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Abstract: Consider a mathematical model with a finite number of ran-
dom parameters. Variance based sensitivity analysis provides a framework
to characterize the contribution of the individual parameters to the to-
tal variance of the model response. We consider the spectral methods for
variance based sensitivity analysis which utilize representations of square
integrable random variables in a generalized polynomial chaos basis. Tak-
ing a measure theoretic point of view, we provide a rigorous and at the
same time intuitive perspective on the spectral methods for variance based
sensitivity analysis. Moreover, we discuss approximation errors incurred by
fixing inessential random parameters, when approximating functions with
generalized polynomial chaos expansions.
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1. Introduction

The aim of this article is to provide a clear and rigorous understanding of spec-
tral methods for variance based sensitivity analysis which employ generalized
polynomial chaos expansions. Our discussion concerns square integrable func-
tions of finitely many independent random variables. The original idea of vari-
ance based sensitivity analysis goes back to the work of I.M. Sobol in [22]. Other
notable subsequent papers in the field include [11, 19, 23]. Unlike local sensitivity
analysis, which uses derivative information to assess the sensitivity of a model
to parameters, variance based sensitivity analysis measures the contribution of
each parameter to the total variance. This is why variance based sensitivity
analysis is also referred to as global sensitivity analysis. Specifically, given a
function X of d random inputs, parameterized by random variables ξ1, . . . , ξd,
a variance based sensitivity analysis aims to quantify the contribution of each
ξi (or subcollections of ξ1, . . . , ξd) to the variance of X . In [22], the ANOVA
decomposition1 of functions of independent random variables was used to char-
acterize a number of useful sensitivity indices. The classical numerical recipes

1The term ANOVA is short for analysis of variance [5]. The ANOVA decomposition is
sometimes referred to as the Sobol decomposition in the literature.
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for computation of these indices involve sampling based methods which, in gen-
eral, require a large number of evaluations of the function X . However, there are
many applications where such function evaluations are expensive; for example,
evaluating X may require solving a time-dependent partial differential equa-
tion. In such cases, sampling based methods tend to become computationally
prohibitive.

On the other hand, in the recent years, the spectral methods for quantifying
parametric uncertainties, which utilize generalized polynomial chaos expansions,
have furnished a host of efficient techniques for analysis of uncertainties in com-
putationally expensive mathematical models; the references [10, 28, 18, 16, 15,
17, 14, 21, 9, 2] represent a small sample of the available literature in this area.
The so called generalized polynomial chaos expansions are Fourier expansions
in appropriately chosen multivariate orthogonal polynomial bases. The theory
of polynomial chaos expansions go back to the seminal work of N. Wiener in [26]
and R. Cameron and W. Martin in [7]. The practical applications of polynomial
chaos expansions often involve a simple special case of the general theory, where
one uses a finite number of canonical random variables to parameterize uncer-
tainties in a mathematical model. Once available, these expansions can be used
to efficiently characterize the statistical properties of square integrable random
variables. In particular, the variance based sensitivity indices can be computed
at a negligible computational cost, once such spectral expansions are available.
This important point was noted in the papers [8, 25] which describe efficient
numerical computation of the sensitivity indices with generalized polynomial
chaos expansions.

Most of the recent papers discussing the computation of variance based sensi-
tivity indices via generalized polynomial chaos expansions begin by a discussion
of the ANOVA (Sobol) functional decomposition followed by the description of
variance based sensitivity indices in terms of this decomposition; subsequently,
after discussing the relation of ANOVA decompositions to polynomial chaos,
they describe the computation of the indices using the polynomial chaos expan-
sion, often through an informal argument. Finally, after all the dust has settled,
one arrives at some simple expressions for the sensitivity indices in terms of
polynomial chaos expansions. We choose to take a different path and consider
the variance based sensitivity indices, which are defined independently of any de-
composition, from a measure theoretic point of view. These sensitivity indices
are defined in terms of conditional expectations of square integrable random
variables. Considering the measure theoretic definition of these indices and not-
ing the probabilistic setup of generalized polynomial chaos expansions reveal a
natural mathematical point of view; moreover, this leads to a direct and intu-
itive way of deriving spectral representations for the conditional expectations
involved and subsequently for the variance based sensitivity indices.

The variance based sensitivity indices can be used to identify model parame-
ters that are most responsible for the model variability. Subsequently, the other,
inessential, parameters may be fixed at some nominal values to reduce the di-
mension of the parameter space; the latter can lead to significant reductions in
the computational overhead for assessing model uncertainties. Moreover, such
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simplifications are expected to result in negligible approximation errors. The
latter point was noted for example in [24] where some useful error estimates,
involving variance based sensitivity indices, were derived. We shall consider this
important point and study such error estimates in the case of random variables
approximated via generalized polynomial chaos expansions.

The structure of this paper is as follows. In Section 2, we list the basic nota-
tion and definitions used throughout the paper. In Section 3, we briefly describe
the basics of generalized polynomial chaos expansions in the context of spectral
methods for uncertainty analysis. In Section 4, which is devoted to variance
based sensitivity analysis, we begin by recalling some fundamental ideas regard-
ing conditional expectation and conditional variance and continue by describing
spectral representations of the conditional expectations involved; the discussion
in the section then proceeds to definitions of the variance based sensitivity in-
dices and their computation via spectral expansions. Section 5 concerns the
approximation errors incurred when inessential variables, characterized as such
through a variance based sensitivity analysis, are fixed at nominal values. Fi-
nally, in Section 6, we provide some concluding remarks.

2. Basic notation and definitions

In what follows (Ω,F , µ) denotes a probability space. The set Ω is a sample
space, F is an appropriate σ-algebra on Ω, and µ is a probability measure.
A real-valued random variable U on (Ω,F , µ) is an F/B(R)-measurable mapping
U : (Ω,F , µ) → (R,B(R)), where B(R) denotes the Borel σ-algebra on R. Given
a random variable U on Ω we denote its expectation and variance by

E [U ] :=

∫

Ω

U(ω)µ(dω), Var [U ] := E
[

U2
]

− E [U ]
2
.

Denote by L2(Ω,F , µ) the Hilbert space of (equivalence classes of) real-valued
square integrable random variables on Ω; this space is equipped with the inner
product (·, ·) : L2(Ω)× L2(Ω) → R given by

(U, V ) = E [UV ] =

∫

Ω

U(ω)V (ω)µ(dω), U, V ∈ L2(Ω,F , µ),

and norm ‖U‖
L2(Ω)

= (U,U)1/2.
Let {ξi}i∈I be a collection of random variables on Ω, where I in an index

set. We denote by σ({ξi}i∈I) the σ-algebra generated by {ξi}i∈I ; recall that
σ({ξi}i∈I) is the smallest σ-algebra on Ω with respect to which every ξi, i ∈ I,
is measurable. In the special case where we have a finite collection of random
variables, {ξi}

d
i=1, we let ξ = (ξ1, . . . , ξd)

T and use the short-hand notation σ(ξ)
to denote the σ-algebra generated by {ξi}

d
i=1.

We use Fξ to denote the distribution function [13, 27] of a (real-valued)
random variable ξ on (Ω,F , µ):

Fξ(x) = µ(ξ ≤ x) = µ
(

ξ−1(−∞, x]
)

, x ∈ R.
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Recall that Fξ uniquely characterizes the probability law Lξ = µ◦ξ−1 of the ran-
dom variable ξ. Moreover, for a function g : R → R such that g(ξ) is integrable,
we have

∫

Ω

g
(

ξ(ω)
)

µ(dω) =

∫

R

g(x)Fξ(dx).

3. Spectral methods for uncertainty assessment

Here we provide a brief account of generalized polynomial chaos expansions, with
their practical applications in mind. In particular, we consider the the finite-
dimensional case involving a finite number of random variables which are used
to parameterize uncertainties in a mathematical model. The spectral methods
for uncertainty assessment generally utilize the spectral representation of ran-
dom model observables, which are functions of a finite number of independent
random variables, in a polynomial chaos basis. The main motivations to use
these spectral representations include efficient sampling, efficient computation
of statistical properties (e.g., mean, variance), and, more specific to our discus-
sion, immediate access to variance based sensitivity indices. In this section, we
briefly describe the generalized polynomial chaos expansions and some of the
related probabilistic setup. For an in-depth coverage of the spectral methods for
uncertainty assessment and the related numerical algorithms, we refer to the
book [14].

3.1. Generalized polynomial chaos expansions

Consider a finite collection ξ1, . . . , ξd of independent standard normal random
variables on (Ω,F , µ). By (a special case of) the Cameron-Martin Theorem [7]
we have that every U ∈ L2(Ω, σ(ξ), µ) admits an expansion of form,

U =

∞
∑

k=0

ckΨk(ξ), (3.1)

where ξ(ω) =
(

ξ1(ω), . . . , ξd(ω)
)T

, Ψk are d-variate Hermite polynomials [1],
and the series converges in L2(Ω, σ(ξ), µ). The expansion (3.1) is known as the
polynomial chaos2 expansion (or Wiener-Hermite expansion) [26, 7, 12] of U .
The polynomials {Ψk}

∞
0 form a complete orthogonal set in L2(Ω, σ(ξ), µ):

(Ψk(ξ),Ψl(ξ)) = δklE
[

Ψ2
k(ξ)

]

, (3.2)

where δkl is given by,

δkl =

{

1, k = l,

0, k 6= l.

2The term chaos here is unrelated to the concept of chaos from the theory of nonlinear
dynamical systems.
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Table 1

Orthogonal polynomial bases corresponding to the choice of distribution

distribution of ξ polynomial basis {ψk(ξ)}
∞

k=0
support of Lξ

Standard normal Hermite Polynomials (−∞,∞)
Uniform Legendre Polynomials [−1, 1]
Gamma Laguerre Polynomials [0,∞)
Beta Jacobi Polynomials [a, b]

The paper [28], which concerns the practical applications of such spectral
representations in scientific computing, discusses choosing ξi which follow dis-
tributions other than standard normal; this is motivated by the need to provide
more flexibility in modeling the parametric uncertainties in physical systems.
In such cases, when alternate distributions for ξi are considered, the orthogonal
polynomial basis {Ψk(ξ)}

∞
k=0 should be chosen accordingly to achieve optimal

convergence. The authors of [28] then note that the Wiener-Askey system of or-
thogonal polynomials can be used as a guide to choose appropriate polynomial
bases which are orthogonal with respect to the distribution law of ξi. In the
latter case, the expansion in (3.1) is commonly referred to as a generalized poly-
nomial chaos expansion. An important theoretical gap was subsequently filled
in [9], where the authors provided rigorous convergence results for the gener-
alized polynomial chaos expansions. The results in [9] cover the more general
case of the generalized polynomial chaos expansions of functions in L2(Ω,V , µ),
where V is a σ-algebra generated by a countable collection of independent ran-
dom variables.

We list in Table 1 the commonly used distributions for the random variables
ξi and the associated orthogonal polynomial bases [28, 14, 9]. We shall refer to
a random variable ξ on Ω for which there exists a orthogonal polynomial basis,
{ψk(ξ)}

∞
k=1 for L2(Ω, σ(ξ), µ) as a basic random variable. The random variables

following distribution listed in Table 1 are examples of basic random variables.
A d-variate orthogonal polynomial basis is constructed as a tensor product

of the univariate orthogonal bases in each coordinate ξi, i = 1, . . . , d. Note
that it is possible to use ξi that are independent but not necessarily identically

distributed, which leads to a mixed generalized polynomial chaos basis. If we
denote by ψk(ξ) the k

th order polynomial basis function in ξ then the d-variate
basis functions Ψk are given by,

Ψk(ξ) =

d
∏

j=1

ψαk
j
(ξj), ξ = (ξ1, . . . , ξd), (3.3)

where αk is the multi-index associated with kth basis function Ψk. Here α
k
j is

a non-negative integer that specifies the order of the univariate basis polyno-
mial in ξj , for j = 1, . . . , d. This multi-index notation will be used extensively
throughout this paper. We shall provide a concrete example of the tensor prod-
uct basis construction when discussing truncated generalized polynomial chaos
expansions below. In this paper, we shall focus on the case where ξi are contin-
uous random variables whose distributions are chosen from among those listed
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in Table 1. The case of discrete random variables and their associated bases can
be found for example in [28, 9].

3.2. The image probability space

Let ξ1, . . . , ξd be a collection of independent basic random variables on (Ω,F , µ)
as above, and let Fξ denote the joint distribution function of the random d-vector

ξ = (ξ1, . . . , ξd); note that for x ∈ R
d, Fξ(x) =

∏d
1 Fj(xj) where Fj is the dis-

tribution function corresponding to the jth coordinate. For any random variable
U : (Ω, σ(ξ), µ) →

(

R,B(R)), we know by Doob-Dynkin Lemma [13], that there
exists a Borel function X : Rd → R such that U(ω) = X(ξ(ω)). We have ξ :
(Ω, σ(ξ), µ) → (Rd,B(Rd), Fξ(dx)) and X : (Rd,B(Rd), Fξ(dx)) → (R,B(R)).
Thus, instead of working in the abstract probability space (Ω, σ(ξ), µ), it is some-
times more convenient to work in the probability space, (Rd,B(Rd), Fξ(dx)). In
fact, letting Θ ⊆ R

d denote the support of the law of ξ, we may work instead
in the image probability space (Θ,B(Θ), Fξ(dx)).

We denote the expectation of a random variable X : (Θ,B(Θ), Fξ(dx)) →
(R,B(R)) by 〈X〉 =

∫

ΘX(s) dFξ(s). The space L
2(Θ,B(Θ), Fξ(dx)) is endowed

with the inner product (·, ·)Θ : L2(Θ)× L2(Θ) → R given by

(X,Y )Θ =

∫

Θ

X(s)Y (s) dFξ(s) = 〈XY 〉 , X, Y ∈ L2(Θ,B(Θ), Fξ(dx)),

and norm ‖X‖
L2(Θ)

= (X,X)
1/2
Θ . For random variables X(ξ) and Y (ξ) in

L2(Ω, σ(ξ), µ), it is immediate to note that E [X(ξ)] = 〈X〉, and that (X(ξ),

Y (ξ)) = (X,Y )Θ. Therefore, ‖X(ξ)‖
2
L2(Ω)

= ‖X‖
2
L2(Θ)

; that is, X(ξ) ∈ L2(Ω,

σ(ξ), µ) if and only if X ∈ L2(Θ,B(Θ), F (dx)). Moreover, {Ψk(ξ)}
∞
k=0 is a com-

plete orthonormal set in L2(Ω, σ(ξ), µ) if and only if {Ψk}
∞
k=0 is a complete

orthonormal set in L2(Θ,B(Θ), F (dx)).

3.3. Truncated expansions

Consider the expansion of U ∈ L2(Ω, σ(ξ), µ) given in (3.1). Since U is σ(ξ)-
measurable, as noted above, there exists a Borel function X : Rd → R such that
U(ω) = X(ξ(ω)) and we have, X(ξ) =

∑∞
k=0 ckΨk(ξ). In practical computa-

tions, one approximates X(ξ) with a truncated series,

X(ξ(ω))
.
=

P
∑

k=0

ckΨk(ξ(ω)), (3.4)

where P depends on the truncation strategy used. There are multiple ways of
truncating a multivariate orthogonal polynomial basis. A common approach is
truncation based on total polynomial degree. That is, given an expansion order
p, one uses a truncated basis {Ψk(ξ) : |α

k| ≤ p}, where αk are the multi-indices
associated with the d-variate basis functions Ψk(ξ) as described in (3.3), and
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Fig 1. A bivariate tensor product basis truncated according to total polynomial degree up to

three. The table on the left shows the basis functions and the corresponding multi-indices,

and the figure on the right provides a visual illustration of the tensor product basis and the

truncation. Note that using (3.5) with p = 3 and d = 2 we have 1+P = (3+2)!/(3!×2!) = 10.

|αk| =
∑d

j=1 α
k
j . In this case, it is straightforward to show that P in (3.4) is

specified by,

1 + P =
(d+ p)!

d!p!
. (3.5)

See [14] for a construction of an indexing scheme for the multi-indices αk,
k = 0, . . . , P which is convenient for computer implementations. To illustrate
the tensor-product construction and the truncation strategy described above,
we show the construction of a third order (p = 3) bivariate (d = 2) basis in
Figure 1. We point out that in some applications such isotropic truncations
may become impractical, and one needs adaptive truncations which exploit the
problem structure and choose optimal polynomial orders in different coordi-
nates. However, for simplicity of presentation, in the present work, we consider
the total polynomial degree truncation strategy only.

4. Variance based sensitivity analysis

This section is devoted to a detailed study of variance based sensitivity analy-
sis. Since the basic mathematical idea behind variance based sensitivity analy-
sis relies on the concept of conditional expectation, we begin by first recalling
some fundamentals regarding conditional expectation and conditional variance
in Section 4.1. We then proceed by giving a basic result which enables a spec-
tral approximation of the conditional expectation of a square integrable random
variable in Section 4.2. Next, in Section 4.3, starting from the definition of vari-
ance based sensitivity indices, we provide their spectral representations in terms
of generalized polynomial chaos expansions.
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4.1. Conditional expectation and conditional variance

Consider an integrable random variable U on (Ω,F , µ), and consider a sub-
σ-algebra C of F . The conditional expectation [27] of U with respect to the
σ-algebra C, denoted by E [U |C] is a C-measurable function such that for every
E ∈ C,

∫

E

U(ω)µ(dω) =

∫

E

E [U |C] (ω)µ(dω).

An intuitive interpretation of the conditional expectation E [U |C] is to view it as
our best estimate of the random variable U based on the “information content”
contained in the σ-algebra C. In the present paper, we consider square integrable
random variables, i.e. elements of L2(Ω,F , µ). In this case, the Hilbert space
structure allows defining the conditional expectation as orthogonal projections
onto the space L2(Ω, C, µ). That is, given U ∈ L2(Ω,F , µ), the conditional
expectation E [U |C] is the least-squares best approximation of U in the space
L2(Ω, C, µ). It is also common to talk about conditional expectation with respect
to a random variable. In particular, if U and V are random variables on (Ω,F , µ)
we write E [U |V ] to mean E [U |σ(V )]; recall that σ(V ) denotes the σ-algebra
generated by V .

We also briefly recall the idea of the conditional variance which is defined
based on conditional expectation; namely, consider a random variable U ∈
L2(Ω,F , µ) and suppose C ⊆ F is a sub-σ-algebra, the conditional variance
Var [U |C] is given by [6]:

Var [U |C] = E
[

U2|C
]

− E [U |C]
2
.

We also recall the conditional variance formula [6]:

Var [U ] = Var [E [U |C]] + E [Var [U |C]] . (4.1)

As in the case of conditional expectation, it is common to consider Var [U |V ]
where V is random variable on (Ω,F , µ); in this case, Var [U |V ] is understood
as Var [U |σ(V )].

4.2. Spectral approximation of conditional expectations

Consider basic random variables ξ1, . . . , ξd on (Ω,F , µ). We shall, as before, work
with random variables U ∈ L2(Ω, σ(ξ), µ), which as mentioned before can be
written as U = X(ξ) for a Borel function X : Rd → R. To make this dependence
on ξ explicit, we refer to elements of L2(Ω, σ(ξ), µ) in the latter form; that is, we
say X(ξ) ∈ L2(Ω, σ(ξ), µ) with the understanding that X is real valued Borel
random variable on R

d. Note that X(ξ) ∈ L2(Ω, σ(ξ), µ) can be expanded in
the associated generalized polynomial chaos basis:

X(ξ) =

∞
∑

k=0

ckΨk(ξ). (4.2)
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Consider a fixed i ∈ {1, . . . , d} and let y be the conditional expectation y(ω) =
E [X(ξ)|ξi] (ω). As described above y is the orthogonal projection of X(ξ) onto
L2(Ω, σ(ξi), µ). Hence, in particular, y is measurable with respect to σ(ξi) and
thus, y(ω) = Y (ξi(ω)) for a real-valued Borel function Y . Moreover, Y (ξi) can
be expanded in the complete orthogonal basis {ψk(ξi)}

∞
ℓ=0 of L2(Ω, σ(ξi), µ).

That is,

Y (ξi) =

∞
∑

ℓ=0

dℓψℓ(ξi). (4.3)

Now note that by the tensor product construction of the d-variate basis, the uni-
variate basis {ψℓ(ξi)}

∞
ℓ=0 is a subsequence of the multivariate basis3 {Ψk(ξ)}

∞
k=0;

that is, ψℓ(ξi) = Ψk(ℓ)(ξ), where k(ℓ) ∈ Z
∗ specifies the location of the ℓth uni-

variate basis function ψℓ(ξi) in the multivariate basis. Here Z∗ denotes the set of
non-negative integers. Next we note that by the definition of orthogonal projec-
tion, we have (Y (ξi)−X(ξ), ψℓ(ξi)) = 0, for all ℓ ∈ Z

∗. Therefore, the expansion
coefficients {dℓ} of Y in (4.3) satisfy,

dℓ =
(Y (ξi), ψℓ(ξi))

(ψℓ(ξi), ψℓ(ξi))
=

(X(ξ), ψℓ(ξi))

(ψℓ(ξi), ψℓ(ξi))
=

(

X(ξ),Ψk(ℓ)(ξ)
)

(

Ψk(ℓ)(ξ),Ψk(ℓ)(ξ)
) = ck(ℓ),

for all ℓ ∈ Z
∗, where {ck} are the spectral coefficients of X(ξ) in (4.2). That is,

the coefficients {dℓ} of Y (ξi) are a subset of coefficients {ck} of X(ξ). Hence,
we may write Y (ξi) =

∑

ℓ ck(ℓ)Ψk(ℓ)(ξ). Utilizing the tensor product structure
of the d-variate basis (3.3) and the multi-index notation, we note that the set
{k(ℓ) : ℓ ∈ Z

∗} which picks the univariate basis functions {ψℓ(ξi)} from {Ψk(ξ)}
agrees with the set Ei defined by

Ei = {0} ∪ {k ∈ N : αk
i > 0 and αk

j = 0 for j 6= i}.

Thus, it is possible to write the expansion of Y (ξi) as,

Y (ξi) =
∑

k∈Ei

ckΨk(ξ).

Moreover, we note that the above developments can be further generalized to
consider E [X(ξ)|{ξi}i∈I ], where I is a subset4 of {1, . . . , d}. Repeating an ar-
gument similar to the one above we arrive at:

Proposition 4.1. Suppose, ξ1, . . . , ξd are independent basic random variables

on (Ω,F , µ). Let I ⊂ {1, . . . , d} and denote ξ[I] := {ξi}i∈I , and define the index

set,

EI = {0} ∪ {k ∈ N : αk
i > 0 for some i ∈ I and αk

i = 0 for all i /∈ I},

3See also the example in Figure 1 to get an idea of the ordering of the multivariate gener-
alized polynomial chaos basis which is according to increasing total polynomial degree.

4To be most precise, we consider I = {i1, . . . , ir} ⊂ {1, . . . , d} with i1 < i2 < · · · < ir.



60 A. Alexanderian

where αk are multi-indices associated with the d-variate generalized polynomial

chaos basis {Ψk(ξ)}
∞
k=0 as described in (3.3). Then, for X(ξ) ∈ L2(Ω, σ(ξ), µ)

the conditional expectation E[X(ξ)|ξ[I]] agrees almost surely with,

Y (ξ[I]) =
∑

k∈EI

ckΨk(ξ
[I]), ck =

(X(ξ),Ψk(ξ))

(Ψk(ξ),Ψk(ξ))
.

The above result is the main tool used in spectral approximation of variance
based sensitivity indices using generalized polynomial chaos expansions.

4.3. Variance based sensitivity indices

This section is devoted to the study of the variance based sensitivity indices [22,
23, 11, 19]. We begin by the definition of the first order, second order, and
total sensitivity indices in Section 4.3.1. Then, in Section 4.3.2, we derive the
characterization of these indices using generalized polynomial chaos expansions.

4.3.1. The definition of the variance based sensitivity indices

Let X(ξ) ∈ L2(Ω, σ(ξ), µ). The first order (or main effect) sensitivity indices
measure the effect of the ith coordinate ξi alone on variance of the random
variable X(ξ). For i ∈ {1, . . . , d}, Si is defined as follows,

Si =
Var [E [X(ξ)|ξi]]

Var [X(ξ)]
. (4.4)

The second order sensitivity indices describe joint effects. Specifically, for i, j ∈
{1, . . . , d}, we define Sij to be the contribution of the interaction between ξi
and ξj to the total variance. The mathematical definition of Sij is given by,

Sij =
Var [E [X(ξ)|ξi, ξj ]]−Var [E [X(ξ)|ξi]]−Var [E [X(ξ)|ξj ]]

Var [X(ξ)]
. (4.5)

Higher order joint sensitivity indices (e.g., Sijk) can be defined also, but are
rarely used in applications. Instead, we consider the total sensitivity index, which
is another useful variance based sensitivity measure. Following [11, 19], for i ∈
{1, . . . , d}, we define the total sensitivity index due to ξi as,

Stoti =
E
[

Var
[

X(ξ)|ξ[−i]
]]

Var [X(ξ)]
,

where ξ[−i] denotes the random vector ξ = (ξ1, . . . , ξd) with ξi removed:

ξ[−i] := (ξ1, . . . , ξi−1, ξi+1, . . . , ξd),

in other words, with the notation of Proposition 4.1, ξ[−i] = ξ[I] with I =
{1, 2, . . . , d} \ {i}. The computation of the total sensitivity indices is facilitated
by the following result:
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Lemma 4.1. Let X(ξ) ∈ L2(Ω, σ(ξ), µ). Then,

Stoti =
Var [X(ξ)]−Var

[

E
[

X(ξ)|ξ[−i]
]]

Var [X(ξ)]
. (4.6)

Proof. By the conditional variance formula (4.1), we have,

Var [X(ξ)] = E
[

Var
[

X(ξ)|ξ[−i]
]]

+Var
[

E
[

X(ξ)|ξ[−i]
]]

= Var [X(ξ)] Stoti +Var
[

E
[

X(ξ)|ξ[−i]
]]

.

Remark 4.1. The above result provides an intuitive interpretation of the mean-
ing of a total sensitivity index. Note that the numerator in (4.6) is the total
variance minus the variance of the conditional expectation E[X(ξ)|ξ[−i]], which
allows quantifying the portion of the variance due to ξi. That is, S

tot
i is the total

contribution of ξi, by itself and through its interactions with other coordinates,
to the variance.

Remark 4.2. It is also possible to define total sensitivity indices for a subcol-
lection {ξi}i∈I , I ⊆ {1, . . . , d}, through,

StotI =
Var [X(ξ)]−Var

[

E
[

X(ξ)|ξ[−I]
]]

Var [X(ξ)]
, (4.7)

where ξ[−I] denotes the random vector ξ with coordinates {ξi}i∈I removed.

4.3.2. Spectral representation of the sensitivity indices

Here we consider spectral approximation of variance based sensitivity indices
introduced in the previous section. In practice, given a random variable in
L2(Ω, σ(ξ), µ) where ξ is a vector of independent basic random variables, we
use its truncated polynomial chaos expansion. Therefore, we state the results of
this section for functions X(ξ) ∈ Vp ⊆ L2(Ω, σ(ξ), µ), where

Vp = Span{Ψ0(ξ),Ψ1(ξ), . . . ,ΨP (ξ)},

which is a assumed to be a sufficiently rich approximation space. Also, we note
that Ψ0 is a constant term, and we use the convention that Ψ0(ξ) ≡ 1. The fol-
lowing result summarizes the rules for computing the variance based sensitivity
indices for functions in Vp.

Proposition 4.2. Let X(ξ) ∈ Vp. Define the index sets Ei, Jij, and Ki as

follows:

Ei = {k ∈ {1, . . . , P} : αk
i > 0 and αk

j = 0 for j 6= i},

Jij = {k ∈ {1, . . . , P} : αk
i > 0 and αk

j > 0 and αk
ℓ = 0 for ℓ /∈ {i, j}},

Ki = {k ∈ {1, . . . , P} : αk
i > 0},
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where αk are multi-indices associated with the d-variate generalized polynomial

chaos basis of Vp. Then, Si, Sij and Stoti are given by,

Si =

∑

k∈Ei
c2k ‖Ψk(ξ)‖

2
L2(Ω)

∑P
k=1 c

2
k ‖Ψk(ξ)‖

2
L2(Ω)

, Sij =

∑

k∈Jij
c2k ‖Ψk(ξ)‖

2
L2(Ω)

∑P
k=1 c

2
k ‖Ψk(ξ)‖

2
L2(Ω)

,

Stoti =

∑

k∈Ki
c2k ‖Ψk(ξ)‖

2
L2(Ω)

∑P
k=1 c

2
k ‖Ψk(ξ)‖

2
L2(Ω)

.

Proof. First note that for X(ξ) ∈ Vp, we have, X(ξ) =
∑P

k=0 ckΨk(ξ) and thus,
by the orthogonality of the basis (and using the convention Ψ0 ≡ 1),

Var [X(ξ)] = E
[

X(ξ)2
]

−E [X(ξ)]
2
=

P
∑

k=0

c2kE
[

Ψk(ξ)
2
]

−c20 =

P
∑

k=1

c2k ‖Ψk(ξ)‖
2
L2(Ω)

.

Now, the proofs of the expressions for Si and Sij follow immediately from their
definition (equations (4.4) and (4.5) respectively) and Proposition 4.1 which
gives spectral representations for the conditional expectations involved. As for
Stoti , first note that by Proposition 4.1, we have

E
[

X(ξ)|ξ[−i]
]

=
∑

k∈{0,...,P}\Ki

ckΨk(ξ).

Therefore,

Var [X(ξ)]−Var
[

E
[

X(ξ)|ξ[−i]
]]

=

P
∑

k=1

c2k ‖Ψk(ξ)‖
2
L2(Ω)

−
∑

k∈{1,...,P}\Ki

c2k ‖Ψk(ξ)‖
2
L2(Ω)

=
∑

k∈Ki

c2k ‖Ψk(ξ)‖
2
L2(Ω)

,

and the expression for Stoti follows from (4.6).

Remark 4.3. Note that the index sets Ei, Jij , and Ki in the above result are
determined by the basis of Vp alone.

Remark 4.4. Note that in view of Proposition 4.1 and Remark 4.2, it is
straightforward to derive a spectral representation for StotI , where I ⊆ {1, . . . , d}
specifies a subcollection of the random variables ξ1, . . . , ξd.

Remark 4.5. The above result shows that computing sensitivity indices is
of trivial computational cost, when a polynomial chaos expansion is available.
We point out that in practical applications of spectral methods for uncertainty
assessment, the major portion of the computational cost is incurred when com-
puting the expansion coefficients themselves. This issue, which we shall not delve
into in the present work, has generated a great amount of research in the recent
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years. In practice, there exist efficient methods of computing such expansions,
albeit in cases of low to moderate parameter dimension. We refer to [14] for a
coverage of various strategies for computing polynomial chaos expansions.

In what follows, we also use the notation Vi to denote the total contribution
of ξi to the variance:

Vi := Var [X ]−Var
[

E
[

X |ξ[−i]
]]

.

Also, to emphasize that the quantities Stoti , Vi, etc. are computed for a given
random variable X(ξ), we will denote these quantities by Stoti (X), Vi(X), and
so on.

5. Fixing inessential variables and dimension reduction

Consider a function X(ξ) ∈ L2(Ω, σ(ξ), µ) as before. Suppose a variance based
sensitivity analysis is conducted and it is found that one of the variables, say ξi,
has a very small contribution to the variance of X(ξ); that is, Stoti is “small”.
It is reasonable to expect that fixing ξi at a nominal value will result in a
small approximation error. The purpose of this section is to describe estimates
of this approximation error. The basic idea behind the developments in this
section belongs to [24]. The proofs of the results given below follow in sim-
ilar lines as the arguments given in [24] (where the authors use Sobol func-
tional decompositions to represent a function of finitely many independent uni-
formly distributed random variables). The results presented here concern the
case of random variables that belong to the space spanned by an appropri-
ate generalized (possibly mixed) polynomial chaos basis; that is we work in
Vp = Span{Ψ0(ξ), . . . ,ΨP (ξ)} ⊆ L2(Ω, σ(ξ), µ), where as before ξ is a vector of
independent basic random variables on Ω.

5.1. A partitioned expansion in the basis of Vp

Consider X(ξ) ∈ Vp with a coordinate ξi of the random vector ξ fixed at ξi = ϑ;
we denote this by,

X(ξ[−i];ϑ) = X(ξ1, ξ2, . . . , ξi−1, ϑ, ξi+1, . . . , ξd).

Note that ϑ can be any number in the support of the law of ξi. By the tensor-
product construction of the basis of Vp, the expansion of X(ξ) in this basis,

X(ξ) =

P
∑

k=0

ckΨk(ξ), (5.1)

enables the decomposition,

X(ξ) = X0 +Π{i} [X(ξ)] + Π{−i} [X(ξ)] +RX(ξ). (5.2)
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Here X0 is the mean of X ; moreover, the mapping Π{i} [·] is the projection of
X(ξ) in space spanned by {Ψk(ξ)}k∈Ei

with Ei as defined in Proposition 4.2,
Π{−i} [·] is the projection of X(ξ) onto the space spanned by {Ψk(ξ)}k∈I with,

I = {k ∈ {1, . . . , P} : αk
i = 0}.

and RX(ξ) = X(ξ)−X0−Π{i} [X(ξ)]−Π{−i} [X(ξ)]. In other words, Π{i} [X(ξ)]
is sum of all the terms in the expansion (5.1) that involve ξi only, Π{−i} [X(ξ)]
is the sum of all terms in (5.1) that involve ξ[−i] only, and RX(ξ) is the sum of
the remaining terms in (5.1).

5.2. Basic estimates

For i ∈ {1, . . . , d}, we denote the mean-squared difference between X(ξ[−i];ϑ)
and X(ξ) by,

δ
(i)
X (ϑ) =

∥

∥X(ξ)−X(ξ[−i];ϑ)
∥

∥

2

L2(Ω)

=

∫

Ω

(

X
(

ξ(ω)
)

−X
(

ξ[−i](ω);ϑ
)

)2

µ(dω).
(5.3)

Proposition 5.1. Let X(ξ) ∈ Vp and for i ∈ {1, . . . , d} let δ
(i)
X (ϑ) be defined

as in (5.3), with ϑ ∈ θi, where θi ⊆ R is the support of the law of ξi. Then, the
followings hold:

1. δ
(i)
X (ϑ) ≥ Vi(X).

2.
∫

θi
δ
(i)
X (ϑ) dF (ϑ) = 2Vi(X).

Proof. The decomposition (5.2) of X(ξ) gives,

X(ξ) = X0 + U(ξi) +W (ξ[−i]) +RX(ξ),

where U(ξi) = Π{i} [X(ξ)] and W (ξ[−i]) = Π{−i} [X(ξ)] respectively. Using this
decomposition, we have,

Vi(X(ξ)) = Var [U(ξi)] + Var [RX(ξ)] (5.4)

Also, we can write X(ξ[−i];ϑ) = X0 + U(ϑ) +W (ξ[−i]) +RX(ξ
[−i];ϑ). We note,

δ
(i)
X (ϑ) =

∫

Ω

[

X
(

ξ(ω)
)

−X
(

ξ[−i](ω);ϑ
)

]2

µ(dω)

=

∫

Ω

[

U
(

ξi(ω)
)

+RX

(

ξ(ω)
)

− U(ϑ)−RX

(

ξ[−i](ω);ϑ
)

]2

µ(dω)

=

∫

Ω

[

U
(

ξi(ω)
)2

+RX

(

ξ(ω)
)2

+ U(ϑ)2 +RX

(

ξ[−i](ω);ϑ
)2
]

µ(dω)

= Var [U(ξi)] + Var [RX(ξ)] + U(ϑ)2 +

∫

Ω

RX

(

ξ[−i](ω);ϑ
)2
µ(dω)

= Vi(X) + U(ϑ)2 +

∫

Ω

RX

(

ξ[−i](ω);ϑ
)2
µ(dω),
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where for the third equality, we have used the properties of the basis of Vp,
namely orthogonality, tensor product structure, and that E[Ψk(ξ)] = 0 for k ≥ 1,
and the last equality follows from (5.4). From this, we immediately note that

δ
(i)
X (ϑ) ≥ Vi(X). Next, letting Θ[−i] denote the support of Fξ[−i](dx), we note
that,

∫

Ω

RX

(

ξ[−i](ω);ϑ
)2
µ(dω) =

∫

Θ[−i]

RX(x;ϑ)
2 Fξ[−i](dx).

Thus, letting Θ ⊆ R
d denote the support of the joint law Fξ(ds), we have,

∫

θi

δ
(i)
X (ϑ) dF (ϑ) = Vi(X) +

∫

θi

U(ϑ)2dF (ϑ) +

∫

Θ

RX(s)
2 Fξ(ds)

= Vi(X) +

∫

Ω

U
(

ξi(ω)
)2
µ(dω) +

∫

Ω

RX

(

ξ(ω)
)2
µ(dω)

= Vi(X) + Var [U(ξi)] + Var [RX(ξ)] = 2Vi(X).

Next, as done in [24], we consider the normalized error

∆
(i)
X (ϑ) =

δ
(i)
X (ϑ)

Var [X ]
.

The following result is an immediate consequence of Proposition (5.1):

Corollary 5.1. For X(ξ)∈Vp, we have ∆
(i)
X (ϑ)≥Stot

i (X) and
∫

∆
(i)
X (ϑ) dF (ϑ)=

2Stot
i (X).

5.3. A probabilistic estimate

According to Corollary 5.1, the the normalized error ∆
(i)
X (ϑ) is in average in the

order of Stot
i (X). As noted in [24], it is possible to take a step further, and use a

straightforward argument using Corollary 5.1 and Markov’s inequality to derive
a probabilistic estimate. In particular, we can state the following result for the
case of a square integrable random variable approximated in the space spanned
by a generalized polynomial chaos basis.

Proposition 5.2. Let X(ξ) ∈ Vp. Then, for any β > 1, we have

Prob

(

∆
(i)
X ≥ βStot

i (X)
)

≤ 1/(β − 1).

Proof. Let Λ(ϑ) = ∆
(i)
X (ϑ)−Stoti (X) and note that Λ(ϑ) ≥ 0. Thus, by Markov’s

inequality, for the (non-negative) random variable Λ, we have Prob(Λ ≥ ε) ≤
1
ε

∫

θi
Λ(ϑ) dFξi(ϑ) for ε > 0 arbitrary. Moreover, by Corollary 5.1 we have

∫

θi
Λ(ϑ) dFξi(ϑ) = Stoti (X). Therefore, we have for any ε > 0,

Prob

(

∆
(i)
X − Stot

i (X) ≥ ε
)

≤
1

ε
Stot
i (X).

The statement of the proposition follows by letting ε = (β − 1)Stot
i (X).
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Remark 5.1. Let us note that it is straightforward to generalize Proposition 5.1
and the subsequent results for the case of fixing any subcollection of the coor-
dinates of the random vector (ξ1, . . . , ξd)

T .

6. Concluding remarks

In this paper, we have considered the spectral representation of variance based
sensitivity indices from a measure theoretic point of view. This enables a straight-
forward presentation, which uses spectral representation of conditional expec-
tations as a means of computing variance based sensitivity indices. Moreover,
working in the framework of approximations via generalized polynomial chaos
expansions, we considered the approximation errors incurred when fixing inessen-
tial parameters in a model.

The insight gained from a variance based sensitivity analysis can guide anal-
ysis of parametric uncertainties by identifying the parameters most responsible
for the variability in a mathematical model. Moreover, such analyses can guide
model reduction by fixing inessential parameters. In many physical models, even
though the exact value of parameters are difficult to estimate, often there exist
widely used values for certain parameters. In such cases, if a variance based
sensitivity analysis reveals that such parameters are not influential to model
variability, one can consider using the agreed upon nominal values and direct
research resources toward more accurate estimation of parameters which are
more influential to model variability.

Finally, we mention that practical applications of the idea of variance based
sensitivity analysis are abundant in the literature. In addition to the examples
given in classical works such as [22, 11, 19, 23, 20], we also point to [25] for an
application involving finite element model of a foundation, [4] for an application
in ocean circulation modeling under uncertainty, and [3] for a sample application
to a biochemical model with random reaction rates. In particular, the application
in [4] involves observables which vary over space and time. In that case, it was
observed that the balance of sensitivities to different model parameters can
change significantly in the space-time domain, as dictated by the physics of the
problem.
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