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A SKILL BASED PARALLEL SERVICE SYSTEM UNDER
FCFS-ALIS — STEADY STATE, OVERLOADS,

AND ABANDONMENTS

By Ivo Adan∗,‡, and Gideon Weiss†,§

Eindhoven University of Technology‡ and The University of Haifa§

We consider a queueing system with J parallel servers S = {m1,
. . . , mJ}, and with customer types C = {a, b, . . .}. A bipartite graph
G describes which pairs of server-customer types are compatible. We
consider FCFS-ALIS policy: A server always picks the first, longest
waiting compatible customer, and a customer is always assigned to
the longest idle compatible server. We assume Poisson arrivals and
server dependent exponential service times. We derive an explicit
product-form expression for the stationary distribution of this sys-
tem when service capacity is sufficient. We also calculate fluid limits
of the system under overload, to show that local steady state exists.
We distinguish the case of complete resource pooling when all the
customers are served at the same rate by the pooled servers, and
the case when the system has a unique decomposition into subsets of
customer types, each of which is served at its own rate by a pooled
subset of the servers. Finally, we discuss possible behavior of the
system with generally distributed abandonments, under many server
scaling. This paper complements and extends previous results of Ka-
plan, Caldentey and Weiss [18], and of Whitt and Talreja [34], as well
as previous results of the authors [4, 35] on this topic.

1. Introduction.

1.1. Background and motivation. It is an inconvenient fact that most
queueing models are complicated and often intractable. This is true even
for the single server queue, with the shining exception of the M/M/1 queue,
which in stationary form has exponential sojourn times and geometric
(1−ρ)ρn queue length distribution, and for which many other quantities can
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be calculated by explicit formulae. Research on queueing networks would
have gone nowhere if it weren’t for Jackson’s discovery that Jackson net-
works have a stationary distribution given by

∏

(1− ρi)ρ
ni

i . From that time
onwards, product form results have been keenly sought after, as they seem
the best way to get explicit solutions and useful insight for more general
models.

In recent years it has become very important to investigate service sys-
tems which serve customers of several types, and which employ servers of
various skills. Such service systems are referred to in current literature as
queues with skill based parallel service. These systems have a bipartite com-
patibility graph to indicate which types of servers can serve which types of
customers. Applications include such varied fields as call centers, outsourc-
ing, manufacturing processes, cloud computing and health systems. As one
might expect, studying these systems immediately gives rise to very com-
plex models. Most queueing papers in this area deal with very limited simple
compatibility graphs, such as “V” systems, “Λ” systems, “N” systems, and
results are mostly obtained as approximations using various types of scaling.
The behavior of queues with skill based parallel service is highly dependent
on the type of policy which is used to assign servers to customers, and much
effort has gone into trying to define objectives and identify optimal or near
optimal policies, see e.g. [12, 15, 27, 31, 36].

In this paper we present the first general product form results for an
important class of useful skill based parallel service queues. Our focus is
the FCFS-ALIS — first come first served, assign longest idle server — pol-
icy. This means that, whenever a server becomes available, he will pick the
longest waiting customer in the system which he can serve, and whenever a
customer arrives to find several idle servers, he will be assigned to the longest
idle compatible server. This policy has several attractive features: First and
foremost it is fair to both customers and servers — in many systems, e.g.
organ donations, public housing assignment, FCFS is dictated by law. ALIS
is the best way to equalize the efforts of the servers, and thus it encourages
diligent service. The policy is also very natural and easy to implement, and
it requires minimal information about the parameters of the system and its
current state. As a result, it is useful also when the parameters are time
varying, e.g. for systems with periodic fluctuations of the workload.

Our results in this paper complement and extend earlier results, which
we have obtained in two recent papers. In [35] we have derived a product
form solution for the same model under a different policy, in which service
is FCFS, but arriving customers that find several idle servers are assigned
to a compatible server randomly. However, those results did not give rise
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to a practical policy, since product form only held for a singular choice
of the assignment distribution. In [4] we considered FCFS matching of an
infinite sequence of customers and an infinite sequence of servers, giving
rise to a model that is much simpler than a queue, but provides a great
deal of insight. Both models are closely related to the model of this paper.
Two motivating precursors to these papers were the paper of Talreja and
Whitt [34], which introduced FCFS skill based routing in an overloaded
system with abandonments, and a paper of Caldentey, Kaplan and Weiss
[18], which introduced the infinite matching model. Product form results for
skill based routing in a loss system were obtained in [3, 4].

Our model in this paper is described in the standard customer server
language used for queueing models. However, it should find as much use also
to describe the flow of jobs in a manufacturing system with non-homogenous
machines, skill based routing of calls to agents in a call center, wireless
messages to ad hoc nodes, evaluation threads to computing processors, and
so on. See in particular [6, 7, 9, 11, 24, 25, 26, 30, 32, 37].

1.2. System description. We study the following system: There are J
parallel servers, labeledm1, . . . ,mJ , and there are several types of customers,
labeled a, b, c, . . .. We denote the set of servers by S and the set of customer
types by C. Service is skill based, in the sense that each server mj has a
non-empty subset of customer types which he can serve, given by C(mj),
the union of which is C, and customers of type c have a non-empty set of
servers which can serve them, given by S(c). This is described by a bipartite
graph between the servers and the customer types, with directed arc (c,mj)
if c can be served by mj. We assume that this graph is connected. The
motivating advantage of such systems is that while they provide custom
tailored service to the various types of customers, the overlap of server skills
allows for resource pooling and reduced congestion.

We assume that arrivals are Poisson and service is exponential. Customers
of type c arrive at the system in independent Poisson streams with rates
λc, c ∈ C. Service times of server mj are independent and exponentially
distributed with rate µmj

, j ∈ S. Note that service durations of customers
depend on the server providing the service, and not on the customer type.
In the literature, this case is also referred to as pool dependent service rates,
see e.g. [16].

As stated before, the service policy is FCFS-ALIS. Under this combined
FCFS-ALIS policy we adopt the following, somewhat non-standard, Marko-
vian system description. Typically, parallel service systems are described by
several queue of waiting customers and the set of parallel servers which are
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Fig 1. A system with three types of customers and three parallel servers.

either busy or idle. Here, we imagine all the customers to be waiting in a
single queue according to their order of arrival, each of the customers being
distinguished by his type. The servers move through the queue to provide
service to successive customers, and customers leave their place only on com-
pletion of service. A full description of the state of the system consists of
three parts: first the list of all the customers in the system in their order
of arrivals, including customers which are being served (since they stay in
line), second the location in this list of each of the busy servers, where we
imagine that the servers are situated in the queue at the position of the
customer that they are serving, and third the list of all idle servers, ordered
by increasing idle time and waiting at the head of the line for new customers
to arrive.

The following illustration of the system, and description of its state are
similar to those in [35]. We use the same example here to point out how the
current system differs from [35]. Consider a system with three servers and
three customer types, as shown in Fig. 1: There are three customer types
a, b, c and three servers with C(m1) = {a, b}, C(m2) = {a, c}, C(m3) = {a},
the left side of the figure is the compatibility graph, the right side shows the
routing of arrivals to the servers.

Three possible states of this system are depicted in Fig. 2, which employs
the following way to describe the state of the system: The customers are
denoted by circles and the servers by rectangles. Customers in service have
a rectangle drawn around them with the identity of the server inside. Idle
servers are denoted by rectangles with a ∗ instead of a circle. The customers
are ordered from left to right by increasing time of arrival, followed on the
right by the idle servers, ordered from left to right by increasing idle time.
One can visualize the dynamics of the system with customers arriving from
the right, scanning the idle servers to pick the rightmost (longest idle) one
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Fig 2. A possible state for the system in Fig. 1.

that is compatible, and then joining the queue at the rightmost position
with this server, or without a server if none is compatible. Concurrently
when a service is completed the customer is removed from the queue, and
starting from its current position, the server that completed service moves
to the right looking for the earliest waiting customer which is compatible,
and starts serving it, or if no compatible customer is found the server joins
the idle servers in the leftmost position. Note that waiting customers to
the left of a server in this picture must be incompatible with that server,
because of the FCFS rule. The difference with the system in [35] is that in the
current system we need to record the list of idle servers, ordered by increasing
idle time, whereas in [35] we only need to know which servers are idle. For
product form systems, however, it is not uncommon that apparently small
changes immediately render the system intractable. Surprisingly, in this case
it appears that product form is preserved.

In Fig. 2 part (i) there are 12 customers in the system, and all the servers
are busy. Serverm1 is serving the first customer in line, which must therefore
be either of type a or of type b. Following the queue to the right, server m2

is serving the first customer in the line which he can serve, which is the 5th
customer in the line, and must therefore be either type a or type c. Server
m3 is serving the first customer in the line (apart from customers 1 and 5)
which he can serve, and must be of type a. There are 3 customers waiting
between servers m1 and m2. These customers cannot be served by either
server m2 or by server m3, so they must be type b customers. There are 4
customers waiting between m2 and m3, those cannot be served by server m3,
so they must be of types b or c. Finally, there are 2 customers at the tail of
the queue, behind server m3, which may be of types a, b, or c. The situation
in part (ii) of Fig. 2 is that servers m3,m1 are busy, with server m3 serving
the earlier customer, while server m2 is idle. There can be no customers
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waiting after server m3 and before the next server, because servers m1,m2

combined can serve all types, and would have picked up the next customer
after server m3. The situation in part (iii) of Fig. 2 is that only server m1

is busy, with 3 type b customers waiting and servers m2,m3 are idle, with
server m3 the one that became idle first. If the next arriving customer is of
type a he will go to server m3 (and not to m2, because of ALIS). If he is of
type c, he will go to server m2. If he is of type b, the two servers will remain
idle and the customer will join the queue in the last position.

We will actually aggregate some of the states in this detailed description,
to simplify the model while retaining the Markovian property.

1.3. Overview of results. In the first part of this paper (Section 2) we
examine our system when it is stable, i.e. positive recurrent. We define a
Markov chain which describes the system, derive its transition rates, set up
partial balance equations, and solve these equations to obtain conditions
for ergodicity and an explicit product-form expression for the stationary
distribution of the system. The derivation of the product form solution is
similar to that in [35], but the difference in the state description, by including
the list of idle servers ordered by increasing idle time, makes it necessary
to present the full proof again. We feel that this is also important for the
readability of the paper. We then compare, in Section 2.3, the behavior of
the system under ALIS with the behavior under the random assignment
policy of [35]. Surprisingly, it turns out that they both possess the same
stationary distribution. The distribution of the waiting time in the queue is
briefly mentioned in Section 2.4, as it is the same as the one derived in [35].

In the second part of the paper (Section 3) we analyze the system under
overload conditions. The behavior under FCFS for an overloaded system
with several types of customers is trivial for systems with uniform servers –
all the servers work all the time and customers are served one after the other,
while the queue of customers continues to grow at a linear rate. For systems
with skill based parallel servers, the behavior under overload is much more
intricate: Different types of servers may move through the queue at different
rates, and different types of customers will be served at different rates, even
though the policy is FCFS. We are not aware of any previous papers which
address this question. The main tool in the analysis of the overloaded system
is the derivation of the fluid scale dynamics under FCFS-ALIS. The novel
derivations of these dynamics are of interest in their own rights, and may
prove to be useful in future research. We also require a lemma on local steady
state of a Markovian system, which is given in [2]. To analyze the behavior of
overloaded systems under FCFS-ALIS, we introduce the concept of complete
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resource pooling of the system: under complete resource pooling, the system
is stable under FCFS-ALIS whenever the total arrival rate λ =

∑

c∈C λc

is less than the total service rate µ =
∑J

j=1 µmj
. We derive an explicit

condition for complete resource pooling. Under complete resource pooling,
if the system is overloaded, i.e. λ > µ, the system is transient with the
number of customers in the system growing without bound as t → ∞.
However, we show that at the same time, as t → ∞, the servers stay together,
and only the queue behind the last server grows without bound, while the
state of the servers and the customers waiting between them converges to a
stationary distribution. Remarkably, this stationary distribution is the same
as that obtained for FCFS infinite matching in [4]. We also consider the
case when complete resource pooling does not hold. In that case we show,
by considering a network maximal flow problem, that the system under
FCFS-ALIS policy will, when overloaded, decompose in a unique way to a
partition of the servers, where each subset of servers stay together and serve
a subset of the customers, while queues between these subsets of servers
will grow without bound. Again, the state of each subset of servers, and the
customers waiting between them, will converge to a stationary distribution
given by [4].

Finally, in Section 4 we outline heuristic conjectures on many server be-
havior of the FCFS-ALIS parallel service system, under several generaliza-
tions, including abandonments, general arrival streams and customer-server
type dependent service times. These conjectures may stimulate further re-
search. At the time of writing we do not yet have rigorous proofs of this
behavior under many server scaling.

Note: We chose to put most of the proofs in an appendix, for various
reasons: The proofs for Section 2 mainly follow results in previous papers [35,
4], which the reader may be familiar with. The proofs for Section 3.2 employ
techniques of fluid limits similar to [17, 21], while the proofs for Section 3.4
employ techniques of flows in networks [23], and the reader may not wish to
pursue those. We hope this may improve the readability of the paper.

1.4. Some comments on resource pooling for skill based parallel service.
As stated before, the performance of systems with skill based parallel service
is highly dependent on the service policy, and on the traffic intensity. When
resource pooling occurs, the performance of the system is essentially similar
to what could be achieved with a homogeneous pool of servers of similar ca-
pacity. In the case of systems which have excess capacity, referred to as QD
(Quality Driven) regime, pooling usually reduces waiting times: lack of pool-
ing results in the partition of the servers into several pools, with separate
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queues at each, so that service is not uniform, and waiting times are much
higher. In critically loaded systems, for example in the QED (Quality and Ef-
ficiency Driven) regime, lack of pooling will result in some parts of the system
being stable and others being unstable. For overloaded systems, which are
stabilized by abandonments (in the ED, Efficiency driven regime), resource
pooling will as a rule lessen the abandonments. These topics are discussed in
[12, 13, 14, 15, 16, 28], where various policies, seeking optimal performance
are discussed. In these papers results are obtained mainly for heavy traffic,
and the analysis is based on diffusion approximations. In the current paper,
in contrast to all the above papers, we focus on the FCFS-ALIS policy. We
obtain resource pooling in the stable case (Section 2), and also in the over-
loaded case, when our condition for complete resource pooling holds (see
Section 3.1 for the definition, and Section 3.3 for the pooling result). The
important thing to note is that our condition for complete resource pooling
is a minimal condition. It is a necessary condition under any of the policies in
the above references. Furthermore, we believe it is a necessary condition for
resource pooling under any policy, for any reasonable definition of resource
pooling. As we show in the current paper, this minimal necessary condition
is also sufficient for resource pooling when the policy is FCFS-ALIS.

2. The stable system. In this section we define a continuous time
Markov chain X(t) to describe the dynamics of our queueing system. We
derive conditions for ergodicity for this Markov chain, and we obtain its
stationary distribution, which is of product form (Sections 2.1, 2.2). We
then compare it with the stationary distribution of the system under the
policy of [35] (Section 2.3), and mention the derivation of the waiting time
distribution (Section 2.4).

To define the Markov chain we aggregate some of the states in the detailed
description, to simplify the model while retaining the Markovian property.
We retain the identity and location of the busy servers, but we do not specify
the type of customer that each of them is serving. Also we only record the
number of customers between the busy servers, and do not specify the string
of customer types. Finally, we retain the order of the idle servers. Thus the
state of the system in Fig. 2(i) is denoted (m1, 3,m2, 4,m3, 2), the state in
Fig. 2(ii) is (m3, 0,m1, 3,m2), and the state in Fig. 2(iii) is (m1, 3,m2,m3).
Note that each busy server is followed by a number which counts how many
(could be zero) customers are waiting behind him, while idle servers are not
followed by a number. Also note that the location of the servers implicitly
contains information on the type of customers waiting in line between them:
they have been skipped and thus cannot be served by the servers further
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down the line. For example, the three customers behind m1, in the state
(m1, 3,m2, 4,m3, 2) in Fig. 2(i), can only be handled by m1 and not by m2

or m3. This means that they have to be of type b. Similarly, each of the four
customers behind m2 are either of type b or type c. We can tell that they are
of type b with probability λb

λb+λc
and of type c with probability λc

λb+λc
. Cus-

tomers behind m3 have not been scanned yet and thus may be of any type.
We introduce the following notation:

M := an arbitrary server M from the set of servers S = {m1,
. . . ,mJ}. The capitalised M points to one of the servers mj.
Note that the names (or labels) of the servers mj are not
capitalised.

λX :=
∑

c∈X

λc, where X ⊆ C

µY :=
∑

mj∈Y

µmj
, where Y ⊆ S

C(Y) := total set of customer types that can be handled by the servers
in Y ⊆ S, which is equal to

⋃

mj∈Y
C(mj).

U(Y) := set of customer types unique to the servers in Y ⊆ S, thus
the set of customer types that cannot be served by servers

outside Y. We have U(Y) = C(Y), where A denotes the com-
plement of set A.

S(X ) := total set of servers that can serve customer types in X ⊆ C,
which is equal to

⋃

c∈X S(c).

2.1. Definition of the system state and the Markov chain. We define the
Markov chain X(t) as the process which records the state of the system at
time t, where the state in general is:

(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ): State in which there are i busy
servers and J − i idle servers with corresponding numbers of customers
waiting between the busy servers. Here M1, . . . ,MJ is a permutation of
m1, . . . ,mJ . Servers M1, . . . ,Mi are serving customers of increasing arrival
times, with nj customers, ordered by arrival times, waiting between servers
Mj and Mj+1, and servers Mi+1, . . . ,MJ are idle, with increasing idle times.
There is a total of i+

∑i
j=1 nj customers in the system, i of which are being

served.
The state space is denoted by S and to simplify the notation we use s to

denote an arbitrary state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S. Fig. 3
shows a system in state s.



SKILL BASED PARALLEL SERVICE UNDER FCFS-ALIS 259

M2 Mi

 !  !

ni

U (M1,M2 )  U (M1,…,Mi )

n2

M1

n1

 !

U (M1)
Mi+1

*

M J

*
 ! !

Fig 3. General system in state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ ).

There are a few things that are important to note about this state de-
scription:

First, the waiting customers between servers Mj and Mj+1 can only be
handled by some of the servers M1, . . . ,Mj and not by any of the servers
Mj+1, . . . ,MJ . This is due to the FCFS serving order. Thus waiting cus-
tomers between servers Mj and Mj+1 can only be of type c ∈ U({M1, . . . ,
Mj}). The ni waiting customers in the back of the queue cannot be handled
by any of the idle servers and have to be of type c ∈ U({M1, . . . ,Mi}).

Second, since each part of the queue between two servers contains cus-
tomers from different subsets of customer types, it is necessary to keep these
parts separated in the state description. It is not possible to aggregate the
state description any further without losing the Markov property. Because
the state description does not specify the types of the nj customers between
Mj and Mj+1 we cannot tell the type of each of them, but we do know that
he is of type c where c ∈ U({M1, . . . ,Mj}) with probability λc

λU({M1,...,Mj})
,

independent of all the others. This is because the queue between servers Mj

and Mj+1 contains all the customers of types U({M1, . . . ,Mj}) that arrived
between the two customers served by Mj ,Mj+1, in their original order of
arrival.

Third, it is possible that the set of customer types U({M1, . . . ,Mj}) is
empty for a certain set of servers {M1, . . . ,Mj}. In this case there are no cus-
tomers which cannot be handled by any of the servers Mj+1, . . . ,MJ . Thus
there can be no waiting customers between Mj and Mj+1, and therefore nj

can only be equal to zero. In that case one also has that n1, n2, . . . , nj−1 = 0.
Fourth, it is important to note that in this state description we lose cus-

tomer type information about the customers that are in service, since we
only denote the server that is handling the customer and not the type of the
customer. This aggregation preserves the Markov property since all types
are processed by server mj at rate µmj

. We conjecture that specifying the
customer types in service will destroy the possibility of a product form so-
lution. This was also indicated in Proposition 8, Section 2, of [35], which
illustrates the subtlety of the definition of the system state, being crucial to
the existence of product forms.



260 I. ADAN AND G. WEISS

2.2. Dynamics of the Markov chain, ergodicity, and product form station-
ary distribution. The dynamics of the Markov chain X(t) are as follows:
When the system is in state s, the following transitions are possible:

(i) When a customer of type c arrives, he will activate server MJ if c ∈
C(MJ), and he will activate server Mj for i + 1 ≤ j < J if c ∈
C(Mj)\C({Mj+1, . . . ,MJ}). The customer will move to the end of
the queue with the activated server which will then become Mi+1 with
ni+1 = 0. If c ∈ U({M1, . . . ,Mi}), then the customer will move to the
end of the queue and wait, the idle servers will remain unchanged, and
ni will increase by one.

(ii) When server Mj completes service, he will scan the customers in queue
from left to right, starting with the nj customers queued behind it,
and continuing with the queues behind servers Mj+1, . . . ,Mi. It will
skip a customer in the queue behind Mk, k ≥ j, if the customer type
is c ∈ U({M1, . . . ,Mk})\C(Mj), and will pick up the first customer of
type c ∈ U({M1, . . . ,Mk}) ∩ C(Mj). If he finds no customer to serve,
he will join the idle servers, in the leftmost position.

It is readily verified that the process X(t) on S is a continuous time
Markov chain. Furthermore it is irreducible (cf. Section 3.1 in [35]). The fol-
lowing theorem states the stationary distribution of X(t) which is of product
form.

Theorem 2.1. The solution to the equilibrium equations for the process
X(t) is given by

(2.1) πX(s) = B
i

∏

j=1

λU({M1,...,Mj})
nj

µ{M1,...,Mj}
nj+1

J
∏

j=i+1

λC({Mj ...,MJ})
−1.

The Markov chain is ergodic if and only if the two equivalent conditions
hold:

(2.2)
λC < µS(C), for all C ⊆ C,
λU(S) < µS, for all S ⊆ S.

After normalisation this solution becomes the stationary distribution, with
normalization constant:
(2.3)

B =





∑

M1,...,MJ∈P

J
∑

i=0

i
∏

j=1

(

µ{M1,...,Mj} − λU({M1,...,Mj})

)−1
J
∏

j=i+1

(

λC({Mj,...,MJ})

)−1





−1

,

where P is the set of all the permutations of S (by convention empty products
are 1).
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Note that if U({M1, . . . ,Mj}) = ∅, then λU({M1,...,Mj}) = 0 and hence,
π(s) = 0 for all s = (M1, n1, . . . ,Mj , nj, . . . ,MJ) with nj > 0, as it should.
Setting up the equilibrium equations and verifying Theorem 2.1 is similar
to [35]. The proof is given in Appendix A.1

2.3. Comparison with random assignment model. In a recent paper [35],
the same queueing system was analyzed, but under a different policy. Sur-
prisingly, we find that the stationary distribution under both policies is the
same.

The policy used in [35] is as follows: When a server becomes available,
he will take the longest waiting compatible customer, so FCFS. However,
when a customer arrives and finds several compatible idle servers, he will
not go to the longest idle server, but will instead choose one of them ran-
domly, using a random assignment probability. Thus, if a customer of type
c arrives to find servers M1, . . . ,Mi busy, he will go to server Mj which is
idle and for which c ∈ C(Mj) with probability P (c,Mj |{M1, . . . ,Mi}). It is
shown in [35] that these probabilities can always be chosen in such a way
that the queueing system will have a product form solution, provided it
is stable (which holds if and only if (2.2) is satisfied). While these special
assignment probabilities may not be unique, they will determine unique val-
ues of λMj

({M1, . . . ,Mi}), the rate at which idle server Mj will be activated
when servers {M1, . . . ,Mi} are busy. These unique activation rates can be
calculated recursively from:

(2.4) λC(S\{M1,...,Mi}) =
∑

M 6∈{M1,...,Mi}

λM ({M1, . . . ,Mi}),

λMj
({M1, . . . ,Mi})

λC(S\{M1,...,Mi})
=

(

1 +
∑

Mk 6∈{M1,...,Mi,Mj}

λMk
({M1, . . . ,Mi,Mj})

λMj
({M1, . . . ,Mi,Mk})

)−1
,

i ≤ J − 2, Mj 6∈ {M1, . . . ,Mi}.

These activation rates have the special property that:

(2.5)

i
∏

j=1

λMj
({M1, . . . ,Mj−1}) =

i
∏

j=1

λMj
({M 1, . . . ,M j−1})

for every permutation M1, . . . ,M i of M1, . . . ,Mi. In [35], this property is
referred to as the assignment condition.

The dynamics of the system under the random assignment policy are
described by a Markov chain Y (t), whose states list the busy servers in order,
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and the number of customers queueing between them, given by M1, n1, . . . ,
ni−1, Mi, ni, where the idle servers are S\{M1, . . . ,Mi} (and now there is no
need to record the list of idle servers, in order of increasing idle time). The
stationary distribution, when the assignment probabilities and the activation
rates are as described above, are given by (see [35], Theorem 2)

πY (M1, n1, . . . , ni−1,Mi, ni)
(2.6)

= πY (0)
i

∏

j=1

λU({M1,...,Mj})
nj

µ{M1,...,Mj}
nj+1

i
∏

j=1

λMj
({M1, . . . ,Mj−1}).

Theorem 2.2. The system under random assignment, satisfying the as-
signment condition of [35], and the system under FCFS-ALIS share the same
stationary behavior in the sense that:

πY (M1, n1, . . . , ni−1,Mi, ni)

=
∑

M i+1,...,MJ∈P({Mi+1,...,MJ})

πX(M1, n1, . . . , ni−1,Mi, ni,M i+1, . . . ,MJ)

where P({Mi+1, . . . ,MJ}) denotes the set of all the permutations of Mi+1,
. . . ,MJ .

The proof of Theorem 2.2 is given in Appendix A.2, and it is based on the
proof of a similar result for a skill based service Erlang loss system [3, 5].

2.4. Waiting time distribution. The waiting time distribution for a cus-
tomer of type c that arrives at the system is derived for the random as-
signment policy in [35], by using the distributional form of Little’s law. By
Theorem 2.2 in the previous section, a customer of type c that arrives at
the system when the system is governed by the FCFS-ALIS policy, will,
under steady state, see exactly the same distribution of states as under the
random assignment policy of [35]. As a consequence, the waiting time dis-
tribution for a customer of type c will be exactly the one derived in [35],
Theorem 3.

3. The overloaded system. In this section we consider the system
as before, with total arrival rate λ =

∑

c∈C λc and total service rate µ =
∑J

j=1 µmj
. We introduce the following notations: ρ = λ/µ is the total traffic

intensity, αc = λc/λ is the fraction of arrivals of type c customers, and
βmj

= µmj
/µ is the fraction of service capacity of server mj . Also, for

subsets, αX = λX /λ, X ⊆ C, and βY = µY/µ, Y ⊆ S.



SKILL BASED PARALLEL SERVICE UNDER FCFS-ALIS 263

It is convenient in this section to rewrite the stationary probabilities of
X(t) as:

(3.1) πX(s) = B̃(ρ)
i

∏

j=1

(

ραU({M1,...,Mj})

)nj

β{M1,...,Mj}
nj+1

J
∏

j=i+1

(

ραC({Mj ...,MJ})

)−1

with

B̃(ρ) = B/µJ

=





∑

M1,...,MJ∈P(S)

J
∑

i=0

(

i
∏

j=1

(

β{M1,...,Mj} − ραU({M1,...,Mj})

)−1

×
J
∏

j=i+1

(

ραC({Mj ,...,MJ})

)−1 )




−1

.

We will study what happens toX(t) as the total traffic intensity increases.
We will assume that α, β are fixed, µ is fixed, and the total arrival rate λ
increases. Under these conditions, for ρ > 1 the system becomes unstable
with some of the queues growing without bounds. We will discover that
when some of the queues grow without bounds, the rest of the system sta-
bilizes and has a stationary behavior, which is identical to that observed for
FCFS matching of two infinite sequences (of servers and of customers) as
discussed in [4]. We will distinguish a case of complete resource pooling and
a case of incomplete resource pooling. For the latter we will find a unique
decomposition of the system.

We state the infinite matching model of [4] here (see also [18]): There are
two infinite sequences, a sequence of customers c1, c2, . . . chosen i.i.d. from
C with probabilities α, and a sequence of servers (or of services) s1, s2, . . .
chosen i.i.d. from S with probabilities β, and a bipartite graph of compati-
bilities. Servers and customers are matched on a FCFS basis. Note that this
is not a queueing model - each server is used only once, when he is matched
to a customer, and there are no service durations and no arrival times, only
the order of the customers and of the servers is relevant. The roles of the
servers and customers in this model are entirely symmetric. The policy is
FCFS in the ordinal sense and not in the temporal sense: a customer that
precedes another customer in the sequence of customers is matched to the
server in the earliest possible position in the sequence of servers.

A discrete time markov chain, I = (I(N), N = 0, 1, . . .) is associated with
the infinite matching model. I(N) describes the state of the system after
matching the first N servers, and it is defined as follows: After matching
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the first N servers to customers, the sequence of customers has an initial
segment in which all customers are matched, followed by a middle segment
in which some are matched and some are not, followed by a last infinite
segment where none are matched. I(N) describes this middle segment. The
state is of the form (M1, n1, . . . ,MJ−1, nJ−1,MJ ), where M1, . . . ,MJ is a
random permutation of S that lists the last matched server of each type
according to its order of appearance in the sequence of customers, and nj

is the number of unmatched customers between Mj and Mj+1. It is shown
in [4] that I is an ergodic Markov chain and has a product form stationary
distribution given by:

(3.2) πI(M1, n1, . . . , nJ−1,MJ ) = BI

J−1
∏

j=1

αU({M1,...,Mj})
ni

β{M1,...,Mj}
ni+1 ,

with

(3.3) BI =





∑

M1,...,MJ∈P(S)

J−1
∏

j=1

(

β{M1,...,Mj} − αU({M1,...,Mj})

)−1





−1

,

whenever BI is positive and finite. The analogy between I and our system
is clear: The last matched server of type mj in I(N) corresponds to the
position of server mj in the queue, the permutation M1, . . . ,MJ in I(N)
is the order of the servers in the queue, and the unmatched customers in
I(N) correspond to the queues between the servers. The infinite sequence of
customers that follow after MJ in the infinite matching model corresponds
to waiting customers and to all future arrivals in the queueing model.

The rest of this section is structured as follows: In Section 3.1 we define
complete resource pooling, under whichX(t) is stable for all λ < µ, and show
that as λ ր µ the stationary distribution of X(t) converges to that of I(N).
In Section 3.2 we study the fluid approximation to our queueing system. This
contains information on the dynamics of the system which cannot be gleaned
from its stationary distribution. The rest of the section deals with overloaded
systems: in Section 3.3 we study the limiting behavior of the overloaded
system under complete resource pooling. We show that while the last queue
grows to infinity, the rest of the system converges in law to the stationary
distribution of I(N). In particular, while the last queue grows to infinity,
the remaining queues between the servers remain well behaved, and the
servers stay close together. In Section 3.4 we study a network maximal flow
problem that is related to the stability of our system, and derive a unique
decomposition of the system, in the case of incomplete resource pooling. In
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Section 3.5 we study the limiting behavior of the overloaded system under
incomplete resource pooling.

3.1. Complete resource pooling. We say that the system satisfies com-
plete resource pooling if the following three equivalent statements hold:

βS > αU(S), for S ⊂ S, S 6= ∅,S,
βS < αC(S), for S ⊂ S, S 6= ∅,S,(3.4)

αC < βS(C), for C ⊂ C, C 6= ∅, C.

As we state in the next theorem, under complete resource pooling, the
process X(t) will be stable for all ρ < 1, and as ρ ր 1 its stationary
distribution will converge to the stationary distribution of I(N), the process
describing FCFS matching of two infinite sequences in [4].

We will use the following notation for the marginal distributions :

πX(M1, n1, . . . ,Mj , nj ,Mj+1, ·, . . . ,Mi, ·,Mi+1, . . . ,MJ )

=
∞
∑

nj+1,...,ni=0

πX(M1, n1, . . . , ,Mi, ni,Mi+1, . . . ,MJ).

Theorem 3.1. Consider the system with fixed µ, α, β, and let λ vary.
Assume that complete resource pooling holds.

(i) The process X(t) is ergodic for all λ < µ.
(ii) For states when some servers are idle,

lim
ρր1

πX(M1, n1, . . . , ,Mi, ni,Mi+1, . . . ,MJ ) = 0, for i < J.

(iii) For states when all servers are busy,

lim
ρր1

πX(M1, n1, . . . ,MJ−1, nJ−1,MJ , ·)

= BI

J−1
∏

j=1

αU({M1,...,Mj})
ni

β{M1,...,Mj}
ni+1

= πI(M1, n1, . . . ,MJ−1, nJ−1,MJ ),

with limρր1 B̃(ρ)(1 − ρ)−1 = BI .
(iv) The same results with the same limiting values hold also for the sta-

tionary distribution of the discrete-time Markov chain of jumps.

The proof of Theorem 3.1 is given in Appendix B.1.
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3.2. Fluid limits of the FCFS-ALIS queueing system with multitype cus-
tomers and servers. The stationary distribution of a Markovian system
provides complete information about long term performance measures, and
it is therefore very useful. However, it does not provide any information
about the dynamics of the system. The dynamics of a Markovian system
are of interest when the system is stable, as they provide information about
its short term behavior. Furthermore, for unstable systems they provides
information on the transient behavior of the system. Exact analysis of the
dynamics is almost always intractable, however the dynamics can be approx-
imated by studying fluid or diffusion approximations to the system. In this
section we study the fluid approximation of our system. For an introduction
to the study of fluid limits, see [17, 19, 20, 21].

We introduce a different notation for our Markov process X(t). We let
X(t) = (S(t), Q1(t), . . . , QJ(t)). Here S(t) = (M1(t), . . . ,MJ (t)) is a permu-
tation of S. The total number of customers in the system is |Q(t)| = ∑

Qj(t),
ordered in order of arrival with Q1 earlier than Q2 earlier than Q3, and so on.
Of the queues at time t, the first k(t) queues are non-empty, the remaining
are empty. Server Mj(t) is serving the first of the customers of Qj(t) (the
1 +

∑

i<j Qi(t) customer in the queue), where j = 1, . . . , k(t), and servers
Mj(t), j = k(t) + 1, . . . , J are idle, ordered by increasing idle time. The
customer in service at Mj(t) is of course of type c ∈ C(Mj). The remaining
Qj(t)−1 waiting customers are all of them of types in U({M1(t), . . . ,Mj(t)}).

We also introduce the following processes that give an alternative descrip-
tion of the system. Assume each customer upon arrival is given a number
which counts its position in the arrival stream. We let A(t) be the total
number of arrivals by time t, where the last arrival was numbered A(t).
We also let Y1(t) < · · · < YJ(t) be the positions of the servers in the se-
quence of customers up to time t, so that Yi(t) is the sequence number of
the customer currently served by the ith server, which is server Mi(t). If the
number of busy servers is k(t) < J , we will let the positions of the idle servers
Mk(t)+1(t), . . . ,MJ(t) be Yk(t)+1, . . . , YJ(t) = A(t) + 1, . . . , A(t) + J − k(t).
We denote Y (t) = (Y1(t), . . . , YJ(t)). Note that A(t), Y1(t), . . . , YJ(t) are all
monotone non-decreasing in t. We shall let A(0), Y1(0), . . . , YJ(0) ≥ 0 and
S(0) = (M1(0), . . . ,MJ (0)) be an initial state.

The fluid scaling of an arbitrary function z(t) is denoted z̄n(t) = z(nt)/n.
Let z(t, ω) be a stochastic process with paths in Dd (real vector functions
in the d dimensional Euclidean space which are right continuous with left
limits). Let ω denote a fixed sample path, and let r be a divergent sub-
sequence of integers. If z̄r(t, ω) converges to a deterministic function z̄(t) as
r → ∞, then we call z̄(t) a fluid limit. Convergence here is in the Skorohod
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J1 topology on D
d, but if z̄(t) is continuous it is equivalent to convergence

uniformly on compacts (u.o.c.). To obtain fluid limits with z̄(0) 6= 0 one
needs to consider a sequence of functions zn(t, ω) which are all defined on
the same probability space, and which differ in their initial values zn(0, ω).

To study fluid limits of our system we now define a sequence of systems,
by describing the primitives in the probability space which are common to
all of them and by defining the sequence of their initial states. For simplicity
take λ+ µ = 1 and think of the evolution of our systems for all n = 1, 2, . . .
and t > 0 as powered by a common Poisson process with rate 1. Each event
of the process is either an arrival with probability λ or a service completion
with probability µ. An arrival is an arrival of a customer of type c with
probability αc. A service completion is by server mj with probability βmj

.
A customer departs at a service completion only if server mj is not idle. To
define the state of the system at time 0 we also have a multi-Bernoulli pro-
cess of customer types, denoted C = c−1, c−2, . . . , c−k, . . ., which represent
customers that arrived in the past, prior to time t = 0, ordered by order
of arrival, with type c occurring with probability αc. We exclude from this
list of previous customers the ≤ J customers which are in service at time 0.
These stochastic primitives are common to all the systems.

Next we describe the initial states of the sequence of systems: They only
differ by the location of the servers at time 0, within the sequence C:
Let q1,n, . . . , qJ,n be some deterministic non-negative integers, with qn =
∑J

k=1 qk,n, we then set Y n
j (0) = j +

∑j−1
k=1 qk,n, A

n(0) = J + qn. The qn

customers waiting for service at time 0, between the positions of the servers,
are of types c−qn , . . . , c−1, so that c−qn is the type of the earliest arrival
customer, and c−1 is the type of the latest arrival prior to t = 0. To fix our
initial limiting state we assume that qj,n/n converge to some fixed values,
which determines the fluid limit values of 0 = Ȳ1(0) ≤ · · · ≤ Ȳk(0)(0) <
Ā(0) = Ȳk(0)+1(0) = · · · = ȲJ(0). For simplicity we let Sn(0) = S0 where S0

is a fixed initial permutation which defines S̄(0). Note that the sequence qn,j
and S0 are fixed deterministic, while the sequence of customers that arrived
prior to time 0 is random i.e. it depends on ω.

Fluid limits of A, Y , and S may be obtained when we take Ān(t, ω) =
An(nt, ω)/n and Ȳ n(t, ω) = Y n(nt, ω)/n, and S̄n(t, ω) = Sn(nt, ω) and
let n → ∞. Note that Sn(·, ω) is a function from [0,∞) to the finite
set of permutations P, so there is no division by n in the definition of
S̄n(t, ω). The following complication does however arise: For all ω, n, t, we
have that Ȳ n

1 (t, ω) < · · · < Ȳ n
J (t, ω), and there is a unique permutation

S̄n
1 (t, ω) < · · · < S̄n

J (t, ω) associated with them. However, in the limit we
may have Ȳ1(t, ω) ≤ · · · ≤ ȲJ(t, ω), and so the fluid limits of S̄n(t, ω)
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will not be a permutation, but will be a partition of a permutation, i.e.
an ordered partition. For example, if Ȳ1(t) < Ȳ2(t) = Ȳ3(t) = Ȳ4(t) <
Ȳ5(t) = Ȳ6(t) < Ȳ7(t), then a possible fluid limit will be the ordered parti-
tion S̄(t) = (M1, {M2,M3,M4}, {M5,M6},M7). In general we will associate
with a fluid limit Ȳ (t) of Ȳ r(t, ω) a fluid limit for S̄r(t, ω) that will be given
by a corresponding ordered partition S̄(t) = (S1, . . . , SK) where each Si is
a subset of servers, and S1, . . . , SK is a partition of S. This is not standard
in the literature on fluid limits and we shall make the definition of such a
fluid limit precise in Appendix B.2.

When discussing ordered partitions, we may sometimes suppress some
information and group some of the subsets of the partition, and replace
(S1, . . . , SK) by say (S′, Sk, S

′′), where S′ =
⋃k−1

l=1 Sl and S′′ =
⋃K

l=i+1 Sl.
We extend the definition of complete resource pooling (3.4) to subsets.

Definition 3.2. Consider a partition of the servers into subsets S′, S, S′′.
We say that S has complete resource pooling between S′ and S′′ (the order
of S′ before S′′ is important here), if the subsystem which consists of servers
mi ∈ S, and the customer types c ∈ U(S′ ∪ S)\U(S′), with β̃mi

= βmi
/βS ,

α̃c = αc/αU(S′∪S)\U(S′) has complete resource pooling.

We now have the following theorem, which summarizes the fluid dynamics
of the system:

Theorem 3.3. Consider a sequence of systems as above. Then
Ān(t, ω), Ȳ n(t, ω), S̄n(t, ω), Q̄n(t, ω) converge almost surely to fluid limits
Ā(t), Ȳ (t), S̄(t), Q̄(t) as n → ∞. The fluid limits satisfy:

(i)

(3.5) Ā(t) = Ā(0) + λt

(ii) Let Ȳk−1(t) < Ȳk(t) = · · · = Ȳl(t) < Ȳl+1(t) for some k < l and for
some t, and let S̄(t) = (S′, {Mk, . . . ,Ml}, S′′) be the corresponding partition
of the servers. Then Ȳk, . . . Ȳl will move together at rates:

(3.6)
d

dt
Ȳi(t) = µ

β{Mk,...,Ml}

αU(S′∪{Mk,...,Ml}) − αU(S′)
, i = k, . . . , l.

during t < τ < t + ∆ for some ∆ > 0, if and only if {M1, . . . ,Mk} have
complete resource pooling between S′ and S′′.

(iii)

Q̄i(t) =
(

Ȳi+1(t)− Ȳi(t)
)

αU({M1,....Mi}), i = 1, . . . , J − 1,
(3.7)

Q̄J(t) = Ā(t)− ȲJ(t).
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Fig 4. A five server five customer types system.

The proof of Theorem 3.3 requires several propositions, which derive the
dynamics of fluid limits of our system. These propositions and the proof of
the theorem are given in Appendix B.2

Theorem 3.3 implies that the processes Ȳj(t) will move at any time with
constant rates, and in coalescent subsets, so that whenever one subset of
servers overtakes another, they either coalesce into a single subset, which
is the union of both, or the union of the two subsets breaks up into new
subsets, which move away form each other. These coalescent subsets always
satisfy complete resource pooling between their predecessors and successors.
This can continue until all the servers coalesce and all move together, or until
they are partitioned into subsets, which drift apart at constant rates. The
front subset of servers may move at the rate of λ if that subset has enough
capacity to serve all of its customers, or at a rate < λ if it is overloaded. We
show in Section 3.4 that these subsets are uniquely determined, irrespective
of the initial fluid state Z̄(0).

We now present an example that illustrates how Theorem 3.3 determines
the dynamics of the fluid limits.

Example. We consider a system with 5 types of customers and 5 servers,
where each node in the bipartite graph is of degree 2. The system and values
of α, µ are displayed in Fig. 4. The total arrival rate is λ = 60, which is larger
than the total service capacity of 50, so the system is overloaded.

Because any four servers can serve all types of customers, Q̄1(t) = 0 for
all t. We assume that the initial partition of the servers is ({m4,m5},m3,
m2,m1), and the queues Q̄2(0), Q̄3(0), Q̄4(0), Q̄5(0) consist of customers of
types c4, {c3, c4}, {c2, c3, c4}, and {all types}, respectively. The initial values
of Ȳ are Ȳ (0) = (0, 0, 250, 750, 825) and Ā(0) = 850. This corresponds to
Q̄(0) = (0, 15.625, 125, 32.8125, 25).

The system evolves in 5 time intervals. At the end of each interval some
servers overtake other servers, and the new subset S of servers then stays to-
gether or splits, according to whether the servers in S have complete resource
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Fig 5. Resource pooling in partitioned system.

pooling between the servers preceding and succeeding them. The calculations
to determine whether colliding servers coalesce or split up again, according
to Definition 3.2, are described in Fig. 5. In that figure the fractions are the
conditional probabilities for the subsystems of servers and customers. The
five stages, at which queues empty out and collisions occur, are as follows:

At t1 servers {m4,m5} overtake server m3 (Q̄2 empties of customers of
type c4). There is no complete resource pooling of {m3,m4,m5}, and
server m5 splits off and leaves {m3,m4} behind. Q̄2 fills up in the next
interval, with customers of type c3 (Fig. 5(a))

At t2 server m2 overtakes server m1, there is complete resource pooling of
{m1,m2}, and they coalesce and continue together. Here Q̄4 empties,
and stays empty in the next interval (Fig. 5(b)).

At t3 server m5 overtakes {m1,m2}, there is no resource pooling, and m5

moves ahead (Fig. 5(c)).
At t4 servers {m3,m4} overtake servers {m1,m2}, there is no complete

resource pooling, and the two subsets change positions (Fig. 5(d)).
At t5 serverm5 catches up with the input, and thereafter Q̄5 remains empty,

and server m5 is underloaded
Following t5 there are no more collisions, the queue of server m5 is stable

with fluid 0, and the remaining two fluid queues continue to fill up at
constant rates.

The fluid dynamics of Ȳ (t) can be calculated from Equation (3.6) of
Theorem 3.3, and the fluid dynamics of Q̄(t) can be calculated from Equation
(3.7) of Theorem 3.3. Table 1 lists the the configurations in each interval, the
collision times, the fluid queue lengths at those times, and the rate of change
in the queue lengths in each interval. Overlined numbers denote repeated
fractions. Fig. 6 plots the fluids in the system over time.

In the long run, after t5, servers m1,m2 will lag behind, serving customers
of type c1, servers m3,m4 will be ahead of them serving customers of types
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Table 1
Dynamics of Q̄(t)

(0, t1) m4,m5 c4 m3 c3, c4 m2 c2, c3, c4 m1 C
t0 = 0 Q̄(0) 15.63 125 32.81 25

dQ̄(t)/dt −16.6̄ 0 −15.5̄ 42.2̄

(t1, t2) m3,m4 c3 m5 c3, c4 m2 c2, c3, c4 m1 C
t1 = 0.94 Q̄(t1) 0 125 18.23 64.58

dQ̄(t)/dt 10 −26.6̄ −15.5̄ 42.2̄

(t2, t3) m3,m4 c3 m5 c3, c4 m1,m2 C
t2 = 2.11 Q̄(t2) 11.72 93.75 114.06

dQ̄(t)/dt 10 −33.3̄ 33.3̄

(t3, t4) m3,m4 c3 m1,m2 c1, c2, c3 m5, C
t3 = 4.92 Q̄(t3) 39.84 0 207.81

dQ̄(t)/dt −14.54 44.54 −20

(t4, t5) m1,m2 c1 m3,m4 c1, c2, c3 m5 C
t4 = 7.66 Q̄(t4) 0 122.02 153.03

dQ̄(t)/dt 6.6̄ 23.3̄ −20

(t5,∞) m1,m2 c1 m3,m4 c1, c2, c3 m5 C
t5 = 15.31 Q̄(t5) 51.01 300.55 0

dQ̄(t)/dt 6.6̄ 5.83̄ 0

c2, c3 and skipping customers of type c1. The queues of customers of these
types will continue to fill up. Server m5 will be ahead, serving customers
of type c4, c5, skipping all other types, and keeping the queue behind him
stable. Server m5 will be processing at rate 7.5 and will be idle a quarter of
the time.

3.3. The overloaded system under complete resource pooling. We con-
sider now the behavior of the system under complete resource pooling, when
λ > µ. Here clearly the Markov process is transient. However, what we will
see is that while the queue behind the last server grows without bound, the
servers and the queues between them tend to a limiting distribution, which
is again that of the FCFS infinite matching model. We will use the notation
and the results on the fluid dynamics from Section 3.2. We will also need
the following lemma, the proof of which is given in [2].

Lemma 1. Let X(n) = (X1(n),X2(n)) be a Markov chain on countable
state space with Xi(n) ∈ Z

+. Assume the following:

1. limn→∞X2(n) = ∞ almost surely.
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Fig 6. Dynamics of the fluid queues.

2. P (X1(n+1) = j|X1(n) = i, X2(n) = l) = Pi,j , for all values of l > 0,
where Pi,j are transition probabilities of an ergodic Markov chain with
stationary probabilities πj .

Then for all initial i0, j0:

sup
j

∣

∣

∣
P
(

X1(n) = j |X1(0) = i0,X2(0) = j0
)

− πj

∣

∣

∣
→ 0, as n → ∞,

i.e. X1(n) converges in distribution to π in total variation norm.

We can now prove the following theorem:

Theorem 3.4. Assume complete resource pooling and λ > µ.
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(i) From any fixed initial state, as t → ∞:

k(t) → J, a.s.
(3.8)

QJ(t)/t → (λ− µ), a.s.

(ii) As t → ∞, P (S(t) = (m1,m2, . . . ,mJ), Q1(t) = n1 + 1, . . . , QJ−1(t) =
nJ−1+1) converges to πI(m1, n1, . . . , nJ−1,mJ) in total variation dis-
tance, where πI is the stationary distribution of I, the Markov chain
describing the FCFS infinite matching model, given in (3.2), (3.3).

Proof. We consider first the fluid limits for the overloaded system. By
the results of the previous section, we have that d

dt
ȲJ(t) ≤ µ. This will hold,

because by Proposition B.9, the front subset of servers S will move at a
rate µ βS

αC(S)
, and by complete resource pooling, βS < αC(S). Since Q̄J(t) =

Ā(t)− ȲJ(t), we have:

d

dt
Q̄J(t) =

d

dt
Ā(t)− d

dt
ȲJ(t) = λ− µ

βS
αC(S)

≥ λ− µ > 0.

Hence Q̄J(t) → ∞ as t → ∞, and then of course QJ(t) will diverge almost
surely. In particular, this implies that all servers will be busy, so k(t) → J
almost surely as t → ∞.

Consider now the behavior of our Markovian system when QJ(t) > 0.
When QJ(t) > 0, all the servers are busy, and the queues Qj(t), j = 1, . . . ,
J−1 have transitions which occur as a Poisson process of rate µ, irrespective
of the current state. The sequence of states following each transition form
a discrete time process, with Markovian transition probabilities, which are
exactly those of the FCFS infinite matching model, and do not depend on
the value of QJ(t). Hence, the conditions of Lemma 1 are fulfilled, and the
discrete time jump process of states will converge in law to πI . As a result,
the continuous time process will also converge in law to πI .

Because Q1(t), . . . , QJ−1(t) converge to a stationary distribution, Q̄1, . . . ,
Q̄J−1 converge almost surely to 0. Hence, in the fluid limit all the servers
will move together at rate µ and for any fixed initial state, Q̄J(t) = (λ−µ)t.
Hence, QJ(t)/t → λ− µ almost surely.

3.4. Unique decomposition under incomplete resource pooling. We again
consider the system with fixed α, β, µ and let λ increase, but we now con-
sider the case that complete resource pooling does not hold. We show that
there exists a unique decomposition of the system when it is overloaded. To
do so, we associate with our system the following network (see Fig. 7): The
nodes are c ∈ C, mj ∈ S, a source node o, and a sink node t. The arcs are
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Fig 7. s–t maximal flow problem with minimum cut through C(λ), S(λ).

(o, c) of capacity λc for all c ∈ C, (mj, t) of capacity µmj
for all mj ∈ S,

and (c,mj) of infinite capacity for all (c,mj) in the bipartite compatibility
graph. The proofs for propositions and theorems in this section are given in
Appendix B.3, throughout here and in the appendix we use the terminology
of network flows, as in [10, 23].

The maximal flow in the network is related to the stability of our system
through the following proposition.

Proposition 3.5. A necessary and sufficient condition for stability is
that the maximal flow from o to t is λ, and that the cut through arcs (o, c), c ∈
C is the unique minimal cut.

The following theorem describes the solution of the o to t maximum net-
work flow problem, as a function of λ. Fig. 8 illustrates this theorem as well
as the following Corollary 3.7.

Theorem 3.6. Consider the o–t maximum network flow problem as λ
increases. Then:

(i) The maximal flow f(λ) is a continuous piecewise linear non-decreasing
concave function of λ, with breakpoints 0 = λ(0) < λ(1) < · · · < λ(L) <
λ(L+1) = ∞, which has slope 1 for 0 < λ < λ(1), and is constant and
equal to µ for λ > λ(L).

(ii) For each interval (λ(i−1), λ(i)) there exist a set of customer types
C(λ(i−1), λ(i)) and a set of servers S(λ(i−1), λ(i)) such that they form
a cut, which is the unique minimal cut for all λ in the interval.



SKILL BASED PARALLEL SERVICE UNDER FCFS-ALIS 275

!

f (!)

!(1) = µ
"
S(1)

#
C
(1)

µ

!(2) = µ
"
S(2)

#
C
(2)

!(3) = µ
"
S( 3)

#
C
(3)

!(4 ) = µ
"
S(4)

#
C
(4 )

!

!(1$#
C(1)

)+ µ"
S(1)

!#
C(4)

+ µ(1$ "
S(4)

)

!(#
C(3)

+#
C(4 )

)+ µ("
S(1)

+ "
S(2)

)

Fig 8. Maximal flow as a function of λ.

C
(1)

C
(2)

C
(��

C
��)

S
(1)

S
(2)

S
���

S
��)

o s

1

2

3

4

5

2

3

4

Fig 9. Decomposition of servers and of customer types.

(iii) The sets C(λ(i−1), λ(i)) are decreasing in i and the sets S(λ(i−1), λ(i))
are increasing in i, in the sense that: C(λ(0), λ(1)) ⊃ C(λ(1), λ(2)) ⊃
· · · ⊃ C(λ(L), λ(L+1)) and S(λ(0), λ(1)) ⊂ S(λ(1), λ(2)) ⊂ · · · ⊂
S(λ(L), λ(L+1)).

Theorem 3.6 induces a decomposition of the servers and of the customer
types, as detailed in the next corollary. The decomposition is illustrated in
Fig. 9. In this figure we have minimal cuts, which belong to a case where
there are 4 breakpoints in f(λ), which correspond to 5 intervals, and 5
minimal cuts as numbered.
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Corollary 3.7. If the maximal flow f(λ) has breakpoints 0 = λ(0) <
λ(1) < · · · < λ(L) < λ(L+1) = ∞, then there is a unique partition of the set
of servers into non-empty subsets S(1), . . . ,S(L) and of the set of customer
types into non-empty subsets C(1), . . . , C(L), such that:

(i) The minimal cut for λ(i−1) < λ < λ(i) consists of

C(λ(i−1), λ(i)) =
⋃

k≥i

C(k), S(λ(i−1), λ(i)) =
⋃

k<i

S(k),

for i = 1, 2, . . . , L+ 1.
(ii) The maximal flow f(λ) where λ(i−1) < λ < λ(i), is:

f(λ) = λ
∑

k≥i

αC(k) + µ
∑

k<i

βS(k) ,

for i = 1, . . . , L+ 1.
(iii) The values of the breakpoints are:

λ(1) = µ
βS(1)

αC(1)

< λ(2) = µ
βS(2)

αC(2)

< · · · < λ(L) = µ
βS(L)

αC(L)

.

(iv) Consider the subsystem composed of servers S(i) and of customer types
C(i), with arrival rates λαc for customers of type c. Then this system
is stable for λ < λ(i) and unstable for λ ≥ λ(i).

(v) Consider the subsystem composed of servers
⋃L

k=i S(k), and of customer

types
⋃L

k=i C(k), with arrival rates λαc for customers of type c. Then
this system is stable for λ < λ(i) and unstable for λ ≥ λ(i).

(vi) For λ(i−1) < λ < λ(i) the maximal flow solution of the whole system
will have zero flow on arcs from customers c ∈ C(k) to servers mj ∈ S(l)

for all k ≥ i > l.

The following corollary gives another way of solving the max flow problem
and decomposing the sets of servers and customer types, and pinpoints the
nature of this decomposition:

Corollary 3.8. The sets C(i),S(i) have the following characterization:

C(i) = argminC⊆C\
⋃

k<i C
(k)

βS(C)\
⋃

l<i S
(l)

αC
, S(i) = S(C(i))\

⋃

l<i

S(l).

Intuitively, the picture is as follows: Under complete resource pooling
C(1) = C, S(1) = S. When there is no resource pooling, for some subsets
of customers, the requirement that αC < βS(C) is violated. As λ increases,



SKILL BASED PARALLEL SERVICE UNDER FCFS-ALIS 277

the subset of customers, which have the least value of βS(C)/αC , becomes

overloaded when λ reaches µ
βS(C)

αC
, and this defines C(1) and S(1). This leaves

servers S\S(1) to serve the remaining customer types C\C(1). Note that even
if c ∈ C\C(1) can be served by a server in S(1), this will not happen in the
max flow solution, since all the servers in S(1) are fully occupied by C(1).
The remaining servers and customer types now behave like a subsystem

with α̃c =
αc

1−α
C(1)

, β̃mj
=

βmj

1−β
S(1)

. If in the remaining subsystem,
β̃S(C)

α̃C
≥ 1

for all subsets, then L = 2 and the minimum of these ratios will be reached
by S\S(1), C\C(1). Else, if the minimum is again < 1, the subsets C,S(C)
with minimal ratio of βS(C)\S(1)/αC will be S(2), C(2), and the servers in S(2)

will become overloaded when λ = µ
β
S(2)

α
C(2)

, and so on (see Figs. 8 and 9).

Example (continued). We return to the 5 server 5 customer types system
of the example in Section 3.2. We consider long term behavior as a function
of the input rate λ.

The system is stable for 0 < λ < 40.
At λ = 40 the inflow of customers of type c1 reaches λc1 = 20 which equals

the capacity of S(c1) = {m1,m2}. For all λ > 40, servers m1,m2 are
fully occupied by a queue of customers of type c1, which grows at rate
1
2λ− 20.

At λ = 53.3̄ the inflow of customers of types c2, c3 reaches λ{c2,c3} = 20
which is the capacity of the two remaining servers that can serve them,
m3,m4. For all λ > 53.3̄ servers m3,m4 are fully occupied by a queue
of customers of types c2, c3, which grows at rate 6

16λ− 20.
At λ = 80 the inflow of customers of types c4, c5 reaches λ{c4,c5} = 10 which

is the capacity of the last remaining server that can serve them, m5.
For all λ > 80 server m5 is fully occupied by a queue of customers of
types c4, c5, which grows at rate 2

16λ− 10.

For λ > 80 all servers are overloaded, the system is split to three subsys-
tems: S(1), C(1) = (c1,m1,m2), S(2), C(2) = (c2, c3,m3,m4), and S(3), C(3) =
(c4,m5,m5).

3.5. Limiting behavior of overloaded system under incomplete resource
pooling. Following our study of the fluid limits of our system, and the de-
composition of the set of servers and of customer types when there is no
resource pooling, we can now describe the limiting behavior of our system
as t → ∞ in the case that there is no resource pooling, as a function of the
total arrival rate λ. In the following theorem we use the notation developed
in Section 3.4.
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Theorem 3.9. Assume the system has incomplete resource pooling, as
in Section 3.4 and that the total arrival rate is λ(l) < λ < λ(l+1). Then as
t → ∞ the following convergences will occur for the state of the system,
s = (S(t), Q1(t), . . . , QJ(t)):

(i) The permutation S(t) as t → ∞ will consist of a permutation of S(1)

followed by a permutation of S(2) and so on up to a permutation of
S(l), followed by a permutation of the remaining servers.

(ii) As t → ∞, the queue between the last server of S(k) and the first server
of S(k+1), for k = 1, . . . ,min{l, L − 1} will diverge, growing at a rate

µ(
β
S(k+1)

α
C(k+1)

− β
S(k)

α
C(k)

)α⋃
j≤k C(j) .

If l = L, i.e. λ > λL, the queue after the last server will grow at rate:

λ− µ
β
S(L)

α
C(L)

.

(iii) For k = 1, . . . , l, the probability distribution of the permutation of
S(k) and the queue length between the servers S(k) will converge to the
stationary distribution of the FCFS infinite matching model for the
subsystem of C(k),S(k).

(iv) If l < L, then the probability distribution of the permutation of the re-
maining servers and the queue lengths between them and behind the last
of them, and the ordered set of idle servers, will converge to the station-
ary distribution of the stable system consisting of

⋃

k>l C(k),
⋃

k>l S(k),
as given by Theorem 2.1.

The diverging queues will diverge almost surely. The convergence of the prob-
abilities to stationary probabilities will be in total variation distance. The
overloaded subsystems and the remaining stable system will converge in dis-
tribution to independent processes.

Proof. It follows from the results of Sections 3.2 and 3.4 that the fluid
limits of the processes Yk for the various servers will eventually coalesce into
subsets, which will move together, with the servers of the subsets S(k) moving
together at rates increasing with k for k = 1, . . . , l, and the remaining servers
will move together with A(t) at the rate λ. This implies (i). The rates in (ii)
are obtained directly from (3.6) and (3.7).

It is then seen that for each subsystem the transition rates, conditional
on the diverging queues being > 0 are exactly those of the FCFS matching
model for the subsystems k = 1, . . . , l, and for the remaining subsystem
they are equal to those of a stable system, consisting of

⋃

k>l C(k),
⋃

k>l S(k).
Parts (iii) and (iv) then follow by Lemma 1.

The independence follows, since the various subsystems have independent
transitions, given that the diverging queues are > 0.
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4. Discussion of many server scaling. In this section we give some
indications on the behavior of the parallel service system under FCFS-ALIS,
when the number of servers is large. Our assumption now is that there are
nj servers of type mj, j = 1, . . . , J , so that the total service capacity is
µ =

∑

njµmj
of which a fraction βj = njµmj

/µ belongs to servers of type
mj . The total arrival rate is λ =

∑

c λc and a fraction αc of them are of
type c. We also assume that customers of type c have patience distribution
Fc. We fix αc, Fc, βj , µmj

and let nj and λ increase. The following discussion
is heuristic, and will require further research to verify it.

Our main premise is that the behavior of the system with many servers
will be on two time scales:

The total number of customers waiting, the rate of abandonment, and
the number of idle servers behave similar to a system with a single
customer type and a single server type. This is also indicated in the
seminal paper of Talreja and Whitt [34].

The allocation of servers to customers will behave as in the infinite match-
ing model, similar to the limiting behavior that we found in Section 3.

We assume first that complete resource pooling holds, and discuss many
server behavior under the three regimes, of QD (quality driven, total offered
load < 1), ED (efficiency driven, overloaded system), and QED (quality and
efficiency driven, critically loaded). Stability in all these regimes is guar-
anteed by the abandonments. When there is no resource pooling we then
discuss decomposition similar to Sections 3.4, 3.5. Finally, we discuss some
generalizations.

4.1. Resource pooled system under QD regime. When the number of
servers is large and the system is underloaded (λ < µ), there will always
be some idle servers, there will be no waiting time and no customers will
abandon. In that case, our main premise is that, because of ALIS, all servers,
regardless of their types, will have the same idle time distribution. Hence,
a server of type mj will have cycles of serving at rate µmj

, and then idling
for a random time T which has the same distribution for all j. Furthermore,
the types of the servers which become idle in sequence are i.i.d.

As the λ, nj → ∞, the idle time T will become constant, and the fraction
of services of type mj will then be

(4.1) β̃j = nj

/

λ

(

1

µmj

+ T

)

The sequence of matches will then behave as in the infinite bipartite match-
ing model, with α and β̃.
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4.2. Resource pooled system under ED regime. When the number of
servers is large and the system is overloaded (λ > µ), there will always
be customers waiting in the system. In that case, our main premise is that,
because of FCFS, all customers, regardless of their types, will have the same
waiting time distribution (see [34]), from which the abandonment rates can
be obtained. Furthermore, the types of the customers that are served in
sequence will be i.i.d.

As the λ, nj → ∞, the waiting time W will become constant. The total
service rate λ̃, of which a fraction α̃c are of type c, will then be:

(4.2) λ̃ = λ
∑

c∈C

αc(1− Fc(W )), α̃c =
λαc(1− Fc(W ))

λ̃
.

The sequence of matches will then behave as in the infinite bipartite match-
ing model, with α̃ and β.

4.3. Resource pooled system under QED regime. When λ and nj are
balanced, so that µ− λ = κ

√
λ, and we let λ, nj → ∞, then servers will be

busy almost all the time and almost no customers will abandon. Our premise
then is that customer types and server types in sequence will be i.i.d. The
sequence of matches will then behave as in the infinite bipartite matching
model, with α and β.

4.4. No resource pooling. In that case the system will decompose into
subsystems in a unique way, as in Sections 3.4, 3.5. Each of those subsystems
will have complete resource pooling, and will be in one of the above regimes
and behave accordingly.

4.5. Generalizations. We believe that these results also hold under the
following conditions:

(i) Replace Poisson arrivals by general independent stationary arrival
streams of rates λc. Arrivals will no longer be i.i.d., but dependence
between successive arrivals will be short range.

(ii) Replace independent exponential service times by independent general
service times of rates µmj

. The individual servers will then become
available at times which will form a stationary process, and they will
be almost independent, so that again, types of serves will be i.i.d. in
sequence.

Furthermore, the sequence of matches will still behave as in the infinite bi-
partite matching model, even if we allow customer-server type dependent
service times, i.e., the service duration of a customer depends on both the
customer type and the server type. In that case the calculation of the cor-
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responding rates α̃c and β̃j will be more involved. In a recent paper [1] we
provide some evidence that this is the case by simulation studies.

Acknowledgements. We are very grateful to the referees for pointing
out a gap in our proofs and for the valuable suggestions to improve the
presentation of the paper.

APPENDIX A: PROOFS FOR SECTION 2 OF THE PAPER

A.1. Proof of Theorem 2.1. We proceed in the following steps: We
first obtain the transition rates into state s, we then set up the partial balance
equilibrium equations, finally we check that they are satisfied by πX(s), and
calculate the normalizing constant. The ergodicity condition follows directly
from the expression for the normalizing constant.

Because the proof is quite similar to the proof of product form solution
in [35], we skip some details.

A.1.1. Transitions and transition rates into a state s. Denote
(A.1)

δj(M) =

{ λU({M1,...,Mj})

λU({M1,...,Mj,M})
, if U({M1, . . . ,Mj ,M}) 6= ∅,

0, if U({M1, . . . ,Mj ,M}) = ∅,
j = 1, 2, . . . , J.

With s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ ) we have:

(i) Transition due to a departure, where server becomes idle. The origi-
nating state is

idlekl(s) = (M1, n1, . . . ,Mk, nk − l,Mi+1, l, . . . ,Mi, ni,Mi+2, . . . ,MJ ),

and the transition probability, conditional on service completion by server
Mi+1, is

pk,l(s) = δk(Mi+1)
lδk+1(Mi+1)

nk+1 . . . δi(Mi+1)
ni , k ≥ 1, l = 0, . . . , nk,

p0,0(s) = p1,n1(s).

This transition is illustrated in Fig. 10

(ii) Transition due to a departure and start of a new service. The origi-
nating state is

swapk,l,j(s)

= (M1, n1, . . . ,Mk, nk − l,Mj , l, . . . ,Mj−1, nj−1 + 1 + nj,Mj+1, . . . ,MJ ),
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Fig 11. Transition from state swapk,l,j(s) to state s.

and the transition probability, conditional on service completion by server
Mj , is

qk,l,j(s) = δk(Mj)
lδk+1(Mj)

nk+1 . . . δj−1(Mj)
nj−1 (1− δj−1(Mj)) ,

j = 2, . . . , J, 1 ≤ k < j, l = 0, . . . , nk,

q0,0,j(s) = q1,n1,j(s),

q0,0,1(s) = 1.

This transition is illustrated in Fig. 11.
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(iii) Transition due to an arrival that joins the queue. The originating
state is

wait(s) = (M1, n1, . . . , . . . ,Mi, ni − 1,Mi+1, . . . ,MJ ), ni > 0,

and the transition rate is λU({M1,...,Mi}).

(iv) Transition due to an arrival that activates one of the servers. The
originating state is

activatek(s) = (M1, n1, . . . ,Mi−1, ni−1,Mi+1, . . . ,Mk−1,Mi,Mk, . . . ,MJ),

and the transition rate is λC(Mi)\C({Mk ,...,MJ}) for k = i+1, . . . , J , and in the
case that MJ is activated, we use the convention that k = J + 1, and the
rate is λC(MJ ). This transition is illustrated in Fig. 12.

A.1.2. Partial balance equations. Define:

PMi+1(s) =
i

∑

k=1

nk
∑

l=0

pk,l(s)π(idlek,l(s)) + p1,n1(s)π(idle0,0(s)),

QMj
(s) =



























j−1
∑

k=1

nk
∑

l=0

qk,l,j(s)π(swapk,l,j(s))+

+q0,0,jπ(swap0,0,j(s)), if U({M1, . . . ,Mj}) 6= ∅,

0, otherwise.
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This system actually satisfies partial balance equations which are:

(i) The total probability flux out of state s due to an arrival that activates
a server equals the total probability flux into state s due to a departure
which idles a server:

λC({Mi+1,...,MJ})π(s) = µMi+1PMi+1(s).(A.2)

(ii) The total probability flux out of state s, due to an arrival that joins the
queue, equals the total probability flux into state s, due to a departure
which is followed by another start of service (so that the set of idle
servers is unchanged):

λU({M1,...,Mi})π(s) =

i
∑

j=1

µMj
QMj

(s).(A.3)

(iii) The total probability flux out of state s in which ni = 0 due to a
departure, equals the total probability flux into state s, due to an
arrival of a customer which activates server Mi:

µ{M1,...,Mi}π(s) =

J
∑

k=i+1

λC(Mi)\C({Mk ,...,MJ})π(activatek(s))

(A.4)
+ λC(Mi)π(activateJ+1(s)), ni = 0.

(iv) The total probability flux out of state s in which ni > 0 due to a
departure, equals the total probability flux into state s, due to an
arrival of a customer which joins the queue:

µ{M1,...,Mi}π(s) = λU({M1,...,Mi})π(wait(s)), ni > 0.(A.5)

A.1.3. Verification of the balance equations, calculation of the normaliza-
tion constant, and ergodicity conditions. To prove Theorem 2.1 it remains
to verify that the expression (2.1) satisfies the partial balance equations
(A.2)–(A.5). This is quite straightforward, involving at one step a summa-
tion over coefficients of a binomial distribution. The verification is similar
to the corresponding verification of Theorem 2 in [35].

Calculation of the normalization constant (2.3) is straightforward from
summation of the geometric sequences. Note that it is the inverse of a sum
of J ! terms.

When calculating the normalizing constant, it is clear that it is finite only
if all the geometric sums are finite, and that is the case if and only if the
ergodicity condition (2.2) holds.

This completes the proof.
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A.2. Proof of Theorem 2.2.

Proof. Comparing (2.1) and (2.6), and recalling that πX and πY both
sum to 1, what we have to show is that for some constant D (which is the
same for any M1, . . . ,Mi):

i
∏

j=1

λMj
({M1, . . . ,Mj−1}) = D

∑

Mi+1,...,MJ∈P({Mi+1,...,MJ})

J
∏

j=i+1

(

λC({Mj ,...,MJ})

)−1
.

We take

D =

J
∏

j=1

λMj
({M1, . . . ,Mj−1}).

By the assignment condition (2.5), D is the same for all permutations of
M1, . . . ,MJ , and so it is the same for all choices of M1, . . . ,Mi. We note that

i
∏

j=1

λMj
({M1, . . . ,Mj−1}) = D

(

J
∏

j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
.

Hence we need to show that:

(

J
∏

j=i+1

λMj
({M1, . . . ,Mj−1})

)−1

(A.6)

=
∑

Mi+1,...,MJ∈P({Mi+1,...,MJ})

J
∏

j=i+1

(

λC({M j ,...,MJ})

)−1
.

This is exactly statement (8) in [5], with the following change of notation:

(Mi+1, . . . ,MJ ) is (jm, jm−1, . . . , j1) in [5],

λC(S) is η(S) in [5],

λM (S), M ∈ S is ηj(S), j ∈ S in [5].

This statement is proved there.

APPENDIX B: PROOFS FOR SECTION 3 OF THE PAPER

B.1. Proof of Theorem 3.1.

Proof. We note that αU({M1,...,Mi}) < β{M1,...,Mi} implies that
λU({M1,...,Mi}) < µ{M1,...,Mi} whenever λ < µ, and so the system is ergodic
for all λ such that λ < µ, by Theorem 2.1. This proves (i).
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Next we observe that the value of B̃(ρ) is:

B̃(ρ) =





∑

M1,...,MJ∈P(S)

J−1
∑

i=0

(

i
∏

j=1

(

β{M1,...,Mj} − ραU({M1,...,Mj})

)−1

×
J
∏

j=i+1

(

ραC({Mj ,...,MJ})

)−1 )

+
∑

M1,...,MJ∈P(S)

(

(1− ρ)−1
J−1
∏

j=1

(

β{M1,...,Mj} − ραU({M1,...,Mj})

)−1 )




−1

.

The term (1−ρ)−1 is there, because of β{M1,...,MJ} = αU({M1,...,MJ}) = 1. All
the expressions inside the square brackets remain bounded as ρ ր 1, except
for (1− ρ)−1, which tends to ∞. Hence:

lim
ρր1

B̃(ρ) = 0,

lim
ρր1

B̃(ρ)(1 − ρ)−1

=





∑

M1,...,MJ∈P(S)

J−1
∏

j=1

(

β{M1,...,Mj} − ραU({M1,...,Mj})

)−1





−1

= BI .

For a single permutationM1, . . . ,MJ with serversM1, . . . ,Mi busy, i < J ,
we calculate:

π(M1, ·, . . . ,Mi, ·,Mi+1, . . . ,MJ )

=

∞
∑

n1,...,ni=0

π(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ )

= B̃(ρ)

i
∏

j=1

(β{M1,...,Mj} − ραU({M1,...,Mj}))
−1

J
∏

j=i+1

(ραC({Mj ...,MJ}))
−1.

All terms in this expression, except B̃(ρ), remain bounded, and hence the
whole expression tends to 0 as ρ ր 1. This proves (ii).

On the other hand, when all J servers are busy, we calculate:

π(M1, n1, . . . ,MJ−1, nJ−1,MJ , ·) =
∞
∑

nJ=0

π(M1, n1, . . . ,MJ , nJ)

= B̃(ρ)
J−1
∏

j=1

(

ραU({M1,...,Mj})

)nj

β{M1,...,Mj}
nj+1 (1− ρ)−1,
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where we again used β{M1,...,MJ} = αU({M1,...,MJ}) = 1. As ρ ր 1, B̃(ρ)(1 −
ρ)−1 → BI , and we obtain (iii).

To prove (iv) we note that the transition rates of the queueing process
X(t) are bounded between λ and λ+µ, and so the jump chain and the con-
tinuous process are both ergodic or both non-ergodic at the same time. Fur-
thermore, all the stationary probabilities of states, when not all the servers
are busy, will tend to zero for the jump chain of the queueing process as well
as for the continuous queueing process, as ρ ր 1. Finally, the transition rate
at which jumps occur, when all the servers are busy, is λ+ µ, independent
of the state. Hence the stationary probabilities for the jump chain and for
the continuous time process, for states when all servers are busy, will tend
to the same limits as ρ ր 1. This proves (iv).

B.2. The fluid model and proof of Theorem 3.3. The proof of
Theorem 3.3 proceeds in three logical steps. First we prove that fluid limits
exist. Next we show that every fluid limit obeys a set of rules that determine
its dynamics. Finally, because these dynamics determine a unique fluid limit,
the convergence to this fluid limit follows. We start with some preliminaries.

We add another component to our description of the system: We let TS,j(t)
be the accumulated time over (0, t] that the order of the servers is S and the
j server in the order of servers is serving a customer, for all j = 1, . . . , J and
all S ∈ P where P is the set of all the permutations of servers m1, . . . ,mJ .
We let T (t) denote the vector of all the TS,j(t). The dynamics of our sequence
of systems are fully described by Z(t) = (A(t), T (t), Y (t), S(t), Q(t)).

We study the sequence of systems with random paths Zn(t, ω) = (An(t, ω),
T n(t, ω), Y n(t, ω), Sn(t, ω), Qn(t, ω)), and use the scaling:

Z̄n(t, ω) = (Ān(t, ω), T̄ n(t, ω), Ȳ n(t, ω), S̄n(t, ω), Q̄n(t, ω))

= (An(nt, ω)/n, T n(nt, ω)/n, Y n(nt, ω)/n, Sn(nt, ω), Qn(nt, ω)/n),

as n → ∞. We defined initial conditions that guarantee Ān(0, ω) → Ā(0)
and Ȳ n(0, ω) → Ȳ (0), independent of ω. We also have by definition that
T n(0, ω) = 0 so T̄ (0) = 0.

For the times of events, the types of customers, and the identities of servers
completing service, the functional strong law of large numbers (FSLLN) ap-
plies. We now consider only the set of sample paths ω for which there is
FSLLN convergence. We exclude all other sample paths, which are a set
of measure zero, hence all our following statements hold almost surely. This
means in particular that the number of type c customers among c−qn , . . . , c−1,
divided by n converges to Ā(0)αc. Our first proposition follows immediately
from the FSLLN:
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Proposition B.1. Equations (3.5) and (3.7) hold almost surely.

Proof. (3.5) is immediate. To show (3.7) recall that Qj(t) consists of
those customers between Yj(t) and Yj+1(t) which belong to U({M1, . . . ,Mi}),
and so Qi(t) ∼ Binomial

(

Yi+1(t)− Yi(t), αU({M1,...,Mi})

)

. Hence Qn
i (nt, ω)/n

converges by FSLLN to the r.h.s of (3.7) almost surely.

The next three propositions examine the existence of fluid limits.

Proposition B.2. Fluid limits of T̄ n(t), Ȳ n(t) exist and are absolutely
continuous.

Proof. The arguments are similar to Dai and Lin [21]. We consider
first T n(t, ω). We have for every S, j that the cumulative time T n

S,j(t, ω)
is Lipschitz continuous (with constant 1), and this property is retained by
T̄ n
S,j(t, ω) = T n

S,j(nt, ω)/n. Hence for every sample path ω we have a se-
quence of equi-continuous functions, and therefore (this is the argument of
[21], based on the Arzela-Ascoli Theorem, see Royden [33]) there exists a
subsequence, indexed by divergent r such that T̄ r

S,j(t, ω) converges to T̄S,j(t)
as r → ∞, u.o.c.. Since the number of components of T n(t) is finite (in fact
J × J !), we can by a standard argument select successive subsequences and
end up with a subsequence r such that for all components simultaneously,
T̄ r(t, ω) → T̄ (t).

To examine Y r(t, ω) we partition the time during which Y r
j (t, ω) is evolv-

ing into subsets of time given by the T r
S,j(t, ω). Consider now the service com-

pletions of the server in position j during the time accumulated by T r
S,j(t, ω):

The server in position j is Mj, with service times that are exponentially
distributed with rate µMj

. By the memoryless property of the exponential
distribution, the total number of service completions by server Mj condi-
tional of the value of T r

S,j(t) is distributed as N r
S,j ∼ Poisson

(

µMj
T r
S,j(t, ω)

)

,
or to put it more generally, N r

S,j(t) is a Poisson process with time depen-

dent rate µMj

d
dt
T r
S,j(t). To find the next customer to serve, while the per-

mutation of the servers is S, server Mj will skip all the customers which
have already been served by the servers which are ahead of him in the
permutation, and he will also skip all the customers which can only be
served by servers which are behind him in the permutation. For a fixed per-
mutation S, counting from one customer that Mj can serve to the next,
the number of customers is distributed as a Geometric random variable.
Again, by the memoryless property of the Geometric distribution, we have
that for every job that server Mj will complete during T r

S,j(t, ω), he will
move ahead over a random number of customers which is geometrically
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distributed, with a parameter which we denote pS,j (we will calculate it
later).

We let Y r
S,j(t, ω) be the total number of customers that the server

in position j passes (serving or skipping them) during the accumulated
time T r

S,j(t, ω). Then by Wald’s equation this will have expected value
µMj

T r
S,j(t, ω)/pS,j (in fact it will be distributed as a Poisson random vari-

able with that parameter). This means that Y r
S,j(t) is a non-homogenous

compound Poisson process. Hence, by the functional strong law of large
numbers, we get that Ȳ r

S,j(t, ω) = Y r
S,j(rt, ω)/r → T̄S,j(t)µMj

/pS,j = ȲS,j(t)
as r → ∞ u.o.c. This is for the same sequence of r that defines all the
T̄S,j. Finally, Y

r
j (t, ω) = Y r

j (0) +
∑

S∈P Y r
S,j(t, ω), so Ȳ r

j (t, ω) → Ȳj(t) =

Ȳj(0) +
∑

S∈P ȲS,j(t) as r → ∞ u.o.c.
To complete the proof, we note that since T̄j(t) are Lipschitz contin-

uous with constant 1, Ȳj(t) are Lipschitz continuous, with a constant
max{S,j} µMj

/pS,j.

Limiting fluid behavior of Sn(nt, ω) is more involved. We noted that while
S(t, ω) is a function from [0,∞) to the permutations P, fluid limits S̄(t)
need to be partitioned permutations. To discuss fluid limits of S̄n(t, ω) =
Sn(nt, ω) we need to make some definitions.

Definition B.3. For a fluid limit Ȳ1(t) ≤ · · · ≤ ȲJ(t) the order O(t) is
a partition of 1, . . . , J so that i, j belong to the same subset if and only if
Ȳi(t) = Ȳj(t). In addition, the subsets are ordered by ascending indexes.

An order O′ is a refinement of an order O if every subset in O′ is contained
in a subset of O.

A simple collision of Ȳ (·) and O(·) happens at t if O(τ) is constant for
τ ∈ (t− ǫ, t) and for τ ∈ (t, t + ǫ) for some ǫ > 0, but the partitions in the
two intervals are different. In that case the partitions in the two intervals
are refinements of O(t).

Definition B.4. A function S̄(t) from R+ to the set of partitions of
s1, . . . , sJ is said to be a fluid limit compatible with Ȳ (t) if:

For every t, S̄(t) is an ordered partition of a permutation M1, . . . ,MJ ac-
cording to O(t). That means that S̄(t) consists of subsets (S1, . . . , SL),
O(t) consists of subsets (O1, . . . , OL), and Mj ∈ Sl if j ∈ Ol.

In every interval in which O(t) is constant, S̄(t) is a constant partition of
a constant permutation.

If O(t) has a simple collision at t, then S̄(t) is a partition of the same per-
mutation as in the interval preceding t, and of the same permutation
as in the interval succeeding t.
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Definition B.5. We say that S̄r(t, ω) converges to S̄(t) as r → ∞ if for
any interval t ∈ [0, T ] there is an n0, so that S̄(t) is an ordered partition of
S̄r(t, ω) for all r > n0.

The following two proposition summarize what we can say about fluid
limits of Sn(nt, ω).

Proposition B.6. Assume that for a divergent sub-sequence r,
Ȳ r(t, ω) → Ȳ (t), and consider a closed interval [t′, t′′] in which O(t) is
constant. Then there exists a constant partition S̄ = S̄(t) of the servers
according to O(t), such that for some divergent subsequence r′ of r, the par-
tition of Sr′(r′t, ω) according to O(t) is equal to S̄ for all t ∈ [t′, t′′] and for
all r′.

Proof. Because O(t) is constant over [t′, t′′] and Ȳ (t) are continuous,
there will be an ǫ > 0 such that components of Ȳ (t) that belong to different
subsets in O(t) are never closer than 3ǫ. By the u.o.c. convergence of Ȳ r(t, ω)
there is a n0 such that for all r > n0, |Ȳ r(t, ω)− Ȳ (t)| < ǫ for all t ∈ [t′, t′′],
so components of Ȳ r(t, ω) for r > n0 which belong to different parts of O(t)
never meet in the interval [t′, t′′]. But this implies that for every r > n0, the
partition of the permutation of servers Sr(rt, ω) into the subsets determined
by O(t) is a constant partition for all t ∈ [t′, t′′] (we are not saying it is the
same constant partition for different values of r). But the total number of

possible partitions is finite (it is J
J+1

(2J)!
J ! ). So at least one of them appears

in infinitely many r > n0, which defines the constant partition S̄ and the
subsequence r′.

Proposition B.7. Consider a fluid limit Ȳ r(t, ω) → Ȳ (t). If the number
of ‘collisions’, instants where O(t) changes, is finite, then for arbitrarily large
T , there exists a fluid limit S̄(t) which is compatible with Ȳ (t) over [0, T ],
and a divergent subsequence r′ of r such that S̄r′(t, ω) converges to S̄(t) as
r′ → ∞.

Proof. Assume 0 < t1 < t2 < · · · < tM < ∞ are all the collision
times. Because there is only a finite number of them they are all simple.
Consider the closed intervals [ti − δ, ti + δ], i = 1, . . . ,M , and [0, t1 − δ],
[ti + δ, ti+1 − δ], [tM + δ, T ], i = 1, . . . ,M − 1, for some small δ > 0 and
arbitrarily large T . Consider the interval [0, T ]. By the argument of the
previous Proposition B.6, we can find ǫ > 0 such that all components of
Ȳ (t) which belong to different parts of O(t) are never closer than 3ǫ, and
we can then find n0 such that |Ȳ r

j (t, ω) − Ȳj(t)| < ǫ for all j = 1, . . . , J ,
0 ≤ t ≤ T and r > n0.
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It is now easy to see that for every r > n0, when we let δ → 0, that there
is a fluid limit candidate S̄r(t) which is compatible with Ȳ (t), so that S̄r(t)
is an ordered partition of the permutation S̄r(t, ω) for all t.

We now use again the argument of the previous Proposition B.6: Since
there are only 2M+1 intervals, the total possible sets of 2M+1 partitions is a
finite number. Hence there is one candidate S̄(t) = S̄r(t) which appears with
infinitely many r. This gives us the fluid limit, and the divergent subsequence
r′, for which S̄r′(t, ω) = S̄(t) for all r′.

To summarize, we now know that fluid limits Ā(t), Ȳ (t), T̄ (t), Q̄(t) exist
and are Lipschitz continuous for all t ≥ 0. We also know, by Proposition B.7,
that if Ȳ (t) have only a finite number of collisions then also a partition S̄(t)
compatible with Ȳ (t) exists for all t ≥ 0, and by the same argument, if
Ȳ (t) have only a finite number of collisions in [0, T ] then a partition S̄(t)
compatible with Ȳ (t) exists for t ∈ [0, T ].

Once we established existence of fluid limits we will in the next proposi-
tions investigate their dynamics. It will turn out that these determine the
fluid limits uniquely for all t ≥ 0.

Proposition B.8. Consider a fluid limit for which Ȳ1(t) < Ȳ2(t) <
· · · < ȲJ(t), and let S̄(t) = (M1, . . . ,MJ ). Then almost surely at all regular t:

(B.1)
d

dt
Ȳi(t) = µ

βMi

αU({M1,...,Mi}) − αU({M1,...,Mi−1})
, i = 1, . . . , J.

Proof. Consider Ȳ (t) = limr→∞ Ȳ r(t, ω). Because Ȳi are continuous,
there exists ∆ > 0 such that for all τ ∈ (t − ∆, t + ∆) the order of Ȳi is
unchanged, Ȳ1(τ) < Ȳ2(τ) < · · · < ȲJ(τ), and so for r large enough, for
τ ∈ (t − ∆/2, t + ∆/2), Ȳ r

1 (τ, ω) < Ȳ2
r
(τ, ω) < · · · < Ȳ r

J (τ, ω), and so we
have, for large enough r that Y r

1 (s, ω) < Y r
2 (s, ω) < · · · < Y r

J (s, ω), s ∈
I = (rt − r∆/2, rt + r∆/2). In particular this means that servers do not
overtake each other, and the order of the servers is given by the permutation
Sr(s, ω) = (M1, . . . ,MJ) and it is unchanged over s ∈ I. Also, by (3.7),
Q̄i(s) > 0, i = 1, . . . , J − 1, for s ∈ I.

Consider now the movement of server Mi, in the time interval s ∈ I. Since
Q̄i(t) > 0, we have that Qr

i (s, ω) > 0 for s ∈ I, and so server Mi will be
busy all the time. Hence, during the time interval I, he will complete a total
of L services, where L ∼ Poisson(µβMi

r∆). Server Mi will serve customers,
which are in C(Mi), and which have not been served by any of the servers
Mi+1, . . . ,MJ , i.e he will serve customers in U({M1, . . . ,Mi})\U({M1, . . . ,
Mi−1}). Hence, he will skip all customers which are not in U({M1, . . . ,Mi})\
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U({M1, . . . , Mi−1}), and so at each service completion, he will move a ran-
dom number of places G in the sequence of customers, where G is a geomet-
ric random variable with parameter (probability of success) αU({M1,...,Mi})−
αU({M1,...,Mi−1}). Hence, the total change in Y r

i over the interval I will be:

Yi(rt+ r∆/2)− Yi(rt− r∆/2) =

L
∑

l=1

Gl, with Gl i.i.d distributed like G.

Hence:

Ȳ r
i (t+∆/2)− Ȳ r

i (t−∆/2) =

∑L
l=1Gl

r
,

which, by Wald’s equation and the FSLLN, converges as r → ∞ to

Ȳi(t+∆/2)− Ȳi(t−∆/2) = ∆µβMi

1

αU({M1,...,Mi}) − αU({M1,...,Mi−1})

from which (B.1) follows.

Proposition B.8 clarifies how single isolated servers move in the fluid lim-
its. The next proposition studies movement of servers which stay together
in the fluid limit.

Proposition B.9. Consider a fluid limit for which Ȳk−1(τ) < Ȳk(τ) =
· · · = Ȳl(τ) < Ȳl+1(τ) for some k < l and for all τ ∈ (t − ∆, t + ∆). Let
S̄(τ) = (S′, {Mk, . . . ,Ml}, S′′}) for the same range of τ , where S′, S′′ are
the subsets of servers preceding and succeeding Mk, . . . ,Ml (their order may
be known, but it is irrelevant here). Then:

(B.2)
d

dt
Ȳi(t) = µ

β{Mk,...,Ml}

αU({M1,...,Ml}) − αU({M1,...,Mk−1})
, i = k, . . . , l.

Proof. We consider the processes Y r
k (s, ω), . . . , Y

r
l (s, ω), s ∈ I = (rt −

r∆/2, rt + r∆/2), and their fluid scaling, Ȳ r
k (τ, ω), . . . , Ȳ

r
l (τ, ω), τ ∈ (t −

∆/2, t + ∆/2). As before, because Q̄k−1(τ) > 0, Q̄l(τ) > 0, for r large
enough these processes move in isolation from the other Yj during s ∈ I, and
they consist of the movement of the fixed set of servers S = {Mk, . . . ,Ml}.
Note that these servers may change their order many times during the time
interval I. For r large enough, Ȳ r

j is arbitrarily close to Ȳj uniformly over

(t −∆/2, t +∆/2). Hence for r large enough, we have that Ȳ r
k (t −∆/2) ≈

· · · ≈ Ȳ r
l (t−∆/2), and also Ȳ r

k (t+∆/2) ≈ · · · ≈ Ȳ r
l (t+∆/2), in the sense

that ≈ will be a distance, which is negligible relative to ∆.
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The servers in S are working all the time, so they will process a total of
L ∼ Poisson(µβ{Mk ,...,Ml}r∆). They will all start approximately at the same
place, and end up approximately at the same place, processing all the cus-
tomers of types in U({M1, . . . ,Ml})\U({M1, . . . ,Mk−1}, and skipping all the
other customers, between their approximately common starting and ending
positions. The total distance travelled by all the processors in S will there-
fore be approximately equal to

∑L
l=1 Gl where Gl are again i.i.d. geometric

random variables with probability of success αU({M1,...,Ml})−αU({M1,...,Mk−1}).
Thus, proceeding to the limit as in the proof of Proposition B.8, we get

that

Ȳi(t−∆/2)− Ȳi(t+∆/2) = ∆µ
β{Mk ,...,Ml}

αU({M1,...,Ml}) − αU({M1,...,Mk−1})

and (B.2) follows.

For the next proposition we will make use of the following elementary
lemma, the proof of which may be found in [22]

Lemma 2. Let g(t) be an absolutely continuous nonnegative function on
t ≥ 0 and let ġ(t) denote its derivative whenever it exists.

(i) If g(t) = 0 and ġ(t) exists, then ġ(t) = 0.
(ii) Assume the condition that for some ǫ > 0, whenever g(t) > 0 and ġ(t)

exists, then ġ(t) < −ǫ. Then g(t) = 0 for all t > δ where δ = g(0)/ǫ.
Furthermore g(·) is nonincreasing and hence, once it reaches zero, it
stays there forever.

Proposition B.10. Assume that complete resource pooling holds, and
that we start from Q̄i(0) = 0, i = 1, . . . , J − 1, Q̄J(0) > 0. Then for some
∆ > 0, we will have Q̄i(t) = 0, i = 1, . . . , J−1, and d

dt
Ȳi(t) = µ, i = 1, . . . , J ,

for 0 < t < ∆.

Proof. By continuity of Q̄ we can find ∆ > 0 such that Q̄J(t) > 0, 0 <
t < ∆, and so during 0 < t < ∆ all servers will be busy. We wish to show
that all the servers move at the same rate. We will show that indeed, if
Q̄i(t) > 0 at some 0 < t < ∆, then d

dt
Q̄i(t) < −ǫ < 0 which by Lemma 2

implies that Q̄i(t) = 0, i = 1, . . . , J − 1 for 0 < t < ∆. Applying formula
(B.2) to S, we then get d

dt
Ȳi(t) = µ for 0 < t < ∆.

Assume then that Q̄k(t) > 0 for some k, at a regular time t (i.e. all
derivatives exist at t). Let i be such that i = min{k : Q̄k(t) > 0} and
d
dt
Ȳ1(t) = · · · = d

dt
Ȳi(t), and let j be such that j = max{k : Q̄k(t) > 0} and
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d
dt
Ȳj+1(t) = · · · = d

dt
ȲJ(t), where 1 ≤ i ≤ j ≤ J − 1. Consider the partition

S̄(t) = (S1, S2, S3) where S1 = {M1, . . . ,Mi}, S2 = {Mi+1, . . . ,Mj}, S3 =
{Mj+1, . . . ,MJ}. Then the servers S1 move together and the servers S3 move
together at t. Specializing Proposition B.9 to S1 and S3 we have:

d

dt
Ȳ1(t) = µ

βS1

αU(S1)
,

d

dt
ȲJ(t) = µ

βS3

αC(S3)
.

By complete resource pooling, βS1 > αU(S1) and αC(S3) > βS3 , and therefore
d
dt
Ȳ1(t) >

d
dt
ȲJ(t). Looking at all possible sets S1, S3 we can find ǫ > 0 such

that

d

dt
ȲJ(t)−

d

dt
Ȳ1(t) =

J−1
∑

k=1

d

dt
Q̄k(t) < −ǫ.

The proposition follows.

Complete resource pooling is also necessary for all the servers to move
together as the next proposition shows:

Proposition B.11. Assume that there is no complete resource pooling.
Assume we start from Q̄i(0) = 0, i = 1, . . . , J − 1, Q̄J(0) > 0. Then im-
mediately the set of servers will split into more than one subset, which will
move at different rates.

Proof. Assume to the contrary that all servers move together. Then by
Proposition B.10, for all servers d

dt
Ȳi(t) = µ, 0 < t < ∆.

If there is no resource pooling, then there is a subset of servers S such
that βS < αU(S). We will show that for any time t, some of the servers in S
will move at a rate which is < µ. This will prove the proposition.

Assume first that the servers in S move together, and are behind all
other servers. Then the rate at which they move will be, by Proposition
B.9, d

dt
Ȳi(t) = µ βS

αU(S)
< µ. Assume next that the servers in S split into

S = M1 ∪ · · · ∪ ML subsets, each of which moves together, and that all
these subsets are behind all the servers in S. Then as argued in the proof
of Proposition B.10, the servers of the last subset M1 will move at a rate
slower than µ βS

αU(S)
< µ.

Finally, if these subsets of S, which move together, are not behind all the
servers in S, then the servers of the last subset M1 will have more customers
to serve than if they were moving in the very back. Hence the rate of moving
for i ∈ M1 will be:

d

dt
Ȳi(t) ≤

βM1

αU(M1)
≤ βS

αU(S)
< µ.
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We now use the extended definition of complete resource pooling for sub-
sets, Definition 3.2, to prove part (ii) of Theorem 3.3, and equation (3.6),
and to complete the proof of the theorem.

Proof of part (ii) of Theorem 3.3. Because Q̄k−1(t) > 0 and
Q̄l(t) > 0, the servers S = {Mk, . . . ,Ml} will move in isolation of all the
other servers during a time interval t < τ < t + ∆, and will be between
servers S′ and S′′. In their movement, they will process all the customers
in U(S ∪ S′)\U(S′), and only those customers. The condition that S has
complete resource pooling between S′ and S′′ means that in a system that
would consist only of servers S and customer types U(S ∪ S′)\U(S′), with
β̃, α̃ as defined above, there would be complete resource pooling. Hence, by
Propositions B.10, B.11, it would be necessary and sufficient for the servers
of these subsystems to move together. But the movement of the servers S
when they are between S′, S′′ and Q̄k−1(t) > 0 and Q̄l(t) > 0, is exactly as if
they were a separate system, with the only difference that they will actually
also skip over all the customers types in C(S′′). Hence, by Propositions B.10,
B.11 they will stay together if and only if S has complete resource pooling
between S′ and S′′.

Completing the proof of Theorem 3.3. We have shown that fluid
limits exist for t ∈ [0, T ] as long as they include only a finite number of
simple isolated collisions. We have also shown that they satisfy (3.5), (3.6),
(3.7). In Section 3.4 we show, employing results form flows in networks
which are independent of the stochastic model, that the decomposition of a
set of servers into subsets which have complete resource pooling is unique.
Equations (3.5), (3.6), (3.7) and the uniqueness of the decomposition com-
pletely determine the evolution of Z̄(t) = (Ā(t), T̄ (t), Ȳ (t), S̄(t), Q̄(t)), and
shows it to have only a finite number of collisions. This means that every
fluid limit that starts from given Z̄(0) = (Ā(0), T̄ (0), Ȳ (0), S̄(0), Q̄(0)) has
to follow the same unique trajectory, for almost all ω, and for any subse-
quence r for which there is convergence to a fluid limit. But this implies that
Z̄n(t, ω) = (Ān(t, ω), T̄ n(t, ω), Ȳ n(t, ω), S̄n(t, ω), Q̄n(t, ω)) converges almost
surely to the unique fluid limit.

B.3. Maxflow network analog, and proofs for Section 3.4. In
what follows we use the terms, notation, and results as formulated in Ford
and Fulkerson’s book [23], pages 1–14, see also [10]. In a directed network
with origin and terminal o, t, a cut is given by a partition of the nodes into
two sets, one of which includes o and the other includes t. For our network
it is given by {o,C, S} and {t, C, S}, for some subset of customer types C
and some subset of servers S, where C, S are the complements of C, S.
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The capacity of the cut is the sum of the capacities of arcs directed from
the o part to the t part. For our network this will be the sum of the capacities
of the arcs from o to the nodes in C, the arcs from the nodes of S to t, and
the arcs from C to S. For any cut with finite capacity, there are no arcs
from C to S, hence S(C) ⊆ S, and C(S) ⊆ C. We will only consider cuts
with finite capacity. Rather than talk about the cut as a partition, we will
describe a cut by the sets C and S. The capacity of a (C,S) cut is then
λC +µS. The celebrated max-flow min-cut theorem states that the maximal
o to t flow through the network equals the capacity of the minimal cut.

Proof of proposition 3.5. The proof is similar to proofs that were
given in [8, 18], we give it here for completeness.

Sufficiency: We note first that if max flow is λ and the unique minimal
cut consists of the arcs (o, c), c ∈ C, then there exists ǫ > 0 such that for
capacities λc(1 + ǫ) the max flow is λ(1 + ǫ). But then, for any subset of
customer types C, the total flow from o to the nodes in C equals (1 + ǫ)λC ,
so the total flow from C to the server nodes S(C) equals at least (1+ǫ)λC (it
may be more, since S(C) may receive flow from additional customer nodes),
and so the total flow from server nodes S(C) to t equals at least (1 + ǫ)λC .
But the capacity of the arcs from server nodes S(C) to t equals µS(C), so
we must have have µS(C) ≥ (1 + ǫ)λC > λC . Hence the condition (2.2)
for stability of the queueing system with total arrival rate λ holds, and the
system is stable.

Necessity: Assume that the maximal flow is < λ or that the maximal
flow is λ but the cut (C, ∅) consisting of arcs (o, c), c ∈ C is not the unique
minimal cut. Then there exists a minimal cut (C,S) with capacity ≤ λ
where C 6= C and S 6= ∅. But then, as observed above, S(C) ⊆ S. Hence
µS(C) ≤ µS ≤ λ− λC = λC , which contradicts the condition (2.2).

Proof of Theorem 3.6. (i) The maximal flow problem for each fixed
λ is a linear program with feasible and bounded solutions, and when it is
considered with varying λ, it is a parametric linear program. As such it
will have intervals in which the same basis is optimal, and such intervals
will cover the whole line of λ > 0. Within such an interval, the flows of
the optimal solution will be affine functions of λ. The optimal maximal
flow objective f(λ) is clearly a continuous non-decreasing function of λ.
Consider now the optimal flows for λ′ and λ′′ with λ′ < λ′′ and look at
λ = (1 − θ)λ′ + θλ′′. The convex combination of the optimal flows for λ′

and for λ′′ is a feasible flow for λ with objective value (1− θ)f(λ′)+ θf(λ′′),
which can only be suboptimal. This proves the concavity. Finally, if 0 < λ <
min{µm1 , . . . , µmJ

}, the maximal flow is λ, so the slope of the initial interval



SKILL BASED PARALLEL SERVICE UNDER FCFS-ALIS 297

of f(λ) is 1, and for λ such that minc∈C λc > µ, the maximal flow is µ, so
the slope of f(λ) in the last half infinite interval is 0.

(ii) Consider an interval λ(i−1) < λ < λi in which the maximal flow is
f(λ) = a + bλ. For fixed λ0 in the interval, consider a minimum cut, so its
capacity is a+ bλ0. For any other λ in the interval the capacity of this cut is
an affine function of λ, and it will be at least f(λ) because any cut capacity
is an upper bound on the flow. This implies that the capacity of the cut is
equal to a + bλ for all λ(i−1) < λ < λi, and hence the cut is a minimal cut
for all λ(i−1) < λ < λi. Hence we have shown that any minimal cut for λ0 is
in fact a minimal cut for the whole range of values λ(i−1) < λ < λi.

Assume now that there are two different minimal cuts, (C1, S1), and
(C2, S2). The capacity of these minimal cuts will be λαC1+µβS1 and λαC2+
µβS2 respectively, where both expressions are equal to a+ bλ. By Corollary
5.4 in [23], the cut formed by C1 ∩ C2 and S1 ∪ S2 will also be a minimal
cut, with capacity λαC1∩C2 + µβS1∪S2 . Recall that αc > 0 for all customer
types c ∈ C. Hence we cannot have equal capacities for the three cuts for a
range of values of λ unless C1 = C2. Once we have that C1 = C2, we see
that we cannot have equality of the capacities of the three cuts unless also
S1 = S2. This proves the uniqueness in each interval.

(iii) We consider λ′ < λ′′. Let (C,S) be the minimal cut for λ′. We par-
tition the network into two subnetworks, {o,C, S, t} and {o,C, S, t}, with
respective max flows µβS and λ′αC , and min cuts (∅, S) and (C, ∅). We now
look for the max flow in the two networks, when we go from λ′ to λ′′. The
flow for {o,C, S, t} remains unchanged at µβS . The flow for {o,C, S, t} may
increase, with a new minimal cut (C1, S1), where C1 ⊆ C, S1 ⊆ S and max-
imal flow λ′′αC1 +µβS1 . We claim that (C1, S∪S1) is a cut for the combined
network, because there are no arcs from C to S. This cut has a combined
feasible flow of λ′′αC1 + µβS1 + µβS , and is therefore the minimal cut for
λ′′. This is the monotonicity we needed to show. Strict monotonicity holds
if λ′, λ′′ belong to different intervals.

Proof of Corollary 3.7. Parts (i) and (ii) and (iii) follow directly
from the construction of minimal cuts in Theorem 3.6. Parts (iv) and (v)
then follow from Proposition 3.5 and the expression in (iii). Finally, for part
(vi), we note that when λ(i−1) < λ < λ(i), then the servers S(j) receive flow
µβS(j) from customer types C(j) for j = 1, . . . , i−1, so there can be no addi-
tional flow to any of them from nodes of customer types in C(i), . . . , C(L).

Proof of Corollary 3.8. One way to see this is that, by Corollary

3.7 (iv), for each C ⊂ C(i) we have
βS(C)

αC
<

β
S(i)

α
C(i)

, and by (iv),
β
S(i)

α
C(i)

are

monotone increasing in i.
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