., JOHNSTON, W. T.,
BOURNE, F. J., CHEESMAN, C. L., CLIFTON-HADLEY, R. S.,
COX, D. R., GETTINBY, G., HEWINSON, R. G.,
LE FEVRE, A. M., MCINERY, J. P. and MORRISON, W. I.
(2005). Spatial association of Mycobacterium bovis infection in
cattle and badgers Meles meles. Journal of Applied Ecology 42
852–862.

ZHANG, H. (2004). Inconsistent estimation and asymptotically
equal interpolations in model-based geostatistics. J. Amer.
Statist. Assoc. 99 250–261. MR2054303

http://www.ams.org/mathscinet-getitem?mr=0402918
http://www.ams.org/mathscinet-getitem?mr=0488279
http://www.ams.org/mathscinet-getitem?mr=1888450
http://www.ams.org/mathscinet-getitem?mr=2340211
http://www.ams.org/mathscinet-getitem?mr=1440273
http://www.ams.org/mathscinet-getitem?mr=2779636
http://www.ams.org/mathscinet-getitem?mr=2130347
http://www.ams.org/mathscinet-getitem?mr=2649602
http://www.ams.org/mathscinet-getitem?mr=0848134
http://arxiv.org/abs/1202.1738
http://www.ams.org/mathscinet-getitem?mr=3065481
http://www.ams.org/mathscinet-getitem?mr=2038824
http://www.ams.org/mathscinet-getitem?mr=1323050
http://www.ams.org/mathscinet-getitem?mr=2054303

	Introduction
	The Log-Gaussian Cox Process
	Inference for Log-Gaussian Cox Processes
	Parameter Estimation
	Moment-based estimation
	Maximum likelihood estimation
	Bayesian estimation

	Prediction

	Computation
	The Computational Grid
	Implementing Bayesian Inference, MCMC or INLA?
	Markov Chain Monte Carlo inference for log-Gaussian Cox processes


	Applications
	Smoothing a Spatial Point Pattern
	Spatial Segregation: Genotypic Diversity of Bovine Tuberculosis in Cornwall, UK
	Disease Atlases

	Spatio-Temporal Log-Gaussian Cox Processes
	Models
	Spatio-Temporal Prediction: Real-Time Monitoring of Gastrointestinal Disease

	Data Synthesis: Integrated Analysis of Exposure and Health Outcome Data at Multiple Spatial Scales
	Discussion
	Acknowledgements
	Supplementary Material
	References

