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Abstract: We consider the problem of constructing honest and adaptive
confidence sets in Lp-loss (with p ≥ 1 and p < ∞) over sets of Sobolev-type
classes, in the setting of non-parametric Gaussian regression. The objective
is to adapt the diameter of the confidence sets with respect to the smooth-
ness degree of the underlying function, while ensuring that the true function
lies in the confidence interval with high probability. When p ≥ 2, we identify
two main regimes, (i) one where adaptation is possible without any restric-
tions on the model, and (ii) one where critical regions have to be removed.
We also prove by a matching lower bound that the size of the regions that
we remove can not be chosen significantly smaller. These regimes are shown
to depend in a qualitative way on the index p, and a continuous transition
from p = 2 to p = ∞ is exhibited.
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1. Introduction

We consider in this paper the problem of building honest and adaptive con-
fidence sets around functions that belong to a Lp-Sobolev-type space in the
non-parametric Gaussian regression setting.

This question was already investigated in L∞ and L2, see for instance the
papers (Hoffmann and Lepski, 2002; Juditsky and Lambert-Lacroix, 2003; Ba-
raud, 2004; Robins and Van Der Vaart, 2006; Cai and Low, 2006; Giné and
Nickl, 2010; Hoffmann and Nickl, 2011; Bull and Nickl, 2013). In particular,
the recent papers (Hoffmann and Nickl, 2011; Bull and Nickl, 2013) develop for
respectively L∞ and L2 a minimax-optimal setting in which the construction of
honest and adaptive confidence sets is possible.

In the present paper, we extend these results to general values of p ∈ [1,∞[.
We develop minimax-optimal settings in which the construction of honest and
adaptive confidence sets is possible. Since the case 1 ≤ p ≤ 2 is essentially
equivalent to the case p = 2, we focus on this case p ≥ 2 (and p <∞). We prove
that there is a continuous transition between the case p = 2 described in (Bull
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and Nickl, 2013) and the case p = ∞ described in (Hoffmann and Nickl, 2011).
While the main idea of this paper, i.e. to investigate the relationship between
the problem of constructing adaptive and honest confidence sets and a certain
infinite-dimensional composite testing problem, is similar to the one in (Hoff-
mann and Nickl, 2011; Bull and Nickl, 2013), the techniques required for the
solution of this testing problem are significantly more involved. It appears that
the approaches of (Hoffmann and Nickl, 2011; Bull and Nickl, 2013) (in partic-
ular the analysis of the so-called infimum test) could not have been generalised
in a straightforward way to the settings p ∈]2,∞[. Also, our results imply that
the curious dependence on whether p is an even integer or not, that appears in
a related minimax estimation problem studied in (Lepski et al., 1999), is not
relevant in the setting of confidence sets.

This paper is organised as follows. In Section 2, we present the general set-
ting. In Section 3, we provide our results, which are (i) the existence of adaptive
estimators in ‖.‖p norm, and (ii) the existence of honest and adaptive confi-
dence sets in ‖.‖p norm on some maximal models. The other sections of the
paper present detailed proofs of these results. The Supplementary Material con-
tains the proof for the existence of adaptive estimators, and also some classical
preliminary results.

2. Setting

Let p ≥ 1 (and p < ∞). Let ⌊p⌋ be the largest even integer smaller than p
(this notation is not usual but we will need it in the course of the proofs). Let
s > t ≥ 1/2 be two degrees of smoothness.

Denote by Lp([0, 1]) = Lp the space of functions defined on [0, 1] such that

‖f‖pp =
∫ 1

0
|f(x)|pdx < +∞, where ‖.‖p is the usual Lp-norm.

For any functions (f, g) ∈ Lp × Lq where 1/p + 1/q = 1, we consider the

bilinear form 〈f, g〉 =
∫ 1

0 f(x)g(x)dx.

2.1. Wavelet basis

We consider an orthonormal wavelet basis

{φk, k ∈ Z0, ψl,k, l > 0, k ∈ Zl},

such that for any integer l ≥ 0, Zl ⊂ Z and |Zl| ≤ c2l (where c is a numerical
constant). Also, we impose the usual conditions that for any l > 0, k ∈ Zl,
∫ 1

0 ψl,k(x)dx = 0, and that ψl,k(x) = 2l/2ψk(2
lx). Such a basis exists (for in-

stance the Cohen-Daubechies-Vial basis satisfies all these conditions, see Cohen
et al. (1993)).

We assume that the wavelet basis we consider satisfies the following assump-
tion, which is quite standard.
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Assumption 1. We assume that there is a universal constant Cp such that we
have for all x ∈ [0, 1] and any integer J ≥ 0

√

∑

k∈Z0

φ2k(x) +
∑

0<l≤J,k∈Zl

ψ2
l,k(x) ≤ Cp2

J/2.

It holds for any wavelet basis such that the mother wavelets ψk are uniformly
bounded and have sufficiently “disjoint support”, i.e. are well spread on the
domain, see (Härdle et al., 1998). In other words, for uniformly bounded mother
wavelets ψk defined on a compact, this property is necessary to ensure the
conservation of the norm of signals in L2. This assumption is in particular
satisfied for Cohen-Daubechies-Vial wavelets with S > 0 first null moments
(where the constant Cp in the definition depends on S), see Cohen et al. (1993).

For any function f ∈ Lp, we consider the sequence of coefficients a(f) = a
and the complementary sequence of coefficients a′(f) = a′ as

al,k =

∫ 1

0

ψl,k(x)f(x)dx = 〈ψl,k, f〉 and a′k = 〈φk, f〉.

Consider the functions f ∈ Lp that have the representation

f =
∑

k∈Z0

φk〈φk, f〉+
∑

l>0

∑

k∈Zl

ψl,k〈ψl,k, f〉 =
∑

k∈Z0

a′kφk+
∑

l>0

∑

k∈Z0

al,kψl,k. (2.1)

We moreover write for any J ≥ 0

ΠVJ (f) =
∑

k∈Z0

a′kφk +
∑

0<l≤J

∑

k∈Zl

al,kψl,k,

the projection of f onto span(φk, k ∈ Z0, ψl,k, 0 < l ≤ J, k ∈ Zl). We also write

ΠWJ (f) =
∑

k∈ZJ

aJ,kψJ,k, and ΠW0(f) =
∑

k∈Z0

a′kφk.

the projection of f onto span(ψJ,k, k ∈ ZJ ) or span(φk, k ∈ Z0).

2.2. Besov spaces

We consider for any h ≥ 1, p ≥ 1 (and p <∞) and r ≥ 0 the Besov norms

‖f‖r,p,h =

(

|(〈f, φk〉)k|hlp +
∑

l>0

2lh(r+1/2−1/p)|(〈f, ψl,k〉)k|hlp

)1/h

,

where |u|lp = (
∑

i u
p
i )

1/p (we extend this definition as |u|l∞ = supi |ui| for
p = ∞) is the sequential lp norm. We extend this definition for h = ∞ as

‖f‖r,p,∞ = max

(

|(〈f, φk〉)k|lp , sup
l>0

2l(r+1/2−1/p)|(〈f, ψl,k〉)k|lp
)

.
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The Besov-type spaces are defined for any h ∈ [1,∞], p ≥ 1 (and p < ∞) and
r ≥ 0 as

Br,p,h = {f ∈ Lp : ‖f‖r,p,h < +∞}.
We write for a given B > 0 the Br,p,∞ Besov ball of smoothness r and radius
B as

Σ(r, B) ≡ Σ(r, p, B) = {f ∈ Br,p,∞ : ‖f‖r,p,∞ ≤ B}.
For regular enough wavelets (e.g. Cohen-Daubechies-Vial wavelets with S

first null moments), the defined Besov spaces correspond to the functional Besov
spaces (Sobolev-type spaces) up to some smoothness S ≥ s, see Meyer (1992);
Härdle et al. (1998). We assume that our basis satisfies this property with s ≤
S where s is the largest smoothness that we wish to consider in our testing
problem.

The spaces Br,p,∞ are slightly larger than the usual Lp-Sobolev spaces, see
Bergh and Löfström (1976); Besov et al. (1978). They are however the natural
objects to consider for the construction of honest and adaptive confidence sets,
since they are the largest Besov spaces where the rate n−r/(2r+1) is minimax-
optimal for functional estimation (see Section 3 for references and a precise
statement of this assertion).

We will consider in this paper functions f that have a smoothness larger
than 1/2, which is a common assumption for the problem of the construction of
adaptive and honest confidence sets, see (Bull and Nickl, 2013). This assumption
is technical and wether or not the results in this paper could be generalised to
rougher functions is an open question.

2.3. Observation scheme

The data is a realisation of a Gaussian process defined for any x ∈ [0, 1] and for
a given n as

dY (n)(x) = f(x)dx +
dBx√
n
,

where (Bx)x∈[0,1] is a standard Brownian motion, and f ∈ L2 is the function of
interest.

Let us write for any l > 0 and k ∈ Zl the associated wavelet coefficients as

âl,k = 〈ψl,k, dY
(n)〉 =

∫ 1

0

f(x)ψl,k(x)dx +
1√
n

∫ 1

0

ψl,k(x)dBx,

and al,k = 〈ψl,k, f〉,

and for any k ∈ Z0 the complementary wavelet coefficients as

âk = 〈φk, dY (n)〉 =
∫ 1

0

f(x)φk(x)dx +
1√
n

∫ 1

0

φk(x)dBx,

and a′k = 〈φk, f〉.
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We consider the wavelet estimate of f :

f̂n =
∑

k∈Z0

â′kφk +
∑

l>0

∑

k∈Zl

âl,kψl,k.

Projected estimates up to frequency J ≥ 0

f̂n(J) := ΠVJ f̂n,

and also the estimate of f at level J

ΠWJ (f) = ΠWJ f̂n.

are usually considered.
In the sequel, we write Prf (respectively Ef ) the probability (respectively

expectation) under the law of Y (n) when the function underlying the data is f .
When no confusion is likely to arise, we write simply Pr (respectively E).

3. Main results

In this Section, we will consider the Cohen-Daubechies-Vial wavelet basis with
S > s first null moments (where s is the largest smoothness according to which
we wish to adapt). As a matter of fact, any wavelet basis satisfying the condi-
tions defined in Section 2 (in particular Assumption 1 and the S null moments
condition) will work.

3.1. Adaptive estimation

We provide, when p ≥ 2 (and p <∞), a result for adaptive estimation, i.e. that
adaptive estimators for functions in Br,p,∞ (adaptive to the smoothness r) ex-
ist. The technique that we use is closely related to what is proposed in the
papers (Lepski, 1992; Giné and Nickl, 2009; Bull and Nickl, 2013). We do not
need any assumptions on f except that it is in Br,p,∞ for a given smoothness r.

Theorem 3.1. Assume that p ≥ 2 (and p < ∞). There exists an adaptive
estimator f̃n(dY

(n), p) such that there are two constants up and Np that depend
only on p such that for every B ≥ 0 and every r > 0, we have for any n ≥ Np

that

sup
f∈Σ(r,B)

Ef‖f̃n − f‖p ≤ up
(

B1/(2r+1) + 1
)

n−r/(2r+1)

≡ Up(B)n−r/(2r+1).

The proof and also construction of this estimate are in Section 10 (it is a
Corollary of Theorem 10.1 with ca = 0).

This result is minimax-optimal in r and in B whenever B ≥ 1 and r > 1/p
(see (Härdle et al., 1998)).



2880 A. Carpentier

3.2. Previous results regarding honest and adaptive confidence sets

For p ≥ 1 (and p < ∞), a confidence set is a random subset Cn of Lp that
depends on the data and perhaps on some additional knowledge that is available.
We define its diameter in ‖.‖p norm as

|Cn| = inf
τ≥0

{

τ : ∃g ∈ Lp : Cn ⊂ {h : ‖h− g‖p ≤ τ}
}

. (3.1)

We define honest and adaptive confidence sets as follows.

Definition 3.1 ((Lp, α)-honest and adaptive confidence set given Pn, I and B).
Let 0 < t < s, B > 0, α > 0. Let I be a subset of [t, s]. Let Pn be a non-empty
subset included in Σ(t, B). Let Cn(Y

(n), s, t, p, B, α) be a random subset of Lp.
Cn is called (Lp, α)-honest and adaptive given Pn, I and B if there exists a
constant L := L(s, t, p, B, α) such that for any n ≥ 0

sup
f∈Σ(r,B)

⋂
Pn

Prf

(

|Cn| ≥ Ln− r
2r+1

)

≤ α ∀r ∈ I,

and inf
f∈Pn

Prf

(

f ∈ Cn

)

≥ 1− α.

In this definition, the set I is the set of Besov indexes to which we wish to
adapt. We will in this paper consider the case I = {s, t}, since it is not too
involved to pass from this case to the case [t, s] (see e.g. (Hoffmann and Nickl,
2011; Bull and Nickl, 2013)). The model Pn is the set of functions on which we
want to build honest and adaptive confidence sets. Ideally, we would like this
set to be Σ(t, B), but it will be seen not to always be possible to consider the
whole set: some functions of Σ(t, B) that are very close to Σ(s,B) but not in
this set can be a source of problems for the existence of honest and adaptive
confidence sets. In some cases, as we will explain later in this section, a subset
of Σ(t, B) has to be removed.

To the best of our knowledge, the question of building honest and adaptive
confidence sets in Lp for p ≥ 1 and p < ∞ has only been addressed in the case
p = 2. The most recent paper on this topic is (Bull and Nickl, 2013). Also, it is
noticeable that the case p = ∞ has been treated in the paper (Hoffmann and
Nickl, 2011), but we are not going to present the results in this case here, since
they are different in essence from the case p ∈]1,∞[.

The results in the paper (Bull and Nickl, 2013), although proved in the density
estimation setting, apply as well in the Gaussian process setting (it is actually
more technical to derive them in the setting of density estimation). One only
needs to change slightly the test statistics used. In the case 2t ≥ s, one should
use instead of the statistic in Equation 35 in (Bull and Nickl, 2013)

Un(f̂n) = ‖ΠVj f̂n(1)−ΠVj f̂n(2)‖22 −
∑

l≤j

|Zl|
n
,

where f̂n(1), f̂n(2) are estimates of f as in the present paper but computed
respectively on the first and second half of the paper, and j is such that 2j ≈
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n
1

2t+1/2 . When 2t < s, one should use instead of the statistic in Equation 17
in (Bull and Nickl, 2013)

Tn(g) = ‖ΠVj f̂n − g‖22 −
∑

l≤j

|Zl|
n
,

where f̂n is an estimate of f as in my paper. These statistics have similar
properties than the ones in the paper (Bull and Nickl, 2013), and similar results
hold for confidence sets in this setting.

The authors of the paper (Bull and Nickl, 2013) first prove the following
result when s ≤ 2t, i.e. that adaptive and honest confidence sets exist in this
case on Σ(t, B) itself.

Theorem 3.2 (Bull and Nickl (2013)). Set p = 2. Let 1/2 ≤ t < s. Assume
also that s/2 ≤ t. Let Pn = Σ(t, B). Let B > 0 and α > 0. There exists a
(L2, α)-honest and adaptive confidence set given Pn, {s, t} and B.

In order to build such a confidence set, the authors measure the L2 distance
between the data and an estimate of the function f that we can think of as the
orthogonal projection of f̂n on Σ(s,B). They then define (intuitively speaking)
the confidence set as being the set of functions that are at a distance that is
smaller than this estimated distance from an adaptive estimate of f (as defined
in Theorem 3.1).

It becomes however more involved when s > 2t (the authors actually need
some additional formalism). For G ⊂ Lp, set ‖f − G‖p = infg∈G ‖f − g‖p. We
define for ρn ≥ 0 and B > 0 the sets

Σ̃(t, B, ρn) = Σ̃(t, s, p, B, ρn) =
{

f ∈ Σ(t, B) : ‖f − Σ(s,B)‖p ≥ ρn

}

. (3.2)

These sets are separated away from Σ(s,B) whenever ρn > 0. They correspond
to Σ(t, B) \ Σ(s,B) where we have removed some critical functions very close
to functions in Σ(s,B) in ‖.‖p norm. We now remind a simplified and slightly
weaker version of the main Theorem in the paper (Bull and Nickl, 2013)’s when
s > 2t (in the paper (Bull and Nickl, 2013), the authors actually prove a stronger
result, which includes adaptation also to the radius B of the Besov ball).

Theorem 3.3 (Bull and Nickl (2013)). Set p = 2. Let B > 0 and α > 0, and
assume that s/2 > t ≥ 1/2. Let Pn = Σ̃(t, B, ρn)

⋃

Σ(s,B) for some ρn.

• Let ρn = Cn−t/(2t+1/2), where C := C(p,B, α) is large enough. Then there
exists a (L2, α)-honest and adaptive confidence set given Pn, {s, t} and B.

• Let ρn = υn−t/(2t+1/2), where υ := υ(p,B, α) is small enough. Then
there exists no (L2, α)-honest and adaptive confidence set given Pn, {s, t}
and B.

In order to prove this theorem, the authors consider the following testing
problem:

H0 : f ∈ Σ(s,B) v.s. H1 : f ∈ Σ(t, B, ρn). (3.3)
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As explained in Hoffmann and Lepski (2002); Juditsky and Lambert-Lacroix
(2003); Hoffmann and Nickl (2011); Bull and Nickl (2013), this problem is very
related to the problem of building honest and adaptive confidence sets. In the
process of constructing honest and adaptive confidence sets, the authors of the
paper (Bull and Nickl, 2013) construct a test for the testing problem (3.3) that
is uniformly consistent over Σ̃(t, B, ρn)

⋃

Σ(s,B) for

ρn = Cmax(n−t/(2t+1/2), n−s/(2s+1)),

where C large enough (ρn is of order n−t/(2t+1/2) whenever s ≥ 2t). More
precisely, they prove that for any n > 0 and α > 0, there exists a test Ψn such
that

sup
f∈Σ(s,B)

EfΨn + sup
f∈Σ̃(t,B,ρn)

Ef [1−Ψn] ≤ α. (3.4)

They then use this result to prove Theorem 3.3.
An indirect consequence of Theorem 3.3 is that the case 1 ≤ p ≤ 2 is not

relevant, since the following negative result applies.

Proposition 1. Let 1 ≤ p ≤ 2. Let B > 0 and α > 0, and assume that
s > 2t ≥ 1/p. Let Pn = Σ̃(t, B, ρn)

⋃

Σ(s,B) ⊂ L2 for some ρn. Let ρn =
υn−t/(2t+1/2), where υ := υ(p,B, α) is small enough. There exists no (Lp, α)-
honest and adaptive confidence set given Pn, {s, t} and B.

The proof is the same in (Bull and Nickl, 2013) for the L2 case, since the L2

norms of the functions constructed to prove the impossibility result in L2 are
equal to the Lp norm of these same functions. Since the L2 norm dominates all
Lp norms for p ≤ 2, Proposition 1 implies in particular that the the confidence
sets, and the regions one has to remove in order to be able to build honest and
adaptive confidence sets, are both larger in Lp than in L2, noting that f ∈ L2

is a natural assumption in Gaussian white noise. It is thus preferable to use for
Lp the same confidence sets as for L2 when p ≤ 2. The case p ≥ 2 (and p <∞)
is more interesting and is the setting we shall consider more in depth.

Concerning lower bounds for general p ≥ 1, the papers (Ingster, 1987, 1993;
Ingster and Suslina, 2002) state that for a simpler but related testing problem

H0 : f = 0 vs. H1 : f ∈ {f ∈ Σ(t, B) : ‖f − 0‖p ≥ ρn},

the minimax rate of separation is

ρn ≥ Dn− t
2t+1−1/p , (3.5)

for some D > 0, which coincides with the size of the region one has to remove
in Theorem 3.3 for p = 2. One can wonder if it is still the minimax rate in the
composite problem. The minimax order of the separation ρn in Theorem 3.3 is
related to the results of paper (Lepski et al., 1999), where the authors prove
that whenever p is an even integer, it is possible to construct an estimate of

‖f‖p whose error is of order n− t
2t+1−1/p . In L2, as proved in the paper (Bull and

Nickl, 2013), empirical process theory combined with this idea imply that it is
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possible to estimate ‖f − Σ(s,B)‖2 with precision max(n− t
2t+1/2 , n− s

2s+1 ). As
in the paper (Bull and Nickl, 2013), this estimate can be used to test whether
f is in Σ(s,B) or not, and then to construct honest and adaptive confidence
sets. However, Lepski et al. (1999) also provide negative results whenever p is
not an even integer and prove that in this case, it is not possible to estimate

‖f‖p at a better rate than (n log(n))−
t

2t+1 . One might worry that this poor rate
has repercussions on the construction of confidence sets. By developping a new
technique with respect to what was achieved in the paper (Bull and Nickl, 2013),
we will prove that it is not the case.

3.3. Honest and adaptive confidence sets

We first state our results in terms of the testing problem (3.3), and then apply
these results to the construction of honest and adaptive confidence sets. As a
matter of fact, the results we provide for the existence of honest and adaptive
confidence sets are a direct consequence of the solution to the testing prob-
lem (3.3).

3.3.1. Testing bounds on the related testing problem

We state the following theorem for the existence of a uniformly consistent test
(in the sense of Equation (3.4)) for the testing problem (3.3).

Theorem 3.4. Let B > 0, α > 0 and n > 0.

• Let ρn = C(B+1)max(n−t/(2t+1−1/p), n−s/(2s+1)), where C := C(p, α) is
large enough. Then there exists a (Lp, α)-uniformly consistent test (in the
sense of Equation (3.4)) for the testing problem (3.3).

• Let ρn = υn−t/(2t+1−1/p), where υ := υ(p,B, α) is small enough. Then
there exists no (Lp, α)-uniformly consistent test (in the sense of Equa-
tion (3.4)) for the testing problem (3.3).

Theorem 3.4 is proven in Section 4 (upper bound), and in Section 7 (lower
bound).

There is a gap between the upper and lower bound for ρn, which is not rele-
vant, as we will see in next paragraph, for the existence of honest and adaptive
confidence sets, but which matters for the testing problem. As a matter of fact,
this gap does not exist whenever p is an even integer and it is possible to prove
that a consistent test with

ρn ≥ Dn− t
2t+1−1/p ,

exists (see (Carpentier, 2013) for p = 2, and the results can be extended for any
even integer p). The case when p is not an even integer is more involved and we
conjecture that it is not possible to build a consistent test whenever

ρn ≤ D′ max(n− s
2s+1 , n− t

2t+1−1/p ),

for D′ small enough. This remains an open question.



2884 A. Carpentier

3.3.2. Consequences for confidence sets

A first consequence of Theorem 3.4 is the following theorem when s(1−1/p) ≤ t
(analog to s ≤ 2t when p = 2 in (Bull and Nickl, 2013), Theorem 3.2).

Theorem 3.5. Let 1/2 ≤ t < s. Assume also that s(1 − 1/p) ≤ t. Let Pn =
Σ(t, B). Let B > 0 and α > 0. There exists a (Lp, α)-honest and adaptive
confidence set given Pn, {s, t} and B.

The proof that we provide in this paper is different from the proof in pa-
per (Bull and Nickl, 2013), and is in Section 6. We recover the results in the
paper (Bull and Nickl, 2013) for p = 2 (Theorem 3.2).

Another direct consequence of Theorem 3.4 is, in the case s(1 − 1/p) > t,
the minimax-optimal order of ρn for which the construction of confidence sets
is made possible on the set I = {s, t}.
Theorem 3.6. Let B > 0 and α > 0, and assume that s(1 − 1/p) > t ≥ 1/2.
Let Pn = Σ̃(t, B, ρn)

⋃

Σ(s,B) for some ρn.

• Let ρn = C(B + 1)n−t/(2t+1−1/p), where C := C(p, α) is large enough.
Then there exists a (Lp, α)-honest and adaptive confidence set given Pn,
{s, t} and B.

• Let ρn = υn−t/(2t+1−1/p), where υ := υ(p,B, α) is small enough. Then
there exists no (Lp, α)-honest and adaptive confidence set given Pn, {s, t}
and B.

The proof of this Theorem is in Section 5 (upper bound) and in Section 8
(lower bound), and it is a direct consequence of Theorem 3.4. The upper and
lower bound match the results in the paper (Bull and Nickl, 2013) for p = 2
(Theorem 3.3). It is also remarkable that for general p, the lower and upper
bound also match the lower bound in Equation (3.5) of the simpler testing
problem.

3.4. Discussion

Adaptation to the smoothness in Pn. On some specific model Pn ⊂
Σ(t, B) (with Pn = Σ(t, B) if s(1 − 1/p) ≤ t), we have created honest and
adaptive confidence sets given B. In this paper, we considered adaptation to the
exponent r of the Besov spaces Br,p,∞, which are the natural classes to adapt
to since adaptive estimation is on these spaces. We did not consider adaptation
to the radius B of the Besov ball. If t < (1− 1/p)s, the model Pn on which we
adapt is strictly smaller than Σ(t, B). We however state that Pn could not have
been considered significantly larger.

Remark on the case s(1 − 1/p) ≤ t. There is a strong relation between
the testing problem (3.3), and the problem of creating adaptive and honest
confidence sets. It is remarkable however that in the case s(1 − 1/p) ≤ t, al-
though an uniformly consistent test exists only on a constrained model Pn =
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Σ(s,B)
⋃

Σ̃(t, B, ρn) (with ρn = 2C(B + 1)n− s
2s+1 ), honest and adaptive con-

fidence sets exist on Σ(t, B) itself (Theorem 3.5). The proof of this theorem is
actually very enlightening for understanding what is happening. Its nice feature
is that it emphasises the connection between the testing problem (3.3), and
the problem of building adaptive and honest confidence sets, also in the case
s(1 − 1/p) ≤ t (unlike the proof in the paper (Bull and Nickl, 2013) for p = 2
and s ≤ 2t). First, on Pn, the existence of adaptive and honest confidence sets
is a consequence of Theorem 3.4 (the proof of this fact is similar to the proof of
Theorem 3.6). Indeed, set for α > 0

Cn =
{

f ∈ Σ(t, B) : ‖f − f̃n‖p ≤ D

α
n− s

2s+1 (1−Ψn) +
D

α
n− t

2t+1Ψn

}

where f̃n is the adaptive estimate constructed for Theorem 10.1 (which is the
same as the adaptive estimate for Theorem 3.1), Ψn is the test from Theorem 3.4
with level α, and D is a large enough constant depending only on C,B. This
confidence set Cn will be α-honest and adaptive on Pn for {s, t} given B, since
the test Ψn is accurate with probability at least 1 − α for any functions in
Pn (since ρn = 2C(B + 1)n− s

2s+1 ). Second, the functions of Σ(t, B) \ Pn are
at a distance smaller than ρn = 2C(B + 1)n− s

2s+1 from functions in Σ(s,B).
Theorem 10.1 applies to these functions, and the adaptive estimate f̃n is such
that

sup
f∈Σ(t,B)\Pn

Ef‖f̃n − f‖2 ≤ En− s
2s+1 ,

for E > 0 large enough and depending only on C,B. For this reason, mis-
classifying a function f ∈ Σ(t, B) \ Pn into Σ(s,B) is not problematic for confi-
dence sets: indeed the previous equation implies that Cn contains such an f with
probability larger than 1 − α provided that D > E, even though f 6∈ Σ(s,B).
We illustrate the idea of the proof in Figure 1.

Confidence sets for a general segment [t, s]. As in the paper (Bull and
Nickl, 2013), it is possible to extend Theorem 3.5 to the case I = [t, s] (see
Theorem 11.1 in the supplementary material, Section 11) on Pn = Σ(t, B),
provided that s(1−1/p) ≤ t. One can then combine the results in Theorems 3.6
and 11.1 (eaxactly in the same way as in the paper (Bull and Nickl, 2013),
Theorem 5) to construct honest and adaptive confidence sets over any segment
[t, s], with 1/2 ≤ t < s, and on a maximal model Pn. We refer the reader to
Theorem 5 and it’s proof in the paper (Bull and Nickl, 2013), as the construction
and proof for this fact in Lp with p ≥ 2 (and p < ∞) is exactly the same as
what is done in this paper for L2, by just combining Theorems 3.6 and 3.5.

Extension to other settings. In the construction of confidence bands that
we propose in Subsection 4.2, we first construct a test for the testing problem
in Equation (3.3). In order to do that, we estimate the quantities |al,k|p. The
estimates we propose have good properties because the data is generated by an
homocedastic Gaussian process. The main obstacle in more general settings is
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Fig 1. Illustration of the proof of Theorem 3.5.

that one does not know the distribution of the noise (and in particular its p
first moments). Indeed, in the computation of the quantities F̂ p

p (l, k), we plug
the p first moments of a Gaussian distribution in order to correct the bias of
|âl,k|p toward |al,k|p. If the distribution of the noise is not Gaussian, the bias
is not going to be corrected by these (Gaussian) moments, and we would want
to replace them with the moments of the noise, or rather by estimates of the
moments computed on the empirical residuals. A more detailed discussion can
be found in the supplementary material, Appendix 12.

4. Proof of Theorem 3.4 (upper bound)

The method that we propose for the construction of the test in Theorem 3.4 for
the testing problem (3.3) is quite different from what was developed in (Hoff-
mann and Nickl, 2011; Bull and Nickl, 2013). The main idea is to prove that for
any f ∈ Σ(t, B), the quantity ‖f − Σ(s,B)‖p is close to the quantity

‖ΠVjs
(f)− Σ(s,B)‖p +

j
∑

l=js+1

‖ΠWl
f‖p.

This finding is actually very useful in practice since it allows to eliminate the
empirical minimisation over Σ(s,B) for wavelet coefficients of high resolution
(which are the difficult ones to estimate), and it is a way around the technical
difficulties encountered when performing the infimum test (see e.g. papers (Hoff-
mann and Nickl, 2011; Bull and Nickl, 2013)). Then, one needs to estimate care-



Honest and adaptive confidence sets in Lp 2887

fully ‖ΠVjs
(f)−Σ(s,B)‖p and the terms ‖ΠWl

f‖p. The first term is easy to con-
trol using Borell’s inequality. The second terms are, for each l, approximated by
a rescaled sum of proper Taylor expansions of the terms |âl,k|p (i.e. the quantities
F̂ p
p (l, k), defined in next subsection). The variance of these estimates F̂ p

p (l, k) is
not too difficult to bound in a proper way, since their variance is of same order
than the variance of |âl,k|p, which is bounded as C̃(p)(n−p+|al,k|2(p−1)n−1). The
critical quantity is the mean of these terms. When p is even, the idea behind
the construction of F̂ p

p (l, k) follows from the fact that

E|âl,k|p = E(al,k + âl,k − al,k)
p

=

p
∑

u=0,u even

Cu
pa

u
l,k

EG∼N (0,1)

∣

∣G
∣

∣

p−u

n(p−u)/2
.

where Cu
p = p(p−1)···(p−u+1)

1···u is the usual binomial coefficient. F̂ p
p (l, k) is then

|âl,k|p minus an unbiased estimate (constructed by induction) of the sum in last
equation up to u = p− 2. One can prove that

EF̂ p
p (l, k) = |al,k|p.

Otherwise if p is not an even integer, but any positive real number larger than
or equal to 2, the expectation of these Taylor expansions F̂ p

p (l, k) is such that

D(m)|al,k|p ≤ EF̂ p
p (l, k) ≤ D(M)|al,k|⌊p⌋

(

|al,k|p−⌊p⌋ +
1

n(p−⌊p⌋)/2

)

,

where D(m) and D(M) are two strictly positive constants. Since under H1, only
the lower bound on EF̂ p

p (l, k) matters, and under H0, only the upper bound

on EF̂ p
p (l, k) matters (and under H0, the sum of the |al,k|⌊p⌋ is small enough

to neutralise the effect of the disturbing sum of the terms |al,k|⌊p⌋ 1
n(p−⌊p⌋)/2 ),

we will have satisfying concentration results for the sums of F̂ p
p (l, k) (i.e. Tn(l)).

Controlling the mean and variance of these terms leads to large deviation results
on the sums. This all enables us to construct an uniformly consistent test by
considering if or if not these quantities (estimates of ‖ΠVjs

(f)− Σ(s,B)‖p and
of the terms ‖ΠWl

f‖p) exceed given thresholds.

4.1. Definition of a related testing problem

Assume that p ≥ 2 (and p <∞) and s > t ≥ 1/2.

4.2. Definition of the test statistic

Let 0 < js ≤ j be two integers such that

js = ⌊log(n 1
2s+1 )⌋ and j = ⌊log(n 1

2t+1−1/p )⌋.
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For any u > 0 we define the following quantities

mu
u = EG∼N (0,1)

∣

∣G
∣

∣

u
.

We also define by convention, for any l ≥ js, k ∈ Zl, the following estimate of
(al,k)

0

F̂ 0
0 (l, k) =1.

We now define by induction for any u ≥ 2 even, the following estimates of
(al,k)

u.

F̂u
u (l, k) = âul,k −

u−2
∑

i=0,i even

Ci
u

(mu−i

n1/2

)(u−i)

F̂ i
i (l, k),

where Ci
u = u(u−1)···(u−i+1)

1···i is the usual binomial coefficient. We extend this
definition for |al,k|p if p non-even (and also non necessarily integer) by setting

F̂ p
p (l, k) = |âl,k|p −

⌊p⌋−2
∑

u=0,u even

Cu
p

(mp−u

n1/2

)(p−u)

F̂u
u (l, k),

where we set also for non-integer p that Cu
p = p(p−1)···(p−u+1)

1···u (and C0
p = 1 by

convention).
Consider the test statistics, for any js ≤ l ≤ j

Tn(l) =
∑

k∈Zl

2lp(1/2−1/p)F̂ p
p (l, k),

and also
T̃n = inf

g∈Σ(s,B)
‖ΠVjs

f̂n − g‖p.

Consider positive constants (tn(l))js≤l≤j and t̃n. We consider the test:

Ψn = 1− I

{

T̃n ≤ t̃n

}

∏

js≤l≤j

I {Tn(l) ≤ (tn(l))
p} .

We set

tn(l) = E1

(

2−ls(p−1)/p
(2l(1−1/p)

n

)1/(2p)

+ 2−⌊p⌋ls/p
(2l

n

)(p−⌊p⌋)/(2p)

+ 2−ls +

√

2(p−1)(j+l)/(2p)

n

)

,

and

t̃n = E2

√

2js

n
,
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where E1 and E2 are some large enough constants that depend only on p,B and
the desired level of the test. Then the test is uniformly consistent with

ρn = 4

(

(B + 1)C′2−jt + 2

j
∑

l=js

tn(l) + 2t̃n

)

,

where C′ is a large enough constant that depends only on p and the desired
level of the test.

4.3. Decomposition of the problem

We justify here the test that we proposed.

Lemma 4.1. Let 0 < js < j be two integers. Let (τl)js≤l≤j be a sequence of
positive numbers such that τl ≥ 2× 2−ls. Assume that ρn ≥ 4Cp(B + 1)(2−jt +
∑j

l=js
τl) where Cp ≥ 1 is some positive constant that depends on p only. Then

we have

• f ∈ Σ(s,B) ⇒ (maxjs≤l≤j ‖ΠWl
(f)‖0,p,∞ ≤ (B + 1)τl/2 AND ‖ΠVjs

f −
Σ(s,B)‖p = 0).

• f ∈ Σ̃(t, B, ρn) ⇒ (maxjs≤l≤j ‖ΠWl
(f)‖0,p,∞ ≥ (B + 1)τl OR ‖ΠVjs

f −
Σ(s,B)‖p ≥ 3ρn/8).

Proof. Under the null Hypothesis H0

Assume that f ∈ Σ(s,B). Then ΠVjs
f ∈ Σ(s,B), and

‖ΠVjs
f − Σ(s,B)‖p = 0.

If f is in Σ(s,B) then by definition of the Besov spaces

‖ΠVjf‖s,p,∞ ≤ B,

which implies by definition of the ‖.‖0,p,∞ norm that

sup
js≤l≤j

‖ΠWl
f‖0,p,∞ − B

2ls
≤ 0,

which implies that

sup
js≤l≤j

‖ΠWl
f‖0,p,∞ ≤ B2−ls ≤ τl/2,

Under the alternative Hypothesis H1

Assume that f is in Σ̃(t, B, ρn). We have by triangular inequality

inf
g∈Σ(s,B)

‖f − g‖p ≤ inf
g∈Σ(s,B)

‖ΠVjs
(f)− g‖p + ‖ΠVj\Vjs

(f)‖p + ‖ΠV −(f)‖p,
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where we set V − = span
(
⋃∞

l=j+1Wl

)

. By definition of Σ̃(t, B, ρn) and definition

of the Besov spaces, we know that ‖ΠV −f‖p ≤ CpB2−jt (see Proposition 3,
Supplementary Material). We thus have

inf
g∈Σ(s,B)

‖f − g‖p ≤ inf
g∈Σ(s,B)

‖ΠVjs
(f)− g‖p + ‖ΠVj\Vjs

(f)‖p + CpB2−jt.

We thus have (since ρn ≤ infg∈Σ(s,B) ‖f − g‖p)

3ρn/4 ≤ ρn − CpB2−jt ≤ inf
g∈Σ(s,B)

‖ΠVjs
(f)− g‖p + ‖ΠVj\Vjs

(f)‖p.

This implies that infg∈Σ(s,B) ‖ΠVjs
(f)−g‖p ≥ 3ρn/8, or ‖ΠVj\Vjs

(f)‖p ≥ 3ρn/8.
Note now that by imbrication of the Besov spaces (see Proposition 2) there

exists a constant Cp ≥ 1 that depends on p only such that

‖ΠVj−Vjs
(f)‖p ≤ Cp‖ΠVj−Vjs

(f)‖0,p,1

= Cp

j
∑

l=js

‖ΠWl
(f)‖0,p,∞.

Since 3/8ρn ≥ CpB
∑j

l=js
τl, the previous equation implies that if

‖ΠVj\Vjs
(f)‖p ≥ 3ρn/8, then there exists js ≤ l ≤ j such that ‖ΠWl

(f)‖0,p,∞ ≥
Bτl. This concludes the proof.

4.4. Large deviations for ‖ΠVjs
(f̂n − f)‖p

Similarly to Lemma 10.2 (Supplementary Material), we have the following Lemma.

Lemma 4.2. We have

sup
f∈Lp

Pr
{

‖ΠVjs
(f̂n − f)‖p ≥ (Dp + 2Cp/(p−1)

√

log(1/δ))

√

2js

n

}

≤ δ,

where Cp/(p−1) and Dp are positive constants that depend only on p.

Proof. The Lemma follows directly from Propositions 5 and 6 (Supplementary
Material).

4.5. Convergence tools for Tn(l)

Lemma 4.3. There are constants C(p), D(m), D(M), D(D) that depend on p only
such that for any ∆ ∈]0, 1[ we have

Pr
{

∃l : js ≤ l ≤ j, Tn(l) ≤ ‖ΠWl
f‖p−1

0,p,∞

(

D(m)‖ΠWl
f‖0,p,∞

−
√

C(p)D(D)

∆

√

2l(1−1/p)

n

)

−
√

D(D)C(p)

∆

2(p−1)(j+l)/2

np
∀js ≤ l ≤ j

}

≤ ∆.

(4.1)
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Also if f ∈ Σ(s) then

Pr
{

∃l : js ≤ l ≤ j, Tn(l) ≥ (Bp + 1)
(

D(M) +

√

C(p)D(D)

∆

)

(τp,l(s))
p

+

√

C(p)D(D)

∆

√

2(p−1)(j+l)/2

np
∀js ≤ l ≤ j

}

≤ ∆, (4.2)

where (τp,l(s))
p = 2−ls(p−1)

√

2l(1−1/p)

n + 2−⌊p⌋ls
(

2l

n

)(p−⌊p⌋)/2
+ 2−pls.

Proof. We remind that ΠWl
f̂n =

∑

k∈Zl
âl,kψl,k and that ΠWl

f =
∑

k∈Zl
al,kψl,k.

Lemma 4.4. There exists two strictly positive constants D(m) and D(M) that
depend on p only such that

D(M)
(

‖ΠWl
f‖⌊p⌋0,p,∞

(2l

n

)(p−⌊p⌋)/2

+ ‖ΠWl
f‖p0,p,∞

)

≥ E[Tn(l)] ≥ D(m)‖ΠWl
f‖p0,p,∞.

Proof. We provide bounds on EF̂ p
p (l, k), and this implies bounds on Tn(l) by

definition of Tn(l).

Step 1: Expression of EF̂u
u (l, k) for u even. Let u > 0 be an even integer. We

first prove by induction that EF̂u
u (l, k) = aul,k.

For u = 2 we have

E(âl,k)
2 = E(al,k + âl,k − al,k)

2

= a2l,k + 2al,kE(âl,k − al,k) +E(âl,k − al,k)
2

= a2l,k +
1

n
= a2l,k +

m2
2

n
,

since âl,k − al,k ∼ N (0, 1/n).This implies that EF̂ 2
2 (l, k) = a2l,k by definition of

F̂ 2
2 (l, k).

The induction assumption is as follows: we assume that for any i even such
that 2 ≤ i ≤ u−2, we have EF̂ i

i (l, k) = ail,k. Since u even, we have by a binomial
expansion

E|âl,k|u = E(al,k + âl,k − al,k)
u

=
u
∑

i=0

Ci
ua

i
l,kE(âl,k − al,k)

u−i

=

u
∑

i=0,i even

Ci
ua

i
l,k

mu−i
u−i

n(u−i)/2
,



2892 A. Carpentier

since âl,k − al,k ∼ N (0, 1/n) (and thus for i odd, E(âl,k − al,k)
u−i = 0). This

implies by the induction assumption

EF̂u
u (l, k) = Eâul,k −

u−2
∑

i=0,i even

Ci
uEF̂

i
i (l, k)

(mu−i

n1/2

)(u−i)

=

u
∑

i=0,i even

Ci
ua

i
l,k

mu−i
u−i

n(u−i)/2
−

u−2
∑

i=0,i even

Ci
ua

i
l,k

(mu−i

n1/2

)(u−i)

=

u
∑

i=0,i even

Ci
ua

i
l,k

(mu−i

n1/2

)(u−i)

−
u−2
∑

i=0,i even

Ci
ua

i
l,k

(mu−i

n1/2

)(u−i)

= aul,k.

This concludes the induction.
Since for p even it holds that EF̂ p

p (l, k) = apl,k, it also holds in particular by

definition of Tn(l) and of ‖ΠWl
f‖p0,p,∞ that

ETn(l) = ‖ΠWl
f‖p0,p,∞.

Step 2: Lower bound on EF̂ p
p (l, k) for p non-even. Consider now the case p

non-even.
We have since âl,k−al,k ∼ N (0, 1/n), and since, if a and b in R are such that

ab > 0, then |a+ b| > max(|a|, |b|),

E
∣

∣âl,k
∣

∣

p
= E

∣

∣

∣
al,k + âl,k − al,k

∣

∣

∣

p

≥ |al,k|p Pr
(

al,k(âl,k − al,k) ≥ 0
)

= |al,k|pPrG∼N (0,1)

(

G ≥ 0
)

= |al,k|p/2,

which implies by definition of F p
p (l, k) and also since EF̂u

u (l, k) = aul,k for u even

EF̂ p
p (l, k) ≥ |al,k|p/2−

⌊p⌋−2
∑

u=0,u even

Cu
pa

u
l,k

(mp−u

n1/2

)p−u

≥ |al,k|p/2− C′

(

( mp

n1/2

)p

+ a
⌊p⌋
l,k

(mp−⌊p⌋

n1/2

)(p−⌊p⌋)
)

, (4.3)

where C′ is some constant that depends on p only.
Also, we have by a Taylor expansion since the function h : m→ EG∼N(0,1)|m+

G|p is in C∞([0, 1])

E|âl,k|p = E|al,k + âl,k − al,k|p = EG∼N (0,1)

∣

∣

∣al,k +
G√
n

∣

∣

∣

p

=

⌊p⌋−2
∑

u=0,u even

Cu
pa

u
l,k

(mp−u

n1/2

)p−u
+C⌊p⌋

p a
⌊p⌋
l,k EG∼N (0,1)

∣

∣

∣y +
G√
n

∣

∣

∣

p−⌊p⌋

,

since âl,k − al,k ∼ N (0, 1/n), and where |y| ≤ |al,k|.
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This implies, together with the fact that EF̂u
u (l, k) = aul,k for u even, that

EF̂ p
p (l, k) = C⌊p⌋

p a
⌊p⌋
l,k EG∼N(0,1)

∣

∣

∣y +
G√
n

∣

∣

∣

p−⌊p⌋

(4.4)

≥ C⌊p⌋
p a

⌊p⌋
l,k

(mp−⌊p⌋

n1/2

)p−⌊p⌋

. (4.5)

By considering the bound in Equation (4.5) for |al,k| ≤ C′′n−1/2 and the
bound in Equation (4.3) for |al,k| ≥ C′′n−1/2, for some C′′ that depends on
p only (through mp, mp−⌊p⌋ and C′), we obtain that there exists a constant

D(m) > 0 that depends on p only and such that

EF̂ p
p (l, k) ≥ D(m) max

(

|al,k|p, a⌊p⌋l,k n
−(p−⌊p⌋)/2

)

≥ D(m)|al,k|p.

This leads to the lower bound in Lemma 4.4 by definition of ‖ΠWl
f‖p0,p,∞ and

Tn(l).
Step 3: Upper bound on EF̂ p

p (l, k) for p non-even. By Equation (4.4) there
exists y such that |y| ≤ |al,k| and such that

EF̂ p
p (l, k) = C⌊p⌋

p a
⌊p⌋
l,k EG∼N(0,1)

∣

∣

∣y +
G√
n

∣

∣

∣

p−⌊p⌋

≤ C⌊p⌋
p a

⌊p⌋
l,k

(

4|y|p−⌊p⌋ + 4EG∼N (0,1)

∣

∣

∣

G√
n

∣

∣

∣

p−⌊p⌋
)

≤ C⌊p⌋
p a

⌊p⌋
l,k

(

4|y|p−⌊p⌋ + 4m
p−⌊p⌋
p−⌊p⌋

( 1√
n

)p−⌊p⌋
)

≤ C⌊p⌋
p

(

4|al,k|p + 4a
⌊p⌋
l,k m

p−⌊p⌋
p−⌊p⌋

( 1√
n

)p−⌊p⌋
)

. (4.6)

since p− ⌊p⌋ ≤ 2. By Hölder’s inequality,

∑

k∈Zl

a
⌊p⌋
l,k ≤ |Zl|

p−⌊p⌋
p

(

∑

k∈Zl

|al,k|p
)

⌊p⌋
p ≤ (c2l)

p−⌊p⌋
p

(

∑

k∈Zl

|al,k|p
)⌊p⌋/p

,

and this implies together with Equation (4.6) and by definition of ‖ΠWl
f‖p0,p,∞

and Tn(l) that

ETn(l) ≤ C⌊p⌋
p

(

4‖ΠWl
f‖p0,p,∞

+ 4m
p−⌊p⌋
p−⌊p⌋

( 1√
n

)p−⌊p⌋

2lp(1/2−1/p)(c2l)
p−⌊p⌋

p

(

∑

k∈Zl

|al,k|p
)⌊p⌋/p

)

,

which leads to the upper bound in Lemma 4.4.
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Lemma 4.5. There is a constant C(p) that depends on p only and that is such
that

V[Tn(l)] ≤ C(p)

(
√

2l(p−1)

np
+ ‖ΠWl

f‖p−1
0,p,∞

√

2l(1−2/p)

n

)2

.

Proof. Step 1: Bound on VF̂u
u (l, k) for u even. Let u > 0 be an even integer.

We prove by induction that for any such u, there exists a constant C(u) that
depends on u only and such that

VF̂u
u (l, k) ≤ C(u)

( 1

nu
+

|al,k|2(u−1)

n

)

.

For u = 2, this follows from the fact that

VF̂ 2
2 (l, k) = V(â2l,k − 1/n) = EG∼N(0,1)V(G

2)/n ≤ C(2)/n,

where C(2) > 0 is a universal constant.
Assume now that it is true for any i even such that 0 ≤ i ≤ u− 2. We have

VF̂u
u (l, k) = V

[

âul,k −
u−2
∑

i=0,i even

Ci
uF̂

i
i (l, k)

mu−i
u−i

n(u−i)/2

]

≤ u2Vâul,k + u2
u−2
∑

i=0,i even

(Ci
u)

2m
2(u−i)
u−i

nu−i
V(F̂ i

i (l, k))

≤ u2Vâul,k + u2
u−2
∑

i=0,i even

(Ci
u)

2m
2(u−i)
u−i

nu−i
C(i)

( 1

ni
+

|al,k|2(i−1)

n

)

. (4.7)

By (Ingster and Suslina, 2002) (page 86), if G ∼ N (0, 1) and m is a real
number, and u ≥ 2, then there is a constant D(u) that depends only on u such
that V(|G+m|u) ≤ D(u)(1 + |m|2u−2). We thus have

V

(

|âl,k|u
)

≤ D(u)
( 1

nu
+

|al,k|2(u−1)

n

)

. (4.8)

This implies together with Equation (4.7) that

VF̂u
u (l, k) ≤ u2D(u)

( 1

nu
+

|al,k|2(u−1)

n

)

+ u2
u−2
∑

i=0,i even

(Ci
u)

2m
2(u−i)
u−i

nu−i
C(i)

( 1

ni
+

|al,k|2(i−1)

n

)

≤ C(u)
( 1

nu
+

|al,k|2(u−1)

n

)

, (4.9)

where C(u) depends on u only. This concludes the induction.
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Step 2: Bound on VF̂ p
p (l, k). If p is even, we consider the bound in Step 1. If

p is not even, we know similarly as in Equation (4.8) that

V|âl,k|p ≤ D(p)
( 1

np
+

|al,k|2(p−1)

n

)

,

which implies by definition of F̂ p
p (l, k) and also since for any u even, Equa-

tion (4.9) holds, the following result

VF̂ p
p (l, k) = V

[

|âl,k|p −
⌊p⌋−2
∑

u=0,i even

Cu
p F̂

u
u (l, k)

mp−u
p−u

n(p−u)/2

]

≤ (⌊p⌋+ 1)2D(p)
( 1

np
+

|al,k|2(p−1)

n

)

(4.10)

+ (⌊p⌋+ 1)2
⌊p⌋−2
∑

u=0,i even

(Cu
p )

2
m

2(p−u)
p−u

np−u
C(p)

( 1

nu
+

|al,k|2(u−1)

n

)

≤ C(p)
( 1

np
+

|al,k|2(p−1)

n

)

, (4.11)

where C(p) depends on p only.

Step 3: Conclusion

Now by definition of Tn(l) and since the âl,k are independent, we have by
Equation (4.11)

VTn(l) =
∑

k∈Zl

22lp(1/2−1/p)
VF̂u

u (l, k)

≤ C(p)
(2lp(1−1/p)

np
+ 2lp(1−2/p)

∑

k∈Zl

|al,k|2(p−1)

n

)

≤ C(p)
(2lp(1−1/p)

np
+ 2lp(1−2/p)

(
∑

k∈Zl
|al,k|p

)2(p−1)/p

n

)

= C(p)
(2lp(1−1/p)

np
+ 2l(1−2/p)

(
∑

k∈Zl
2lp(1/2−1/p)|al,k|p

)2(p−1)/p

n

)

≤ C(p)
(2lp(1−1/p)

np
+

2l(1−2/p)

n
‖ΠWl

f‖2(p−1)
0,p,∞

)

.

since
∑

k∈Zl
|al,k|2(p−1) ≤ (

∑

k∈Zl
|al,k|p)2(p−1)/p (since 2(p − 1)/p ≥ 1). This

concludes the proof.

Lemma 4.5 implies by Chebyshev’s inequality that for 0 < δl ≤ 1

Pr
{

∣

∣Tn(l)−E[Tn(l)]
∣

∣ ≥
√

1

δl

√

C(p)
(2lp(1−1/p)

np
+

2l(1−2/p)

n
‖ΠWl

f‖2(p−1)
0,p,∞

)

}

≤ δl.
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which implies since for any a, b ≥ 0, we have
√
a+ b ≤ √

a+
√
b,

Pr
{

∣

∣Tn(l)−E[Tn(l)]
∣

∣ ≥
√

C(p)

δl

(√

2l(p−1)

np
+ ‖ΠWl

f‖p−1
0,p,∞

√

2l(1−2/p)

n

)

}

≤ δl.

(4.12)

Consider 1
δl

= D(D)

∆ min(2(j−l)(p−1)/2, 2l/p) where 0 < ∆ ≤ 1 and D(D) is

a positive constant such that
∑

js≤l≤j
1

min(2(j−l)(p−1)/2,2l/p)
= D(D). D(D) is a

constant that is bounded depending on p only as a sum of the max of two
geometric series. We thus have by an union bound on Equation (4.12)

Pr
{

∀js ≤ l ≤ j,
∣

∣Tn(l)−E[Tn(l)]
∣

∣

≥
√

C(p)D(D)

∆

(√

2(p−1)(j+l)/2

np
+ ‖ΠWl

f‖p−1
0,p,∞

√

2l(1−1/p)

n

)

}

≤
∑

js≤l≤j

δl ≤ ∆.

(4.13)

Equation (4.13) implies with Lemma 4.4 (right hand side) that

Pr
{

∀js ≤ l ≤ j, Tn(l) ≤ ‖ΠWl
f‖p−1

0,p,∞

(

D(m)‖ΠWl
f‖0,p,∞

−
√

C(p)D(D)

∆

√

2l(1−1/p)

n

)

−
√

D(D)C(p)

∆

2(p−1)(j+l)/2

np

}

≤ ∆.

Assume now that f ∈ Σ(s). Then we have by Proposition 3 (Supplementary
Material)

‖ΠWl
f‖0,p,∞ ≤ B2−ls.

This implies with Equation (4.12) and Lemma 4.4 (left hand side)

Pr
{

∃l : js ≤ l ≤ j, Tn(l) ≥ D(M)
(

Bp2−pls +B⌊p⌋2−⌊p⌋ls
(2l

n

)(p−⌊p⌋)/2)

+

√

C(p)D(D)

∆

(

Bp−12−ls(p−1)

√

2l(1−1/p)

n
+

√

2(p−1)(j+l)/2

np

)}

≤ ∆,

which implies since l ≥ js

Pr
{

∃l : js ≤ l ≤ j, Tn(l) ≥ (Bp + 1)
(

D(M) +

√

C(p)D(D)

∆

)

(τp,l(s))
p

+

√

C(p)D(D)

∆

√

2(p−1)(j+l)/2

np

}

≤ ∆,

where (τp,l(s))
p = 2−ls(p−1)

√

2l(1−1/p)

n + 2−⌊p⌋ls
(

2l

n

)(p−⌊p⌋)/2
+ 2−pls.
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4.6. Study of the test Ψn

Let 1 ≥ ∆ > 0 be a probability. We remind that j and js are such that

js = ⌊log(n 1
2s+1 )⌋ and j = ⌊log(n 1

2t+1−1/p )⌋.

We set for js ≤ l ≤ j,

τl ≡ τl(n, p, s) = C′
(

τp,l(s) +

√

2(p−1)(j+l)/(2p)

n

)

,

where

C′ ≥ 2
(

D(M) +

√

C(p)D(D)

∆

( 1

D(m)
+ 1
)

+ Cp

)

,

and where τp,l(s) is defined in Lemma 4.3.
As sums of a geometric series, the following terms entering in the composition

of (τp,l(s))
p satisfy

j
∑

l=js

2−pls ≡ n− sp
2s+1 , and

j
∑

l=js

√

2(p−1)(j+l)/(2p)

n
≡ n− tp

2t+1−1/p ,

and

j
∑

l=js

2−ls(p−1)

√

2l(1−1/p)

n
= O

(

max(n− sp
2s+1 , n− tp

2t+1−1/p )
)

.

Also, since s > 1/2 > p−⌊p⌋
2⌊p⌋ , we have in the same way

j
∑

l=js

2−⌊p⌋ls
(2l

n

)(p−⌊p⌋)/2

≡ n− sp
2s+1 .

The last two equation blocks, together with the definition of τl, imply that

j
∑

l=js

τl = C′Ap(n
− s

2s+1 + n− t
2t+1−1/p ),

where 10 ≥ Ap ≥ 1.
We set

tn(l) = (B + 1)τl/2 and t̃n = (Dp + 2Cp/(p−1)

√

log(1/∆))

√

2js

n
,

We also write

ρn = 4
[

(B + 1)C′2−jt + 2
∑

js≤l≤j

tn(l) + 2t̃n

]

= C(B + 1)(n− s
2s+1 + n− t

2t+1−1/p ),

with C fixed accordingly (we remind that D(M), C(p), D(D), D(m) are strictly
positive constants that depend on p only).
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Null Hypothesis H0

Assume that f ∈ Σ(s,B). We have by Lemma 4.3 (Equation (4.2)) and by
definition of tn(l)

Pr
{

∃l : js ≤ l ≤ j, Tn(l) ≥ (tn(l))
p/2p

}

≤ ∆.

Also since f ∈ Σ(s,B)

T̃n = inf
g∈Σ(s,B)

‖ΠVjs
f̂n − g‖p ≤ ‖ΠVjs

(f̂n − f)‖p.

Thus by Lemma 4.2, we have

Pr
{

T̃n ≥ (Dp + 2Cp/(p−1)

√

log(1/∆))

√

2js

n

}

≤ ∆,

and note that by definition (Dp + 2Cp/(p−1)

√

log(1/∆))
√

2js
n ≤ t̃n.

So with probability 1− 2∆, we have Ψn = 0 under H0.
Alternative hypothesis H1

We identify the seqence (τl)js≤l≤j , and the quantity ρn, with the quantities
in Lemma 4.1: they have all required properties by definition and for C′ (and
thus C) large enough.

If H1 is satisfied, then either infg∈Σ(s,B) ‖ΠVjs
(f)− g‖p ≥ 3ρn/8 or

maxjs≤l≤j ‖ΠWl
(f)‖0,p,∞ ≥ (B + 1)τl (see Lemma 4.1).

Case 1: maxjs≤l≤j ‖ΠWl
(f)‖0,p,∞ ≥ (B + 1)τl

Using the results of Lemma 4.3 (Equation (4.1)), we have

Pr
{

∃l : js ≤ l ≤ j, T (l)
n ≤ (B + 1)p−1τp−1

l

(

D(m)τl(B + 1)

−
√

C(p)D(D)

∆

√

2l(1−1/p)

n

)

−

√

C(p)D(D)∆

C

(p)
2(p−1)(j+l)/2

np

}

≤ ∆.

By defintion of τl (since C
′ is large enough), we know that

D(m)τl −
√

C(p)D(D)
2l(1−1/p)

n∆
≥ 3τl/4.

So by definition of (tn(l))
p, we have

3

4
(τl)

p −
√

C(p)D(D)

∆

2(p−1)(j+l)/2

np
>

1

2
(τl)

p > tn(l).

Case 2: infg∈Σ(s,B) ‖ΠVjs
(f)− g‖p > 3ρn/8

By triangular inequality, for any g ∈ Σ(s,B)

‖ΠVjs
(f̂n)− g‖p ≥ ‖ΠVjs

(f)− g‖p − ‖ΠVjs
(f̂n)− f‖p,
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which implies when combined with Lemma 4.2

Pr
{

‖ΠVjs
(f̂n)− g‖p

≤ ‖ΠVjs
(f)− g‖p − (Dp + 2Cp/(p−1)

√

log(1/∆))

√

2js

n

}

≤ ∆,

which implies since infg∈Σ(s,B) ‖ΠVjs
(f)− g‖p > 3ρn/8

Pr
{

inf
g∈Σ(s,B)

‖ΠVjs
(f̂n)− g‖p

≤ 3ρn/8− (Dp + 2Cp/(p−1)

√

log(1/∆))

√

2js

n

}

≤ ∆,

so since T̃n = infg∈Σ(s,B) ‖ΠVjs
(f̂n)− g‖p,

Pr
{

T̃n ≤ 3ρn/8− (Dp + 2Cp/(p−1)

√

log(1/∆))

√

2js

n

}

≤ ∆,

and by definition we have 3ρn/8− (Dp + 2Cp/(p−1)

√

log(1/∆))
√

2js
n ≥ t̃n.

So with probability 1− 2∆, we have Ψn = 1 under H1.

Conclusion on the test Ψn

All the inequalities developed earlier are true for any f in H0 or H1 with
universal constants (independent of f) and the supremum over f in H0 and H1

of the error of type one and two are bounded by 2∆ = α/2. Finally, the test
Ψn of error of type 1 and 2 bounded by 2∆ = α/2 distinguishes between H0

and H1 with condition ρn = C(B+1)(n− s
2s+1 +n− t

2t+1−1/p ) for a value C large
enough (but depending only on p, α). This implies that for any n > 0 we have

sup
f∈Σ(s,B)

EfΨn + sup
f∈Σ̃(t,B,ρn)

Ef (1−Ψn) ≤ α. (4.14)

The test is α-consistent (see (Ingster and Suslina, 2002) for a definition).

5. Proof of Theorem 3.6 (upper bound)

Let 1 ≥ ∆ > 0. We know that for n and C (in the definition of ρn) large enough
(depending only on p,B,∆), there exists a test Ψn for the testing problem (3.3)
that is consistent and with level ∆ (see Theorem 3.4).

Set Up := Up(B) where Up(B) is the constant in Theorem 3.1. Consider the

confidence set around the adaptive estimate f̂n(ĵn) (where f̂n(ĵn) is constructed
as in Theorem 3.1) as being

Cn =
{

g : ‖f̂n(ĵn)− g‖p ≤ 1

∆
Upn

− s
2s+1 I {Ψn = 0}+ 1

∆
Upn

− t
2t+1 I {Ψn = 1}

}

.
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Then since the test Ψn is ∆-consistent

sup
f∈Σ(s,B)

Prf

(

|Cn| >
1

∆
Upn

− s
2s+1

)

= sup
f∈Σ(s,B)

EfΨn ≤ ∆,

and

sup
f∈Σ̃(t,B,ρn)

Prf

(

|Cn| >
1

∆
Upn

− t
2t+1

)

= 0.

Also we have by Markov’s inequality

sup
f∈Σ(s,B)

Prf

(

f ∈ Cn

)

≥ 1− sup
f∈Σ(s,B)

Prf

(

‖f̂n(ĵn)− f‖p ≥ 1

∆
Upn

− s
2s+1

)

≥ 1− ∆n
s

2s+1

Up
sup

f∈Σ(s,B)

E‖f̂n(ĵn)− f‖p

≥ 1− ∆n
s

2s+1

Up
Upn

− s
2s+1

≥ 1−∆,

where we use Theorem 3.1 for the bound on E‖f̂n(ĵn)− f‖p, and we also have
still by Markov’s inequality

sup
f∈Σ̃(t,B,ρn)

Prf

(

f ∈ Cn

)

≥ 1− sup
f∈Σ̃(t,B,ρn)

Prf

(

‖f̂n(ĵn)− f‖p ≥ 1

∆
Upn

− t
2t+1

)

− sup
f∈Σ̃(t,B,ρn)

Ef (1−Ψn)

≥ 1− ∆n
t

2t+1

Up
sup

f∈Σ̃(t,B,ρn)

E‖f̂n(ĵn)− f‖p

− sup
f∈Σ̃(t,B,ρn)

Ef (1−Ψn)

≥ 1− ∆n
t

2t+1

Up
Upn

− t
2t+1 −∆

≥ 1− 2∆.

These four inequalities imply that Cn is an (Lp, 2∆)-honest and adaptive

confidence bound on Σ(s,B) ∪ Σ̃(t, B, ρn) for {s, t} and B.

6. Proof of Theorem 3.5

Let Ψn be a test as defined in Theorem 3.4, and

ρn = C(B + 1)max(n−t/(2t+1−1/p), n−s/(2s+1)) = C(B + 1)n−s/(2s+1),
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where C defined as in Theorem 3.4. The confidence set we consider is the fol-
lowing.

Cn =
{

g ∈ Σ(t, B) : ‖f̃n − g‖p ≤ D

α
n− s

2s+1 (1−Ψn) +
D

α
n− t

2t+1Ψn

}

,

where f̃n is the adaptive estimate of Theorem 10.1 (which is actually the same
estimate than the one for Theorem 3.1) and where D ≥ Ũp(B, 2C) where

Ũp(B, 2C) is the constant defined in Theorem 10.1.
By Markov’s inequality

sup
f∈Σ(t,B)

P(f 6∈ Cn) ≤ sup
f∈Σ̃(t,B,ρn)

Pf (f 6∈ Cn) + sup
f∈Σ(t,B)\Σ̃(t,B,ρn)

Pf (f 6∈ Cn)

≤ sup
f∈Σ̃(t,B,ρn)

Pf

(

‖f̃n − f‖p ≥ D

α
n− t

2t+1

)

+ sup
f∈Σ̃(t,B,ρn)

Ef [1−Ψn]

+ sup
f∈Σ(t,B):‖f−Σ(s,B)‖p≤C(B+1)n−s/(2s+1)

Pf

(

‖f̃n − f‖p ≥ D

α
n− s

2s+1

)

≤ sup
f∈Σ̃(t,B,ρn)

Ef (‖f̃n − f‖p)
α

D
n

t
2t+1 + α

+ sup
f∈Σ(t,B):‖f−Σ(s,B)‖p≤C(B+1)n−s/(2s+1)

Ef (‖f̃n − f‖p)
α

D
n

s
2s+1 )

≤ 3α,

by Theorem 3.4 (since ρn = C(B + 1)n−s/(2s+1)) and by Theorem 10.1 (since
D ≥ Ũp(B, 2C)). Also it holds that

sup
f∈Σ(s,B)

P

[

|Cn| ≥
D

α
n− s

2s+1

]

≤ α,

by definition of Ψn and by Theorem 3.4, and

|Cn| ≤
D

α
n− t

2t+1 .

This concludes the proof.

7. Proof of Theorem 3.4 (lower bound)

Let 1 > υ > 0, and j ∈ N
∗ such that 2j ≈ n

1
2t+1−1/p .

Step 1: Definition of a testing problem.
We define the following prior Π̃ on for a sequence (αl,k)l≥J0,k∈Zl

:

α ∼ Π̃ ⇔ ∀l 6= j, ∀k ∈ Zl, αl,k = 0, ∀k ∈ Zj , αl,k = Bk,

where the Bk are i.i.d.Bernoulli of parameter 2−j/2.
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Consider the sequence of coefficients indexed by a given α ∈ I as

a
(α)
l,k = υaαl,k,

where a = 2−j(t+1/2−1/(2p)) = n−1/2. Consider f (α) the function associated to
a(α), i.e.

f (α) =
∑

l≥J0

∑

k∈Zl

a
(α)
l,k .

We write by a slight abuse of notations that f ∼ Π̃ if f = f (α) where α ∼ Π̃.

Consider the testing problem

H0 : f = 0 vs. H1 : f ∼ Π̃. (7.1)

Step 2: Quantity of interest.

Let Ψ be a test, that is to say a measurable function that takes values in
{0, 1}. Equivalently to having access to the process Y (n), we have access to the
coefficients (âl,k)l,k and each of these coefficients are independent N (al,k, 1/n).

We have for any η > 0

E0[Ψ] +Eα∼Π̃Ef(α) [1−Ψ] ≥ E0[Ψ] +Eα∼Π̃Ef(α) [1−Ψ]

≥ E0

[

I {Ψ = 1}] + I {Ψ = 0}Z
]

≥ (1− η)P0(Z ≥ 1− η), (7.2)

where Z = Eα∼Π̃

∏

l,k

dP
(α)
l,k

dP
(0)
l,k

, where dP
(α)
l,k is the distribution of âl,k when the

function generating the data is f (α), and dP
(0)
l,k is the distribution of âl,k when the

function generating the data is 0 (this holds since the (âl,k)l,k are independent).

More precisely, we have since the (âl,k)l,k are independent N (al,k, 1/n)

Z((xk)k) = Eα∼Π̃

[

∏

l>0,k∈Zl

exp(−n
2 (xl,k − a

(α)
l,k )

2)

exp(−n
2x

2
l,k)

]

= Eα∼Π̃

[

∏

k∈Zj

exp(nxka
(α)
k ) exp

(

−n
2
(a

(α)
k )2

)

]

,

where we simplify notations by setting xk ≡ xj,k and a
(α)
k ≡ a

(α)
j,k . We also write

later αk ≡ αj,k.

By Markov and Cauchy Schwarz’s inequality

P0(Z ≥ 1− η) ≥ 1− E0|Z − 1|
η

≥ 1−
√

E0(Z − 1)2

η
. (7.3)
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We have by definition of Z

E0

[

(Z − 1)2
]

=

∫

x1,...,x2j

(

Eα∼Π̃

[

∏

k

exp(xkna
(α)
k ) exp

(

−n
2
(a

(α)
k )2

)]

− 1

)2

∏

k

1√
2nπ

exp
(

−n
2
(xk)

2
)

dx1 · · ·x2j

= Eα,α′∼Π̃

[

∏

k

∫

xk

exp(xkn(a
(α)
k + a

(α′)
k )) exp

(

−n
2
((a

(α)
k )2 + (a

(α′)
k )2)

)

1√
2nπ

exp
(

−n
2
(xk)

2
)

dxk

]

− 1

= Eα,α′∼Π̃

[

∏

k

(

(1− I {αk = α′
k = 1}) + exp(nυ2a2)I {αk = α′

k = 1}
)

]

− 1

= Eα,α′∼Π̃

[

∏

k

(

1 + (exp(nυ2a2)− 1)I {αk = α′
k = 1}

)

]

− 1. (7.4)

Since all (αk)k, (α
′
k)k are i.i.d. Bernoulli of parameter 2−j/2, it implies that the

(I {αk = α′
k = 1})k are i.i.d. Bernoulli random variables of parameter 2−j. This

implies together with Equation (7.4) that

E0

[

(Z − 1)2
]

=

[

∏

k

EB′
k∼B(2−j)

(

1 + (exp(nυ2a2)− 1)B′
k

)

]

− 1

=
(

1 + (exp(nυ2a2)− 1)
1

2j

)2j

− 1

≤ exp((exp(nυ2a2)− 1))− 1.

where B(2−j) is the law of a Bernoulli of parameter 2−j, and since for any u ≥ 0,
1 + u ≤ exp(u). Since a2 = n−1, we get

E0

[

(Z − 1)2
]

≤ exp((exp(υ2)− 1))− 1

≤ exp(2υ2)− 1 ≤ 4υ2, (7.5)

since for u ≤ 1, we have exp(u) ≤ 1 + 2u.
Step 3: Conclusion on the test 7.1
By combining Equations (7.2), (7.3), and 7.5 we know that

E0[Ψ] +Eα∼Π̃Ef(α) [1−Ψ] ≥ 1− 4υ2,

and since this holds with any Ψ, we have

inf
Ψ

[

E0[Ψ] +Eα∼Π̃Ef(α) [1−Ψ]
]

≥ 1− 4υ2, (7.6)

and this implies that there is no 1 − 4υ2-consistent test for the testing prob-
lem (7.1).
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Step 4: Extension of this result to a deterministic testing problem.
Define the set

I =
{

(αl,k)l,k : ∀l 6= j, αl,k = 0, αj,k ∈ {0, 1},
∑

k∈Zj

αj,k = S,
2j/2

2
≤ S ≤ 3

2
2j/2

}

.

Consider the associated sequence of coefficients indexed by α ∈ I, and the
corresponding function f (α). Consider the testing problem

H0 : f = 0 vs. H1 : f = f (α), α ∈ I. (7.7)

Consider now α ∼ Π̃. By Hoeffding’s inequality, we know that for λ ≤ 2j/2,
we have

Prα∼Π̃

(∣

∣

∣

∑

k

αj,k − 2j/2
∣

∣

∣ ≥ λ
)

≤ 2 exp(−2−j/2λ2/2).

Let λ = 2j/2

2 . Then the last equation implies

Prα∼Π̃

(∣

∣

∣

∑

k

αj,k − 2j/2
∣

∣

∣
≥ 2j/2

2

)

≤ 2 exp(−2j/2/8),

so this implies in particular that with Π̃-probability larger than 1−2 exp(−2j/2/8),
we have α ∈ I.

For any test Ψ, since Ψ ≤ 1, we have

Eα∼Π̃Ef(α) [1−Ψ] ≤ Prα∼Π̃(α 6∈ I) + sup
α∈I

Ef(α) [1−Ψ].

This implies since with Π̃-probability larger than 1 − 2 exp(−2j/2/8), α ∈ I,
that

Eα∼Π̃Ef(α) [1−Ψ] ≤ sup
α∈I

Ef(α) [1−Ψ] + 2 exp(−2j/2/8).

This implies when combined to Equation (7.6) that

inf
Ψ

[

E0[Ψ] + sup
α∈I

Ef(α) [1−Ψ]
]

≥ 1− 4υ2 − 2 exp(−2j/2/8)

≤ 1− 5υ2,

for n and thus j large enough. This implies that there is no 1 − 5υ2-consistent
test for the testing problem (7.7), and this holds for any υ > 0.

8. Proof of Theorem 3.6 (lower bound)

Consider all the quantities defined in Section 7.
Assume that s(1− 1/p) > t. Let υ ≤ B/2. Set

ρn = Cp
υn− t

2t+1−1/p

4
.

Let α ∈ I.
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By triangular inequality,

‖f (α)‖t,p,∞ =
(

∑

k

(a
(α)
j,k )

p2jp(1/2−1/p)
)1/p

=
3

2
υ ≤ B,

which implies that f (α) ∈ Σ(t, B). Also that since only the j − th first coeffi-
cients of f are non-zero, and since ‖.‖p ≥ Cp‖.‖0,p,p (see Proposition 2 in the
supplementary Material), we have

‖f (α) − Σ(s,B)‖p ≥ Cp‖f (α) − Σ(s,B)‖0,p,p
= Cp min

g∈Σ(s,B)
‖ΠWj (f

(α))−ΠWj (g)‖0,p,p

≥ Cp‖ΠWjf
(α)‖0,p,p/2− CpB2−js

≥ Cp
υn− t

2t+1−1/p

4
.

by triangular inequality since for any g ∈ Σ(s,B), ‖g‖0,p,p ≤ B2−js ≤
υn− t

2t+1−1/p /4 for n large enough, since s(1 − 1/p) > t. This implies in par-
ticular that f (α) ∈ Σ̃(t, B, ρn)

To sum up,

0 ∈ Σ(s,B) and ∀α, f (α) ∈ Σ̃(t, B, ρn).

Assume that there exists some honest and adaptive confidence set Cn for
Pn = Σ(s,B) ∪ Σ(t, B, ρn), and {s, t}.

This implies that the confidence set Cn is in particular honest and adaptive
over P ′

n = {0} ∩ {f (α), α ∈ I}. So, for any 0 < δ < 1, there exists a constant L
(that might depend on B, s, t, δ) such that for n > 0

Pr0

(

{|Cn| ≥ Ln−s/(2s+1)}∪{0 6∈ Cn}
)

≤ 2δ and sup
α∈I

Prf(α)

(

f (α) ∈ Cn

)

≥ 1−δ.

We define a test Ψ as follows. If 0 ∈ Cn and |Cn| ≤ Ln−s/(2s+1), then Ψ = 0,
otherwise Ψ = 1. We have for n > 0

Pr0(Ψ = 1) = Pr0

(

{|Cn| ≥ Ln−s/(2s+1)} ∪ {0 6∈ Cn}
)

≤ 2δ.

Also

sup
α∈I

Prf(α)(Ψ = 0) ≤ sup
α∈I

Prf(α)

(

‖f (α) − 0‖p ≤ Ln−s/(2s+1)
)

≥ sup
α∈I

Prf(α)

(

f (α) 6∈ Cn

)

≥ δ.

Combining both results imply that for n large enough, there exists a consistent
test Ψ constructed using Cn, that is to say such that

inf
Ψ

E0[Ψ] + sup
f(α),α∈I

Ef(α) [1−Ψ] ≤ 3δ,

and that for any δ > 0. This is in contradiction with the result of Step 4 (no
consistent test for the testing problem 7.7), and we deduce by contradiction that
no honest and adaptive confidence set exists on Pn. This concludes the proof.
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Supplementary material

9. Technical preliminary results

In this Section, we remind some well-known preliminary results, which we some-
times extend, or adapt.

We first provide the following Assumption.

Assumption 2. We assume that there is a universal constant Cp such that for
any (l, k) we have

‖ψl,k‖p ≤ Cp2
l/2,

and
‖φk‖p ≤ Cp.

Note that Assumption 1 implies Assumption 2.

9.1. Properties of Besov spaces

We remind the following Proposition (see (Bergh and Löfström, 1976) or (Besov
et al., 1978), volume 2, Chapter 18, page 68)

Proposition 2. Assume that p ≥ 2 (and p <∞). Then

B0,p,2 ⊂ Lp ⊂ B0,p,p.

If p′ ≤ 2, then we have
B0,p′,p′ ⊂ Lp′ ⊂ B0,p′,2.

We also remind the following Proposition (see also (Härdle et al., 1998)).

Proposition 3. Let s > 0, p ≥ 2 (and p < ∞) and h ≥ 2. Assume that
f ∈ Bs,p,∞. Then

‖f −ΠVjf‖0,p,h ≤ ‖f‖s,p,∞2−js,

and also
‖f −ΠVjf‖p ≤ Cp‖f‖s,p,∞2−js.

Note that this is also satisfied for the weaker condition p′ ≥ 1 and h ≥ 1 (by
just remarking that Lp′ ⊂ B0,p′,1 also for any p′ ≥ 1).

Proof. We have

‖f −ΠVjf‖0,p,h =





∑

l≥j

2lh(1/2−1/p)|〈f, ψl,.〉|hlp





1/h

≤ 2−js





∑

l≥j

2lh(s+1/2−1/p)|〈f, ψl,.〉|hlp





1/h

≤ ‖f‖s,p,∞2−js.

For the ‖.‖p norm, it comes from the fact that there exists a constant Cp

such that ‖f‖p ≤ Cp‖f‖0,p,2 for any f (Proposition 2).
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9.2. Behaviour of thresholded wavelet estimates

We also remind Rosenthal’s inequality (see (Härdle et al., 1998), page 132)

Proposition 4. Let (X1, . . . , Xn) be n i.i.d. random variables such that EXi =
0 and for a given p ≥ 2 (and p <∞), E|Xi|p <∞. Then there exists a universal
constant C̃p

p such that

E
∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

p

≤ C̃p
p

(

n
∑

i=1

E|Xi|p +
(

n
∑

i=1

EX2
i

)p/2)

We remind the following Proposition (see (Giné and Nickl, 2011), and here
we provide an alternative proof).

Proposition 5. If Assumption 2 is satisfied, there exists a universal constant
Dp that depends on p only such that for any fixed j ∈ N

∗ we have

E‖ΠVj f̂n −ΠVjf‖pp ≤ Dp
p

2jp/2

np/2
.

Proof. Let x ∈ [0, 1]. We have

E
∣

∣

∣
ΠVj f̂n(x) −ΠVjf(x)

∣

∣

∣

p

= E
∣

∣

∣

∑

k

1√
n
G′

kφk(x) +
∑

l≤j,k

1√
n
Gl,kψl,k(x)

∣

∣

∣

p

,

where Gl,k =
√
n(âl,k − al,k) and G′

k =
√
n(â′k − a′k) and the (G′

k′ , Gl,k)k′,l,k

are thus i.i.d. gaussian random variables of mean 0 and variance 1. In order to
simplify the notations, we abuse notations and set ψ−1,k = φk and G−1,k = G′

k.
We use Rosenthal’s inequality (Proposition 4), and obtain

E
∣

∣

∣ΠVj f̂n(x) −ΠVjf(x)
∣

∣

∣

p

= E
∣

∣

∣

∑

−1≤l≤j,k

1√
n
Gl,kψl,k(x)

∣

∣

∣

p

≤ C̃p
p

(

∑

−1≤l≤j,k

1

np/2
E|Gl,k|p|ψl,k(x)|p

+
(

∑

−1≤l≤j,k

1

n
EG2

l,kψl,k(x)
2
)p/2

)

= C̃p
p

(

∑

−1≤l≤j,k

1

np/2
cpp|ψl,k(x)|p +

( 1

n

∑

−1≤l≤j,k

ψl,k(x)
2
)p/2

)

≤ C̃p
p

(

∑

−1≤l≤j,k

1

np/2
cpp|ψl,k(x)|p +

Cp
p2

jp/2

np/2

)

.

where cpp is the p-th moment of a N (0, 1), and since Assumption 2 is satisfied.
By Assumption 2, we know that for any (l, k) we have

∫

|ψl,k(x)|pdx ≤ Cp
p2

lp(1/2−1/p),
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and thus we have that
∫

E
∣

∣

∣
ΠVj f̂n(x) −ΠVjf(x)

∣

∣

∣

p

dx

≤
˜∫

Cp
p

(

∑

−1≤l≤j,k

1

np/2
cpp|ψl,k(x)|p +

Cp
p2

jp/2

np/2

)

dx

≤ C̃p
p

(

∑

−1≤l≤j,k

1

np/2
cppC

p
p2

lp(1/2−1/p) +
Cp

p2
jp/2

np/2

)

≤ C̃p
p (c

p
pC

p
p + Cp

p )
2jp/2

np/2
.

This concludes the proof.

We finally state the following Proposition (it is a generalisation of what is
done in (Giné and Nickl, 2011)).

Proposition 6. Let 2 ≤ p ≤ ∞ and 2 ≤ h ≤ ∞. Then

Pr
{

∣

∣‖ΠVj (f̂n − f)‖0,p,h −E[‖ΠVj (f̂n − f)‖0,p,h]
∣

∣

≥ 2

√

log(1/δ)
2j(1−2/p)

n

}

≤ δ,

and in particular, this implies

Pr
{

∣

∣‖ΠVj (f̂n − f)‖p −E[‖ΠVj (f̂n − f)‖p]
∣

∣

≥ 2Cp/(p−1)

√

log(1/δ)
2j(1−2/p)

n

}

≤ δ,

Proof. We first remind Borell’s inequality:

Theorem 9.1 (Borell’s inequality). Let (G(t))t∈T be a centred Gaussian process
indexed by a countable set T such that supt∈T G(t) < +∞ almost surely. Then
E supt∈T G(t) < +∞ and for every r ≥ 0, we have

Pr
(

∣

∣ sup
t∈T

G(t)−E sup
t∈T

G(t)
∣

∣ ≥ r
)

≤ 2 exp(−r2/2σ2),

where σ2 = supt∈T EG2(t) < +∞.

We use the separability of the ball of radius 1 of B0,p/(p−1),h/(h−1) (that we

write B0 to prove that by Borell’s inequality (since (ΠVj (f̂n−f) =
∑

l≤j,k(âl,k−
al,k)ψl,k(x))x∈[0,1] is a centered Gaussian process, and thus (〈ΠVj (f̂n−f), g〉)g∈B0

is a centred Gaussian process):

Pr
{

∣

∣ sup
g∈B0

〈ΠVj (f̂n − f), g〉 −E[ sup
h∈B0

〈ΠVj (f̂n − f), g〉
∣

∣ ≥ 2
√

log(1/δ)σ
}

≤ δ,

where σ2 ≤ supg∈B0
E[〈ΠVj (f̂n − f), g〉2].
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Note first that by Hahn-Banach’s duality Theorem (since ‖.‖0,p,h is the norm
corresponding to B0), we have that

sup
g∈B0

〈ΠVj (f̂n − f), g〉 = ‖ΠVj (f̂n − f)‖0,p,h,

and we can rewrite the previous equation as

Pr
{

∣

∣‖ΠVj (f̂n − f)‖0,p,h −E[‖ΠVj (f̂n − f)‖0,p,h]
∣

∣ ≥ 2
√

log(1/δ)σ
}

≤ δ.

Concerning σ2, we have (since the (âl,k − al,k) are independent centered
Gaussian of variance 1/n)

sup
u∈B0

E[〈ΠVj (f̂n − f), u〉2] = sup
u∈B0

E
[〈

∑

l≤j,k

(âl,k − al,k)ψl,k, u
〉2]

= sup
u∈B0

E
[(

∑

l≤j,k

(âl,k − al,k)〈ψl,k, u〉
)2]

= sup
u∈B0

∑

l≤j,k

1

n

(

< ψl,k, u〉
)2

= sup
u∈B0

1

n
‖ΠVju‖22.

We are thus interested in computing supu∈B0
‖ΠVju‖22, i.e. the maximum

squared L2 norm of a vector of ‖.‖0,p/(p−1),h/(h−1) norm of 1. We have by
Plancherel’s theorem

sup
u∈B0

‖ΠVju‖22 = sup
u∈B0

∑

l≤j,k

u2l,k.

Let us consider u ∈ B0. We have, since p ≥ 2 (and p <∞)
∑

k

u2l,k ≤ |ul,.|2p/(p−1).

Also, since h ≥ 2
∑

l≤j

|ul,.|2p/(p−1) =
∑

l≤j

|ul,.|2p/(p−1)2
2l(1/2−(p−1)/p)2−2l(1/2−(p−1)/p)

≤
(

∑

l≤j

|ul,.|
h

h−1

p/(p−1)2
l(1/2−(p−1)/p) h

h−1
)(h−1)/h

)2

22j(1/2−1/p)

≤ ‖ΠVju‖20,p/(p−1),h/(h−1)2
j(1−2/p).

When putting all this together, we obtain finally

σ2 ≤ 1

n
sup
u∈B0

‖ΠVju‖22 ≤
2j(1−2/p)

n
,

which concludes the proof for the ‖.‖0,p,h norm.
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For the ‖.‖p norm, we apply as before Borell’s inequality on the ball of radius
1 of L p

p−1
(using the fact that it is separable for p <∞, or that [0, 1] is separable

for p = ∞), and also use Hahn Banach’s theorem to obtain

Pr
{

∣

∣‖ΠVj (f̂n − f)‖p −E[‖ΠVj (f̂n − f)‖p]
∣

∣ ≥ 2
√

log(1/δ)σ
}

≤ δ,

where σ2 ≤ supu:‖u‖p/(p−1)≤1 E[〈ΠVj (f̂n−f), u〉2]. Then we remark that L p
p−1

⊂
B0,p/(p−1),2 (see Proposition 2), which implies that there exists a universal con-
stant Cp/(p−1) such that ‖.‖ p

p−1
≥ Cp/(p−1)‖.‖0, p

p−1 ,2
. This implies in particu-

lar that supu:‖u‖p/(p−1)≤1 ‖ΠVju‖22 ≤ supu:‖u‖0,p/(p−1),2≤Cp/(p−1)
‖ΠVju‖22. This in

particular implies, using previous results, that σ2 C2
p/(p−1)2

j(1−2/p)

n , which leads
finally to

Pr
{

∣

∣‖ΠVj (f̂n − f)‖p −E[‖ΠVj (f̂n − f)‖p]
∣

∣

≥ 2Cp/(p−1)

√

log(1/δ)
2j(1−2/p)

n

}

≤ δ,

10. Adaptive estimation

We prove that adaptive estimators exist on sets that are slightly larger than
Σ(r, B). As a corollary, adaptive estimators exist on Σ(r, B) (Theorem 3.1).

Theorem 10.1. There exists an adaptive estimator f̂n(dY
(n)) such that there

are two constants up > 0 and Np > 0 that depend only on p such that for every
B > 0, every r > 0 and every ca ≥ 0, we have

sup
f∈L2:‖f−Σ(r,B)‖p≤can−r/(2r+1)

Ef‖f̂n − f‖p ≤ up

(

(

ca +B
)1/(2r+1)

+ 1
)

n−r/(2r+1).

We can rewrite this as

sup
r>0

sup
f∈L2:‖f−Σ(r,B)‖p≤can−r/(2r+1)

[ 1

Ũp(B, ca)
nr/(2r+1)Ef‖f̂n − f‖p

]

≤ 1,

where Ũp(B, ca) = up((ca +B) + 2).

10.1. Approximation and estimation errors of a thresholded

estimator

The wavelet basis we use is the Cohen-Daubechies-Vial wavelet basis (it that
satisfies Assumption 2).

We first remind the following Corollary of Proposition 5.
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Corollary. Consider f ∈ L2. There exists a universal constant Dp that depends
on p only such that for any fixed j ∈ N

∗ we have

E‖ΠVj f̂n −ΠVjf‖p ≤ Dp
2j/2

n1/2
:= σ(j, n).

Proof. Since p ≥ 2 (and p <∞), we know by convexity that E‖.‖pp ≥ (E‖.‖p)1/p,
which concludes the proof together with Proposition 5.

We state the following Lemma, which is an extension of results in (Härdle
et al., 1998; Giné and Nickl, 2011)).

Lemma 10.1. Let ǫ > 0. Let f ∈ L2 such that ‖f −Σ(r, B)‖p ≤ ǫ. There exists
a universal constant Cp that depends on p only such that for any fixed j ∈ N

∗

and any f ∈ Br,p,∞ such that ‖f‖r,p,∞ ≤ B, we have

‖f −ΠVjf‖p ≤ 2ǫ+ CpB2−jr := B(j, f, ǫ).

Proof. We have

‖f −ΠVjf‖p = inf
g∈Σ(r,B)

‖f − (g −ΠVjg) + (g −ΠVjg)−ΠVjf‖p

≤ inf
g∈Σ(r,B)

[

‖f − g‖p + ‖g −ΠVjg‖p + ‖ΠVj (f − g)‖p
]

≤ 2ǫ+ Cp sup
g∈Σ(r,B)

‖g‖r,p,∞2−jr ≤ 2ǫ+ CpB2−jr := B(j, f, ǫ).

10.2. Definition of a Lepski type estimator

Let ca > 0, r > 0 and B > 0. Let c > 0 and f ∈ L2 such that ‖f−Σ(r, B)‖p ≤ ǫ,
where

ǫn ≡ ǫ = can
−r

2r+1 .

Set for D′
p = Dp + 2Cp/(p−1)

ĵn = min
{

j ∈ N : ‖ΠVj f̂n −ΠVl
f̂n‖p ≤ 4(D′

p + 1)
2l/2

n1/2
, ∀l > j, l ∈ N

}

.

We consider in the sequel the adaptive Lepski type estimator f̂n(ĵn) =

ΠVĵn
f̂n.

Set now the oracle threshold

j∗ = j∗(f) = inf
{

j ∈ N : B(j, f, ǫ) ≥ σ(j, n)
}

.

Note that by Corollary 10.1 and Lemma 10.1 we have

B(j∗, f, ǫ) ≤ σ(j∗, n) ≤ 2
( 1

Dp
(CpB + ca)

)1/(2r+1)

n−r/(2r+1). (10.1)
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10.3. Bound for the error on the event {ĵn ≤ j∗}

We have by triangular inequality, Equation (10.1) and the definitions of ĵn and
j∗ that (since D′

p ≥ Dp)

E
[

‖fn(ĵn)− f‖pI
{

ĵn ≤ j∗
}]

≤ E
[

(

‖f̂n(ĵn)− f̂n(j
∗)‖p + ‖f̂n(j∗)− f‖p

)

I

{

ĵn ≤ j∗
}]

≤ 4(D′
p + 1)

2j
∗/2

n1/2
+ σ(j∗, n)

≤ 2
(5D′

p + 4

Dp

)( 1

Dp
(CpB + ca)

)1/(2r+1)

n−r/(2r+1).

10.4. Bound for the error on the event {ĵn > j∗}

We remind the following Lemma (see (Giné and Nickl, 2011)).

Lemma 10.2. There is a constant D′
p that depends on p only and such that

sup
f∈Lp

Pr
{

‖ΠVj (f̂n − f)‖p ≥ D′
p

√

2j

n

}

≤ 2−22j/p ,

Proof. Proposition 6 gives us that for the ‖.‖p norm, we have

Pr
{

∣

∣‖ΠVj (f̂n − f)‖p −E[‖ΠVj (f̂n − f)‖p
∣

∣

≥ 2Cp/(p−1)

√

log(1/δ)
2j(1−2/p)

n

}

≤ δ.

By combining this with Corollary 10.1, we get

Pr
{

‖ΠVj (f̂n − f)‖p ≥ Dp

√

2j

n
+ 2Cp/(p−1)

√

log(1/δ)
2j(1−2/p)

n

}

≤ δ,

which implies by considering δ such that log(1/δ) = 22j/p

Pr
{

‖ΠVj (f̂n − f)‖p ≥ (Dp + 2Cp/(p−1))

√

2j

n

}

≤ exp(−22j/p).

We have by Hölder’s inequality that

E
[

‖fn(ĵn)− f‖pI
{

ĵn > j∗
}]

=
∑

j>j∗

E
[

‖fn(j)− f‖pI
{

ĵn = j
}]

≤
∑

j>j∗

(

E‖fn(j)− f‖pp
)1/p(

EI

{

ĵn = j
}p/(p−1)

)(p−1)/p
,
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which implies by Corollary 10.1 that we have

E
[

‖fn(ĵn)− f‖pI
{

ĵn > j∗
}]

≤
∑

j>j∗

σ(j, n)P(ĵn = j)(p−1)/p, (10.2)

By an union bound and by definition of ĵn, we remark that

P(ĵn = j) ≤
∑

l≥j

P

(

‖f̂n(j − 1)− f̂n(l)‖p ≥ 4(D′
p + 1)

2l/2

n1/2
=

4(D′
p + 1)

Dp
σ(l, n)

)

,

(10.3)
and by triangle inequality we have

‖f̂n(j − 1)− f̂n(l)‖p
= ‖f̂n(j − 1)− f̂n(l)−ΠVj−1f +ΠVj−1f +ΠVl

f −ΠVl
f − f + f‖p

≤ ‖f̂n(j − 1)−ΠVj−1f‖p + ‖f̂n(l)−ΠVl
f‖p + ‖ΠVj−1f − f‖p + ‖ΠVl

f − f‖p
≤ ‖f̂n(j − 1)−ΠVjf‖p + ‖f̂n(l)−ΠVl

f‖p + 2σ(l, n),

since as l > j− 1 ≥ j∗, we have ‖ΠVj−1f − f‖p + ‖ΠVl
f − f‖p ≤ B(j − 1, f, ǫ)+

B(l, f, ǫ) ≤ 2B(j∗, f, ǫ) ≤ 2σ(j∗, n) ≤ 2σ(l, n) by Lemma 10.1. This implies that
(since D′

p ≥ Dp by definition)

P

(

‖f̂n(j − 1)− f̂n(l)‖p ≥
4(D′

p + 1)

Dp
σ(l, n)

)

≤ P

(

‖f̂n(j − 1)−ΠVj−1f‖p ≥
(4(D′

p + 1)

2Dp
− 1
)

σ(l, n)
)

+ P

(

‖f̂n(l)−ΠVl
f‖p ≥

(4(D′
p + 1)

2Dp
− 1
)

σ(l, n)
)

≤ P

(

‖f̂n(j − 1)−ΠVj−1f‖p ≥
(

D′
p + 2)

)

σ(l, n)
)

+ P

(

‖f̂n(l)−ΠVl
f‖p ≥

(

D′
p + 2

)

σ(l, n)
)

so we obtain by Lemma 10.2 that

P

(

‖f̂n(j − 1)− f̂n(l)‖p ≥ 4(D′
p + 1)

Dp
σ(l, n)

)

≤ 2× exp(−22l/p),

which implies when combined with Equations 10.2 and 10.3

E
[

‖f̂n(ĵn)− f‖pI
{

ĵn > j∗
}]

≤
∑

j>j∗

D′
p

√

2j

n

∑

l≥j

(

2× exp(−22l/p)
)(p−1)/p

≤
∑

j>j∗

8D′
p

√

2j

n
exp(−22j/p(p− 1)/p)
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≤
∑

j>j∗

16D′
p

exp(−22j/p(p− 1)/2p)√
n

≤ 16D′
p

exp(−22j
∗/p(p− 1)/2p)√
n

≤ n−r/(2r+1).

for n (and thus j∗) large enough (but depending only on p, i.e. n ≥ Np).

10.5. Conclusion

By combining the results of the two precedent Subsections, we have

E
[

‖fn(ĵn)− f‖p
]

≤ E
[

‖fn(ĵn)− f‖pI
{

ĵn ≤ j∗
}]

+E
[

‖fn(ĵn)− f‖pI
{

ĵn > j∗
} ]

≤
(

2
(5D′

p + 4

Dp

)( 1

Dp
(CpB + ca)

)1/(2r+1)

+ 1

)

n−r/(2r+1).

which concludes the proof since all the constants in the bound depend only on p.

11. Extension of Theorem 3.5 to the entire segment [t, s]

We now state the analogue of Theorem 3.2, i.e. for the whole segment I = [t, s]
(still when s(1 − 1/p) ≤ t). The proof of this Theorem is more technical than
the proof of Theorem 3.5, but it is based on similar ideas.

Consider now the case where s(1 − 1/p) ≤ t. In this case, full adaptation is
possible without constraining the model Pn to be a strict subset of Σ(t, B). We
provide the following result, related to the case s ≤ 2t in (Bull and Nickl, 2013).

Theorem 11.1. Let 1/2 ≤ t < s. Assume also that s(1 − 1/p) ≤ t. Let Pn =
Σ(t, B) and I = [t, s]. Let B > 0 and α > 0. There exists a (Lp, α)-honest and
adaptive confidence set given Pn, I and B.

Proof. Assume that s(1−1/p) ≤ t ≤ s and letB > 0. Let n > max(Np, exp(2/t)),
where Np defined as in Theorem 10.1.

Let r ∈ [t, s]. We define the following sets (similar to the sets defined in
Equation (3.2), but separated from Σ(r, B))

Σ̃(t, r, B, ρn(r)) = Σ(t, B) \ {g ∈ Σ(t, B) : ‖g − Σ(r, B)‖p ≤ ρn(r)}.

where ρn(r) ≥ 0. These sets are empty as r → t, or when ρn(r) is large, but are
nevertheless defined.

Let α > 0. Let us write, for r ∈ [t, s], Ψn(r) for the test described in Sub-
section 4.2, where the associated constants E1 and E2 are chosen large enough
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(depending only on p,B, α) so that Lemma 11.1 holds. Set also

ρn(r) = 2C(B + 1)n− r
2r+1 ≥ C(B + 1)(n− r

2r+1 + n− t
2t+1−1/p ),

for C as in Theorem 3.6 (depending only on α, p).

11.1. Step 1: Study of the process (Ψn(r))r∈[t,s]

A first remark is that for any r ∈ [t, s], the test Ψn(r) is a measurable random
variable from (C[0, 1],B(C[0, 1])) to ({0, 1},

{

{0}, {1}, {0, 1}, ∅
}

) where C[0, 1]) is
the set of continuous functions from [0, 1] to R, and B(.) is the associated Borel
set.

Lemma 11.1. Consider the test Ψn(r) described in Subsection 4.2. Assume
that the associated constants E1 and E2 are large enough (depending only on
p,B, α). The trajectories r ∈ [t, s] → Ψn(r) of the process (Ψn(r))r∈[t,s] are
monotonously increasing, and caglad (left continuous right limit).

Proof. Consider the tests Ψn(r) described in Subsection 4.2. Since Ψn(r) is
either 1 or 0, increasing monotonicity is equivalent to ∀(r1, r2), t ≤ r1 ≤ r2 ≤ s,
Ψn(r2) = 0 ⇒ Ψn(r1) = 0.

The tests Ψn(r) involve the statistics Tn(l) (similar for any r), the statistics

T̃n(r) = inf
g∈Σ(r,B)

‖ΠVjr
f̂n − g‖p,

where jr = ⌊log(n1/(2r+1))⌋ is a decreasing function of r, the thresholds (tn(l, r))l
that are decreasing functions of r, and the threshold t̃n(r) that is a decreasing
function of r. See Subsection 4.2 for a more complete definition of all these
quantities. The test is defined as

Ψn(r) = 1− I

{

T̃n(r) ≤ t̃n(r)
}

∏

jr≤l≤j

I {Tn(l) ≤ (tn(l, r))
p} .

Let t ≤ r1 ≤ r2 ≤ s. Assume that Ψn(r2) = 0, i.e. that

T̃n(r2) ≤ t̃n(r2), (11.1)

and
∀l ∈ N : j ≥ l ≥ jr2 , Tn(l) ≤ (tn(l, r2))

p. (11.2)

Since jr1 ≥ jr2 , and ∀l, tn(l, r1) ≥ tn(l, r2), we know by Equation (11.2) that

∀l ∈ N : j ≥ l ≥ jr1 , Tn(l) ≤ (tn(l, r1))
p. (11.3)

If jr1 = jr2 , then I{T̃n(r1) ≤ t̃n(r1)} = I{T̃n(r2) ≤ t̃n(r2)} = 1. Otherwise, it
implies that jr1 ≥ 1 + jr2 , and by triangular inequality

T̃n(r1) = inf
g∈Σ(r1,B)

‖ΠVjr1
f̂n − g‖p ≤ inf

g∈Σ(r2,B)
‖ΠVjr1

f̂n − g‖p
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≤ inf
g∈Σ(r2,B)

‖ΠVjr2
f̂n − g‖p +

jr1
∑

l=jr2

‖ΠWl
f̂n‖p

≤ T̃n(r2) + Cp

jr1
∑

l=jr2

‖ΠWl
f̂n‖0,p,∞

≤ T̃n(r2) + CpE
′

jr1
∑

l=jr2

(2l/2√
n

+
(

max(Tn(l), 0)
)1/p

)

, (11.4)

for some E′ > 0 large enough but depending only on p (see the proof of

Lemma 4.4 for the argument on why ‖ΠWl
f̂n‖p0,p,∞ ≤ E′′(2

lp/2

np/2 +max(Tn(l), 0))).
Since the constants E1 and E2 defined in Subsection 4.2 can be chosen arbitrar-
ily large, and since s(1 − 1/p) ≤ t (which implies that t̃n(r) ≡

∑j
l=jr

tn(l, r) ≡
n− r

2r+1 ), we can choose E1 and E2 such that

t̃n(r) = E2

√

2jr

n
≥ E

j
∑

l=jr

tn(l, r)

for some arbitrarily large E2 > 0, and some arbitrarily large E > E2 (by
choosing E2/E1 large enough). Using this together with Equation (11.4), and
the fact that jr1 ≥ jr2 + 1, one obtains by Equations (11.1) and (11.2)

T̃n(r1) ≤ t̃n(r2) + CpE
′

jr1
∑

l=jr2

(2l/2√
n

+ tn(l, r2)
)

≤ 4CpE
′

√

2jr1

n
+ (E2 + CpE

′E2/E)

√

2jr2

n

≤ (E2/
√
2 + CpE

′E2/(
√
2E) + 4CpE

′)

√

2jr1

n

≤ E2

√

2jr1

n
= t̃n(r1),

for E2 and E/E2 large enough. This implies together with Equation (11.3) that

Ψn(r1) = 1− I

{

T̃n(r1) ≤ t̃n(r1)
}

∏

jr1≤l≤j

I {Tn(l) ≤ (tn(l, r1))
p} = 0.

This concludes the proof of increasing monotonicity.
The trajectories r → Ψn(r) are increasing in {0, 1}. They are thus either

caglad, or cadlag. By definition of the test, the sets {r ∈ [t, s] : Ψn(r) = 1} are
closed subsets of [t, s]. The trajectories are thus caglad.

Lemma 11.1, together with the fact that Ψn(r) is measurable for any r,
implies that the process (Ψn(r))r∈[t,s] is progressively measurable.
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11.2. Step 2: Estimation of the Besov exponent

Consider f ∈ Σ(t, B). As stated in Lemma 11.1, the trajectories r → Ψn(r) are
increasing functions. More precisely, their value is 0 until some value r̂ defined
as

r̂ = inf
{

r ∈ [t, s] : Ψn(r) = 1
}

,

and then 1 for r large enough. r̂ ∈ [t, s] is well defined since the trajectories are
bounded by 1, and measurable since it is a stopping time on the progressively
measurable process (Ψn(r))r∈[t,s] with caglad trajectories. Note also that, since
the trajectories Ψn(r) are of the form x ∈ [t, s] → 1{x > c}

r̂ = inf
{

r ∈ [t, s] : Ψn(r) = 1
}

= sup
{

r ∈ [t, s] : Ψn(r) = 0
}

.

Consider the confidence set around f̂n(ĵn), which is the adaptive estimate con-
sidered in Theorem 3.1, as being

Cn =
{

g : ‖f̂n(ĵn)− g‖p ≤ 1

α
U ′
pn

− r̂
2r̂+1

}

,

where U ′
p = Ũp(B, 2C(B + 1)) is defined as in Theorem 10.1. Note that U ′

p

depends only on B and C, and thus only on B,α, p.
Write

rf = sup
{

r ∈ [t, s] : ‖f − Σ(r, B)‖p = 0
}

= sup
{

r ∈ [t, s] : f ∈ Σ(r, B)
}

,

for the Besov exponent of f , and

r+f ≡ r+f (n) = sup
{

r ∈ [t, s] : ‖f − Σ(r, B)‖p ≤ ρn(r)
}

.

Note that r+f exists since ‖f − Σ(t, B)‖p = 0.
Since r ∈ [t, s] → ‖f − Σ(r, B)‖p is a monotonously increasing function in r,

we know that ∀ǫ > 0,
f ∈ Σ(rf − ǫ, B). (11.5)

Also, for the same reason and since ρn(r) is a decreasing function of r,

‖f − Σ(r+f + ǫ, B)‖2 ≥ ρn(r
+
f ) ≥ ρn(r

+
f + ǫ), (11.6)

and
‖f − Σ(r+f − ǫ, B)‖2 ≤ ρn(r

+
f ) ≤ ρn(r

+
f − ǫ), (11.7)

where by convention, ‖f − ∅‖2 = ‖f‖2. We set

ǫ ≡ ǫn = 1/ log(n).

Since f ∈ Σ(rf − ǫ, B) (Equation (11.5)), we have in particular by Equa-
tion (4.14) that for the n we fixed

Prf (Ψn(rf − ǫ) = 0) ≥ inf
g∈Σ(rf−ǫ,B)

Prg(Ψn(rf − ǫ) = 0) ≥ 1− α. (11.8)
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Since ‖f − Σ(r+f + ǫ, B)‖2 ≥ ρn(r
+
f + ǫ) (Equation (11.6)), and since thus f ∈

Σ̃(t, r+f + ǫ, B, ρn(r
+
f + ǫ)), we have in particular by Equation (4.14) that for the

n we fixed

Prf (Ψn(r
+
f + ǫ) = 1) ≥ inf

g∈Σ̃(t,r+f +ǫ,B,ρn(r
+
f +ǫ))

Prg(Ψn(r
+
f + ǫ) = 1) ≥ 1− α.

(11.9)
By combining Equations (11.9) and (11.8), and since r → Ψn(r) is an increasing
function (Lemma 11.1), we know that

Prf (r̂ ∈ [rf − ǫ, r+f + ǫ]) ≥ 1− 2α.

11.3. Step 3: Bound on the diameter of the confidence set

The bound of last Equation holds for any f ∈ Σ(t, B) for the n we fixed, and
thus by just considering the infimum over Σ(t, B), we have

inf
f∈Σ(t,B)

Prf (r̂ ∈ [rf − ǫ, r+f + ǫ]) ≥ 1− 2α.

We thus have by definition of Cn that

sup
f∈Σ(t,B)

Prf

(

|Cn| >
1

α
U ′
pn

−
rf−ǫ

2(rf−ǫ)+1

)

≤ 1− inf
f∈Σ(t,B)

Prf (r̂ ∈ [rf−ǫ, r+f +ǫ]) ≤ 2α,

and since ǫ = 1/ log(n), this implies for the n we fixed

sup
f∈Σ(t,B)

Prf

(

|Cn| >
1

α
U

′
p exp(1)n

−
rf

2rf+1

)

≤ 1− inf
f∈Σ(t,B)

Prf (r̂ ∈ [rf−ǫ, r
+
f +ǫ]) ≤ 2α,

since exp(1/(2(rf − ǫ) + 1)) ≤ exp(1). Note now that

sup
f∈Σ(t,B)

Prf

(

|Cn| >
U ′
p

α
exp(1)n

−
rf

2rf+1

)

= sup
r∈[t,s]

sup
f∈Σ(r,B)

Prf

(

|Cn| >
U ′
p

α
exp(1)n

−
rf

2rf+1

)

≥ sup
r∈[t,s]

sup
f∈Σ(r,B)

Prf

(

|Cn| >
U ′
p

α
exp(1)n− r

2r+1

)

,

since f ∈ Σ(r, B) implies r ≤ rf . Finally

sup
r∈[t,s]

sup
f∈Σ(r,B)

Prf

(

|Cn| >
1

α
U ′
p exp(1)n

− r
2r+1

)

≤ 2α.
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11.4. Step 4: Bound on the probability that the parameter is in the

confidence set

Also we have by Markov’s inequality

inf
f∈Σ(t,B)

Prf

(

f ∈ Cn

)

(11.10)

≥ 1− sup
f∈Σ(t,B)

Prf

(

‖f̂n(ĵn)− f‖p ≥ 1

α
U ′
pn

− r̂
2r̂+1

)

≥ 1− sup
f∈Σ(t,B)

Prf (r̂ 6∈ [rf − ǫ, r+f + ǫ])

− sup
f∈Σ(t,B)

Prf

(

‖f̂n(ĵn)− f‖p ≥ 1

α
U ′
pn

−
r
+
f

+ǫ

2(r
+
f

+ǫ)+1

)

≥ 1− 2α− sup
f∈Σ(t,B)

Prf

(

‖f̂n(ĵn)− f‖p ≥ 1

α
U ′
p exp(−2)n

−
r
+
f

−ǫ

2(r
+
f

−ǫ)+1

)

≥ 1− 2α− sup
f∈Σ(t,B)

[ α

U ′
p

exp(2)n

r
+
f

−ǫ

2(r
+
f

−ǫ)+1
Ef‖f̂n(ĵn)− f‖p

]

, (11.11)

by definition of ǫ and since exp(−2/(2(rf + ǫ) + 1)) ≥ exp(−2).
We have for any f ∈ Σ(t, B) that

‖f − Σ(r+f − ǫ, B)‖p ≤ ρn(r
+
f − ǫ) = 2C(B + 1)n−(r+f −ǫ)/(2(r+f −ǫ)+1)

by Equation (11.7). Since r+f − ǫ > t − 1/ log(n) > t/2 > 0 by definition of n,
we have

sup
f∈Σ(t,B)

[ 1

Ũp(B, 2C(B + 1))
n

r
+
f

−ǫ

2(r
+
f

−ǫ)+1Ef‖f̂n(ĵn)− f‖p
]

≤ sup
r>0

sup
f∈L2:‖f−Σ(r,B)‖2≤ρn(r)

[ 1

Ũp(B, 2C(B + 1))
nr/(2r+1)Ef‖f̂n(ĵn)− f‖p

]

.

Combining this with Theorem 10.1 implies, since n > Np, that

sup
f∈Σ(t,B)

[ 1

Ũp(B, 2C(B + 1))
n

r
+
f

−ǫ

2(r
+
f

−ǫ)+1Ef‖f̂n(ĵn)− f‖p
]

≤ 1,

since U ′
p ≥ Ũp(B, 2C(B + 1)). We conclude by plugging this result into Equa-

tion (11.11) that

inf
f∈Σ(t,B)

Prf

(

f ∈ Cn

)

≥ 1− 3 exp(2)α.
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Conclusion All these results hold for any n > max(Np, exp(2/t)). We have
thus proven that Cn is an honest and adaptive confidence set on Σ(t, B) for the
whole interval [t, s] and B.

12. Discussion on the extension of the results to more general
settings

The test statistic Ψn that is considered relies mostly on estimates of |al,k|p,
which are the F̂ p

p (l, k). The obstacle for generalising the method presented in
the paper to the regression setting, is the adaptation of these estimates to the
regression setting. But the construction of the F̂ p

p (l, k) depends crucially on the
distribution of the noise (error) to the signal f . Indeed, in the computation of
the quantities F̂ p

p (l, k), we plug the p first moments of a Gaussian distribution
in order to correct the bias of |âl,k|p toward |al,k|p. If the distribution of the
noise is not Gaussian, the bias is not going to be corrected by these (Gaussian)
moments, and we would want to replace them with the moments of the noise.

However, if we do not wish to assume that we know the distribution of ξ (or,
moreover, if it is heterocedastic) the construction of Lp-adaptive and honest con-
fidence sets in this setting is possible but slightly different from the construction
proposed. We did not present it in the paper since it is rather technical but not
fundamentally different from what happens in the Gaussian process setting.

We first remind how to estimate âl,k in two classic settings, i.e. regression
and density estimation. In the setting of density estimation, i.e. the data in this
setting is n i.i.d. samples from a random variable of density f , we can estimate
al,k by

âl,k =
1

n

∑

j≤n

ψl,k(Xj).

If the density f is bounded (and still defined on the compact [0, 1]) then the esti-
mates âl,k computed in this way will be unbiased and have a variance-covariance
structure that is of same order than in the case of the Gaussian process model.
In the setting of non-parametric regression, i.e. the data in this setting is n
i.i.d. samples (Xj , Yj)n such that Yj = f(Xj) + ξj(Xj) where ξj(Xj) is the
noise, we can estimate al,k by

âl,k =
1

n

∑

j≤n

ψl,k(Xj)Yj .

If the function f is bounded (and still defined on the compact [0, 1]), the de-
sign Xj is uniformly random on [0, 1] and the noise ξj(Xj) is independent in j
(although it might depend on Xj), of mean 0, and sub-Gaussian, then the esti-
mates âl,k computed in this way will be unbiased and have a variance-covariance
structure that is of same order than in the case of the Gaussian process model.

Now, a first idea to adapt F̂ p
p (l, k) to these settings (if we have 2n data) is

to divide the sample in two sub-samples of size n, estimate the p first moments
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of the distribution of
√
nâl,k on the first half (that we write m̂u

u), compute âl,k
on the second sub-sample, and then redefine the F̂ p

p (l, k) as

F̂ p
p (l, k) = |âl,k|p −

⌊p⌋−2
∑

u=0,u even

Cu
p

(m̂p−u

n1/2

)(p−u)

F̂u
u (l, k),

where

F̂u
u (l, k) = âul,k −

u−2
∑

i=0,i even

Ci
u

(m̂u−i

n1/2

)(u−i)

F̂ i
i (l, k).

These quantities will verify the same properties as the hatF p
p (l, k) analysed in

the paper (but the proof is more technical).
Another idea is to redefine the estimates F̂ p

p (l, k) of |al,k|p. The idea is to
divide the data in ⌊p⌋ + 1{p − ⌊p⌋ 6= 0} sub-samples of equal size, and to
compute in each of these samples estimates of al,k as described above. Let

us denote by â
(i)
l,k the estimate of al,k computed with the ith sub-sample. We

propose to redefine the estimate F̂ p
p (l, k) of |al,k|p as

F̂ p
p (l, k) =

⌊p⌋
∏

i=1

â
(i)
l,k ×

∣

∣

∣â
(⌊p⌋+1{p−⌊p⌋6=0
l,k )}

∣

∣

∣

p−⌊p⌋

. (12.1)

The mean and variance of this estimate will verify the same inequalities as the
estimate defined in the proof of Theorem 3.5 (Section 5), and similar results will
hold.
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Barron, A., Birgé, L., and Massart, P. Risk bounds for model selection
via penalization. Probability Theory and Related Fields, 113(3):301–413, 1999.
MR1679028
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