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Abstract: Let (X, Y ) ∈ X × Y be a random couple with unknown distri-
bution P . Let G be a class of measurable functions and ℓ a loss function.
The problem of statistical learning deals with the estimation of the Bayes:

g∗ = argmin
g∈G

EP ℓ(g, (X, Y )).

In this paper, we study this problem when we deal with a contaminated
sample (Z1, Y1), . . . , (Zn, Yn) of i.i.d. indirect observations. Each input Zi,
i = 1, . . . , n is distributed from a density Af , where A is a known compact
linear operator and f is the density of the direct input X.

We derive fast rates of convergence for the excess risk of empirical risk
minimizers based on regularization methods, such as deconvolution kernel
density estimators or spectral cut-off. These results are comparable to the
existing fast rates in Koltchinskii (2006) for the direct case. It gives some
insights into the effect of indirect measurements in the presence of fast rates
of convergence.
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1. Introduction

In many real-life situations, direct data are not available and measurement er-
rors occur. In many examples, such as medicine, astronomy, econometrics or
meteorology, these measurement errors should not be neglected. Let us consider
the following example from signal processing in oncology. Medical images (such
as X-ray computed tomography, Magnetic Resonance Imaging) play an increas-
ingly important role in diagnosing and treating cancer patients. In the clinical
setting, imaging data allows to better evaluate whether a cancer patient is re-
sponding to therapy and to adjust the therapy accordingly. In such a setting,
the response variable could be the total response to the treatment, a partial
response or the absence of a response. However, image interpretation and man-
agement in clinical trials triggers a number of issues such as doubtful reliability
of image analysis due to a high variability in image interpretation, censoring
bias, and a number of operational issues due to complex image data workflow.
Consequently, biomarkers, such as bidimensional measurements of lesions, suffer
from measurement errors. For these reasons, the construction of decision rules
from indirect observations may play a crucial role for this problem.

The problem of inverse statistical learning can be described as follows. Let
us consider a generator of random inputs X ∈ X , with unknown density distri-
bution f with respect to some σ-finite measure ν, and (a possible) associated
output Y ∈ Y, from an unknown conditional probability. The joint law of (X,Y )
is denoted as P . Given a class of functions g ∈ G, the best possible decision rule,
called an oracle, is defined as:

g∗ ∈ argmin
g∈G

EP ℓ(g, (X,Y )), (1.1)

where ℓ(g, (x, y)) measures the loss of g at point (x, y). For example, the set G can
be made of functions g : x ∈ X 7→ g(x) ∈ Y, whereas ℓ(g, (x, y)) = Φ(y − g(x))
can be a prediction loss function. The problem of inverse statistical learning
consists in estimating the oracle g∗ based on a set of indirect i.i.d. observations:

(Z1, Y1), (Z2, Y2), . . . , (Zn, Yn) ∼ P̃ . (1.2)

In (1.2), each input Zi has density Af , where A is a known linear compact

operator. The joint law of (Z, Y ) is denoted as P̃ . We are facing an inverse
problem.

The most extensively studied model with indirect observations is the additive
measurement error model. In this case, we observe indirect inputs:

Zi = Xi + ǫi, i = 1, . . . , n,

where (ǫi)
n
i=1 are i.i.d. with known density η. It corresponds to a convolution

operator Aη : f 7→ f ∗η. Depending on the nature of the response Y ∈ Y, we deal
with classification with errors in variables, density deconvolution, or regression
with errors in variables.
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In this paper, we consider a bounded loss function ℓ such that for any g ∈ G,
ℓ(g, ·) : X × Y → [0, 1] and a compact input space X ⊂ R

d. Given a class G
of measurable functions g : X → R, the performances of a given g is measured
through its non-negative excess risk, given by:

Rℓ(g)−Rℓ(g
∗),

where g∗ is defined in (1.1) as a minimizer of the risk. It is important to point
out that we do not adress in this paper the problem of model selection of G.
It consists in studying the difference Rℓ(g

∗)− infg Rℓ(g), where the infimum is
taken over all possible measurable functions g. Here, the target g∗ corresponds
to the oracle in the family G. The purpose of this work is to use Empirical Risk
Minimization (ERM) strategies based on a corrupted sample to mimic a mini-
mizer g∗ of the risk.

In the direct case, as we observe i.i.d. (X1, Y1), . . . , (Xn, Yn) with law P ,
a classical way is to consider ERM estimators defined as:

ĝn = argmin
g∈G

Rn(g), (1.3)

where Rn(g) denotes the empirical risk:

Rn(g) =
1

n

n∑

i=1

ℓ(g, (Xi, Yi)) = Pnℓ(g).

In the sequel, the empirical measure of the direct sample (X1, Y1), . . . , (Xn, Yn)
will be denoted as Pn. A large literature (see Vapnik (2000) for such a gener-
ality) deals with the statistical performances of (1.3) in terms of excess risk.
To be concise, under complexity assumptions over G (such as finite VC dimen-
sion in Vapnik (1982), entropy conditions (van de Geer (2000)), or Rademacher
complexity assumptions in Koltchinskii (2006)), it is possible to get both consis-
tency and rates of convergence of ERM estimators (see also Massart and Nédélec
(2006) in classification). The main probabilistic tool is the statement of uniform
concentration of the empirical measure to the true measure. It comes from the
so-called Vapnik’s bound:

Rℓ(ĝn)−Rℓ(g
∗) ≤ Rℓ(ĝn)−Rn(ĝn) +Rn(g

∗)−Rℓ(g
∗)

≤ 2 sup
g∈G

|(Pn − P )ℓ(g)|. (1.4)

It is important to highlight that (1.4) can be improved using a local approach
(see Massart (2000)). It consists in reducing the supremum to a neighborhood
of g∗. We do not develop these important refinements in this introduction for
the sake of concision whereas it is the main ingredient of the literature cited
above. It allows to get fast rates of convergence in classification.

Here, the framework is essentially different. Given a linear compact oper-
ator A, we observe a corrupted sample (Z1, Y1), . . . , (Zn, Yn) where Zi, i =
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1, . . . , n are i.i.d. with density Af . As a result, the empirical measure Pn =
1
n

∑n
i=1 δ(Xi,Yi) is unobservable and standard ERM (1.3) is not available. Un-

fortunately, using the contaminated sample (Z1, Y1), . . . , (Zn, Yn) in standard
ERM (1.3) seems a wrong track:

1

n

n∑

i=1

ℓ(g, (Zi, Yi)) −→ EP̃ ℓ(g, (Z, Y )) 6= Rℓ(g).

Due to the action of A, the empirical measure from the indirect sample, denoted
by P̃n = 1

n

∑n
i=1 δ(Zi,Yi), differs from Pn. We are facing an ill-posed inverse

problem. This problem has been recently considered in Loustau and Marteau
(2013) for discriminant analysis with errors in variables (see also Loustau and
Marteau (2012) for completeness).

In this work, we suggest a comparable strategy in statistical learning. Given a
smoothing parameter α, we consider the following α-Empirical Risk Minimiza-
tion (α-ERM):

argmin
g∈G

Rα
n(g), (1.5)

where Rα
n(g) is defined in a general way as:

Rα
n(g) =

∫

X×Y
ℓ(g, (x, y))P̂α(dx, dy). (1.6)

The measure P̂α = P̂α(Z1, Y1, . . . , Zn, Yn) is data-dependent to the set of indi-
rect inputs (Z1, . . . , Zn). It will be related to standard regularization methods
coming from the inverse problem literature (see Engl et al. (1996)). Explicit
constructions of P̂α and empirical risk (1.6) is detailled in Section 2 and Sec-
tion 3. This construction depends on the inverse problem that we have at hand,
and the regularization method used. Consequently, the smoothing parameter
may be the bandwidth of some kernel estimator, or some threshold of a spectral
cut-off. We denote it as α in its full generality.

To study the performances of the minimizer ĝαn of the empirical risk (1.6), it is
possible to use empirical processes theory in the spirit of van de Geer (2000); van
der Vaart and Wellner (1996) or more recently Koltchinskii (2006). Following
(1.4), in the presence of indirect observations, we can write1:

Rℓ(ĝ
α
n)−Rℓ(g

∗)

≤ Rℓ(ĝ
α
n)−Rα

n(ĝ
α
n) +Rα

n(g
∗)−Rℓ(g

∗)

≤ Rα
ℓ (ĝ

α
n)−Rα

n(ĝ
α
n) +Rα

n(g
∗)−Rα

ℓ (g
∗) + (Rℓ −Rα

ℓ )(ĝ
α
n − g∗)

≤ sup
g∈G

|(Rα
n −Rα

ℓ )(g − g∗)|+ sup
g∈G

|(Rℓ −Rα
ℓ )(g − g∗)|, (1.7)

1where with a slight abuse of notations, we write:

(Rℓ − Rα
ℓ )(g − g′) = Rℓ(g)− Rℓ(g

′)−Rα
ℓ (g) +Rα

ℓ (g
′).
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where in the sequel, for any fixed g ∈ G:

Rα
ℓ (g) =

∫
ℓ(g, (x, y))EP̃⊗n P̂α(dx, dy) = EP̃⊗nR

α
n(g). (1.8)

Bound (1.7) is an inverse counterpart of the classical Vapnik’s bound (1.4). It
consists in two terms:

• A variance term supg∈G |(Rα
n −Rα

ℓ )(g− g∗)| related to the ERM strategy.
This term can be controlled thanks to uniform exponential inequalities
such as Talagrand’s concentration inequality, applied to a class of functions
depending on the smoothing parameter α.

• A bias term supg∈G |(Rα
ℓ − Rℓ)(g − g∗)|: it comes from the estimation of

P into the expression of Rℓ(g) with estimator P̂α. This additional term is
specific to our problem. However, it seems to be related to the usual bias
term in nonparametric statistics. Indeed, we can see easily that:

Rα
ℓ (g)−Rℓ(g) =

∫
ℓ(g, (x, y))[EP̂α − P ](dx, dy).

The choice of the smoothing parameter α is crucial in the decomposition (1.7).
It has to be chosen as a trade-off between the bias term and the variance term.
If we consider the classical errors-in-variables model with kernel deconvolution
estimators (see Loustau and Marteau (2013)), the variance term exploses when
the bandwidth of the kernel tends to zero whereas the bias term vanishes. As a
consequence, the optimal value for α will depend on unknown parameters, such
as the regularity, the margin, and the ill-posedness. The problem of adaptation
is not adressed in this paper but it is an interesting future direction.

In this work, we consider Y = {0, 1, . . . ,M} for M ≥ 1. In other words,
we study the model of supervised classification with indirect observations (see
Devroye et al. (1996) for a survey in the direct case). However, other issues
could be adressed and fall into the general framework of this introduction, such
as unsupervised classification with errors-in-variables (see Loustau (2012)). The
problem of estimation of level sets, supports, or manifolds in the presence of
indirect observations could also be treated similarly.

The organization of the present contribution is as follows. In Section 2, we
propose to give a general construction of the empirical risk (1.6) in classifica-
tion thanks to the set of indirect observations. We state excess risk bounds for a
solution of the α-ERM (1.5) under minimal assumptions over the loss function
ℓ and the complexity of G. It gives a generalization of the results of Koltchin-
skii (2006) when dealing with indirect observations. Section 3 gives applications
of the result of Section 2 in two particular settings. In the errors-in-variables
case, we use kernel deconvolution estimators in the empirical risk minimization.
We deduce fast rates of convergence which coincide with a recent lower bound
stated in Loustau and Marteau (2013). This illustrates rather well the asymp-
totic optimality of the method. We also consider the general case, where A is
some known linear compact operator. In this case, we use a spectral cut-off by
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considering the Singular Value Decomposition (SVD) of the operator A. Sec-
tion 4 concludes the paper with a discussion related to many open problems.
Section 5 is dedicated to the proofs of the main results.

2. General upper bound

In this section, we detail the construction of the empirical risk (1.6) in classi-
fication. We give minimal assumptions to control the expected excess risk of
the procedure. The construction of the empirical risk is based on the following
decomposition of the true risk:

Rℓ(g) =
∑

y∈Y
p(y)

∫

X
ℓ(g, (x, y))fy(x)ν(dx), (2.1)

where fy(·) is the conditional density of X |Y = y and p(y) = P(Y = y), for
any y ∈ Y = {0, . . . ,M}. With such a decomposition, we suggest to estimate
each fy(·) using a nonparametric density estimator. To state a general upper
bound, given ny = card{i : Yi = y}, kα : Rd × R

d → R and the set of inputs
(Zy

i )
ny

i=1 = {Zi, i = 1, . . . , n : Yi = y}, we consider a family of estimators such
as:

∀y ∈ Y, f̂y(x) =
1

ny

ny∑

i=1

kα(Z
y
i , x). (2.2)

Assumption (2.2) provides a variety of nonparametric estimators of fy. For in-
stance, in Section 3, we construct deconvolution kernel estimators. This is a
rather classical approach in deconvolution problems (see Fan (1991) or Meister
(2009)). In this case, the smoothing parameter corresponds to the d-dimensional
bandwidth of the deconvolution kernel. Another standard example where (2.2)
holds is presented in Section 3. It corresponds to projection estimators (or
spectral cut-off) of the conditional densities using the SVD of operator A. In
this case, the smoothing parameter is the dimension of the projection method.
Of course, many other regularization methods could be considered, such as
Tikhonov regularization or Landweber (see Engl et al. (1996)). Moreover, it
is important to note that we consider a constant smoothing level α for any class
y ∈ Y in (2.2). Indeed, for the sake of simplicity, we restrict ourselves to simi-
lar regularity assumptions for the conditional densities fy. Consequently, to get
satisfying upper bounds, we will see that α does not necessary depend on the
value y ∈ Y.

Finally we plug estimators (2.2) in the true risk (2.1) to get an empirical risk
defined as:

Rα
n(g) =

∑

y∈Y

∫

X
ℓ(g, (x, y))f̂y(x)ν(dx)p̂(y),
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where p̂(y) =
ny

n is an estimator of the quantity p(y) = P(Y = y). Thanks to
(2.2), this empirical risk can be written as:

Rα
n(g) =

1

n

n∑

i=1

ℓα(g, (Zi, Yi)), (2.3)

where ℓα(g, (z, y)) is a modified version of ℓ(g, (x, y)) given by:

ℓα(g, (z, y)) =

∫

X
ℓ(g, (x, y))kα(z, x)ν(dx).

In this section, we study general upper bounds for the expected excess risk
of the estimator:

ĝαn ∈ argmin
g∈G

1

n

n∑

i=1

ℓα(g, (Zi, Yi)). (2.4)

In case no such minimum exists, we can consider a δ-approximate minimizer as
in Bartlett and Mendelson (2006) without significant change in the results.

The main idea is to use iteratively a concentration inequality for suprema of
empirical processes due to Bousquet (2002). It allows to control the increments
of the empirical process:

ναn (g) =
1√
n

n∑

i=1

(
ℓα(g, (Zi, Yi))− EP̃ ℓα(g, (Z, Y ))

)
.

Here, it is important to note that Talagrand’s type inequality has to be applied
to the class of functions {(z, y) 7→ ℓα(g, (z, y)), g ∈ G}. This class depends on a
regularization parameter α. This parameter will be calibrated as a function of
n and that’s why the concentration inequality has to be used carefully. For this
purpose, we introduce in Definition 1 particular classes {ℓα(g), g ∈ G}.
Definition 1. We say that the class {ℓα(g), g ∈ G} is a LB-class (Lipschitz
bounded class) with respect to µ with parameters (c(α),K(α)) if these two
properties hold:

(Lµ) {ℓα(g), g ∈ G} is Lipschitz w.r.t. µ with constant c(α):

∀g, g′ ∈ G, ‖ℓα(g)− ℓα(g
′)‖L2(P̃ ) ≤ c(α)‖ℓ(g)− ℓ(g′)‖L2(µ).

(B) {ℓα(g), g ∈ G} is uniformly bounded with constant K(α):

sup
g∈G

sup
(z,y)

|ℓα(g, (z, y))| ≤ K(α).

A LB-class of loss function is Lipschitz and bounded with constants which
depend on α. Examples of LB-classes are presented in Section 3. These proper-
ties are necessary to derive explicitly the upper bound of the variance in (1.7)
as a function of α.
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More precisely, the Lipschitz property (Lµ) is a key ingredient to control the
complexity of the class of functions {ℓα(g), g ∈ G}. In the sequel, we use the
following geometric complexity parameter:

ω̃n(G, δ, µ) = E sup
g,g′∈G:‖ℓ(g)−ℓ(g′)‖L2(µ)≤δ

∣∣∣(P̃ − P̃n)(ℓα(g)− ℓα(g
′))
∣∣∣ . (2.5)

This quantity corresponds to the indirect counterpart of more classical lo-
cal complexities introduced in a variety of papers (see Bartlett et al. (2005),
Koltchinskii (2006), Massart (2000)). Its control as a function of n,δ and α is
a key point to get fast rates of convergence. This can be done thanks to the
following lemma.

Lemma 1. Consider a LB-class {ℓα(g), g ∈ G} with respect to µ with Lipschitz
constant c(α). Then, given some 0 < ρ < 1, we have for some C1 > 0:

HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) ≤ cǫ−2ρ ⇒ ω̃n(G, δ, µ) ≤ C1
c(α)√
n
δ1−ρ,

where HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) denotes the ǫ-entropy with bracketing of the
set {ℓ(g), g ∈ G} with respect to L2(µ) (see van der Vaart and Wellner (1996)
for a definition).

With such a lemma, it is possible to control the complexity in the indirect
setup thanks to standard entropy conditions related with the class G. The proof
is presented in Section 5. It is based on a maximal inequality due to van der
Vaart and Wellner (1996) applied to the class:

Fα = {ℓα(g)− ℓα(g
′) : ‖ℓ(g)− ℓ(g′)‖L2(µ) ≤ δ}.

Finally, in Definition 1, (B) is also necessary to apply Bousquet’s inequality.
This condition could be relaxed by dint of recent advances on empirical processes
in an unbounded framework (see Lecué and Mendelson (2012) or Lederer and
van de Geer (2012)).

Another standard assumption to get fast rates of convergence is the so-called
Bernstein (or margin) assumption.

Definition 2. For κ ≥ 1, we say that F is a Bernstein class with respect to µ
with parameter κ if there exists κ0 ≥ 0 such that for every f ∈ F :

‖f‖2L2(µ)
≤ κ0[EP f ]

1
κ .

This assumption first appears in Bartlett and Mendelson (2006) for µ = P
when F = {ℓ(g)− ℓ(g∗), g ∈ G} is the excess loss class. It allows to control the
excess risk in statistical learning using functional’s Bernstein inequality such
as Talagrand’s type inequality. In classification, it goes back to the standard
margin assumption (see Mammen and Tsybakov (1999); Tsybakov (2004b)),
where in this case κ = p+1

p for a so-called margin parameter p ≥ 0. The same
kind of assumptions have been introduced originally in the related problem of
excess mass by Polonik (1995).
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Definition 2 has to be combined with the Lipschitz property of Definition 1.
It allows us to have the following serie of inequalities:

‖ℓα(g)− ℓα(g
∗)‖L2(P̃ ) ≤ c(α)‖f‖L2(µ) ≤ c(α) (EP f)

1
2κ , (2.6)

where f ∈ F = {ℓ(g)− ℓ(g∗), g ∈ G}.
Last definition provides a control of the bias term in (1.7) as follows:

Definition 3. The class {ℓα(g), g ∈ G} has approximation function a(α) and
residual constant 0 < r < 1 if the following holds:

∀g ∈ G, (Rℓ −Rα
l )(g − g∗) ≤ a(α) + r(Rℓ(g)−Rℓ(g

∗)),

where with a slight abuse of notations, we write:

(Rℓ −Rα
ℓ )(g − g∗) = Rℓ(g)−Rℓ(g

∗)−Rα
ℓ (g) +Rα

ℓ (g
∗).

This definition warrants a control of the bias in the Inverse Vapnik’s bound
(1.7). It is straightforward that with Definition 3, we get a control of the excess
risk as follows:

Rℓ(ĝ
α
n)−Rℓ(g

∗) ≤ 1

1− r

(
sup

g∈G(1)
|(P̃n − P̃ )(ℓα(g)− ℓα(g

∗))|+ a(α)

)
,

where in the sequel:

G(δ) = {g ∈ G : Rℓ(g)−Rℓ(g
∗) ≤ δ}.

Explicit functions a(α) and residual constant r < 1 are obtained in Section 3.
There depend on the regularity conditions and allow to get fast rates of conver-
gence.

We are now on time to state the main result of this section.

Theorem 1. Consider a LB-class {ℓα(g), g ∈ G} with respect to µ with param-
eters (c(α),K(α)) and approximation function a(α) such that:

a(α) ≤ C1

(
c(α)√
n

) 2κ
2κ+ρ−1

and K(α) ≤ c(α)
2κ

2κ+ρ−1n
κ+ρ−1
2κ+ρ−1

1 + log logq n
, (2.7)

for some C1 > 0 and q > 1.
Suppose {ℓ(g) − ℓ(g∗), g ∈ G} is Bernstein with respect to µ with parameter

κ ≥ 1 where g∗ = argminG Rℓ(g) is unique. Suppose there exists 0 < ρ < 1 such
that:

HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) ≤ C2ǫ
−2ρ, (2.8)

for some C2 > 0.
Then estimator ĝαn defined in (2.4) satisfies, for n great enough:

ERℓ(ĝ
α
n)−Rℓ(g

∗) ≤ C

(
c(α)√
n

) 2κ
2κ+ρ−1

,

where C = C(C1, C2, κ, κ0, ρ, q) > 0.
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The proof of this result is presented in Section 5. Here follows some remarks.
This upper bound generalizes the result presented in Koltchinskii (2006) to

the indirect framework. Theorem 1 provides rates of convergence:

(
c(α)/

√
n
)2κ/2κ+ρ−1

.

In the noise-free case, with standard ERM estimators, Tsybakov (2004b);
V. Koltchinskii (2006) obtain fast rates n−κ/2κ+ρ−1. In the presence of contami-
nated inputs, rates are slower since c(α) → +∞ as n→ +∞. Hence, Theorem 1
shows that the Lipschitz constant introduced in Definition 1 is central. It gives
the price to pay for the inverse problem in the rates.

The behavior of the Lipschitz constant c(α) depend on the difficulty of the
inverse problem through the degree of ill-posedness of operator A. Section 3 pro-
poses to deal with mildly ill-posed inverse problems. In this case, c(α) depends
polynomially on α.

Gathering with the complexity assumption (2.8), it leads to a control of the
variance term in decomposition (1.7). The first statement of condition (2.7) gives
the order of the bias term. It leads to the excess risk bound.

The second part of (2.7) is due to the use of a deviation’s inequality from
Bousquet (2002) to the class {ℓα(g), g ∈ G}. In Section 3, we give explicit
constants c(α) and K(α). It appears that this assumption is always guaranteed.

The control of the complexity in (2.8) is expressed in terms of bracketing
entropy of the loss class. This assumption allows to control the complexity pa-
rameter ω̃n(G, ǫ, µ) defined in (2.5). As in Koltchinskii (2006), we can state
Theorem 1 by using directly a control of the complexity (2.5). In the context of
convex loss minimization, Koltchinskii (2006) considers many examples of hy-
pothesis spaces, from finite VC classes to more complex functional classes such
as kernel classes. This can be done in our context as well.

Finally, Theorem 1 requires the unicity of the Bayes g∗. Such a restriction
can be avoided using a more sophisticated geometry as in (Koltchinskii, 2006,
Section 4).

At this time, it is important to note that Theorem 1 depends on measure µ
introduced in Definitions 1 and 2. In the rest of the paper, we will consider two
particular cases: µ = ν ⊗ PY (µ = νY for short in the sequel) and µ = P . The
Lipschitz property (Lµ) with µ = P is stronger than (Lµ) with µ = ν ⊗ PY .
Indeed, for any measurable function h : X × Y → R, if ‖fy‖∞ ≤ Cy, ∀y ∈ Y:

EP f
2 ≤ max

y∈Y
Cy

∑

y∈Y
py

∫
f(x, y)2ν(dx) = max

y∈Y
Cy ‖f‖2L2(νY ).

Since ‖ · ‖L2(P ) ≤ C‖ · ‖L2(νY ) for some C > 0, a Bernstein class with respect
to νY is also Bernstein with respect to P (see Definition 2). The most favorable
case (µ = νY ) arises in binary classification (see Tsybakov (2004b) or Massart
and Nédélec (2006)). Section 3 states rates of convergence in these two different
settings.
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3. Applications

In this section, we propose to apply the general upper bound of Theorem 1
to give excess risk bounds for α-ERM strategies in two distinct frameworks.
The first result deals with the errors-in-variables case where operator A is a
convolution product. Using kernel deconvolution estimators, we obtain fast rates
of convergence which coincide with recent minimax fast rates in discriminant
analysis (see Loustau and Marteau (2013)). Then, we consider the general case
where A is any linear compact operator. In this case, we introduce a family of
projection estimators (or spectral cut-off) by diagonalizing A∗A. We also study
two different settings in the sequel, namely µ = νY and µ = P (see the discussion
at the end of Section 2).

3.1. Errors-in-variables case

The elementary model of indirect observations is the additive measurement error
model with known error density. In this case, we suppose that we observe a
corrupted training set (Zi, Yi), i = 1, . . . , n where:

Zi = Xi + ǫi, i = 1, . . . , n.

The sequence of random variables ǫ1, . . . , ǫn are i.i.d. Rd-random variables with
bounded density η with respect to the Lebesgue measure on R

d. In this situation,
operator A is exactly known as a convolution product with density η. Note that
in practical applications, this knowledge cannot be guaranteed. However, in
most examples, we could be able to estimate the error density η from replicated
measurements. In the sequel, we do not address this problem and we focus on
the deconvolution step itself.

In the errors-in-variables case, the difficulty of this inverse problem can be
represented thanks to the asymptotic behavior of the Fourier transform of the
noise density η. Assumption (A1) below concerns a polynomial asymptotic be-
havior of the characteristic function of the noise distribution. These kind of
restrictions are standard in deconvolution problems (see Fan (1991); Butucea
(2007); Meister (2009)).

(A1) There exist (β1, . . . , βd)
′ ∈ R

d
+ such that for all i ∈ {1, . . . , d}, βi > 1

2
and:

|F [ηi](t)| ∼ |t|−βi , as |t| → +∞,

where η = Πd
i=1ηi and F [ηi] denotes the Fourier transform of ηi. Moreover, we

assume that F [ηi](t) 6= 0 for all t ∈ R and i ∈ {1, . . . , d}.

Assumption (A1) focuses on moderately ill-posed inverse problems by con-
sidering polynomial decay of the Fourier transform. Notice that straightforward
modifications in the proofs allow to consider severely ill-posed inverse problems.

In this framework, we construct kernel deconvolution estimators of the den-
sities fy, y ∈ Y. For this purpose, let us introduce K =

∏d
j=1 Kj : Rd → R a
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d-dimensional function defined as the product of d unidimensional functions Kj .
Then if we denote by λ = (λ1, . . . , λd) ∈ R

d
+ a set of (positive) bandwidths, we

define Kη as

Kη : R
d → R

t 7→ Kη(t) = F−1

[ F [K](·)
F [η](·/λ)

]
(t). (3.1)

To apply Theorem 1, we require the following assumptions on the kernel K.

(K1) The kernel K satisfies

suppF [K] ⊂ [−S, S] and sup
t∈Rd

|F [K](t)| ≤ K1,

where supp g = {x : |g(x)| ≥ 0} and [−S, S] =⊗d
i=1[−Si, Si].

We also need a Hölder regularity condition for the conditional densities:

(R1) Given γ, L > 0, for any y ∈ Y, fy ∈ H(γ, L) where:

H(γ, L) = {f ∈ Σ(γ, L) : f are bounded probability densities w.r.t. Lebesgue},

and Σ(γ, L) is the class of isotropic Hölder continuous functions f having con-
tinuous partial derivatives up to order ⌊γ⌋, the maximal integer strictly less than
γ and such that:

|f(y)− pf,x(y)| ≤ L|x− y|γ ,

where pf,x is the Taylor polynomial of f at order ⌊γ⌋ at point x.

Moreover, we also need the associated classical assumption for the kernel K.

(Korder) The kernel K is of order m ∈ N if and only if:

•
∫
Rd K(x)dx = 1

•
∫
Rd K(x)xkj dx = 0, ∀k ≤ m, ∀j ∈ {1, . . . , d}.

•
∫
Rd |K(x)||xj |mdx < Km, ∀j ∈ {1, . . . , d}.

The Hölder regularity (R1), gathering with (Korder) with m = ⌊γ⌋ is
standard to control the bias term of kernel estimators in density estimation or
deconvolution (see for instance Tsybakov (2004a)).

In this context, we define the λ-ERM estimator based on (2.4) as:

ĝλn ∈ argmin
g∈G

Rλ
n(g), (3.2)

where for any g ∈ G:

Rλ
n(g) =

1

n

n∑

i=1

ℓλ(g, (Zi, Yi)),
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and ℓλ(g, (z, y)) is given by:

ℓλ(g, (z, y)) =

∫

X
ℓ(g, (x, y))

1

λ
Kη

(
z − x

λ

)
dx.

In the sequel, with a slight abuse of notations we write for any z = (z1, . . . , zd),
x = (x1, . . . , xd) ∈ R

d, λ = (λ1, . . . , λd) ∈ R
d
+:

1

λ
Kη

(
z − x

λ

)
= Πd

i=1

1

λi
Kη

(
z1 − x1
λ1

, . . . ,
zd − xd
λd

)
.

Theorem 2 below presents the rates of convergence of (3.2) with a kernel K
satisfying (K1) and (Korder) with m = ⌊γ⌋.
Theorem 2. Suppose {ℓ(g)− ℓ(g∗), g ∈ G} is a Bernstein class with respect to
νY with parameter κ ≥ 1. Suppose 0 < ρ < 1 exists such that:

HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) ≤ C2ǫ
−2ρ,

for some C2 > 0.
Under assumptions (A1) and (R1), we have, for n great enough:

ERℓ(ĝ
λ
n)−Rℓ(g

∗) ≤ Cn
− κγ

γ(2κ+ρ−1)+(2κ−1)
∑d

i=1
βi ,

where C = C(K1, S, γ, L,Km, C2, ρ, κ0, κ) > 0 and λ = (λ1, . . . , λd) is given by:

∀i ∈ {1, . . . , d}, λi = n
− 2κ−1

2γ(2κ+ρ−1)+2(2κ−1)
∑d

i=1
βi . (3.3)

The proof of this result is postponed to Section 5. Here follows some remarks.

Rates in Theorem 2 generalize the result of Koltchinskii (2006) (see also
Tsybakov (2004b)) to the errors-in-variables case. Point out that if β̄ = 0, we
get the rates of the direct case. Here, the price to pay for the inverse problem
of deconvolution can be quantified as:

(2κ− 1)
∑d

i=1 βi
γ

.

Hence, the performances of the method depend on the behavior of the char-
acteristic function of the noise distribution. In classification with fast rates, it
is important to notice that the influence of the errors in variables is related
to both parameters κ and γ. Same phenomenon also occurs in Loustau and
Marteau (2013).

It is also interesting to study the minimax optimality of the result of The-
orem 2 using the lower bound presented in Loustau and Marteau (2013). For
this purpose, let us introduce a random couple (X,Y ) with law P on X ×{0, 1}.
Given some a priori G (chosen later on) and the class of associated candidates
{g(x) = 1IG(x), G ∈ G}, we consider the hard loss ℓH(g, (x, y)) = |y − 1IG(x)|.
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In this case, the Bayes risk is defined as:

RH(G) = E|Y − 1IG(X)|.

It is easy to see that for y ∈ {0, 1} and g(x) = 1IG(x), we have:

|ℓH(g, (x, y))−ℓH(g′, (x, y))|= ||y− 1IG(x)| − |y− 1IG′(x)|| = | 1IG(x)− 1IG′(x)|.

Gathering with the margin assumption, Lemma 2 in Mammen and Tsybakov
(1999) allows us to write:

‖ℓH(g)− ℓH(g′)‖2L2(νY ) = ‖ 1IG − 1IG′‖2L2(ν)
= d∆(G,G

′)

≤ c0
2
(RH(g)−RH(g′))

p
p+1 ,

where p ≥ 0 denoted the so-called margin parameter. As a result, provided that
G∗ ∈ G and under the margin assumption, the excess loss class {ℓH(g)−ℓH(g∗)}
is Bernstein with respect to νY with parameter κ = p+1

p .

To apply Theorem 2, we need to check (Lµ) and (B) from Definition 1.
Remark that from Lemma 3 in Loustau and Marteau (2012), we have:

‖ℓλ(g)− ℓλ(g
′)‖2

L2(P̃ )
≤ CΠd

i=1λ
−βi

i d∆(G,G
′),

where for any g = 1IG:

ℓλ(g, z, y) =

∫
ℓH(g, (x, y))

1

λ
Kη

(
z − x

λ

)
dx.

Consequently, {ℓλ(g), g = 1IG : G ∈ G} is a LB-class with respect to νY with
constants c(λ) and K(λ) given by:

c(λ) = Πd
i=1λ

−βi

i and K(λ) = Πd
i=1λ

−βi−1/2
i .

The last step is to control the complexity parameter ω̃n(G, δ, νY ) as a function
of δ. For this purpose, we choose G(γ, L) the class of sets of the form {h(x) ≥ 0},
where h ∈ Σ(γ, L) has Hölder regularity γ > 0. With Lemma 5.1 in Audibert
and Tsybakov (2007), a control of the d∆-entropy with bracketing of the class
G(γ, L) can be found easily:

logN (G(γ, L), d∆, ǫ) ≤ cǫ−
d
γp .

As a result, since d∆(G,G
′) = ‖ 1IG − 1IG′‖2L2(ν)

, we have:

logN ({ 1IG, G ∈ G(γ, L)}, L2(ν), ǫ) ≤ cǫ−
2d
γp .

To get a control of the desired complexity term, we can apply Lemma 1 in
Section 2 to get:

ω̃n(G, δ, νY ) ≤ C1
c(λ)√
n
δ1−

d
γp ,

for some C1 > 0.
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Finally, using Lemma 4 in Section 5, in the particular case of the hard loss,
{ℓλ(g), g ∈ G} has approximation power a(λ) with constant 0 < r < 1 given by:

a(λ) =

d∑

i=1

λ
γ(p+1)
i and r =

p

p+ 1
.

In this case, Theorem 2 leads to:

ERH(ĝλn)−RH(g∗) ≤ Cn
− (p+1)γ

γ(p+2)+d+2β̄ .

This rate corresponds to the minimax rates of classification with errors in vari-
ables stated in Loustau and Marteau (2013). It ensures the minimax optimality
of the method in the errors-in-variables case for the hard loss. An open problem
is to give a lower bound for more general losses.

3.2. General case with singular values decomposition

For the sake of completeness, we also propose another α-ERM strategy in the
general case, where A is a known compact operator. In the recent statistical
literature, several methods of regularization have been proposed: Tikhonov type
regularizations, recurcive procedures in Hilbert space, or projection (or spectral
cut-off) methods. A natural way of projection for ill-posed inverse problems is
associated with the singular values decomposition (SVD) of A. Denote A∗ the
adjoint of A, and assume A∗A is a compact operator with eigenvalues (b2k)k∈N∗

with associated eigenfunctions (φk)k∈N∗ . Clearly, ‖Aφk‖ = bk and by setting
ϕk = Aφk

‖Aφk‖ , (ϕk)k∈N∗ is also orthonormal. Furthermore:

Aφk = bkϕk and A∗ϕk = bkφk, k ∈ N
∗. (3.4)

We may also write, for any y ∈ Y, fy =
∑

k∈N∗ b
−1
k 〈Afy, ϕk〉φk. Then, the family

of projection estimators f̂y of each fy, y ∈ Y has the form:

f̂y =

N∑

k=1

θ̂kφk, (3.5)

where N ≥ 1 is the regularization parameter and θ̂yk is an unbiased estimator of
θyk = 〈fy, φk〉 given by:

θ̂yk =
1

ny

ny∑

i=1

b−1
k ϕk(Z

y
i ).

In the sequel, as in (A1), we restrict ourselves to moderately ill-posed inverse
problem considering the rate of decrease of the singular values of A.

(A2) There exists β ∈ R+ such that:

bk ∼ k−βas k → +∞.
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In this case, the rate of decrease of the singular values is polynomial. As an
example, we can consider the convolution operator above and from an easy
calculation, the spectral domain is the Fourier domain and (A2) is comparable
to (A1). However, assumption (A2) can deal with any linear inverse problem
and is rather standard in the statistical inverse problem literature (see Cavalier
(2008)).

In this framework, we also need the following assumption on the regularity
of the conditional densities into the basis of the operator A:

(R2) For any y ∈ Y, fy ∈ P(γ, L) where:

P(γ, L) = {f ∈ Θ(γ, L) : f are bounded probability densities w.r.t. Lebesgue },

and Θ(γ, L) is the ellipsöıd in the SVD basis defined as:

Θ(γ, L) = {f =
∑

k≥1

θkφk ∈ L2(X ) :
∑

k≥1

θ2kk
2γ+1 ≤ L}.

Considering the SVD (3.4), we propose to replace in the true risk the conditional
densities fy by the family of projection estimators (3.5). In this case, assumption

(2.2) is satisfied with kN (z, x) =
∑N

k=1 b
−1
k ϕk(z)φk(x). It gives the following

expression of the empirical risk:

RN
n (g) =

1

n

n∑

i=1

ℓN (g, Zi, Yi),

where:

ℓN(g, z, y) =

N∑

k=1

b−1
k

∫

X
φk(x)ℓ(g, (x, y))ν(dx)ϕk(z).

Next theorem states the rates of convergence for the ERM estimator ĝNn defined
as:

ĝNn = argmin
g∈G

1

n

n∑

i=1

ℓN (g, Zi, Yi).

Theorem 3. Suppose {ℓ(g) − ℓ(g∗), g ∈ G} is Bernstein class with respect to
νY with parameter κ ≥ 1. Suppose 0 < ρ < 1 exists such that:

HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) ≤ C2ǫ
−2ρ,

for some C2 > 0. Then, under (A2) and (R2), ĝNn satisfies, for n great enough:

ERℓ(ĝ
N
n )−Rℓ(g

∗) ≤ Cn− κγ

γ(2κ+ρ−1)+(2κ−1)β ,

where C = C(γ, L, C2, ρ, κ, κ0) and we choose N such that:

N = n
2κ−1

2γ(2κ+ρ−1)+2(2κ−1)β .
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Theorem 3 shows that if A is a linear compact operator, we can derive rates of
convergence under a regularity assumption related to the spectrum of A. From
this point of view, the result of Theorem 3 is comparable with Theorem 2.

However, the regularity assumption (R2) is stronger than (R1) since Θ(γ,
L) = {(θk)k :

∑
θ2kk

2γ+1 ≤ L}, whereas with (R1), fy has ⌊γ⌋ derivatives. As
a consequence, this result highlights a lack of optimality of projection methods
for the problem of inverse statistical learning. This phenomenon can be explain
by taking a closer look at the bias control in Lemma 4 and Lemma 6. Indeed,
to get a satisfying approximation function a(α) (see Definition 3), we act in two

steps: the first step is to control locally the bias Ef̂(x) − f(x). Then, we use
Bernstein assumption to get:

(Rα
ℓ −Rℓ)(ĝ

α
n − g∗) ≤ (Rℓ(ĝ

α
n)−Rℓ(g

∗))1/2κ [Ef̂(x) − f(x)].

This allows us to derive with Young’s inequality an approximation function of
the form a(α) = [Ef̂(x)−f(x)]2κ/2κ−1 with residual term r = 1

2κ . Unfortunately,
we known that projection estimators are minimax in statistical inverse problems
when we consider the integrated L2−risk. In this case, the bias term has the
form ‖Ef̂N − f‖2, and can be controlled with a weaker assumption than (R2).
Note that in kernel deconvolution estimation, minimax results are stated for
both pointwise and integrated risk. In this case, the control of Ef̂(x)− f(x) can
be managed optimally in Lemma 4. This explains the optimality of Theorem 2
in comparison with Theorem 3.

3.3. Restriction to K to deal with a weaker Bernstein assumption

In this subsection, we develop an alternative to Theorems 2–3 to deal with a
weaker Bernstein assumption. For the sake of simplicity, we restrict ourselves in
Theorems 2–3 to Bernstein class satisfying (see Definition 2):

‖ℓ(g)− ℓ(g∗)‖2L2(νY ) ≤ κ0[EP (ℓ(g)− ℓ(g∗))]1/κ.

However, Bernstein classes with respect to νY appear only in particular cases,
such as classification with hard loss in the context of Mammen and Tsybakov
(1999); Tsybakov (2004b) (see the discussion after Theorem 2). Here, we present
a corollary of Theorems 2–3. To deal with Bernstein classes in the spirit of
Bartlett and Mendelson (2006). The excess loss class is Bernstein with respect
to P if:

‖ℓ(g)− ℓ(g∗)‖2L2(P ) ≤ κ0[EP (ℓ(g)− ℓ(g∗))]1/κ.

For this purpose, we restrict the study to a set K ⊆ R
d where f ≥ c0 > 0

over K. We introduce the following restricted loss:

ℓα,K(g, z, y) =

∫

K

kα(z, x)ℓ(g, (x, y))ν(dx). (3.6)
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It means that, as in Mammen and Tsybakov (1999) (see also Loustau and
Marteau (2013)), we deal with the minimization of a true risk of the form:

Rℓ,K(g) =
∑

y∈Y
p(y)

∫

K

ℓ(g, (x, y))fy(x)dx.

With (3.6), it is straightforward to get (Lµ) with µ = P since if f ≥ c0 > 0
on K, one gets:

∑

y∈Y
py

∫

K

(ℓ(g, (x, y))− ℓ(g′, (x, y)))2ν(dx) ≤ 1

c0
‖ℓ(g)− ℓ(g′)‖L2(P ).

Roughly speaking, Assumption (Lµ) in Definition 1 whith µ = P provides a
control of the variance of ℓα(g, (Z, Y )) by the variance of ℓ(g, (X,Y )). To have
such a control, we need to restrict the problem to {x : f(x) > 0}. Otherwise, the
variance of ℓα(g, (Z, Y )) could be significantly large compared with the variance
of ℓ(g, (X,Y )).

The following corollary points out the same performances for the α-ERM
over K defined as:

ĝα,Kn = argmin
g∈G

n∑

i=1

ℓα,K(g, Zi, Yi).

Corollary 1. Suppose {ℓ(g)− ℓ(g∗), g ∈ G} is a Bernstein class with respect to
P with parameter κ ≥ 1. Suppose 0 < ρ < 1 exists such that:

HB({ℓ(g), g ∈ G}, ǫ, L2(P )) ≤ C2ǫ
−2ρ,

for some C2 > 0. Then:

1. Under (A1) and (R1), ĝλ,Kn satisfies, for n great enough:

ERℓ,K(ĝλ,Kn )− Rℓ,K(g∗) ≤ Cn
− κγ

γ(2κ+ρ−1)+(2κ−1)
∑d

i=1
βi ,

for a choice of λ = (λ1, . . . , λd) given by:

∀i ∈ {1, . . . , d}, λi = n
− 2κ−1

2γ(2κ+ρ−1)+2(2κ−1)
∑d

i=1
βi . (3.7)

2. Under (A2) and (R2), ĝN,K
n satisfies, for n great enough:

ERℓ,K(ĝN,K
n )−Rℓ,K(g∗) ≤ Cn− κγ

γ(2κ+ρ−1)+(2κ−1)β ,

where we choose N such that:

N = n
2κ−1

2γ(2κ+ρ−1)+2(2κ−1)β .

This corollary allows to get the same fast rates of convergence of Theo-
rems 2–3 under a weaker Bernstein assumption. The price to pay for the α-
ERM with restricted loss (3.6) relies on the dependence on K of the estimation
procedure.
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4. Conclusion

This paper has tried to investigate the effect of indirect observations into the
statement of fast rates of convergence in empirical risk minimization. Many is-
sues could be considered in future works.

The main result is a general upper bound in classification whith indirect
observations, when we observe indirect inputs Zi, i = 1, . . . , n with law Af . We
state that under a standard complexity assumption over the hypothesis space,
the proposed estimator ĝαn reaches (fast) rates of convergence of the form:

O
(
(c(α)/

√
n)2κ/(2κ+ρ−1))

)
,

where α > 0 is a smoothing parameter and c(α) depends on the operator A of
inversion. The proof is based on a deviation inequality for suprema of empirical
processes. It seems to fit the indirect case provided that it is used carefully.
For this purpose, we introduce Lipschitz and bounded classes {ℓα(g), g ∈ G},
depending on a smoothing parameter α. It allows us to quantify the effect of
the inverse problem on the empirical process machinery. The price to pay is
summarized in a constant c(α) which exploses as n tends to infinity. The behav-
ior of this constant is related to the degree of ill-posedness. Here, in the mildly
ill-posed case, c(α) grows polyniomally as a function of α.

The result of Section 2 suggests the same degree of generality as the results
of Koltchinskii (2006) in the direct case. It is well-known that the work of
Koltchinskii allows to recover most of the recent results in statistical learning
theory and the area of fast rates. Consequently, there is a nice hope that many
problems dealing with indirect observations could be managed following the
guiding thread of this paper.

Section 3 gives some illustrations in different settings. In the errors-in-variables
case, using deconvolution kernel estimators, we obtain fast rates. These rates
coincide with recent minimax results stated in Loustau and Marteau (2013)
for the hard loss. In the general case, it is also possible to construct another
α−ERM strategy based on projections using the SVD of the operator A.

The estimation procedure proposed in this paper leads to different challenging
open problems of adaptation and model selection. The method is not adaptive in
many senses. At the first glance, we can see three levels of adaptation: (1) adap-
tation to the operator A; (2) adaptation to choose the tunable parameter α;
(3) adaptation or model selection of the hypothesis space G. At this time, it
is important to note that at least in the direct case, the same machinery used
to analyzed the order of the excess risk can be applied to produce penalized
empirical risk minimization (see Tsybakov and van de Geer (2005); Koltchin-
skii (2006); Blanchard et al. (2008); Loustau (2009)). Moreover, the problem of
unknown operator of inversion A has been already considered in the literature
(see for instance Delaigle et al. (2008)). A standard approach is to suppose that
we have repeated measurements in order to estimate the Fourier tranform of η.
It can be the purpose of a future work.
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Another possible powerful direction is to study more precisely the complexity
of the class {ℓα(g), g ∈ G}. On the one hand, we can use particular properties of
loss functions, such as convexity or Lipschitz properties, to control ω̃n(G, δ, µ)
defined in (2.5). For instance, the same type of results as Theorems 2–3 could be
derived using entropy conditions of the hypothesis set G itself (instead of the loss
class {ℓ(g), g ∈ G}). It allows to consider many standard minimization problems
over finite VC-set or reproducing kernel Hilbert spaces. On the other hand,
another challenging direction can be the control of the complexity from indirect
observations thanks to entropy numbers of compact operators. Note that since
X is compact, ℓα(g, z, y) =

∫
X kα(z, x)ℓ(g, (x, y))ν(dx) can be considered as the

image of ℓ(g) by the integral operator Lkα
associated to the function kα. Hence,

we have:
{ℓα(g), g ∈ G} = Lkα

({ℓ(g), g ∈ G}).
Furthermore, it is clear that if kα is continuous, Lkα

is well-defined and compact.
Using for instance Williamson et al. (2001), and provided that ℓ is bounded and
G consists of bounded functions in L2(ν,X ), entropy of the class {ℓα(g), g ∈ G}
could be controlled in terms of the eigenvalues of the integral operator. In this
case, it is clear that the entropy of the class depends strongly on the spectrum
of the operator A.

More precisely, if A is a convolution product, Section 3.1 deals with kernel de-
convolution estimators with bandwidth λ. As a result, the integral operator Lkλ

is defined as the convolution product Lkλ
f(z) = 1

λKη(
·
λ) ∗ f(z). Its spectrum

is related to the behavior of the Fourier transform of the deconvolution kernel
estimator, which corresponds to the quantity F [K]/F [η](·/λ). At the end, the
control of the entropy of the class of interest {ℓλ(g), g ∈ G} could be calculated
thanks to an assumption over the behavior of the Fourier transform of the noise
distribution η such as (A1). It can produce promising results.

Finally, the aim of this contribution was to derive excess risk bounds under
standard assumptions over the complexity and the geometry of the considered
class G. An alternative point of view would be to state oracle-type inequalities.
Indeed, Theorems 1–3 could be written in terms of exact oracle inequalities of
the form:

ERℓ(ĝ
α
n ) ≤ inf

g∈G
Rℓ(g) + rn(G),

where the residual term rn(G) corresponds to the rates of convergence in The-
orems 1–3. In this setting, it is well-known that ERM estimators reach optimal
fast rates under a Bernstein assumption. However, the Bernstein assumption
presented in Definition 2 is a strong assumption related to the geometry of the
class G. Lecué and Mendelson (2012) proposes to relax significantly the Bern-
stein assumption and points out non-exact oracle inequalities of the form:

ERℓ(ĝ
α
n) ≤ (1 + ǫ) inf

g∈G
Rℓ(g) + rn(G),

for some ǫ > 0. These results hold without Bernstein condition for any non-
negative loss functions. There is a nice hope that such a study can be done
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in the presence of indirect observations, using some minor modifications in the
proofs.

5. Proofs

The main ingredient of the proofs is a concentration inequality for empirical
processes in the spirit of Talagrand (Talagrand (1996)). We use precisely a
Bennet deviation bound for suprema of empirical processes due to Bousquet
(see Bousquet (2002)) applied to a class of measurable and bounded functions
f ∈ F . In this case it is stated in Bousquet (2002) that for all t > 0:

P

(
Z ≥ EZ +

√
2t(nσ2 + (1 +K)EZ) +

t

3

)
≤ exp(−t),

where

Z = sup
f∈F

∣∣∣∣∣

n∑

i=1

f(Xi)

∣∣∣∣∣ and sup
f∈F

Var(f(X1)) ≤ σ2.

The proof of Lemma 2 below uses iteratively Bousquet’s inequality and gives
rise to solve the fixed point equation as in Koltchinskii (2006). For this purpose,
we introduce, for a function ψ : R+ → R+, the following transformations:

ψ̆(δ) = sup
σ≥δ

ψ(σ)

σ
and ψ†(ǫ) = inf{δ > 0 : ψ̆(δ) ≤ ǫ}.

We are also interested in the following discretization version of these transfor-
mations:

ψ̆q(δ) = sup
δj≥δ

ψ(δj)

δj
and ψ†

q(ǫ) = inf{δ > 0 : ψ̆q(δ) ≤ ǫ},

where for some q > 1, δj = q−j for j ∈ N.
In the sequel, constant K,C > 0 denote generic constants that may vary

from line to line.

5.1. Proof of Theorem 1

The following lemma is the key ingredient to get Theorem 1. For the sake of
simplicity, we suppose that the oracle g∗ is unique whereas a more sophisticated
geometry can lead to the same kind of result without this assumption (see
Koltchinskii (2006)).

Lemma 2. Suppose {ℓα(g), g ∈ G} is such that:

sup
g∈G

‖ℓα(g)‖∞ ≤ K(α).
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Suppose {ℓα(g), g ∈ G} has approximation function a(α) and residual constant
0 < r < 1 according to Definition 3. Define, for some constant K > 0:

Uα
n (δj , t) = K

[
φαn(G, δj) +

√
t

n
Dα(G, δj) +

√
t

n
(1 +K(α))φαn(G, δj) +

t

n

]
,

φαn(G, δj) = E sup
g∈G(δj)

|P̃n − P̃ |[ℓα(g)− ℓα(g
∗)],

Dα(G, δj) = sup
g∈G(δj)

√
P̃ (ℓα(g)− ℓα(g∗))2,

where g∗ = argminG Rℓ(g) is unique.
Then ∀δ ≥ δαn(t) = [Uα

n (·, t)]†q(1−r
2q ), if a(α) ≤ 1−r

4q δ we have for ĝ = ĝαn :

P(Rℓ(ĝ)−Rℓ(g
∗) ≥ δ) ≤ logq(

1

δ
)e−t.

Proof. The proof follows Koltchinskii (2006) extended to the noisy set-up.
Given q > 1, we introduce a sequence of positive numbers:

δj = q−j , ∀j ≥ 1.

Given n, j ≥ 1, t > 0 and α ∈ R
d
+, consider the event:

Eα
n,j(t) =

{
sup

g∈G(δj)
|P̃n − P̃ |[ℓα(g)− ℓα(g

∗)] ≤ Uα
n (δj , t)

}
,

where ∀δ > 0, G(δ) = {g ∈ G : Rℓ(g)−Rℓ(g
∗) ≤ δ}. Then, we have, using Bous-

quet’s version of Talagrand’s concentration inequality (see Bousquet (2002)),
for some K > 0, P(Eα

n,j(t)
C) ≤ e−t, ∀t ≥ 0.

We restrict ourselves to the event Eα
n,j(t).

Using Definition 3, we have with a slight abuse of notations:

Rℓ(ĝ)−Rℓ(g
∗) ≤ (P̃n − P̃ )(ℓα(g

∗)− ℓα(ĝ)) + (Rℓ −Rα
ℓ )(ĝ − g∗)

≤ (P̃n − P̃ )(ℓα(g
∗)− ℓα(ĝ)) + a(α) + r(Rℓ(ĝ)−Rℓ(g

∗)).

Hence, we have:

δj+1 ≤ Rℓ(ĝ)−Rℓ(g
∗) ≤ δj ⇒ δj+1 ≤ 1

1− r

(
(P̃n − P̃ )(ℓα(g

∗)− ℓα(ĝ)) + a(α)
)
.

On the event Eα
n,j(t), by definition of G(δj), it follows that ∀δ ≤ δj :

δj+1 ≤ Rℓ(ĝ)−Rℓ(g
∗) ≤ δj ⇒ δj+1 ≤ 1

1− r
Uα
n (δj , t) +

1

1− r
a(α)

≤ δj
1− r

V α
n (δ, t) +

1

1− r
a(α),
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where V α
n (δ, t) = Ŭα

n (δ, t) satisfies (see Koltchinskii (2006)):

Uα
n (δj , t) ≤ δjV

α
n (δ, t), ∀δ ≤ δj .

We obtain:

1

1− r
V α
n (δ, t) ≥ 1

q
− qj

1− r
a(α) >

1

2q
,

since we have:

a(α) ≤ 1− r

4q
δ =⇒ qj

1− r
a(α) <

1

2q
.

It follows from the definition of the †-transform that:

δ < [Uα
n (·, t)]†(

1− r

2q
) = δαn(t).

Hence, we have on the event Eα
n,j(t), for δj ≥ δ:

δj+1 ≤ Rℓ(ĝ)−Rℓ(g
∗) ≤ δj ⇒ δ < δαn(t),

or equivalently,

δαn (t) ≤ δ ≤ δj ⇒ ĝ /∈ G(δj+1, δj),

where G(c, C) = {g ∈ G : c ≤ Rℓ(g)−Rℓ(g
∗) ≤ C}. Finally, we obtain:

⋂

j:δj≥δ

Eα
n,j(t) and δ ≥ δαn(t) ⇒ Rℓ(ĝ)−Rℓ(g

∗) ≤ δ.

This formulation allows us to write by union’s bound:

P(Rℓ(ĝ)−Rℓ(g
∗) ≥ δ) ≤

∑

δj≥δ

P(Eα
n,j(t)

C) ≤ logq

(
1

δ

)
e−t,

since {j : δj ≥ δ} = {j : j ≤ − log δ
log q }.

Proof of Theorem 1. The proof is a direct application of Lemma 2. We have,
for some constant K > 0:

Uα
n (δ, t) = K

[
φαn(G, δ) +

√
t

n
φαn(G, δ)(1 +K(α)) +

√
t

n
Dα(G, δ) + t

n

]
.

First step is to control φαn(G, δ). Assumption (2.8) and the Bernstein condition
allow us to write:

φαn(G, δ) ≤ E sup
g∈G(δ)

|P̃n − P̃ |[ℓα(g)− ℓα(g
∗)]

≤ E sup
g∈G:‖ℓ(g)−ℓ(g∗)‖L2(µ)≤2

√
κ0δ

1
2κ

|P̃n − P̃ |[ℓα(g)− ℓα(g
∗)]

≤ ω̃n(G,
√
κ0δ

1
2κ )

≤ C
c(α)√
n
δ

1−ρ
2κ ,

where we use in last line Lemma 1.
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A control of Dα(G, δ) using the Lipschitz assumption leads to:

Uα
n (δ, t) ≤ C

[
c(α)√
n
δ

(1−ρ)
2κ +

√
c(α)

n3/4
δ

1−ρ
4κ

√
K(α)t+

√
t

n
c(α)δ

1
2κ +

t

n

]
.

Hence we have from an easy calculation:

δαn(t) ≤ Cmax

((
c(α)√
n

) 2κ
2κ+ρ−1

,
[c(α)K(α)]

2κ
4κ+ρ−1

n
3κ

4κ+ρ−1

t
2κ

4κ+ρ−1 ,

(
c(α)√
n

) 2κ
2κ−1

t
2κ

2κ−1 ,
t

n

)
.

Consequently, for any 0 < t ≤ 1, for n large enough, we have:

(
c(α)√
n

) 2κ
2κ+ρ−1

≥ δαn (t+ log logq n),

provided that:

K(α) ≤ c(α)
2κ

2κ+ρ−1n
κ+ρ−1
2κ+ρ−1

1 + log logq n
.

It remains to use Lemma 2 with t replaced by t+ log logq n to obtain:

P

(
Rℓ(ĝ

α
n)−Rℓ(g

∗) ≥ K(1 + t)

(
c(α)√
n

) 2κ
2κ+ρ−1

)
≤ e−t,

provided that the approximation function obeys to the following inequality:

a(α) ≤ K
(1− r)

4q

(
c(α)√
n

) 2κ
2κ+ρ−1

.

5.2. Proof of Theorem 2

Theorem 2 is a straightforward application of Theorem 1 to the particular case
of errors in variables using deconvolution kernel estimators.

First step is to check that the estimation procedure described in Section 3.1
gives rise to a LB-class with respect to νY = ν ⊗ PY , where ν is the Lebesgue
measure on R

d and PY is the law of Y .

Lemma 3. Suppose (A1) holds and suppose l(g(·), y) ∈ L2(X ) for any y ∈ Y.
Suppose ‖fy ∗ η‖∞ ≤ cmax for any y ∈ Y. Consider a deconvolution kernel

Kη(t) = F−1[ F [K](·)
F [η](·/λ) ] where K(t) = Πd

i=1Ki(ti) where Ki have compactly sup-

ported and bounded Fourier transform. Then we have:

‖ℓλ(g)− ℓλ(g
′)‖L2(P̃ ) ≤ CLΠ

d
i=1λ

−βi

i ‖ℓ(g)− ℓ(g′)‖L2(νY ),

and moreover:

sup
g∈G

‖ℓλ(g)‖∞ ≤ CB

d∏

i=1

λ
−βi−1/2
i ,

where CL, CB > 0 are constants depending on X , cmax, ℓ, η and K.
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Proof. We have in dimension d = 1 for simplicity, using the boundedness as-
sumptions:

‖ℓλ(g)− ℓλ(g
′)‖2

L2(P̃ )

=
∑

y∈Y
py

∫

Rd

[∫

X

1

λ
Kη

(
z − x

λ

)
(ℓ(g, (x, y))) − ℓ(g′, (x, y))))dx

]2
fy ∗ η(z)dz

=
∑

y∈Y
py

∫

Rd

[
1

λ
Kη(

·
λ
) ∗ (ℓ(g(·), y)− ℓ(g′(·), y))(z)

]2
fy ∗ η(z)dz

≤ cmax

∑

y∈Y
py

∫

Rd

1

λ2
|F [Kη(

·
λ
)](t)|2|F [ℓ(g(·), y)− ℓ(g′(·), y)](t)|2dt

≤ CLλ
−2β‖ℓ(g)− ℓ(g′)‖2L2(νY ),

where we use in last line the following inequalities:

1

λ2
|F [Kη(./λ)](s)|2 = |F [Kη](sλ)|2 ≤ sup

t∈R

∣∣∣∣
F [K](tλ)

F [η](t)

∣∣∣∣
2

≤ sup
t∈[−K

λ
,K
λ
]

C

∣∣∣∣
1

F [η](t)

∣∣∣∣
2

≤ Cλ−2β ,

provided that F [K] is bounded and compactly supported.
By the same way, the second assertion holds since if ℓ(g(·), y) ∈ L2(X ):

|ℓλ(g, (z, y))| ≤
∫

X

∣∣∣∣
1

λ
Kη

(
z − x

λ

)
ℓ(g, (x, y)))

∣∣∣∣ dx

≤ C sup
z∈X

√∫

X

∣∣∣∣
1

λ
Kη

(
z − x

λ

)∣∣∣∣
2

dx

≤ C sup
z∈X

√∫

Rd

|F [Kη](λt)|2 dt

≤ CBλ
−β−1/2,

provided that F [K] is bounded and compactly supported.
A straightforward generalization leads to the d-dimensional case using as-

sumption (K1).

The last step is to show that {ℓλ(g), g ∈ G} satisfies Definition 3 with the
following lemma.

Lemma 4. Suppose (R1) holds for some γ, L > 0. Consider a deconvolution
kernel Kη such that K is a kernel of order ⌊γ⌋ with respect to the Lebesgue
measure. Then if {ℓ(g) − ℓ(g∗), g ∈ G} is Bernstein with parameter κ ≥ 1, we
have:

∀g ∈ G, (Rλ
ℓ −Rℓ)(g − g∗) ≤ a(λ) + r(Rℓ(g)−Rℓ(g

∗)),
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where

a(λ) = C

d∑

i=1

λ
2κγ
2κ−1

i and r =
1

2κ
.

Moreover, if |ℓ(g, (x, y))− ℓ(g′, (x, y))| = |ℓ(g, (x, y))− ℓ(g′, (x, y))|2 and κ > 1,
we have:

a(λ) = C

d∑

i=1

λ
κγ
κ−1

i and r =
1

κ
.

Proof. We consider the case d = 1 for simplicity. The first step is to compile the
value of Rλ

ℓ (g) for a fixed g ∈ G.Using the elementary property EKη(
Z−x
λ ) =

EK(X−x
λ ), we can write:

Rλ
ℓ (g) = EP̃⊗nR

λ
n(g)

= EP⊗n
Y

∑

y∈Y
p̂y

∫

X
ℓ(g, (x, y))EZ|Y =y

1

λ
Kη

(
Zy − x

λ

)
dx

=
∑

py

∫

X
ℓ(g, (x, y))EX|Y =y

1

λ
K
(
Xy − x

λ

)
dx

Gathering with Fubini, we arrive at:

(Rλ
ℓ −Rℓ)(g − g∗)

=
∑

y∈Y
py

∫

X

∫

R

K(u)(ℓ(g, (x, y))− ℓ(g∗, (x, y))) (fy(x+ λu)− fy(x)) dudx.

Now since the fy’s has ⌊γ⌋ derivatives, there exists τ ∈]0, 1[ such that:

∫

R

K(u) (fy(x+ λu)− fy(x)) du

≤
∫

R

K(u)




⌊γ⌋−1∑

k=1

f
(k)
y (x)

k!
(λu)k +

f (⌊γ⌋)(x+ τλu)

l!
(λu)⌊γ⌋


 du

≤
∫

R

K(u)

(
(λu)⌊γ⌋

⌊γ⌋! (f (⌊γ⌋)(x+ τλu) − f (⌊γ⌋)(x))

)
du

≤
∫

R

L(λuτ)γ

⌊γ⌋! du ≤ Cλγ ,

where we use in last line the Hölder regularity of the fy’s and that K is a kernel
of order ⌊γ⌋.
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Using succesively Cauchy-Schwarz twice and the Bernstein assumption, one
gets since X is compact:

∣∣(Rλ
ℓ −Rℓ)(g − g∗)

∣∣ ≤ Cλγ
∑

y∈Y
py

∫

X
|ℓ(g, (x, y))− ℓ(g∗, (x, y))|dx

≤ Cλγ

√√√√
∑

y∈Y
py

(∫

X
|ℓ(g, (x, y))− ℓ(g∗, (x, y))|dx

)2

≤ Cλγ

√√√√
∑

y∈Y
py

(∫

X
|ℓ(g, (x, y))− ℓ(g∗, (x, y))|2dx

)

= C‖ℓ(g)− ℓ(g∗)‖L2(νY )λ
γ

≤ Cλγ (Rℓ(g)−Rℓ(g
∗))

1
2κ

≤ Cλ
2κγ
2κ−1 +

1

2κ
(Rℓ(g)−Rℓ(g

∗)) ,

where we use in last line Young’s inequality:

xyr ≤ ry + x1/1−r , ∀r < 1,

with r = 1
2κ .

For the second statement, if |ℓ(g, (x, y)) − ℓ(g′, (x, y))| = |ℓ(g, (x, y)) − ℓ(g′,
(x, y))|2 and κ > 1, it is straightforward that 2κ can be replaced by κ to get the
result.

Proof of Theorem 2. The proof is a straightforward application of Theorem 1.
From Lemma 3 and Lemma 4, condition (2.7) in Theorem 1 can be written:

d∑

i=1

λ
2κγ
2κ−1

i .

(
Πd

i=1λ
−βi

i√
n

) 2κ
2κ+ρ−1

⇔ ∀i = 1, . . . , d λi . n
− 2κ−1

2γ(2κ+ρ−1)+2(2κ−1)β̄ .

Applying Theorem 1 with a smoothing parameter λ such that equalities hold
above gives the rates of convergence.

5.3. Proof of Theorem 3

First step is to check that the estimation procedure described in Section 3.2
gives rise to a LB-class with respect to νY with the following lemma.

Lemma 5. Suppose (A2) holds and l(g(·), y) ∈ L2(ν) for any y ∈ Y. Suppose
‖Afy‖∞ ≤ cmax for any y ∈ Y. Then we have:

‖ℓλ(g)− ℓλ(g
′)‖L2(P̃ ) ≤ CLN

β‖ℓ(g)− ℓ(g′)‖L2(νY ),

and moreover:

sup
g∈G

‖ℓλ(g)‖∞ ≤ CBN
β+1/2,

where CB , CL > 0 are constants depending on cmax, ℓ and η.
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Proof. The proof follows the proof of Lemma 3. We have in dimension d = 1
for simplicity since (φk)k∈N∗ is an orthonormal basis and using the boundedness
assumptions over the fy’s:

‖ℓN(g)− ℓN (g′)‖2
L2(P̃ )

=
∑

y∈Y
py

∫

R⌈

(
N∑

k=1

b−1
k

∫

X
φk(x)(ℓ(g, (x, y)))

− ℓ(g′, (x, y))))ν(dx)φk(z)

)2

Afy(z)ν(dz)

≤ cmax

∑

y∈Y
py

N∑

k=1

b−2
k

∫

Rd

(∫

X
(ℓ(g, (x, y)))

− ℓ(g′, (x, y))))φk(x)ν(dx)

)2

φk(z)
2ν(dz)

≤ CN2β
∑

y∈Y
py

N∑

k=1

(∫

X
(ℓ(g, (x, y))) − ℓ(g′, (x, y))))φk(x)ν(dx)

)2

≤ CN2β‖ℓ(g)− ℓ(g′)‖2L2(νY ).

Moreover, the second assertion holds since if l(g(·), y) ∈ L2(ν):

|ℓN (g, (z, y))| ≤
∣∣∣∣∣

N∑

k=1

b−1
k

∫

X
φk(x)φk(z)ℓ(g, (x, y))ν(dx)

∣∣∣∣∣

≤

√√√√
N∑

k=1

b−2
k

√√√√
N∑

k=1

(∫
φk(x)ℓ(g, (x, y))ν(dx)

)2

φk(z)2

≤ CNβ+1/2.

The last step is to control the bias term of the procedure with the following
lemma:

Lemma 6. Suppose (R2) holds and {ℓ(g) − ℓ(g∗), g ∈ G} is Bernstein with
parameter κ ≥ 1. Then we have:

∀g ∈ G, (Rλ
ℓ −Rℓ)(g − g∗) ≤ a(λ) + r(Rℓ(g)−Rℓ(g

∗)),

where

a(N) = C

d∑

i=1

N
− 2κ

2κ−1 (γ−1/2)

i and r =
1

2κ
.

Moreover, if |ℓ(g, (x, y))− ℓ(g′, (x, y))| = |ℓ(g, (x, y))− ℓ(g′, (x, y))|2 and κ > 1,
we have:

a(N) = C

d∑

i=1

N
− κ

κ−1 (γ−1/2)

i and r =
1

κ
.
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Proof. The first step is to compile the value of RN
ℓ (g), for some fixed g ∈ G.

Noting that θ̂yk is an unbiased estimator of θyk, we have by a simple calculation:

RN
ℓ (g) = EP̃⊗nR

N
n (g) = E

∑

y∈Y
p̂y

∫

X
ℓ(g, (x, y))

N∑

k=1

θ̂ykφk(x)ν(dx)

= EP⊗n
Y

∑

y∈Y
p̂y

∫

X
ℓ(g, (x, y))

N∑

k=1

EZ|Y =y θ̂
y
kφk(x)ν(dx)

=
∑

y∈Y
py

∫

X
ℓ(g, (x, y))

N∑

k=1

θykφk(x)ν(dx),

where θyk =
∫
fyφkdν. We hence get:

(Rλ
ℓ −Rℓ)(g − g∗)

=
∑

y∈Y
py

∫

X
(ℓ(g, (x, y))− ℓ(g∗, (x, y)))




N∑

k=1

θykφk(x) −
∑

k≥1

θykφk(x)



 ν(dx)

=
∑

y∈Y
py

∫

X
(ℓ(g∗, (x, y))− ℓ(g, (x, y)))

∑

k>N

θykφk(x)ν(dx).

Using Cauchy-Schwarz, we have since (φk)k∈N in an orthonormal basis:

|(Rλ
ℓ −Rℓ)(g − g∗)|

≤
∑

y∈Y
py
∑

k>N

θyk

√∫

X
(ℓ(g∗, (x, y)) − ℓ(g, (x, y)))2ν(dx)

√∫

X
φk(x)2ν(dx)

=
∑

y∈Y
py
∑

k>N

θyk

√∫

X
(ℓ(g∗, (x, y)) − ℓ(g, (x, y)))2ν(dx).

Using again Cauchy-Schwarz, gathering with (R2), we arrive at:

|(Rλ
ℓ −Rℓ)(g − g∗)|

≤
√∑

y∈Y
py

∫

X
(ℓ(g, (x, y))− ℓ(g′, (x, y)))2ν(dx)

√√√√∑

y∈Y
py

(
∑

k>N

θyk

)2

≤ C‖ℓ(g)− ℓ(g′)‖L2(νY )N
−γ

√∑

y∈Y
py
∑

k>N

(θyk)
2k2γ+1

≤ C (Rℓ(g)− Rℓ(g
′))

1
2κ N−γ .

We conclude the proof using Young’s inequality exactly as in Lemma 4.
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Proof of Theorem 3. The proof is a straightforward application of Theorem 1.
From Lemma 5 and Lemma 6, condition (2.7) in Theorem 1 can be written:

N
−2κγ
2κ−1 .

(
Nβ

√
n

) 2κ
2κ+ρ−1

⇔ N . n
2κ−1

2γ(2κ+ρ−1)+2(2κ−1)β .

Applying Theorem 1 with a smoothing parameter N such thatan equality holds
above gives the rates of convergence.

5.4. Proof of Lemma 1

The proof uses the maximal inequality presented in van der Vaart and Wellner
(1996) to the class:

F = {ℓα(g)− ℓα(g
′), g, g′ ∈ G : P (ℓ(g)− ℓ(g′))2 ≤ δ2}.

Indeed from Theorem 2.14.2 of van der Vaart and Wellner (1996), we can write,
∀η > 0:

ω̃n(G, δ, µ) = E sup
g,g′∈G:‖ℓ(g)−ℓ(g′)‖2

L2(µ)
≤δ2

∣∣∣(P̃n − P̃ )(ℓα(g)− ℓα(g
′))
∣∣∣

≤
‖F‖2

L2(P̃ )√
n

∫ η

0

√
1 +HB(F , ǫ‖F‖2L2(P̃ )

, L2(µ))dǫ

+
supf∈F ‖f‖L2(P̃ )√

n

√
1 +HB(F , η‖F‖2L2(P̃ )

, L2(µ)) (5.1)

where F (z, y) = supf∈F |ℓα(g, z, y) − ℓα(g
′, z, y)| is the enveloppe function of

the class F . Since {ℓα(g), g ∈ G} is a LB-class with bounded constant K(α):

‖F‖2
L2(P̃ )

=

∫
F 2(z, y)P̃ (dz, dy)

=
∑

y∈Y
py

∫ (
sup
f∈F

|ℓα(g, z, y)− ℓα(g
′, z, y)|

)2

Afy(z)ν(dz)

≤ C2
BK(α)2.

Moreover, we have since {ℓα(g), g ∈ G} is a LB-class with respect to µ with
Lipschitz constant c(α):

HB({ℓ(g), g ∈ G}, ǫ, L2(µ)) ≤ cǫ−2ρ ⇒ HB(F , ǫ, L2(P̃ )) ≤ Cc(α)2ρǫ−2ρ.
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Hence, we have in (5.1), choosing η = c(α)
K(α)2 δ:

ω̃n(G, δ) ≤ C

[
K(α)2√

n

∫ η

0

√
1 + ǫ−2ρK(α)−4ρc(α)2ρdǫ

+
c(α)δ√
n

√
1 + η−2ρK(α)−4ρc(α)2ρ

]

≤ C

[
ηK(α)2√

n
+
η1−ρK(α)2(1−ρ)c(α)ρ√

n
+
c(α)δ√
n

+
c(α)1+ρη−ρK(α)−2ρδ√

n

]

≤ C

[
η1−ρK(α)2(1−ρ)c(α)ρ√

n
+
c(α)1+ρη−ρK(α)−2ρδ√

n

]

≤ C
c(α)√
n
δ1−ρ,

provided that δ ≤ 1.
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Tsybakov, A.B. Introduction à l’estimation non-paramétrique. Springer-
Verlag, 2004a. MR2013911

Tsybakov, A.B. Optimal aggregation of classifiers in statistical learning. The
Annals of Statistics, 32(1): 135–166, 2004b. MR2051002

Tsybakov, A.B. and van de Geer, S. Square root penalty: Adaptation to
the margin in classification and in edge estimation. The Annals of Statistics,
33(3): 1203–1224, 2005. MR2195633

van de Geer, S. Empirical Processes in M-estimation. Cambridge University
Press, 2000. MR1739079

van der Vaart, A.W. and Wellner, J.A. Weak Convergence and Empirical
Processes. With Applications to Statistics. Springer Verlag, 1996. MR1385671

Vapnik, V. Estimation of Dependances Based on Empirical Data. Springer
Verlag, 1982. MR0672244

Vapnik, V. The Nature of Statistical Learning Theory. Statistics for Engineer-
ing and Information Science, Springer, 2000. MR1719582

Williamson, R.C., Smola, A.J., and Schölkopf, B. Generalization per-

http://www.ams.org/mathscinet-getitem?mr=1126324
http://www.ams.org/mathscinet-getitem?mr=2329442
http://www.ams.org/mathscinet-getitem?mr=2933668
http://www.ams.org/mathscinet-getitem?mr=2534203
http://hal.archives-ouvertes.fr/hal-00695258
http://hal.archives-ouvertes.fr/hal-00695258
http://hal.archives-ouvertes.fr/hal-00660383
http://www.ams.org/mathscinet-getitem?mr=1765618
http://www.ams.org/mathscinet-getitem?mr=1813803
http://www.ams.org/mathscinet-getitem?mr=2291502
http://www.ams.org/mathscinet-getitem?mr=2768576
http://www.ams.org/mathscinet-getitem?mr=1345204
http://www.ams.org/mathscinet-getitem?mr=1419006
http://www.ams.org/mathscinet-getitem?mr=2013911
http://www.ams.org/mathscinet-getitem?mr=2051002
http://www.ams.org/mathscinet-getitem?mr=2195633
http://www.ams.org/mathscinet-getitem?mr=1739079
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=0672244
http://www.ams.org/mathscinet-getitem?mr=1719582


Inverse statistical learning 2097

formance of regularization networks and support vector machines via entropy
numbers of compact operators. IEEE Transactions on Information Theory,
47(6): 2516–2532, 2001. MR1873936

http://www.ams.org/mathscinet-getitem?mr=1873936

	Introduction
	General upper bound
	Applications
	Errors-in-variables case
	General case with singular values decomposition
	Restriction to K to deal with a weaker Bernstein assumption

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1

	References

