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THE MORPHING OF FLUID QUEUES INTO

MARKOV-MODULATED BROWNIAN MOTION

By Guy Latouche and Giang T. Nguyen∗

Ramaswami showed recently that standard Brownian motion
arises as the limit of a family of Markov-modulated linear fluid pro-
cesses. We pursue this analysis with a fluid approximation for Markov-
modulated Brownian motion. We follow a Markov-renewal approach
and we prove that the stationary distribution of a Markov-modulated
Brownian motion reflected at zero is the limit from the well-analyzed
stationary distribution of approximating linear fluid processes. Thus,
we provide a new approach for obtaining the stationary distribution
of a reflected MMBM without time-reversal or solving partial differ-
ential equations. Our results open the way to the analysis of more
complex Markov-modulated processes.

Key matrices in the limiting stationary distribution are shown to
be solutions of a matrix-quadratic equation, and we describe how this
equation can be efficiently solved.

1. Introduction. Our purpose is to construct and analyse a family of
fluid queues converging to Markov-modulated Brownian motion (MMBM)
with the intention of adapting, to the analysis of MMBM, tools and methods
which have been developed in the context of fluid queues.

Fluid queues are two-dimensional processes {X(t), ϕ(t) : t ≥ 0}, where
{ϕ(t) : t ≥ 0} is a continous-time Markov chain on a finite state space M,

X(t) = X(0) +

∫ t

0
cϕ(t) dt,

and ci for i ∈ M are arbitrary real numbers. These are also known as
Markov-modulated linear fluid processes, with X referred to as the fluid level
and ϕ as the phase: during intervals of time where the phase ϕ remains in
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some state i ∈ M, the fluid level varies linearly at the rate ci. The associated
process reflected at zero is denoted by {X̂(t), ϕ(t) : t ≥ 0}, where

X̂(t) = X(t)− inf
0≤v≤t

X(v),

assuming that X̂(0) = 0. Also referred to as first-order fluid processes, these
stochastic models are useful when the relevant rates of change can be well-
described by their first moments.

Markov-modulated Brownian motion (MMBM), or the family of second-
order fluid processes, takes into account first and second moments of the
rates of change. In particular, the fluid level Y (t) of a Markov-modulated
Brownian motion {Y (t), κ(t) : t ≥ 0} is a Brownian motion with drift µi

and variance σ2
i during time intervals where κ(t) = i; one sometimes writes

that

Y (t) = Y (0) +

∫ t

0
cκ(t) dt+

∫ t

0
σκ(t) dW (t)

where {W (t)} is a standard Brownian motion.
Three papers appeared in close succession on the stationary distribution

of MMBM reflected at zero: Rogers [30], Asmussen [5], and Karandikar and
Kulkarni [23]. The focus in the third paper is on solving partial differential
equations, and it is not of further concern to us in the present paper. In
[5, 30], on the other hand, the authors obtain the stationary distribution in
a form which is suitable for calculations with linear algebraic procedures.
These results crucially depend on the technique of reversing time, a method
already used in Loynes [26] whereby the stationary conditional distribution
of the level, given the phase, is obtained from the distribution of the maxi-
mum of a random walk with negative drift. More recent work for obtaining
the stationary distribution of Markov-modulated Lévy processes with re-
flecting boundaries, as in Asmussen and Kella [6], Ivanovs [22], D’Auria
et al. [16], and D’Auria and Kella [17], also uses the reverse-time approach.

For fluid processes without a Brownian component, another line of in-
vestigation was open in Ramaswami [28], based on renewal-type arguments
similar to the ones used in the analysis of quasi-birth-and-death processes
(Neuts [27, Chapter 3], Latouche and Ramaswami [25, Chapter 6]). This
eventually led, in addition to interesting algorithmic procedures, to theoret-
ical developments as in Ahn and Ramaswami [1] for fluid processes in finite
time, da Silva Soares and Latouche [15] for systems with interaction between
phase and level, and Bean and O’Reilly [7] where the phase takes value in
a non-denumerable space, to cite but three examples. In this approach, the
flow of time is not reversed and this creates a significant difference in the
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methods of analysis, in particular, one directly determines the joint distri-
bution of the level and the phase.

Our intention is to establish a link between the results for fluid queues
and those for MMBM. In Section 2, we extend the argument from Ra-
maswami [29] and define a parameterised family of linear fluid processes that
converge weakly, as the parameter tends to infinity, to a Markov-modulated
Brownian motion. Ahn and Ramaswami [2] are independently using matrix-
analytic methods to analyze Markov-modulated Brownian motions, with
different approaches to ours. We determine in Section 3 the limiting struc-
ture of key matrices and quadratic matrix equations, and we establish the
connection between the stationary distribution so obtained, and the one
which follows from the time-reversed approach. We present in Section 4 a
computational procedure for solving the quadratic equation efficiently.

2. Markov-modulated Brownian motion. We show here that a fam-
ily of linear fluid processes converges weakly to a Markov-modulated Brow-
nian motion {Y (t), κ(t) : t ≥ 0}, where the phase process κ is a Markov
chain with state space M = {1, . . . ,m}, and Y is a Brownian motion with
drift µi and variance σ2

i whenever κ(t) = i ∈ M. We denote by D the drift
matrix diag(µ1, . . . , µm), by V the variance matrix diag(σ2

1 , . . . , σ
2
m), and by

Q the generator of κ, and we assume that Q is irreducible.

Assumption 2.1. At time 0, the level Y (0) is equal to 0, and the initial
phase κ(0) has the stationary distribution α of Q (αQ = 0 and α1 = 1).

Formally, for t ≥ 0 the process Y (t) can be defined recursively as

Y (t) = Y (T ) +
∑

i∈M

1{κ(T )=i}(Yi(t)− Yi(T )),(1)

where Y (0) = 0, the random variable T is the last jump epoch of κ before t
(T = 0 if there has yet to be a jump), the process Yi is a Brownian motion
with mean µi and variance σ2

i , and 1{·} denotes the indicator function. The
processes Yi for all i ∈ M and the process κ are assumed to be mutually
independent.

We construct the family of fluid processes {Lλ(t), βλ(t), ϕλ(t) : t ≥ 0} as
follows: the phase process is a two-dimensional Markov chain (βλ(t), ϕλ(t))
with state space S = {(k, i) : k ∈ {1, 2} and i ∈ M} and generator

Tλ =

[
Q− λI λI

λI Q− λI

]
,
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where the entries of Tλ follow the lexicographic ordering of {1, 2}×M, and I
denotes an appropriately-sized identity matrix. Whenever ambiguity might
arise, we write In to denote the n×n identity matrix. The fluid rate matrix
Cλ is given by

Cλ =

[
D +

√
λΘ

D −
√
λΘ

]
, where Θ =

√
V .

Assumption 2.2. At time 0, the level Lλ(0) is equal to 0, and the initial
phases βλ(0) and ϕλ(0) have their respective stationary distributions γ =
(1/2, 1/2) and α, their joint distribution is p = γ ⊗α.

Intuitively speaking, we duplicate the state space M in the Markov-
modulated Brownian motion {Y (t), κ(t)}, and the auxiliary process βλ(t)
is there to keep track of which copy is in use. Note that for λ sufficiently
large, the phases in the copy with βλ(t) = 1 have all positive rates while
the phases in the other copy have all negative rates. With this construction,
we show that the conditional moment generating function of {Lλ(t), ϕλ(t)}
converges to that of {Y (t), κ(t)}.

Denote by ∆Y (s) the m×m Laplace matrix exponent of {Y (t), κ(t)}, by
∆̃λ(s) the 2m×2m Laplace matrix exponent of {Lλ(t), βλ(t), ϕλ(t)}, and by
∆λ(s) the m×m Laplace matrix exponent of {Lλ(t), ϕλ(t)}. These matrices
are such that

[e∆Y (s)t]ij = E[esY (t)
1{κ(t)=j}|Y (0)= 0, κ(0)= i],

[e∆̃λ(s)t](k,i)(k′,j) = E[esLλ(t)1{βλ(t)=k′,ϕλ(t)=j}|Lλ(0)= 0, βλ(0)= k, ϕλ(0)= i],

and

[e∆λ(s)t]ij = E[esLλ(t)1{ϕλ(t)=j}|Lλ(0)= 0, ϕλ(0)= i].(2)

By Asmussen and Kella [6], the Laplace matrix exponent of a Markov-
modulated Lévy process {Z(t), ξ(t)} with jumps is given by

∆Z(s) = diag(φ1(s), . . . , φm(s)) +Q ◦R(s),

where φi(s) is the Laplace exponent of an unmodulated Lévy process with
parameters defined for phase i ∈ {1, . . . ,m},Q is the phase-transition matrix
of ξ(t), R is the matrix with components [R(s)]ij = E[esWij ], which are the
Laplace transforms of the jumps Wij for Z(t) when ξ(t) moves from i to j,
and ◦ indicates the Hadamard product.
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As the Laplace exponent of an unmodulated Brownian motion with drift
µ and variance σ2 is given by µs+ σ2s2/2, one can verify that

∆Y (s) = sD + (s2/2)V +Q,

∆̃λ(s) = sCλ + Tλ

= I ⊗M + s
√
λJ ⊗Θ+ λG⊗ I,

where

M = sD +Q, J =

[
1

−1

]
and G =

[
−1 1
1 −1

]
,

and

(3) e∆λ(s)t = (γ ⊗ I)e∆̃λ(s)t(1⊗ I),

where 1 is an appropriately-sized column vector of ones.
The next lemma gives a technical property of the matrix exponential, it

is used in the proof of Theorem 2.4.

Lemma 2.3. Let S be the block-partitioned matrix

S =

[
S11 S12

S21 S22

]

where S11 and S22 are matrices of order m1 and m2, respectively. Denote by
H(t) the north-west quadrant of order m1 of eSt:

H(t) =
[
Im1×m1

0
]
eSt

[
Im1×m1

0

]
.

The matrix H(t) is the solution of

(4) H(t) = eS11t +

∫ t

0

∫ t

v
eS11(t−u)S12e

S22(u−v)S21H(v) du dv.

Proof. We decompose S as the sum S = SA + SE, with

SA =

[
S11 S12

0 S22

]
and SE =

[
0 0
S21 0

]
=

[
0
I

]
S21

[
I 0

]
.

By Higham [21, Equations (10:13) and (10:40)], we obtain

eSt = eSAt +

∫ t

0
eSA(t−v)SEe

S(v) dv.



THE MORPHING OF FLUID QUEUES INTO MMBM 67

and

eSAt =

[
eS11t

∫ t
0 e

S11(t−u)S12e
S22u du

0 eS22t

]

Thus,

H(t) =
[
I 0

]
eSAt

[
I
0

]
+

∫ t

0

[
I 0

]
eSA(t−v)SEe

S(v)

[
I
0

]
dv

= eS11t +

∫ t

0

[
I 0

]
eSA(t−v)

[
0
I

]
S21

[
I 0

]
eS(v)

[
I
0

]
dv

= eS11t +

∫ t

0

∫ t−v

0
eS11(t−v−u)S12e

S22uS21H(v) du dv

which proves (4).

Theorem 2.4. The conditional moment generating function of {Lλ(t),
ϕλ(t)} converges to that of {Y (t), κ(t)}, that is,

lim
λ→∞

(γ ⊗ I)e∆̃λ(s)t(1⊗ I) = e∆Y (s)t.(5)

Proof. We proceed in three steps. First, we observe that

∆̃k
λ(s)(1 ⊗ I) = 1⊗Ak + e⊗Bk, for k ≥ 0,(6)

where e = (1,−1)T and
[
Ak

Bk

]
= Υk

[
I
0

]
,(7)

with

Υ =

[
M s

√
λΘ

s
√
λΘ M − 2λI

]
.

The proof of (6) is by induction: that equation trivially holds for k = 0,
with A0 = I and B0 = 0 and, if it also holds for a given value of k, then we
easily verify that ∆̃k+1

λ (s)(1⊗ I) = 1⊗Ak+1 + e⊗Bk+1 with

Ak+1 = MAk + s
√
λΘBk, Bk+1 = s

√
λΘAk + (M − 2λI)Bk,

or
[
Ak+1

Bk+1

]
=

[
M s

√
λΘ

s
√
λΘ M − 2λI

] [
Ak

Bk

]
.

Equation (7) readily follows.
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To simplify the notation, we define Hλ(t) = e∆λ(s)t for the remainder of
the proof. By (3), we have

Hλ(t) =
1

2
(1T ⊗ I)

∞∑

k=0

tk

k!
∆̃k

λ(s)(1 ⊗ I)

=
∑

k≥0

tk

k!
Ak from (6)

=
[
I 0

]
expΥt

[
I
0

]
.

By Lemma 2.3, Hλ(t) is a solution of

Hλ(t) = eMt + s2λ

∫ t

0

{∫ t

v
eM(t−u)Θe(M−2λI)(u−v) du

}
ΘHλ(v) dv.(8)

Integrating by parts the inner integral, we find

λ

∫ t

v
eM(t−u)Θe(M−2λI)(u−v) du

=
[
λeM(t−u)Θe(M−2λI)(u−v)(M − 2λI)−1

]t
v

+ λ

∫ t

v
MeM(t−u)Θe(M−2λI)(u−v)(M − 2λI)−1 du

= Θe(M−2λI)(t−v)(1/λM − 2I)−1 − eM(t−v)Θ(1/λM − 2I)−1

+

∫ t

v
MeM(t−u)Θe(M−2λI)(u−v)(1/λM − 2I)−1 du,

which converges to 1/2eM(t−v)Θ as λ → ∞. From (8), we conclude that

H∞(t) = eMt + (s2/2)

∫ t

0
eM(t−v)V H∞(v) dv,

and therefore

d

dt
H∞(t) = (M + (s2/2)V )H∞(t) = ∆Y (s)H∞(t).

This completes the proof.

The Laplace matrix exponent uniquely characterizes the finite-dimensional
distributions of the process and therefore Theorem 2.4 implies the following
result.

Corollary 2.5. The finite-dimensional distributions of {Lλ(t), ϕλ(t)}
converge to the finite-dimensional distributions of the Markov-modulated
Brownian motion {Y (t), κ(t)}.
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To conclude this section, we prove that the family {Lλ(t), ϕλ(t) : t ≥ 0} is
tight; to that end, we construct as follows a representation of Lλ(t) in terms
of restricted processes, watched only when the phase ϕλ is constant (see
Freedman [19, Section 1.5]). Define {tn : n ≥ 0} as the successive epochs of
change of phase, with t0 = 0, and define K = sup{n : tn < t}. We may write

Lλ(t) = Lλ(tK) +
∑

i∈M

1{ϕλ(tK )=i}(Lλ(t)− Lλ(tK))

=
K−1∑

n=0

∑

i∈M

1{ϕλ(tn)=i}(Lλ(tn+1)− Lλ(tn))

(9)
+

∑

i∈M

1{ϕλ(tK)=i}(Lλ(t)− Lλ(tK))

=
∑

i∈M

Zi
λ(t),

where

Zi
λ(t) =

K−1∑

n=0

1{ϕλ(tn)=i}(Lλ(tn+1)− Lλ(tn)) + 1{ϕλ(tK )=i}(Lλ(t)− Lλ(tK)).

For each i, the process Zi
λ is continuous, it varies like Lλ during the intervals

of time when the phase is i and remains constant at all other time. Next,
we associate a local clock to each phase and define the time spent in phase
i during the interval (0, t) as

(10) τi(t) =
K−1∑

n=0

1{ϕλ(tn)=i}(tn+1 − tn) + 1{ϕλ(tK )=i}(t− tK).

Clearly, τi is continuous and remains constant over intervals when the phase
is different from i. We also define ρi(t) = max{s : τi(s) = t}, thus, ρi is
strictly increasing and continuous from the right. Finally, we define for each
i the restricted process {Li

λ(t), β
i
λ(t)} with

Li
λ(t) = Zi(ρi(t)), βi

λ(t)) = βλ(ρi(t)).

Equation (9) may be written as

(11) Lλ(t) =
∑

i∈M

Li
λ(τi(t)).

Theorem 2.6. The family {Lλ(t), ϕλ(t) : t ≥ 0} is tight.
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Proof. By Billingsley [8, Theorem 7.3] we need to prove that the pro-
cesses are tight at time 0, which is obviously true by Assumption 2.2, and
that

(12) ∀ε, η, ∃ δ∗ > 0, λ∗ s.t. P[ sup
|s−t|≤δ

|Lλ(t)− Lλ(s)| ≥ ε] ≤ η

for all λ > λ∗ and δ < δ∗. By (11),

sup
|s−t|≤δ

|Lλ(t)− Lλ(s)| = sup
|s−t|≤δ

|
∑

i∈M

(Li
λ(τi(t)) − Li

λ(τi(s)))|

≤
∑

i∈M

sup
|s−t|≤δ

|Li
λ(τi(t))− Li

λ(τi(s))|

≤
∑

i∈M

sup
|s−t|≤δ

|Li
λ(t)− Li

λ(s)|,

the last inequality being justified by the fact that |τi(s) − τi(t)| ≤ |s − t|.
Therefore,

P[ sup
|s−t|≤δ

|Lλ(t)− Lλ(s)| ≥ ε] ≤ P[
∑

i∈M

sup
|s−t|≤δ

|Li
λ(t)− Li

λ(s)| ≥ ε]

≤ P[∪i∈M[ sup
|s−t|≤δ

|Li
λ(t)− Li

λ(s)| ≥ ε/m]](13)

≤
∑

i∈M

P[ sup
|s−t|≤δ

|Li
λ(t)− Li

λ(s)| ≥ ε/m].

Now, take a fixed i and reorganize the generator Q so that phase i occupies
the first position:

Q =

[
qii di

qi Qi

]

where Qi is a matrix of order m−1, and di and qi are vectors of appropriate
dimensions. The marginal distribution of {Li

λ(t), β
i
λ(t)} is that of a two-

phases fluid queue with fluid rate matrix Ci
λ given by

Ci
λ =

[
µi +

√
λσi

µi −
√
λσi

]
,

and generator

T i
λ =

[
qii − λ λ

λ qii − λ

]
−

[
di

di

] [
Qi − λI λI

λI Qi − λI

]−1 [
qi

qi

]
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(see [25, Theorem 5.5.3])

=

[
qii − λ λ

λ qii − λ

]
+

[
di

di

] [
x 1− x

1− x x

]

where x = 1 − 1
2(I − 1

2λQi)
−11, as one proves by direct verification. We

eventually obtain that

T i
λ =

[
−λ− νi λ+ νi
λ+ νi −λ− νi

]

with νi =
1
2di(I − 1

2λQi)
−11; νi is the rate at which the process leaves phase

i either with βλ equal to 1 or 2, and returns to phase i with βλ having the
other value.

The proof of [29, Theorem 5] shows that for each i ∈ M the family of
censored processes {Li

λ} is tight on any compact interval of [0,∞). By [33,
Corollary 7], we can extend this result to show that the family of marginal
processes {Li

λ} is tight on [0,∞). This implies that

(14) ∀ε, η, ∃δi(ε, η) > 0, λi(ε, η) s.t. P[ sup
|s−t|≤δ

|Li
λ(t)− Li

λ(s)| ≥ ε] ≤ η

for all λ > λi(ε, η) and δ < δi(ε, η). We conclude that (12) holds by (13)
if δ ≤ δi(ε/m, η/m) and λ > λi(ε/m, η/m) for all i, and the theorem is
proved.

The next theorem follows from Corollary 2.5 and Theorem 2.6.

Theorem 2.7. The processes {Lλ(t), ϕλ(t) : t ≥ 0} converge weakly to
the Markov-modulated Brownian motion {Y (t), κ(t) : t ≥ 0}.

3. Stationary distribution. We consider again the Markov-modulated
Brownian motion {Y (t), κ(t) : t ≥ 0} described in Section 2, but with a re-
flection at level zero. The reflected process is denoted as {Ŷ (t), κ(t) : t ≥ 0},
with

Ŷ (t) = Y (t)− inf
0≤v≤t

Y (v).

Furthermore, we define the reflected fluid process {L̂λ(t), βλ(t), ϕλ(t) : t ≥ 0},
where

L̂λ(t) = Lλ(t)− inf
0≤v≤t

Lλ(v).

For notational convenience, we define ε = 1/
√
λ. With this, the reflected

fluid process is written as {L̂ε(t), βε(t), ϕε(t) : t ≥ 0} and our purpose is to
show that the stationary distribution of {Ŷ (t), κ(t)} is the limit, as ε → 0,
of the stationary distribution of the reflected fluid process {L̂ε(t), ϕε(t)}.
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We emphasize that the processes {L̂λ(t), ϕλ(t)} and {L̂ε(t), ϕε(t)} are the
same. The change in subscripts only reflects the notational change in our
perturbation parameter.

Assumption 3.1. The mean drift αD1 is strictly negative, so that all
reflected processes are positive recurrent.

Assumption 3.2. The variance σ2
i is positive for all i ∈ M. This as-

sumption ensures the existence of Θ−1, which we need later on.

The following result is a direct corollary of Theorem 2.7, by the Skorokhod
mapping theorem.

Corollary 3.3. The processes {L̂ε(t), ϕε(t) : t ≥ 0} weakly converge
as ε → 0 to the reflected Markov-modulated Brownian motion {Ŷ (t), κ(t) :
t ≥ 0}.

We denote the stationary distribution vector of {L̂ε(t), βε(t), ϕε(t)} by
F ε(x) and the associated stationary density vector by πε(x), with compo-
nents

[Fε(x)]ki = lim
t→∞

P[L̂ε(t) ≤ x, βε(t) = k, ϕε(t) = i],

and [πε(x)]ki = d/dx[Fε(x)]ki, for k ∈ {1, 2} and i ∈ M, and we partition
the generator and the fluid rate matrices as

Tε =

[
T++
ε T+−

ε

T−+
ε T−−

ε

]
and Cε =

[
C+
ε 0
0 C−

ε

]
,

where

T++
ε = T−−

ε = Q− (1/ε)2I, C+
ε = D + (1/ε)Θ,

T+−
ε = T−+

ε = (1/ε)2I, C−
ε = D − (1/ε)Θ.

We assume that ε is sufficiently small that the diagonal elements of C+
ε are

all positive, and those of C−
ε are all negative, and we write |C−

ε | for the
matrix of absolute values of the elements of C−

ε .
Let ξ+ε (x) = inf{t < ∞ : Lε(t) > x} and ξ−ε (x) = inf{t < ∞ : Lε(t) < x}

be the first passage times to the level x, respectively from below and from
above, of the unbounded process Lε. A key component of the stationary dis-
tribution of {L̂ε(t), βε(t), ϕε(t)} is the matrix Ψε of first passage probability
from above, that is,

(Ψε)ij = P[ξ−ε (x) < ∞, βε(ξ
−
ε (x)) = 2, ϕε(ξ

−
ε (x)) = j

|Lε(0) = x, βε(0) = 1, ϕε(0) = i]
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for i and j in M, and any level x. Similarly, Ψ∗
ε is the matrix of first passage

probabilities from below, from (x, 2, i) to (x, 1, j), for i and j in M.
The stationary distribution is given in the literature under various slightly

different forms; here, we use the one from Govorun et al. [20, Theorem 2.1]:

F ε(0) =
[
0 ζε

]
,(15)

πε(x) = ζεT
−+
ε eKεx

[
(C+

ε )−1 Ψε|C−
ε |−1

]
for x > 0,(16)

where

(17) Kε = (C+
ε )−1T++

ε +Ψε|C−
ε |−1T−+

ε ,

and ζε is the unique solution of

ζε(T
−−
ε + T−+

ε Ψε) = 0,(18)

ζε1+ ζεT
−+
ε (−Kε)

−1{(C+
ε )−11+Ψε|C−

ε |−11} = 1.(19)

Probabilistically, ζε is up to a multiplicative constant the stationary distri-
bution of the process censored at level 0, and eKεx is the matrix of expected
number of crossings of level x in the various phases (1, i), starting from
level 0, before the first return to level 0.

In view of (16), we need to analyze Ψε, Kε and ζε as ε → 0, and it is
obvious from (17) and (18, 19) that we should focus on the matrix Ψε first.
The next lemma is the key to our analysis. One might expect (20, 21) to have
a simple proof but the one we have is lengthy and tedious. We place it in
Appendix A to preserve the flow of the paper. Lemma 3.6 and Theorem 3.7
easily follow.

Lemma 3.4. For ε ≥ 0,

Ψε = I + εΨ1 +O(ε2),(20)

Ψ∗
ε = I + εΨ∗

1 +O(ε2),(21)

where Θ−1Ψ1 and −Θ−1Ψ∗
1 are both solutions to

X2 + 2V −1DX + 2V −1Q = 0,(22)

and are irreducible. Furthermore, the roots θ1, θ2, . . . , θ2m of the polynomial

γ(z) = det(z2I + 2zV −1D + 2V −1Q)

associated to (22), numbered in increasing order of their real parts, satisfy
the inequalities

Re(θ1) ≤ · · · ≤ Re(θm−1) < θm = 0 < Re(θm+1) ≤ · · · ≤ Re(θ2m).(23)
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Finally, Θ−1Ψ1 has one eigenvalue equal to zero and m − 1 eigenvalues
with strictly negative real parts, and it is the unique such solution; −Θ−1Ψ∗

1

has m eigenvalues with strictly positive real parts, and is the unique such
solution.

Remark 3.5. Let τ±x = inf{t < ∞ : ±Y (t) > x} be the first passage
times to the corresponding levels x and −x of the unbounded process Y (t).
Under Assumption 3.2 that σi > 0 for all i ∈ M, it is easy to confirm that
Θ−1Ψ1 and Θ−1Ψ∗

1 are the same as, respectively, the generators Λ− and Λ+

of the time-changed processes κ(τ−x ) and κ(τ+x ) in Ivanovs [22], and Θ−1Ψ∗
1

is the same as the matrix U(γ) for γ = 0 in Breuer [14].

By Lemma 3.4, the matrices Ψ1 and Ψ∗
1 are uniquely identified through (22).

We now turn to the matrix Kε, and to the matrix K∗
ε defined as

(24) K∗
ε = |C−

ε |−1T−−
ε +Ψ∗

ε(C
+
ε )−1T+−

ε .

(this is the same definition as in (61)).

Lemma 3.6. For ε ≥ 0,

Kε = K0 +O(ε),(25)

K∗
ε = K∗

0 +O(ε),(26)

where K0 = Ψ1Θ
−1 + 2V −1D and K∗

0 = Ψ∗
1Θ

−1 − 2V −1D. The matrices
−K0 and K∗

0 are solutions of the equation

X2 + 2XV −1D + 2Θ−1QΘ−1 = 0,(27)

and are irreducible. Furthermore, K0 has m eigenvalues with strictly negative
real parts, and it is the unique such solution; K∗

0 has one eigenvalue equal
to zero and m − 1 eigenvalues with strictly negative real parts, and is the
unique such solution.

Proof. We write (17) as

εKε = −(Θ + εD)−1(I − ε2Q) + Ψε(Θ − εD)−1

= −(Θ−1 − εV −1D +O(ε2))(I − ε2Q)

+ (I + εΨ1 +O(ε2))(Θ−1 + εV −1D +O(ε2))

by (45), (46) and (20),

= ε(2V −1D +Ψ1Θ
−1) +O(ε2),
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which proves (25); equation (26) follows in a similar manner. It is easy to
verify thatK0 and−K∗

0 both satisfy (27), of which the associated polynomial
is

Ξ(z) = z2I + 2zV −1D + 2Θ−1QΘ−1

= Θ−1Γ(z)Θ−1 with Γ(z) defined in Proposition A.4

= (zI +K0)Θ(zI −Θ−1Ψ1)Θ
−1

by (57), after some simple manipulations. This, together with Lemma 3.4,
shows that the eigenvalues of −K0 are the roots θm+1, . . . , θ2m of γ(z) with
strictly positive real parts. Finally, using (58) we write

Ξ(z) = (zI −K∗
0 )Θ(zI +Θ−1Ψ∗

1)Θ
−1,

and conclude that the eigenvalues of K∗
0 are the roots θ1 to θm. Finally,

as Ψ1 and Ψ∗
1 are irreducible, and Θ, V , and D are diagonal matrices, we

conclude that K0 and K∗
0 are irreducible, and this completes the proof.

The next theorem states that the limit, as λ → ∞, of the stationary
distributions of the approximating fluid processes is indeed the stationary
distribution of the limiting process {Ŷ (t), κ(t)}. We prove this result by
showing that the limiting distribution (28) coincides with the stationary
distribution of {Ŷ (t), κ(t)} as obtained by Asmussen [5, Theorem 2.1 and
Corollary 4.1].

Theorem 3.7. The limiting distribution of {L̂λ(t), ϕ̂λ(t)} converges, as
λ goes to infinity, to the stationary distribution of {Ŷ (t), κ(t)}, and is given
by

lim
ε→0

πε(x)(1⊗ I) = 2ζ1e
K0xΘ−1,(28)

lim
ε→0

F ε(0)(1⊗ I) = 0,(29)

where

ζ1Ψ1 = 0,(30)

2ζ1(−K0)
−1Θ−11 = 1.(31)

Proof. The solution of (18) is of the form ζε = ζ0 + εζ1 + o(ε) ([24,
Theorem 5.4]) and (19) becomes

(32)

{ζ0 + εζ1 + o(ε)}1
+ {ζ0 + εζ1 + o(ε)}(1/ε)(−Kε)

−1{(εD +Θ)−1 +Ψε(Θ− εD)−1}1 = 1.
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We equate the coefficients of 1/ε on both sides of (32), use (20, 25) and find

−2ζ0K
−1
0 Θ−11 = 0.

Equation (15) implies that ζε ≥ 0 and, by continuity, ζ0 ≥ 0. Furthermore,
Θ−1 is a diagonal matrix with strictly positive diagonal. Finally, K0 has
non-negative off-diagonal elements and is irreducible, so that eK0u is strictly
positive for all u > 0, by Seneta [31, Theorem 2.7]. Moreover, the eigenvalues
of K0 have strictly negative real part by Lemma 3.6, so that

∫∞
0 eK0u du

converges to −K−1
0 > 0. This implies that ζ0 = 0, which proves (29). Using

ζ0 = 0, and equating coefficients of ε on both sides of (18) gives (30), while
equating the coefficients of ε0 on both sides of (32) leads to (31).

Gathering everything together, we obtain from (16)

πε(x) = (1/ε){εζ1 + o(ε)}eKεx
[
(εD +Θ)−1 Ψε(Θ− εD)−1

]
,(33)

and (28) follows. Equation (29) is a direct consequence of (15).
To verify that the limiting distribution in Theorem 3.7 is the station-

ary density vector g(x) of the Markov-modulated Brownian motion, we use
Asmussen [5]: by Theorem 2.1 and Corollary 4.1 there,

g(x) = [eΛx(−Λ1)]T∆α,(34)

where α is the stationary distribution vector of Q, ∆α = diag(α), and Λ is
a defective generator matrix satisfying

(1/2)V Λ2 −DΛ+∆1/αQ
T∆α = 0.(35)

Define Z = ∆1/αΛ
T∆α and rewrite (34) as

g(x) = −1T∆αZ∆1/αe
∆αZ∆1/αx∆α = −αZeZx.(36)

The matrix Θ−1ZΘ is similar to Z and so to ΛT, and so its eigenvalues all
have strictly negative real parts. Furthermore, we find by (35) that

(1/2)Z2V − ZD +Q = 0

and that −Θ−1ZΘ is a solution of (27). Therefore,

K0 = Θ−1ZΘ.(37)

Substituting (37) into (28) gives limε→0 πε(1 ⊗ I) = 2ζ1Θ
−1eZx. Finally,

it is straightforward to verify that ζ1 = −α(Θ−1D + (1/2)ΘΨ1Θ
−1), and

consequently

lim
ε→0

πε(1⊗ I) = g(x).(38)
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Remark 3.8. An alternative way to show that the stationary distribu-
tion of the approximating fluid process {L̂λ(t), ϕ̂λ(t)} converges, as λ → ∞,
to the stationary distribution of the limiting Markov-modulated Brownian
motion {Ŷ (t), κ(t)} is via the maximum representation of the relevant pro-
cesses. Asmussen [5] derives the stationary distribution, both for fluid queues
and for the MMBM in this manner, linking these to the distribution of the
maximum of the time-reversed process. Following the arguments in Eni-
keeva et al. [18] and in Stenflo [32], one might show that there is continuity
of the maximum distributions of the backward processes, as λ → ∞, and
consequently obtain the continuity of stationary distributions.

This would lead to a time reversal-based proof of convergence. As stated
in the introduction, we aim at following the forward-time approach and so
obtain a different representation of the stationary distribution. In addition,
we obtain limiting properties for key matrices, and these results will be
proved useful in future work.

4. Computational procedure. Theorem 3.7 indicates that the matrix
Ψ1 is the central ingredient in evaluating the stationary distribution of the
Markov-modulated Brownian motion {Ŷ (t), ϕ(t)}. We describe here how to
use the splitting property (23) in numerically solving for Ψ1 and Ψ∗

1.
Bini and Gemignani [9] consider quadratic matrix equations C + AX +

BX2 = 0 where the roots of the associated polynomial det(C + zA + z2B)
are split by a circle in C, half being inside the disk and half outside. The
problem in [9] is to find the minimal solution, that is, the solution matrix
with all eigenvalues inside the disk.

In our case, the roots are split between the negative and the positive half-
planes and we need to apply some transformation, such as the one described
in Bini et al. [12] and based on the inverse Möbius mapping [4, Chapter 2.1]

w(z) =
z − 1

z + 1
.(39)

This inverse mapping applies the open unit disk |z| < 1 onto the negative
half-plane C

−
, the unit circle |z| = 1 minus the point z = −1 onto the

imaginary axis C0, the outside |z| > 1 of the closed unit disk onto the positive
half-plane C+, and the imaginary axis C0 onto the unit circle |w| = 1 minus
the point w = 1.

Now, define W (Z) = (Z − I)(Z + I)−1. Instead of solving P (X) = X2 +
2V −1DX + 2V −1Q = 0 for Θ−1Ψ1, we solve H(Z) = 0, where

H(Z) = P (W (Z))(I + Z)2

= P ((Z − I)(Z + I)−1)(I + Z)2
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= (I + 2V −1D + 2V −1Q)Z2 − 2(I − 2V −1Q)Z + I

− 2V −1D + 2V −1Q.

The roots of det(H(z)) are given by ωi = w−1(θi) = (1 + θi)/(1 − θi) for
i = 1, . . . , 2m, where the θis are defined in Lemma 3.4, and they satisfy the
splitting property

0 ≤ |ω1|, . . . , |ωm−1| < ωm = 1 < |ωm+1|, . . . , |ω2m|.(40)

We note that Bini and Gemignani [9] requires |ωi| > 0 for all i, but as seen
in [13, Section 8.3], the weak inequality suffices.

Define Z0 as the solution of H(Z) = 0 such that sp(Z0) ≤ 1. The matrix
W (Z0) = (Z0 − I)(Z0 + I)−1 is a solution of P (X) = 0 with all eigenvalues
in {Re(z) ≤ 0}, and so Θ−1Ψ1 = (Z0 − I)(Z0 + I)−1.

Several iterative algorithms to compute Z0 are discussed in [9]. Some
have superlinear convergence, such as Cyclic reduction [10], Logarithmic
reduction [25, Chapter 8], subspace iteration [3] or Graeffe iteration [10].
This means that the approximation error at the ith iteration is O(σ2i) with
σ = 1/|ωm+1| < 1. These algorithms are globally convergent but they are
not self-correcting. Since the coefficient matrices in P (X) are of mixed signs,
one might prefer the algorithm developed in [9]: it is self-correcting and the

approximation error is O(σi2k) for arbitrary k, which makes it arbitrarily
fast.

As for Ψ∗
1, if we define Z1 as the root of H(Z) such that all of its eigen-

values are outside the closed unit disk, then W (Z1) has all its eigenvalues
in the half-plane C+, and Θ−1Ψ∗

1 = −W (Z1). The algorithms in [9], how-
ever, do not seem to be well adapted to the computation of Z1, and we
suggest to use a different transformation, in order to bring the eigenvalues
of −Θ−1Ψ∗

1 inside the unit disk. This transformation is based on Möbius’
mapping [4, Chapter 2.1]

z(w) =
1 +w

1−w
.(41)

This mapping applies the open unit disk |w| < 1 onto the positive half-plane
C+, the unit circle |w| = 1 minus the point w = 1 onto the imaginary axis
C0 = {z : Re(z) = 0} and the outside |w| > 1 of the closed unit disk onto
the negative half-plane C

−
, finally, it applies the imaginary axis C0 onto the

unit circle |z| = 1 minus the point z = −1.
Now, define Z(W ) = (I +W )(I −W )−1. Instead of solving H(Z) = 0 we

solve Q(W ) = 0 for the matrix solution W1 with eigenvalues inside the unit
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disk, where

Q(W ) = P (Z(W ))(I −W )2,

= (I − 2V −1D + 2V −1Q)W 2 + 2(I − 2V −1Q)W

+ I + 2V −1D + 2V −1Q,

and so Θ−1Ψ∗
1 = −(I +W1)(I −W1)

−1.

APPENDIX A: PROOF OF LEMMA 3.4

The proof goes in four main steps. The matrix Ψε is the stochastic (or sub-
stochastic) solution of the Riccati equation

(C+
ε )

−1T+−
ε + (C+

ε )−1T++
ε Ψε +Ψε|C−

ε |−1T−−
ε +Ψε|C−

ε |−1T−+
ε Ψε = 0

(Rogers [30]). We rewrite that equation as

(1/ε)(εD +Θ)−1 + (1/ε)(εD +Θ)−1(ε2Q− I)Ψε
(42)

+ (1/ε)Ψε|εD −Θ|−1(ε2Q− I) + (1/ε)Ψε|εD −Θ|−1Ψε = 0

Thus, Ψε is a solution of Fε(X) = 0, where

Fε(X) = (εD +Θ)−1 + (εD +Θ)−1(ε2Q− I)X

+X|εD −Θ|−1(ε2Q− I) +X|εD −Θ|−1X.

For ε = 0, we see that F0(I) = 0. It is tempting to invoke the Implicit
Function Theorem and claim that Ψε is an analytic function of ε in a neigh-
borhood of ε = 0. Unfortunately, the operator ∂/∂XFε(X) is singular at
the point (ε = 0,X = I), the Implicit Function Theorem does not apply,
and we follow a longer, more tortuous path.

Proposition A.1. For ε ≥ 0,

Ψε = I +Φε where lim
ε→0

Φε = 0,(43)

Ψ∗
ε = I +Φ∗

ε where lim
ε→0

Φ∗
ε = 0.(44)

Proof. We note that

(εD +Θ)−1 = {I − εΘ−1(−D)}−1Θ−1

= {I − εΘ−1D + ε2(Θ−1D)2 +O(ε3)}Θ−1(45)

= Θ−1 − εV −1D + ε2Θ−1V −1D2 +O(ε3),
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and similarly

|εD −Θ|−1 = Θ−1 + εV −1D + ε2Θ−1V −1D2 +O(ε3),(46)

for ε sufficiently small. Thus, (42) implies that

(1/ε){Θ−1 − εV −1D +O(ε2)}(I + ε2QΨε −Ψε)
(47)

+ (1/ε)Ψε{Θ−1 + εV −1D +O(ε2)}(ε2Q− I +Ψε) = 0,

which can be reorganized as G(ε) +H(ε) = 0, where

G(ε) = (1/ε)(Θ−1 −Θ−1Ψε −ΨεΘ
−1 +ΨεΘ

−1Ψε)(48)

and

H(ε) = (1/ε){ε2Θ−1QΨε + (−εV −1D +O(ε2))(I + ε2QΨε −Ψε)
(49)

+ ε2ΨεΘ
−1Q+Ψε(εV

−1D +O(ε2))(ε2Q− I +Ψε)}.

The matrix H(ε) is bounded and therefore G(ε) too remains bounded as
ε → 0.

Now, we observe that Ψε belongs to the compact set {M : M ≥ 0,
M1 ≤ 1} of (sub)stochastic matrices; therefore, for every sequence {Ψε}ε→0

there exist subsequences that converge. Let Ψ̄ be the limit of one such con-
vergent subsequence, and {εi}i=1,2,... be a sequence such that εi → 0 and
Ψεi → Ψ̄ as i → ∞. Since G(εi) remains bounded as i → ∞, necessarily

lim
i→∞

(Θ−1 −Θ−1Ψεi −ΨεiΘ
−1 +ΨεiΘ

−1Ψεi) = lim
i→∞

(I −Ψεi)Θ
−1(I −Ψεi)

= (I − Ψ̄)Θ−1(I − Ψ̄)

= 0,

and thus Ψ̄ = I. This follows from the facts that Θ−1(I − Ψ̄) is a nilpotent
matrix, that the trace of every nilpotent matrix is zero, and that Ψ̄ is a
(sub)stochastic matrix while Θ−1 is a strictly positive diagonal matrix.

All convergent subsequences having the same limit, the conclusion is that
Ψε converges to I as ε → 0, and (43) follows. The proof of (44) is by
analogous arguments.

Proposition A.2. For ε > 0, the matrices Φε and Φ∗
ε are irreducible

with non-negative off-diagonal elements, strictly negative diagonal elements,
Φε1 ≤ 0 and Φ∗

ε1 ≤ 0. In addition, under Assumption 3.1, Φε1 = 0 and
Φ∗
ε1 < 0.
In short, Φε is an irreducible generator and Φ∗

ε is an irreducible subgen-
erator.
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Proof. As we assume that the fluid queue is irreducible, Ψε is an irre-
ducible (sub)stochastic matrix for all ε ≥ 0. Thus, we conclude from (43)
that Φε is irreducible and that its off-diagonal elements are non-negative.
Furthermore, since Ψε1 ≤ 1, this implies that Φε1 ≤ 0, so that its diag-
onal elements are strictly negative and Φε is a (sub)generator. The same
argument holds for Φ∗

ε.
Under Assumption 3.1, the matrix Ψε is stochastic and the matrix Ψ∗

ε is
strictly substochastic, and the last claim follows.

Proposition A.3. The matrices (1/ε)Φε and (1/ε)Φ∗
ε are bounded. De-

noting by Ψ̄1 and Ψ̄∗
1 the limits of any converging subsequences of (1/ε)Φε

and (1/ε)Φ∗
ε respectively, both Ψ̄1 and −Ψ̄∗

1 are solutions of the equation

(50) (Θ−1Y )2 + 2V −1DΘ−1Y + 2V −1Q = 0,

and are irreducible.

Proof. Substituting (43) into (48, 49) gives us

G(ε) = (1/ε){ΦεΘ
−1Φε}

H(ε) = εΘ−1Q(I +Φε) + [−V −1D +O(ε)](ε2Q+ ε2QΦε − Φε)

+ ε(I +Φε)Θ
−1Q+ (I +Φε)[V

−1D +O(ε)](ε2Q+Φε).

Clearly, limε→0H(ε) = 0 and this implies that limε→0(1/ε){ΦεΘ
−1Φε} = 0

since G(ε) +H(ε) = 0. Divide both sides of that equation by ε and obtain

(51) (1/ε)2ΦεΘ
−1Φε + 2Θ−1Q+R(ε) = 0

where

R(ε) = Θ−1QΦε + [−V −1D +O(ε)](εQ + εQΦε − (1/ε)Φε)
(52)

+ ΦεΘ
−1Q+ (I +Φε)[V

−1D +O(ε)]{εQ + (1/ε)Φε}.

Now, there are three possible cases.

Case 1. (1/ε)Φε → 0 as ε → 0. Then, R(ε) → 0 and taking the limit of
both sides of (51) as ε → 0 leads to 2V −1Q = 0, which is not true.

Case 2. (1/ε)Φε is unbounded in any neighborhood of ε = 0. Then, there
exists a sequence {εk}k=1,2... such that εk → 0 and maxij |Φεk |ij/εk → ∞. In
this case, we may write (1/ε)Φε = uεBε, where uε is a scalar function such
that limk→∞ uεk = ∞ while Bεk remains bounded and does not converge to
zero: since Φε is an irreducible generator, its element of maximum absolute
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value is on the diagonal and we take uε = maxj |Φε|jj/ε, then Bε is an
irreducible generator with at least one diagonal element equal to −1, and
with |Bij | ≤ 1 for all i and j.

Next, for ε in the sequence {εk}, we replace (1/ε)Φε in (51) by uεBε and
divide both sides of the equation by u2ε to obtain

BεΘ
−1Bε + (2/u2ε)Θ

−1Q+ (ε/uε)Θ
−1QBε

+ [−V −1D +O(ε)](ε/u2εQ+ ε2/uεQBε − (1/uε)Bε)(53)

+ ((1/uε)I + εBε)[V
−1D +O(ε)]((ε/uε)Q+Bε) = 0,

This implies that

(54) lim
k→∞

BεkΘ
−1Bεk = 0,

Now, take any converging subsequence of Bε and denote its limit as B.
By construction, the trace of Θ−1Bε is at most equal to minj(−σ−1

j ) < 0,

independently of ε. Thus, the trace of Θ−1B is strictly negative, the matrix
Θ−1B is not nilpotent, and Θ−1BΘ−1B 6= 0, which contradicts (54).

Case 3. (1/ε)Φε is bounded and does not converge to 0. Then, from (52)

R(ε) = (1/ε)2V −1DΦε +R∗(ε)

where R∗(ε) goes to 0 as ε goes to zero. This allows us to rewrite (51) as

(1/ε2)ΦεΘ
−1Φε + 2Θ−1Q+ (1/ε)2V −1DΦε +R∗(ε) = 0

and to conclude that

(55) lim
ε→0

{(1/ε2)ΦεΘ
−1Φε + 2Θ−1Q+ (1/ε)2V −1DΦε +R∗(ε)} = 0.

Since (1/ε)Φε is bounded, there exist subsequences {εk}k=1,2,... such that
εk → 0 and such that (1/εk)Φεk → Ψ̄1. We take in (55) the limit along
such a subsequence and conclude that Ψ̄1 is a solution of (50). The same
approach is followed for Φ∗

ε.
Now, assume that Ψ̄1 is reducible. We may write

Θ−1Ψ̄1 =

[
MA 0
MAB MB

]
,

possibly after a permutation of rows and columns, where MA and MB are
square matrices. As Ψ̄1 is a solution of (50), we are led to conclude that

Q =

[
QA 0
QAB QB

]

which contradicts our assumption that Q is irreducible. Thus, Ψ̄1 is irre-
ducible, and so is Ψ̄∗

1 by the same argument.
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Proposition A.4. Consider the matrix equation

(56) V X2 + 2DX + 2Q = 0

and its associated matrix polynomial Γ(z) = V z2 + 2Dz + 2Q.
Under Assumption 3.1, det Γ(z) has one root equal to zero, m − 1 roots

with strictly negative real parts, and m roots with strictly positive real parts.

Proof. Take {εk}k=1,2,... to be a subsequence such that εk → 0 and
(1/εk)Φεk → Ψ̄1. By Proposition A.3, Θ−1Ψ̄1 is an irreducible generator
and a solution of (56), and we write

Γ(z) = z2V + 2Dz + 2Q− V ((Θ−1Ψ̄1)
2 + 2V −1DΘ−1Ψ̄1 + 2V −1Q)

(57)
= (V z + VΘ−1Ψ̄1 + 2D)(zI −Θ−1Ψ̄1).

We conclude that all eigenvalues of Θ−1Ψ̄1 are roots of det Γ(z). As we
assume that the fluid queue is positive recurrent, Φε1 = 0 for all ε by
Proposition A.2 and so Θ−1Ψ̄11 = 0. Hence, det Γ(z) has at least one root
equal to zero, and at least m− 1 roots with strictly negative real parts.

We take a subsequence {ε∗k}k=1,2,... such that ε∗k → 0 and (1/ε∗k)Φ
∗
ε∗k

→
Ψ̄∗

1, and we assume in the remainder of the proof that ε belongs to such a
sequence. In a similar manner as above, we show that

(58) Γ(z) = (V z − VΘ−1Ψ̄∗
1 + 2D)(zI +Θ−1Ψ̄∗

1)

and all eigenvalues of −Θ−1Ψ̄∗
1 are roots of det Γ(z). Since Ψ̄∗

11 ≤ 0, this
shows that det Γ(z) has at least m roots with strictly positive real part if
Ψ̄∗

11 6= 0. In that case, the proof is complete as the polynomial det Γ(z) has
at most 2m roots. It remains for us to show that Ψ̄∗

11 cannot be equal to
zero under Assumption 3.1.

We rewrite (50) as

(59) YΘ−1Y + 2V −1DY + 2Θ−1Q = 0

and define

A =

[
2V −1D 2Θ−1Q
−Θ−1 0

]
.

By Bini et al. [11, Theorem 2.1], −Ψ̄∗
1 is a solution of (59) if and only if

A

[
I −Ψ̄∗

1

0 I

]
=

[
I −Ψ̄∗

1

0 I

] [
2V −1D − Ψ̄∗

1Θ
−1 0

−Θ−1 Θ−1Ψ̄∗
1

]
,
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and

(60) ρ(A) = ρ(2V −1D − Ψ̄∗
1Θ

−1) ∪ ρ(Θ−1Ψ̄∗
1),

where ρ(·) represents the spectrum of a matrix.
It is easy to verify that Av = 0, where v =

[
v1
v2

]
, if and only if v1 = 0 and

Qv2 = 0, that is, v2 is proportional to 1. Thus, A has only one eigenvector
for the eigenvalue zero. In addition, the system Aw = v may be written as

2V −1Dw1 + 2Θ−1Qw2 = 0,

−Θ−1w1 = 1

if we take v2 = 1, or

w1 = −Θ1,

Qw2 = D1,

and the last equation does not have a solution under Assumption 3.1 as we
show by premultiplying both sides by the stationary vector α of Q. Thus,
the spectrum ρ(A) contains a single eigenvalue equal to zero.

Once we show that the matrix 2V −1D− Ψ̄∗
1Θ

−1 has one eigenvalue equal
to zero, we conclude by (60) that Θ−1Ψ̄∗

1 has no eigenvalue equal to zero
and Proposition A.4 will be proved. We define

K∗
ε = |C−

ε |−1T−−
ε +Ψ∗

ε(C
+
ε )−1T+−

ε(61)

=
1

ε
{−|Θ− εD|−1(I − ε2Q) + Ψ∗

ε(Θ + εD)−1}

=
1

ε
{−(Θ−1 + εV −1D +O(ε2))(I − ε2Q)

+ (I + εΨ̄∗
1 + o(ε))(Θ−1 − εV −1D +O(ε2))}

by (44, 45, 46) and the definition of Ψ̄∗
1,

= Ψ̄∗
1Θ

−1 − 2V −1D + o(ε)/ε,

so that limε→0K
∗
ε = Ψ̄∗

1Θ
−1 − 2V −1D.

By Govorun et al. [20, Theorem 4.2 and Lemma 4.4], ρ(K∗
ε ) = ρ(Uε)

where
Uε = |C−

ε |−1T−−
ε + |C−

ε |−1T−+
ε Ψε

is a generator for all ε under Assumption 3.1. Thus, K∗
ε has one eigenvalue

equal to zero for all ε and so has its limit as ε → 0. This completes the
proof.
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Now we are ready to conclude. By the properties of the roots of det Γ(z)
given in Proposition A.4, (22) has one unique solution suitable for the role
of Ψ̄1 and another unique solution suitable for the role of Ψ̄∗

1. Consequently,
all convergent subsequences give the same limit Ψ1 for (1/εk)Φεk , and Ψ∗

1

for (1/εk)Φ
∗
εk
.
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