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1. Introduction

Bandwidth selection is a key issue in kernel density estimation that has deserved
considerable attention during the last decades. The problem of selecting the most
suitable bandwidth for the nonparametric kernel density estimator introduced
by [34] and [30] is the main topic of the reviews of [6, 23] and [8], among others.
Comprehensive references on kernel smoothing and bandwidth selection include
the books by [36, 35] and [39]. Bandwidth selection is still an active research
field in density estimation, with some recent contributions like [20] and [7] in
the last years.

Kernel density estimation has been also adapted to directional data, that is,
data in the unit hypersphere of dimension q. Due to the particular nature of
directional data (periodicity for q = 1 and manifold structure for any q), the
usual multivariate techniques are not appropriate and specific methodology that
accounts for their characteristics has to be considered. The classical references
for the theory of directional statistics are the complete review of [24] and the
book by [27]. The kernel density estimation with directional data was firstly pro-
posed by [18], studying the properties of two types of kernel density estimators
and providing cross–validatory bandwidth selectors. Almost simultaneously, [2]
provided a similar definition of kernel estimator, establishing its pointwise and
L1 consistency. Some of the results by [18] were extended by [25], who studied
the estimation of the Laplacian of the density and other types of derivatives.
Whereas the framework for all these references is the general q–sphere, which
comprises as particular case the circle (q = 1), there exists a remarkable col-
lection of works devoted to kernel density estimation and bandwidth selection
for the circular scenario. Specifically, [37] presented the first plug–in bandwidth
selector in this context and [29] derived a selector based on mixtures and on
the results of [10] for the circular Asymptotic Mean Integrated Squared Error
(AMISE). Recently, [11] proposed a product kernel density estimator on the
q–dimensional torus and cross–validatory bandwidth selection methods for that
situation. Another nonparametric approximation for density estimation with cir-
cular data was given in [13] and [15]. In the general setting of spherical random
fields [12] derived an estimation method based on a needlet basis representation.

Directional data arise in many applied fields. For the circular case (q = 1)
a typical example is wind direction, studied among others in [21, 14] and [16].
The spherical case (q = 2) poses challenging applications in astronomy, for
example in the study of stars position in the celestial sphere or in the study
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of the cosmic microwave background radiation [5]. Finally, a novel field where
directional data is present for large q is text mining [3], where documents are
usually codified as high dimensional unit vectors. For all these situations, a
reliable method for choosing the bandwidth parameter seems necessary to trust
the density estimate.

The aim of this work is to introduce new bandwidth selectors for the kernel
density estimator for directional data. The first one is a rule of thumb which
assumes that the underlying density is a von Mises and it is intended to be the
directional analogue of the rule of thumb proposed by [36] for data in the real
line. This selector uses the AMISE expression that can be seen, among others,
in [17]. The novelty of the selector is that it is more general and robust than
the previous proposal by [37], although both rules exhibit an unsatisfactory
behaviour when the reference density spreads off from the von Mises. To over-
come this problem, two new selectors based on the use of mixtures of von Mises
for the reference density are proposed. One of them uses the aforementioned
AMISE expression, whereas the other one uses the exact MISE computation for
mixtures of von Mises densities given in [17]. Both of them use the Expectation–
Maximization algorithm of [3] to fit the mixtures and, to select the number of
components, the BIC criteria is employed. These selectors based on mixtures
are inspired by the earlier ideas of [9], for the multivariate setting, and [29] for
the circular scenario.

This paper is organized as follows. Section 2 presents some background on
kernel density estimation for directional data and the available bandwidth selec-
tors. The rule of thumb selector is introduced in Section 3, and the two selectors
based on mixtures of von Mises are presented in Section 4. Section 5 contains
a simulation study comparing the proposed selectors with the ones available in
the literature. Finally, Section 6 illustrates a real data application and some con-
clusions are given in Section 7. Supplementary materials with proofs, simulated
models and extended tables are given in the appendix.

2. Kernel density estimation with directional data

Denote by X a directional random variable with density f . The support of such
variable is the q–dimensional sphere, namely Ωq =

{
x ∈ Rq+1 : x2

1 + · · ·+x2
q+1 =

1
}

, endowed with the Lebesgue measure in Ωq, that will be denoted by ωq. Then,
a directional density is a nonnegative function that satisfies

∫
Ωq
f(x)ωq(dx) = 1.

Also, when there is no possible confusion, the area of Ωq will be denoted by

ωq = ωq (Ωq) =
2π

q+1
2

Γ
(
q+1

2

) , q ≥ 1,

where Γ represents the Gamma function defined as Γ(p) =
∫∞

0
xp−1e−x dx,

p > −1.
Among the directional distributions, the q–von Mises–Fisher distribution [40]

is perhaps the most widely used. The von Mises density, denoted by vM(µ, κ),
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is given by

fvM(x;µ, κ) = Cq(κ) exp
{
κxTµ

}
, Cq(κ) =

κ
q−1
2

(2π)
q+1
2 I q−1

2
(κ)

, (1)

where µ ∈ Ωq is the directional mean, κ ≥ 0 the concentration parameter
around the mean, T stands for the transpose operator and Ip is the modified
Bessel function of order p,

Ip(z) =

(
z
2

)p
π1/2Γ

(
p+ 1

2

) ∫ 1

−1

(1− t2)p−
1
2 ezt dt.

This distribution is the main reference for directional models and, in that sense,
plays the role of the normal distribution for directional data (is also a multi-
variate normal N (µ, κ−1Iq+1) conditioned on Ωq; see [27]). A particular case of
this density sets κ = 0, which corresponds to the uniform density that assigns
probability ω−1

q to any direction in Ωq.
Given a random sample X1, . . . ,Xn from the directional random variable X,

the proposal of [2] for the directional kernel density estimator at a point x ∈ Ωq
is

f̂h(x) =
ch,q(L)

n

n∑
i=1

L

(
1− xTXi

h2

)
, (2)

where L is a directional kernel (a rapidly decaying function with nonnegative
values and defined in [0,∞)), h > 0 is the bandwidth parameter and ch,q(L)
is a normalizing constant. This constant is needed in order to ensure that the
estimator is indeed a density and satisfies that

ch,q(L)−1 =

∫
Ωq

L

(
1− xTy

h2

)
ωq(dx) = O (hq) .

As usual in kernel smoothing, the selection of the bandwidth is a crucial step that
affects notably the final estimation: large values of h result in a uniform density
in the sphere, whereas small values of h provide an undersmoothed estimator
with high concentrations around the sample observations. On the other hand,
the choice of the kernel is not seen as important for practical purposes and the
most common choice is the so called von Mises kernel L(r) = e−r. Its name is
due to the fact that the kernel estimator can be viewed as a mixture of q–von
Mises–Fisher densities as follows:

f̂h(x) =
1

n

n∑
i=1

fvM

(
x; Xi, 1/h

2
)
,

where, for each von Mises component, the mean value is the i–th observation
Xi and the common concentration parameter is given by 1/h2.
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The classical error measurement in kernel density estimation is the L2 dis-
tance between the estimator f̂h and the target density f , the so called Integrated
Squared Error (ISE). As this is a random quantity depending on the sample, its
expected value, the Mean Integrated Squared Error (MISE), is usually consid-
ered:

MISE(h) = E
[
ISE

[
f̂h
]]

= E

[∫
Ωq

(
f̂h(x)− f(x)

)2

ωq(dx)

]
,

which depends on the bandwidth h, the kernel L, the sample size n and the
target density f . Whereas the two last elements are fixed when estimating a
density from a random sample, the bandwidth has to be chosen (also the kernel,
although this does not present a big impact in the performance of the estimator).
Then, a possibility is to search for the bandwidth that minimizes the MISE:

hMISE = arg min
h>0

MISE(h).

To derive an easier form for the MISE that allows to obtain hMISE, the following
conditions on the elements of the estimator (2) are required:

D1. Extend f from Ωq to Rq+1\ {0} by f(x) ≡ f (x/ ||x||) for all x ∈ Rq+1\ {0},
where ||·|| denotes the Euclidean norm. Assume that the gradient vector
∇f(x) and the Hessian matrix Hf(x) exist, are continuous and square
integrable.

D2. Assume that L : [0,∞) → [0,∞) is a bounded and integrable function
such that 0 <

∫∞
0
Lk(r)r

q
2−1 dr <∞, ∀q ≥ 1, for k = 1, 2.

D3. Assume that h = hn is a positive sequence such that hn → 0 and nhqn →∞
as n→∞.

The following result, available from [17], provides the MISE expansion for the
estimator (2). It is worth mentioning that, under similar conditions, [18] and
[25] also derived analogous expressions.

Proposition 1 ([17]). Under conditions D1–D3, the MISE for the directional
kernel density estimator (2) is given by

MISE(h) =bq(L)2R(Ψ(f, ·))h4 +
ch,q(L)

n
dq(L) + o

(
h4 + (nhq)−1

)
,

where bq(L) =
∫∞
0
L(r)r

q
2 dr∫∞

0
L(r)r

q
2
−1 dr

, dq(L) =
∫∞
0
L2(r)r

q
2 dr∫∞

0
L(r)r

q
2
−1 dr

, R(Ψ(f, ·)) =
∫

Ωq
Ψ(f,x)2

ωq(dx), and

Ψ(f,x) =− xT∇f(x) + q−1
(
∇2f(x)− xTHf(x)x

)
. (3)

This results leads to the decomposition MISE(h) = AMISE(h) +
o
(
h4 + (nhq)−1

)
, where AMISE stands for the Asymptotic MISE. It is pos-

sible to derive an optimal bandwidth for the AMISE in this sense, hAMISE =
arg minh>0 AMISE(h), that will be close to hMISE when h4 + (nhq)−1 is small
enough.
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Corollary 1 ([17]). The AMISE optimal bandwidth for the directional kernel
density estimator (2) is given by

hAMISE =

[
qdq(L)

4bq(L)2λq(L)R(Ψ(f, ·))n

] 1
4+q

, (4)

where λq(L) = 2
q
2−1ωq−1

∫∞
0
L(r)r

q
2−1 dr.

Unfortunately, expression (4) can not be used in practise since it depends on
the curvature term R(Ψ(f, ·)) of the unknown density f .

2.1. Available bandwidth selectors

The first proposals for data–driven bandwidth selection with directional data
are from [18], who provide cross–validatory selectors. Specifically, Least Squares
Cross–Validation (LSCV) and Likelihood Cross–Validation (LCV) selectors are
introduced, arising as the minimizers of the cross–validated estimates of the
squared error loss and the Kullback–Leibler loss, respectively. The selectors
have the following expressions:

hLSCV = arg min
h>0

CV2(h), CV2(h) = 2n−1
n∑
i=1

f̂−ih (Xi)−
∫

Ωq

f̂h(x)2 ωq(dx),

hLCV = arg max
h>0

CVKL(h), CVKL(h) =

n∑
i=1

log f̂−ih (Xi),

where f̂−ih represents the kernel estimator computed without the i–th observa-
tion. See Remark 3 for an efficient computation of hLSCV.

Recently, [37] proposed a plug–in selector for the case of circular data (q = 1)
for the estimator with the von Mises kernel. The selector of [37] uses from the
beginning the assumption that the reference density is a von Mises to construct
the AMISE. This contrasts with the classic rule of thumb selector of [36], which
supposes at the end (i.e., after deriving the AMISE expression) that the reference
density is a normal. The bandwidth parameter is chosen by first obtaining an
estimation κ̂ of the concentration parameter κ in the reference density (for
example, by maximum likelihood) and using the formula

hTAY =

[
4π

1
2 I0(κ̂)2

3κ̂2I2(2κ̂)n

] 1
5

.

Note that the parametrization of [37] has been adapted to the context of the es-
timator (2) by denoting by h the inverse of the squared concentration parameter
employed in his paper.

More recently, [29] proposed a selector that improves the performance of [37]
allowing for more flexibility in the reference density, considering a mixture of
von Mises. This selector is also devoted to the circular case and is mainly based
on two elements. First, the AMISE expansion that [10] derived for the circular
kernel density estimator by the use of Fourier expansions of the circular kernels.
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This expression has the following form when the kernel is a circular von Mises
(the estimator is equivalent to consider L(r) = e−r, q = 1 and h as the inverse
of the squared concentration parameter in (2)):

AMISE(h) =
1

16

[
1−
I2

(
h−1/2

)
I0

(
h−1/2

)]2 ∫ 2π

0

f ′′(θ)2 dθ +
I0

(
2h−1/2

)
2nπI

(
h−1/2

)2 . (5)

The second element is the Expectation–Maximization (EM) algorithm of [3] for
fitting mixtures of directional von Mises. The selector, that will be denoted by
hOLI, proceeds as follows

I Use the EM algorithm to fit mixtures from a determined range of compo-
nents.

II Choose the fitted mixture with minimum AIC.
III Compute the curvature term in (5) using the fitted mixture and seek for

the h that minimizes this expression, that will be hOLI.

3. A new rule of thumb selector

Using the properties of the von Mises density it is possible to derive a directional
analogue to the rule of thumb of [36], which is the optimal AMISE bandwidth for
normal reference density and normal kernel. The rule is resumed in the following
result.

Proposition 2 (Rule of thumb). The curvature term for a von Mises density
vM(µ, κ) is

R(Ψ(fvM(·;µ, κ), ·)) =
κ
q+1
2

2q+2π
q+1
2 I q−1

2
(κ)2q

[
2qI q+1

2
(2κ) + (2 + q)I q+3

2
(2κ)

]
.

If κ̂ is a suitable estimator for κ, then the rule of thumb selector for the kernel
estimator (2) with a directional kernel L is

hROT =

 q2dq(L)2q+2π
q+1
2 I q−1

2
(κ̂)2

κ̂
q+1
2 4bq(L)2λq(L)

(
2qI q+1

2
(2κ̂) + (2 + q)I q+3

2
(2κ̂)

)
n

 1
4+q

.

If L is the von Mises kernel, then:

hROT =



[
4π

1
2 I0(κ̂)2

κ̂ [2I1(2κ̂) + 3κ̂I2(2κ̂)]n

] 1
5

, q = 1,[
8 sinh2(κ̂)

κ̂ [(1 + 4κ̂2) sinh(2κ̂)− 2κ̂ cosh(2κ̂)]n

] 1
6

, q = 2, 4π
1
2 I q−1

2
(κ̂)2

κ̂
q+1
2

[
2qI q+1

2
(2κ̂) + (2 + q)κ̂I q+3

2
(2κ̂)

]
n

 1
4+q

, q ≥ 3.

(6)

The parameter κ can be estimated by maximum likelihood.
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Fig 1. The effect of the “extra term” in hROT. Left panel: logarithm of the curves of
MISE(hTAY), MISE(hROT) and MISE(hMISE) for sample size n = 250. The curves are
computed by 1000 Monte Carlo samples and hMISE is obtained exactly. The abscissae axis
represents the variation of the parameter θ ∈

[
π
2
, 3π

2

]
, which indexes the reference density

1
2

vM ((0, 1), 2) + 1
2

vM ((cos(θ), sin(θ)), 2). Right panel: logarithm of hTAY, hROT, hMISE and
their corresponding MISE for different values of κ, with n = 250.

In view of the expression for hROT in (6), it is interesting to compare it
with hTAY when q = 1. As it can be seen, both selectors coincide except for one
difference: the term 2I1(2κ̂) in the sum in the denominator of hROT. This “extra
term” can be explained by examining the way that both selectors are derived.
Whereas the selector hROT derives the bandwidth supposing that the reference
density is a von Mises when the AMISE is already derived in a general way,
the selector hTAY uses the von Mises assumption to compute it. Therefore, it
is expected that the selector hROT will be more robust against deviations from
the von Mises density.

Figure 1 collects two graphs exposing these comments, that are also corrob-
orated in Section 5. The left panel shows the MISE for hTAY and hROT for
the density 1

2vM ((0, 1), 2) + 1
2vM ((cos(θ), sin(θ)), 2), where θ ∈

[
π
2 ,

3π
2

]
. This

model represents two equally concentrated von Mises densities that spread off
from being the same to being antipodal. As it can be seen, the hROT selector
is slightly more accurate when the von Mises model holds (θ = π

2 ) and when
the deviation is large (θ ∈

[
π, 3π

2

]
). When θ ∈

[
π
2 , π

]
, both selectors perform

similar. This graph also illustrates the main problem of these selectors: the von
Mises density is not flexible enough to capture densities with multimodality and
it approximates them by the flat uniform density.

When the density is a vM(µ, κ), the right panel of Figure 1 shows the output
of hTAY, hROT, hMISE and their corresponding errors with respect to κ. The
effect of the “extra term” is visible for low values of κ, where MISE(hTAY)
presents a local maxima. This corresponds with higher values of hTAY with



Exact risk improvement of bandwidth selection with directional data 1663

respect to hROT and hMISE, which means that the former produce oversmoothed
estimations of the density (i.e. tend to the uniform case faster). Despite the worse
behaviour of hTAY, when the concentration parameter increases the effect of the
“extra term” is mitigated and both selectors are almost the same.

4. Selectors based on mixtures

The results of the previous section show that, although the rule of thumb
presents a significant improvement with respect to the [37] selector in terms
of generality and robustness, it also shares the same drawbacks when the un-
derlying density is not the von Mises model (see Figure 1). To overcome these
problems, two alternatives for improving hROT will be considered.

The first one is related with improving the reference density to plug–in into
the curvature term. The von Mises density has been proved to be not flexible
enough to estimate properly the curvature term in (4). This is specially visi-
ble when the underlying model is a mixture of antipodal von Mises, but the
estimated curvature term is close to zero (the curvature of a uniform density).
A modification in this direction is to consider a suitable mixture of von Mises
for the reference density, that will be able to capture the curvature of rather
complex underlying densities. This idea was employed first by [9] considering
mixtures of multivariate normals and by [29] in the circular setting.

The second improvement is concerned with the error criterion for the choice of
the bandwidth. Until now, the error criterion considered was the AMISE, which
is the usual in the literature of kernel smoothing. However, as [28] showed for the
linear case and [17] did for the directional situation, the AMISE and MISE may
differ significantly for moderate and even large sample sizes, with a potential
significative misfit between hAMISE and hMISE. Then, a substantial decreasing
of the error of the estimator (2) is likely to happen if the bandwidth is obtained
from the exact MISE, instead of the asymptotic version. Obviously, the problem
of this new approach is how to compute exactly the MISE, but this can be done
if the reference density is a mixture of von Mises.

The previous two considerations, improve the reference density and the error
criterion, will lead to the bandwidth selectors of Asymptotic MIxtures (AMI),
denoted by hAMI, and Exact MIxtures (EMI), denoted by hEMI. Before explain-
ing in detail the two proposed selectors, it is required to introduce some notation
on mixtures of von Mises.

An M–mixture of von Mises densities with means µj , concentration param-
eters κj and weights pj , with j = 1, . . . ,M , is denoted by

fM (x) =

M∑
j=1

pjfvM(x;µj , κj),

M∑
j=1

pj = 1, pj ≥ 0. (7)

When dealing with mixtures, the tuning parameter is the number of components,
M , which can be estimated from the sample. The notation f

M̂
will be employed

to represent the mixture of M̂ components where the parameters are estimated
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and M̂ is obtained from the sample. The details of this fitting are explained
later in Algorithm 3.

Then, the AMI selector follows from modifying the rule of thumb selector to
allow fitted mixtures of von Mises. It is stated in the next procedure.

Algorithm 1 (AMI selector). Let X1, . . . ,Xn be a random sample of a direc-
tional variable X.

I Compute a suitable estimation f
M̂

using Algorithm 3.
II For a directional kernel L, set

hAMI =

[
qdq(L)

4bq(L)2λq(L)R
(
Ψ
(
f
M̂
, ·
))
n

] 1
4+q

and for the von Mises kernel,

hAMI =
[
q2qπ

q
2R
(
Ψ
(
f
M̂
, ·
))
n
]− 1

4+q

.

Remark 1. Unfortunately, the curvature term R
(
Ψ
(
f
M̂
, ·
))

does not admit a

simple closed expression, unless for the case where M̂ = 1, i.e., when hAMI

is equivalent to hROT. This is due to the cross–product terms between the
derivatives of the mixtures that appear in the integrand. However, this issue can
be bypassed by using either numerical integration in q–spherical coordinates or
Monte Carlo integration to compute R

(
Ψ
(
f
M̂
, ·
))

for any M̂ .

The EMI selector relies on the exact expression of the MISE for densities of
the type (7), that will be denoted by

MISEM (h) = E

[∫
Ωq

(
f̂h(x)− fM (x)

)2

ωq(dx)

]
.

Similarly to what [28] did for the linear case, [17] derived the closed expression
of MISEM (h) when the directional kernel is the von Mises one. The calculations
are based on the convolution properties of the von Mises, which unfortunately
are not so straightforward as the ones for the normal, resulting in more complex
expressions.

Proposition 3 ([17]). Let fM be the density of an M–mixture of directional
von Mises (7). The exact MISE of the directional kernel estimator (2) with von
Mises kernel and obtained from a random sample of size n is

MISEM (h) = (Dq(h)n)
−1

+ pT
[
(1− n−1)Ψ2(h)− 2Ψ1(h) + Ψ0(h)

]
p, (8)

where p = (p1, . . . , pM )
T

and Dq(h) = Cq
(
1/h2

)2
Cq
(
2/h2

)−1
. The matrices

Ψa(h), a = 0, 1, 2 have entries:

Ψ0(h) =

(
Cq(κi)Cq(κj)

Cq
(∣∣∣∣κiµi + κjµj

∣∣∣∣)
)
ij

,
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Ψ1(h) =

(∫
Ωq

Cq
(
1/h2

)
Cq(κi)Cq(κj)

Cq (||x/h2 + κiµi||)
eκjx

Tµj ωq(dx)

)
ij

,

Ψ2(h) =

(∫
Ωq

Cq
(
1/h2

)2
Cq(κi)Cq(κj)

Cq (||x/h2 + κiµi||)Cq
(∣∣∣∣x/h2 + κjµj

∣∣∣∣) ωq(dx)

)
ij

,

where Cq is defined in equation (1).

Remark 2. A more efficient way to implement (8), specially for large sample
sizes and higher dimensions, is the following expression:

MISEM (h) = (Dq(h)n)
−1

+

∫
Ωq

[(
E
[
f̂h(x)

]
− fM (x)

)2

− E
[
f̂h(x)

]2]
ωq(dx),

where the integral is either evaluated numerically using q–spherical coordinates

or Monte Carlo integration and E
[
f̂h(x)

]
is computed using

E
[
f̂h(x)

]
=

M∑
j=1

pj
Cq(κj)Cq

(
1/h2

)
Cq
(∣∣∣∣x/h2 + κjµj

∣∣∣∣) .
Remark 3. By the use of similar techniques, when the kernel is von Mises,
the LSCV selector admits an easier expression for the CV2 loss that avoids the
calculation of the integral of f̂−ih :

CV2(h) =
2Cq

(
1/h2

)
n

n∑
i=1

n∑
j>i

[
2

n− 1
eX

T
i Xj/h

2

−
Cq
(
1/h2

)
nCq (||Xi + Xj || /h2)

]

− Cq(1/h
2)2

nCq(2/h2)
.

Based on the previous result, the philosophy of the EMI selector is the fol-
lowing: using a suitable pilot parametric estimation of the unknown density
(given by Algorithm 3), build the exact MISE and obtain the bandwidth that
minimizes it. This is summarized in the following procedure.

Algorithm 2 (EMI selector). Consider the von Mises kernel and let X1, . . . ,Xn

be a random sample of a directional variable X.

I Compute a suitable estimation f
M̂

using Algorithm 3.
II Obtain hEMI = arg minh>0 MISE

M̂
(h).

4.1. Mixtures fitting and selection of the number of components

The EM algorithm of [3], implemented in the R package movMF (see [19]), provides
a complete solution to the problem of estimation of the parameters in a mixture
of directional von Mises of dimension q. However, the issue of selecting the
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number of components of the mixture in an automatic and optimal way is still
an open problem.

The propose considered in this work is an heuristic approach based on the
Bayesian Information Criterion (BIC), defined as BIC = −2l + k log n, where
l is the log–likelihood of the model and k is the number of parameters. The
procedure looks for the fitted mixture with a number of components M that
minimizes the BIC. This problem can be summarized as the global minimization
of a function (BIC) defined on the naturals (number of components).

The heuristic procedure starts by fitting mixtures from M = 1 to M =
MB , computing their BIC and providing M̂ , the number of components with
minimum BIC. Then, in order to ensure that M̂ is a global minimum and not a
local one, MN neighbours next to M̂ are explored (i.e. fit mixture, compute BIC

and update M̂), if they were not previously explored. This procedure continues

until M̂ has at least MN neighbours at each side with larger BICs. A reasonable
compromise for MB and MN , checked by simulations, is to set MB = blog nc
and MN = 3. In order to avoid spurious solutions, fitted mixtures with any
κj > 250 are removed. The procedure is detailed as follows.

Algorithm 3 (Mixture estimation with data–driven selection of the number of
components). Let X1, . . . ,Xn be a random sample of a directional variable X
with density f .

I Set MB = blog nc and MN as the user supplies, usually MN = 3.
II For M varying from 1 to MB,

i estimate the M–mixture with the EM algorithm of [3] and

ii compute the BIC of the fitted mixture.

III Set M̂ as the number of components of the mixture with lower BIC.
IV If MB−MN < M̂ , set MB = MB+1 and turn back to step II. Otherwise,

end with the final estimation f
M̂

.

Other informative criteria, such as the Akaike Information Criterion (AIC)
and its corrected version, AICc, were checked in the simulation study together
with BIC. The BIC turned out to be the best choice to use with the AMI and
EMI selectors, as it yielded the minimum errors.

5. Comparative study

Along this section, the three new bandwidth selectors will be compared with the
already proposed selectors described in Subsection 2.1. A collection of directional
models, with their corresponding simulation schemes, are considered. Subsection
5.1 is devoted to comment the directional models used in the simulation study
(all of them are defined for any arbitrary dimension q, not just for the circular
or spherical case). These models are also described in the appendix.

For each of the different combinations of dimension, sample size and model,
the MISE of each selector was estimated empirically by 1000 Monte Carlo sam-
ples, with the same seed for the different selectors. This is used in the computa-



Exact risk improvement of bandwidth selection with directional data 1667

tion of MISE(hMISE), where hMISE is obtained as a numerical minimization of
the estimated MISE. The calculus of the ISE was done by: Simpson quadrature
rule with 2000 discretization points for q = 1; [26] rule with 5810 nodes for q = 2;
Monte Carlo integration with 10000 sampling points for q > 2 (same seed for all
the integrations). Finally, the kernel considered in the study is the von Mises.

5.1. Directional models

The first models considered are the uniform density in Ωq and the von Mises
density given in (1). The analogous of the von Mises for axial data (i.e., direc-
tional data where f(x) = f(−x)) is the Watson distribution W(µ, κ) [27]:

fW(x;µ, κ) = Mq(κ) exp
{
κ(xTµ)2

}
,

where Mq(κ) =
(
ωq−1

∫ 1

−1
eκt

2

(1−t2)q/2−1 dt
)−1

. This density has two antipodal
modes: µ and −µ, both of them with concentration parameter κ ≥ 0. A further
extension of this density is the called small circle distribution SC(µ, τ, ν) [4]:

fSC(x;µ, τ, ν) = Aq(τ, ν) exp
{
−τ(xTµ− ν)2

}
,

where Aq(τ, ν) =
(
ωq−1

∫ 1

−1
e−τ(t−ν)2(1− t2)q/2−1 dt

)−1
, ν ∈ (−1, 1) and τ ∈ R.

For the case τ ≥ 0, this density has a kind of modal strip along the (q−1)–sphere{
x ∈ Ωq : xTµ = ν

}
.

A common feature of all these densities is that they are rotationally sym-
metric, that is, their contourlines are (q− 1)–spheres orthogonal to a particular
direction. This characteristic can be exploited by means of the so called tangent–
normal decomposition (see [27]), that leads to the change of variables{

x = tµ + (1− t2)
1
2Bqξ,

ωq(dx) = (1− t2)
q
2−1 dt ωq−1(dξ),

(9)

where µ ∈ Ωq is a fixed vector, t = µTx (measures the distance of x from
µ), ξ ∈ Ωq−1 and Bq = (b1, . . . ,bq)(q+1)×q is the semi–orthonormal matrix
(BTq Bq = Iq and BqB

T
q = Iq+1, with Iq the q–identity matrix) resulting from

the completion of y to the orthonormal basis {y,b1, . . . ,bq}. The family of
rotationally symmetric densities can be parametrized as

fgθ,µ(x) = gθ(µTx), (10)

where gθ is a function depending on a vector parameter θ ∈ Θ ⊂ Rp and such
that ωq−1gθ(t)(1 − t2)q/2−1 is a density in (−1, 1), for all θ ∈ Θ. Using this
property, it is easy to simulate from (10).

Algorithm 4 (Sampling from a rotationally symmetric density). Let be the
rotationally symmetric density (10) and the notation of (9).

I Sample T from the density ωq−1gθ(t)(1− t2)q/2−1.
II Sample ξ from a uniform in Ωq−1 (Ω0 = {−1, 1}).

III Tµ + (1− T 2)
1
2Bqξ is a sample from fgθ,µ.
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Remark 4. Step I can always be performed using the inversion method [22].
This approach can be computationally expensive: it involves solving the root
of the distribution function, which is computed from an integral evaluated nu-
merically if no closed expression is available. A reasonable solution to this (for
a fixed choice of gθ and µ) is to evaluate once the quantile function in a dense
grid (for example, 2000 points equispaced in (0, 1)), save the grid and use it to
interpolate using cubic splines the new evaluations, which is computationally
fast.

Extending these ideas for rotationally symmetric models, two new directional
densities are proposed. The first one is the Directional Cauchy density DC(µ, κ),
defined as an analogy with the usual Cauchy distribution as

fDC(x;µ, κ) =
1

Dq(κ)(1 + 2κ(1− xTµ))
,

Dq(κ) =


2π (1 + 4κ)

−1/2
, q = 1,

π log(1 + 4κ)κ−1, q = 2,

ωq−1

∫ 1

−1
(1−t2)q/2−1

1+2κ(1−t) dt, q > 2,

where µ is the mode direction and κ ≥ 0 the concentration parameter around
it (κ = 0 gives the uniform density). This density shares also some of the
characteristics of the usual Cauchy distribution: high concentration around a
peaked mode and a power decay of the density. The other proposed density is
the Skew Normal Directional density SND(µ,m, σ, λ),

fSND(x;µ,m, σ, λ) =

(
ωq−1

∫ 1

−1

gm,σ,λ(t)(1− t2)q/2−1 dt

)−1

gm,σ,λ(µTx),

where gm,σ,λ is the skew normal density of [1] with location m, scale σ and
shape λ that is truncated to the interval (−1, 1). The density is inspired by the
wrapped skew normal distribution of [32], although it is based on the rotationally
symmetry rather than in wrapping techniques. A particular form of this density
is an homogeneous “cap” in a neighbourhood of µ that decreases very fast
outside of it.

Non rotationally symmetric densities can be created by mixtures of rotation-
ally symmetric. However, it is interesting to introduce a purely non rotation-
ally symmetric density: the projected normal distribution of [33]. Denoted by
PN(µ,Σ), the corresponding density is

fPN(x;µ,Σ) = (2π)
−p/2 |Σ|−1/2Q

−p/2
3 Ip

(
Q2Q

−1/2
3

)
exp

{
−
(
Q1−Q2

2Q
−1
3

)
/2
}
,

where Q1 = xTΣ−1x, Q2 = µTΣ−1x, Q3 = µTΣ−1µ and Ip(α) =
∫∞

0
tp−1

exp
{
− 2−1(t− α)2

}
dt. Sampling from this distribution is extremely easy: just

sample X ∼ N (µ,Σ) and then project X to Ωq by X/ ||X||.
The whole collection of models, with 20 densities in total, are detailed in

Table 5 in the appendix. Figures 2 and 3 show the plots of these densities for
the circular and spherical cases.



Exact risk improvement of bandwidth selection with directional data 1669

Fig 2. Simulation scenarios for the circular case. From left to right and up to down, models
M1 to M20. For each model, a sample of size 250 is drawn.

5.2. Circular case

For the circular case, the comparative study has been done for the 20 models
described in Figure 2 (see Table 5 to see their densities), for the circular selectors
hLCV, hLSCV, hTAY, hOLI, hROT, hAMI and hEMI and for the sample sizes 100,
250, 500 and 1000. Due to space limitations, only the results for sample size 500
are shown in Table 1, and the rest of them are relegated to the appendix.

In addition, to help summarizing the results a ranking similar to Ranking B
of [6] will be constructed. The ranking will be computed according to the follow-
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Table 1
Comparative study for the circular case, with sample size n = 500. Columns of the selector
• represents the MISE(•)× 100, with bold type for the minimum of the errors. The standard

deviation of the ISE× 100 is given between parentheses
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Table 2
Ranking for the selectors for the circular and spherical cases, for sample sizes

n = 100, 250, 500, 1000. The higher the score in the ranking, the better the performance of
the selector. Bold type indicate the best selector

q n hLCV hLSCV hTAY hOLI hROT hAMI hEMI

1 100 11.1494 9.4896 6.5143 6.8864 10.2829 11.1327 14.5329
250 9.6357 7.6350 5.2053 10.7883 7.9129 13.0558 16.0261
500 8.6549 7.7280 4.0933 13.2003 6.8351 14.5268 15.6039

1000 9.0128 7.9820 3.7168 14.0234 5.6784 14.7077 15.4358

2 100 11.8161 13.4387 ∗ ∗ 6.4424 8.1711 15.3028
250 10.2201 12.2789 ∗ ∗ 4.3195 11.2453 17.1272
500 8.9001 12.1317 ∗ ∗ 3.3156 13.0011 18.0860

1000 8.2036 12.1566 ∗ ∗ 2.9175 13.3693 18.7548

ing criteria: for each model, the m bandwidth selectors h1, . . . , hm considered
are sorted from the best performance (lowest error) to the worst performance
(largest error). The best bandwidth receives m points, the second m− 1 and so
on. These points, denoted by r, are standardized by m and multiplied by the rel-
ative performance of each selector compared with the best one. In other words,

the points of the selector hk, if hopt is the best one, are rk
m

MISE(hopt)
MISE(hk) . The final

score for each selector is the sum of the ranks obtained in all the twenty models
(thus, a selector which is the best in all models will have 20 points). With this
ranking, it is easy to group the results in a single and easy to read table.

In view of the results, the following conclusions can be extracted. Firstly,
hROT performs well in certain unimodal models such as M3 (von Mises) and M6
(skew normal directional), but its performance is very poor with multimodal
models like M15 (Watson). In its particular comparison with hTAY, it can be
observed that both selectors share the same order of error, but being hROT better
in all the situations except for one: the uniform model (M1). This is due to the
“extra term” commented in Section 3: its absence in the denominator makes
that hTAY → ∞ faster than hROT when the concentration parameter κ → 0
and, what is a disadvantage for κ > 0, turns out in an advantage for the uniform
case. With respect to hAMI and hEMI, although their performance becomes more
similar when the sample size increases, something expected, hEMI seems to be
on average a step ahead from hAMI, specially for low sample sizes. Among the
cross–validated selectors, hLCV performs better than hLSCV, a fact that was
previously noted by simulation studies carried out by [37] and [29]. Finally,
hOLI presents the most competitive behaviour among the previous proposals in
the literature when the sample size is reasonably large (see Table 2).

The comparison between the circular selectors is summarized in the scores
of Table 2. For all the sample sizes considered, hEMI is the most competitive
selector, followed by hAMI for all the sample sizes except n = 100, where hLCV is
the second. The effect of the sample effect is also interesting to comment. For n =
100, hLCV and hROT perform surprisingly well, in contrast with hOLI, which is
the second worst selector for this case. When the sample size increases, hROT and
hTAY have a decreasing performance and hOLI stretches differences with hAMI,



1672 E. Garćıa–Portugués

showing a similar behaviour. This was something expected as both selectors are
based on error criteria that are asymptotically equivalent. The cross–validated
selectors show a stable performance for sample sizes larger than n = 100.

5.3. Spherical case

The comparative study for the spherical case has been done for the directional
selectors hLSCV, hROT, hAMI and hEMI, in the models given in Figure 3. As in
the previous case, Table 2 contains the scores of the selectors for the different

Fig 3. Simulation scenarios for the spherical case. From left to right and up to down, models
M1 to M20. For each model, a sample of size 250 is drawn.
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Table 3
Comparative study for the spherical case, with sample size n = 500. Columns of the selector
• represents the MISE(•)× 100, with bold type for the minimum of the errors. The standard

deviation of the ISE× 100 is given between parentheses

Model hMISE hLCV hLSCV hROT hAMI hEMI

M1 0.0000 0.023 (0.06) 0.023 (0.06) 0.041 (0.03) 0.017 (0.02) 0.014 (0.02)
M2 0.3058 0.331 (0.13) 0.340 (0.15) 0.316 (0.13) 0.312 (0.12) 0.310 (0.12)
M3 0.4729 0.555 (0.22) 0.525 (0.22) 0.542 (0.21) 0.481 (0.19) 0.487 (0.19)
M4 1.0441 1.501 (0.46) 1.117 (0.34) 2.588 (0.48) 1.088 (0.33) 1.093 (0.35)
M5 0.9621 1.417 (0.45) 1.024 (0.31) 2.130 (0.40) 1.016 (0.30) 1.003 (0.32)
M6 0.4172 0.493 (0.15) 0.450 (0.14) 0.427 (0.11) 0.496 (0.17) 0.443 (0.13)
M7 0.3927 0.417 (0.13) 0.417 (0.12) 1.656 (0.28) 0.399 (0.12) 0.400 (0.12)
M8 0.3380 0.352 (0.11) 0.370 (0.12) 0.374 (0.11) 0.352 (0.10) 0.343 (0.11)
M9 2.6708 5.343 (1.26) 2.834 (0.78) 9.710 (0.92) 2.871 (0.65) 2.733 (0.72)

M10 0.9698 1.230 (0.31) 1.036 (0.30) 1.521 (0.29) 1.110 (0.30) 1.101 (0.31)
M11 1.0349 1.312 (0.34) 1.097 (0.29) 2.213 (0.35) 1.158 (0.26) 1.067 (0.27)
M12 1.5800 2.365 (0.59) 1.668 (0.43) 4.123 (0.54) 1.642 (0.42) 1.643 (0.44)
M13 1.4085 1.674 (0.26) 1.472 (0.23) 2.211 (0.13) 1.729 (0.40) 1.464 (0.25)
M14 1.1299 1.176 (0.30) 1.182 (0.30) 8.885 (0.77) 1.160 (0.28) 1.137 (0.28)
M15 1.1262 1.155 (0.21) 1.162 (0.21) 7.528 (0.76) 1.302 (0.25) 1.160 (0.21)
M16 0.8637 0.890 (0.14) 0.887 (0.14) 3.480 (0.22) 0.957 (0.21) 0.889 (0.15)
M17 1.8989 2.514 (0.52) 1.971 (0.42) 6.693 (0.45) 2.060 (0.39) 1.950 (0.42)
M18 5.0555 5.170 (1.08) 5.279 (1.14) 28.468 (0.79) 5.272 (1.06) 5.097 (1.08)
M19 1.1259 1.262 (0.26) 1.177 (0.24) 2.750 (0.24) 1.244 (0.30) 1.199 (0.31)
M20 1.1810 1.214 (0.28) 1.250 (0.30) 2.219 (0.28) 1.246 (0.29) 1.195 (0.27)

sample sizes, Table 3 includes the detailed results for n = 500 and the rest of
the sample sizes are shown in the appendix.

In this case the results are even more clear. The hEMI selector is by far
the best, with an important gap between its competitors for all the sample
sizes considered. Further, the effect of computing the exact error instead of the
asymptotic one can be appreciated: hAMI only is competitive against the cross–
validated selectors for sample sizes larger than n = 250, while hEMI remains
always the most competitive. In addition, the performance of hAMI seems to
decrease due to the effect of the dimension in the asymptotic error and does not
converge so quick as in the circular case to the performance of hEMI.

An interesting fact is that hLSCV performs better than hLCV, contrarily to
what happens in the circular case. This phenomena is strengthen with higher
dimensions, as it can be seen in the next subsection. A possible explanation is
the following. For the standard linear case, LCV has been proved to be a bad
selector in densities with heavy tails (see [6]) that are likely to produce outliers.
In the circular case, the compact support jointly with periodicity may mitigate
this situation, something that does not hold when the dimension increases and
the sparsity of the observations is more likely. This makes that among the cross–
validated selectors hLCV works better for q = 1 and hLSCV for q > 1.

5.4. The effect of dimension

Finally, the previous selectors are tested in higher dimensions. Table 4 sum-
marizes the information for dimensions q = 3, 4, 5 and sample size n = 1000
(see Table 9 in appendix for whole results). As it can be seen, hEMI continues
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Table 4
Ranking for the selectors for dimensions q = 3, 4, 5 and sample size n = 1000. The larger
the score in the ranking, the better the performance of the selector. Bold type indicate the

best selector

q hLCV hLSCV hROT hAMI hEMI

3 7.4838 15.3405 4.7658 10.6920 17.6956
4 8.8565 15.4862 5.1370 9.1871 17.4579
5 10.3262 15.1815 5.4088 7.6616 15.5301

performing better than its competitors. Also, as previously commented in the
spherical case, hAMI has a lower performance due to the misfit between AMISE
and MISE, which gets worse when the sample size is fixed and the dimension
increases. hLSCV arises as the second best selector for higher dimensions, out-
performing hLCV, as happened in the spherical case.

6. Data application

According with the comparative study of the previous section, the hEMI selector
poses in average the best performance of all the considered selectors. In this
section it will be applied to estimate the density of two real datasets.

6.1. Wind direction

Wind direction is a typical example of circular data. The data of this illustration
was recorded in the meteorological station of A Mourela (7◦ 51’ 21.91” W, 43◦

25’ 52.35” N), located near the coal power plant of As Pontes, in the northwest
of Spain. The wind direction has a big impact on the dispersion of the pollutants
from the coal power plant and a reliable estimation of its unknown density is
useful for a further study of the pollutants transportation. The wind direction
was measured minutely at the top of a pole of 80 metres during the month of
June, 2012. In order to mitigate serial dependence, the data has been hourly
averaged by computing the circular mean, resulting in a sample of size 673. The
resulting bandwidth is hEMI = 0.1896, obtained from the data–driven mixture
of 3 von Mises. Left plot of Figure 4 represents the estimated density, which
shows a clear predominance of the winds from the west and three main modes.
Running time, measured in a 3.5 GHz core, is 1.21 seconds (0.89 for the mixtures
fitting and 0.32 for bandwidth optimization).

6.2. Position of stars

A challenging field where spherical data is present is astronomy. Usually, the
position of stars is referred to the position that occupy in the celestial sphere,
i.e., the location in the earth surface that arises as the intersection with the
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Fig 4. Left: density of the wind direction in the meteorological station of A Mourela. Right:
density of the stars collected in the Hipparcos catalogue, represented in galactic coordinates
and Aitoff projection.

imaginary line that joins the center of the earth with the star. A massive enu-
meration of near stars is given in the Hipparcos catalogue [31], that collects the
findings of the Hipparcos mission carried out by the European Space Agency
in 1989–1993. An improved version of the original dataset, available from [38],
contains a corrected collection of the position of the stars on the celestial sphere
as well as other star variables.

For many years, most of the statistical tools used to describe this kind of
data were histograms adapted to the spherical case, where the choice of the bin
width was done manually (see page 328 of [31]). In this illustration, a smooth
estimation of the spherical density is given using the optimal smoothing of
the hEMI selector. Using the 117955 star positions from the dataset of [38], the
underlying density is approximated with 12 components automatically obtained,
resulting the bandwidth hEMI = 0.1064. Note that the analysis of such a large
dataset by cross–validatory techniques would demand an enormous amount of
computing time and memory resources, whereas the running time for hEMI is
reasonable, with 256.01 seconds (247.34 for the mixtures fitting and 8.67 for
bandwidth optimization). The right plot of Figure 4 shows the density of the
position of the measured stars. This plot is given in the Aitoff projection (see
[31]) and in galactic coordinates, which means that the equator represents the
position of the galactic rotation plane. The higher concentrations of stars are
located around two spots, that represents the Orion’s arm (left) and the Gould’s
Belt (right) of our galaxy.

7. Conclusions

Three new bandwidth selectors for directional data are proposed. The rule of
thumb extends and improves significantly the previous proposal of [37], but also
fails estimating densities with multimodality. On the other hand, the selectors
based on mixtures are competitive with the previous proposals in the literature,
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being the EMI selector the most competitive on average among all, for different
sample sizes and dimensions, but specially for low or moderate sample sizes.
The performance of AMI selector is one step behind EMI, a difference that is
reduced when sample size increases.

In the comparison study, new rotationally symmetric models have been intro-
duced and other interesting conclusions have been obtained. First, LCV is also
a competitive selector for the circular case and outperforms LSCV, something
that was known in the literature of circular data. However, this situation is re-
versed for the spherical case and higher dimensions, where LSCV is competitive
and performs better than LCV.

The final conclusion of this paper is simple: the EMI bandwidth selector
presents a reliable choice for kernel density estimation with directional data
and its performance is at least as competitive as the existing proposals until the
moment.
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Appendix A: Proofs

Proof of Proposition 2. By simple differentiation, the operator (3) in a von
Mises density vM(µ, κ) is

Ψ (fvM(·;µ, κ),x) = κCq(κ)eκxTµ
(
−xTµ + κq−1

(
1− (xTµ)2

))
.

Then, by the change of variables of (9),

R(Ψ(fvM(·;µ, κ), ·))

=

∫
Ωq

Ψ(fvM(·;µ, κ),x)2 ωq(dx)

= κ2Cq(κ)2

∫
Ωq−1

∫ 1

−1

e2κt

(
−t+

κ

q
(1− t2)

)2 (
1− t2

) q
2−1

dt ωq−1(dξ)

=
κq+1

2qπ
q
2 +1I q−1

2
(κ)2Γ

(
q
2

) ∫ 1

−1

e2κt

(
−t+

κ

q
(1− t2)

)2 (
1− t2

) q
2−1

dt.

The integral can divided into three terms expanding the square. After two in-
tegrations by parts, the sum of the first two is∫ 1

−1

e2κt
(
1− t2

) q
2−1

t2 dt− 2κ

q

∫ 1

−1

e2κt
(
1− t2

) q
2 t dt =

1

q

∫ 1

−1

e2κt
(
1− t2

) q
2 dt.
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This integral and the last term follows immediately by the integral form of the
modified Bessel function, yielding

R(Ψ(fvM(·;µ, κ), ·)) =
κ
q+1
2

2q+2π
q+1
2 I q−1

2
(κ)2q

[
2qI q+1

2
(2κ) + (2 + q)I q+3

2
(2κ)

]
.

The particular case q = 2 follows by using I− 1
2
(z) =

√
2
πz sinh(z), I 1

2
(z) =√

2
πz cosh(z) and relations Iν−1(z) = Iν+1(z)+ 2ν

z Iν(z) and Iν+1(z) = Iν−1(z)−
2ν
z Iν(z). Also, for the von Mises kernel L(r) = e−r, it is easy to see that

λq(L) = (2π)
q
2 , bq(L) =

q

2
and dq(L) = 2−

q
2 .

Appendix B: Models for the simulation study

Table 5 collects the densities of the different models used in the simulation study.
Apart from the notations introduced in Section 5 for the families of directional
densities, the following terminology is used. First, the vector 0q represent a
vector with q zeros. Second, functions ρ1 and ρ2 give the polar and spherical
parametrization of a vector from a single and a pair of angles, respectively:

ρ1(θ) = (cos(θ), sin(θ)), ρ2(θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)),

with θ ∈ [0, 2π) and φ ∈ [0, π). Thirdly, the notation #i for an index i varying
in the ordered set S aims to represent the position of i in S. Finally, the matrix
Σ1 is such that the first three elements of diag(Σ1) are 1

2 ,
1
4 ,

1
8 and the rest of

them are 1. Matrix Σ2 are just like matrix Σ1 but with the diagonal reversed.

Appendix C: Extended tables for the simulation study

Tables 6, 7 and 8 show the results for sample sizes 100, 250 and 1000 for the
circular and spherical cases, respectively. The case n = 500 is collected in Tables
1 and 3. Finally, Table 9 contains the simulation results for sample size n = 1000
and dimensions q = 3, 4, 5.
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Table 5
Directional densities considered in the simulation study

Model Description Density

M1 Uniform (Unif.) ω−1
q

M2 Von Mises (vM) vM((0q, 1), 2)

M3 Projected normal (PN),
rotationally symmetric

PN
(
(0q, 1), 1

2 Iq+1

)
M4 PN, non rot. symmetric PN((1, 0q), 2Σ1)

M5 Directional Cauchy (DC) DC((0q, 1), 10)

M6 Skew normal directional SND
(
(0q, 1), 1

2 ,
1
2 , 5
)

M7 Watson W((1, 0q), 2)

M8 Mixt. of two 90o vM 1
2 vM((0q, 1), 3) + 1

2 vM((1, 0q), 3)

M9 Skewed mixt. of 8 vM

q = 1 1
8 vM

(
(0, 1),

(
5
3

)8)
+ 1

8

∑
i∈{1,2,3,4,6,8,9}

vM
(
ρ1
(
iπ
20

)
,
(
5
3

)#i)
q > 1 1

8 vM
(

(0q−1, 1),
(
5
3

)8)
+ 1

8

∑
i∈{1,2,3,4,6,8,9}

vM
((

0q−1, ρ2
(

0,
(10−i)π

20

))
,
(
5
3

)#i)
M10 Mixt. of two PN 1

2 PN ((1, 0q),Σ1) + 1
2 PN

((√
2

2 ,
√

2
2 , 0q−1

)
,Σ2

)
M11 Bandage (5 vM)

q = 1 2
10 vM (ρ1 (0) , 20) + 2

10

∑
i∈{−1,1}

vM
(
ρ1
(
iπ
6

)
, 10
)

+ 1
10

∑
i∈{−1,1}

[
vM

(
ρ1
(
iπ
4

)
, 5
)

+ vM
(
ρ1
(
iπ
2

)
, 1
)]

q > 1 2
10 vM

((
ρ2
(
0, π2

)
, 0q−1

)
, 20
)

+ 2
10

∑
i∈{−1,1}

vM
((
ρ2
(
iπ
6 ,

(4+i)π
8

)
, 0q−1

)
, 10
)

+ 2
10

∑
i∈{−1,1}

[
vM

((
ρ2
(
iπ
4 ,

iπ
3

)
, 0q−1

)
, 5
)

+vM
((
ρ2
(
iπ
2 ,

iπ
3

)
, 0q−1

)
, 1
) ]

M12 Mixt. of PN and DC 3
4 PN((1, 0q),Σ1) + 1

4 DC
((

1
2 ,
√

3
2 , 0q−1

)
, 50
)

M13 Mixt. of Unif. and DC 4
5ω
−1
q + 1

5 DC
((

1
2 ,
√

3
2 , 0q−1

)
, 100

)
M14 Trimodal (3 vM) 1

3 vM((0q, 1), 10) + 1
3 vM

((
0q−1, ρ1

(
5π
4

))
, 10
)

+ 1
3 vM

((
0q−1, ρ1

(
7π
4

))
, 10
)

M15 Small circle SC((0q, 1), 10)

M16 Double small circle 1
2 SC((0q, 1), 10) + 1

2 SC((1, 0q), 10)

M17 Spiral (10 vM)

q = 1 1
10

∑9
i=0 vM

(
ρ1
(
3πi
18

)
,
(
3
2

)10−i)
q > 1 1

10

∑9
i=0 vM

((
ρ2
(
3πi
18 ,

3πi
36

)
, 0q−1

)
,
(
3
2

)10−i)
M18 Claw (4 vM) 1

4

∑1
i=0

[
vM

((
0q−1, ρ1

(
(2i+1)π

4

)
, 50
))

+vM
((

0q−1, ρ1
(

(i+2)π
5

))
, 50
) ]

M19 Double spiral (20 vM)

q = 1 1
20

∑9
i=0

[
vM

(
ρ1
(
3πi
18

)
,
(
3
2

)10−i)+ vM
(
ρ1
(
− 3πi

18

)
, 10
)]

q > 1 1
20

∑9
i=0

[
vM

((
ρ2
(
3πi
18 ,

3πi
36

)
, 0q−1

)
,
(
3
2

)10−i)
+vM

((
ρ2
(
3πi
18 ,−

3πi
36

)
, 0q−1

)
, 10
) ]

M20 Windmill (4 vM)

q = 1 2
11 vM ((0, 1), 20) + 1

11

∑3
i=1 vM

(
ρ2
(
2iπ
3

)
, 15
)

q > 1 2
11 vM ((0q, 1), 20)

+ 1
11

∑3
i=1

∑
j∈{3,5,6}

vM
((
ρ2
(

2iπ
3 , πj

)
, 0q−1

)
, 15
)
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Table 6
Comparative study for the circular case, with up to down blocks corresponding to sample
sizes 100 and 250, respectively. Columns of the selector • represents the MISE(•)× 100,
with bold type for the minimum of the errors. The standard deviation of the ISE× 100 is

given between parentheses
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Table 7
Comparative study for the circular case for sample size 1000, respectively. Columns of the

selector • represents the MISE(•)× 100, with bold type for the minimum of the errors. The
standard deviation of the ISE× 100 is given between parentheses
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Table 8
Comparative study for the spherical case, with up to down blocks corresponding to sample

sizes 100, 250 and 1000, respectively. Columns of the selector • represents the
MISE(•)× 100, with bold type for the minimum of the errors. The standard deviation of the

ISE× 100 is given between parentheses

Model hMISE hLCV hLSCV hROT hAMI hEMI

M1 0.0000 0.074 (0.23) 0.121 (0.32) 0.149 (0.12) 0.145 (0.72) 0.083 (0.20)
M2 0.8133 0.920 (0.45) 1.047 (0.73) 0.838 (0.41) 0.889 (0.73) 0.851 (0.47)
M3 1.2481 1.465 (0.63) 1.527 (0.81) 1.361 (0.61) 1.334 (0.89) 1.309 (0.62)
M4 2.6742 3.777 (1.31) 3.087 (1.35) 4.867 (1.24) 3.161 (1.40) 3.022 (1.30)
M5 2.3676 3.260 (1.10) 2.760 (1.09) 3.770 (0.96) 3.353 (1.57) 2.992 (1.22)
M6 1.0781 1.362 (0.61) 1.295 (0.67) 1.092 (0.38) 1.304 (0.90) 1.158 (0.47)
M7 1.0165 1.179 (0.58) 1.176 (0.47) 2.199 (0.33) 1.186 (0.92) 1.078 (0.43)
M8 0.8731 0.958 (0.40) 1.048 (0.53) 0.921 (0.34) 1.056 (0.64) 0.947 (0.41)
M9 6.7507 11.184 (2.90) 7.647 (2.67) 14.962 (1.99) 8.056 (2.53) 7.186 (2.14)

M10 2.3766 2.851 (0.79) 2.751 (1.13) 2.946 (0.73) 2.653 (1.20) 2.660 (0.81)
M11 2.5706 3.266 (0.87) 2.926 (1.13) 4.029 (0.83) 3.588 (1.88) 3.263 (1.08)
M12 3.8591 5.629 (1.56) 4.312 (1.49) 6.991 (1.30) 4.996 (2.14) 4.559 (1.76)
M13 2.4304 2.689 (0.37) 2.681 (0.53) 2.629 (0.23) 3.691 (2.32) 2.769 (0.49)
M14 3.0506 3.200 (0.90) 3.364 (1.17) 12.687 (1.31) 3.376 (0.95) 3.128 (0.88)
M15 2.8638 3.031 (0.70) 3.083 (0.81) 8.674 (0.64) 4.156 (1.91) 3.125 (0.80)
M16 2.1417 2.263 (0.49) 2.300 (0.56) 3.928 (0.20) 3.033 (1.35) 2.911 (0.94)
M17 4.6150 5.730 (1.24) 5.030 (1.35) 9.316 (0.93) 5.560 (2.16) 5.047 (1.32)
M18 13.2289 13.572 (3.49) 14.586 (4.42) 40.641 (1.60) 15.735 (4.23) 13.717 (3.54)
M19 2.5921 2.907 (0.65) 2.861 (0.76) 3.883 (0.48) 4.067 (1.67) 3.570 (0.96)
M20 3.0018 3.174 (0.89) 3.373 (1.09) 4.261 (0.73) 3.850 (1.56) 3.316 (0.88)

M1 0.0000 0.046 (0.11) 0.047 (0.11) 0.070 (0.05) 0.038 (0.12) 0.027 (0.04)
M2 0.4615 0.508 (0.23) 0.536 (0.28) 0.477 (0.22) 0.475 (0.20) 0.471 (0.21)
M3 0.7147 0.844 (0.36) 0.817 (0.40) 0.808 (0.34) 0.729 (0.31) 0.739 (0.32)
M4 1.6108 2.271 (0.71) 1.753 (0.59) 3.462 (0.73) 1.704 (0.55) 1.710 (0.58)
M5 1.4470 2.070 (0.70) 1.587 (0.55) 2.776 (0.62) 1.642 (0.60) 1.555 (0.57)
M6 0.6433 0.775 (0.27) 0.721 (0.27) 0.655 (0.20) 0.733 (0.31) 0.677 (0.22)
M7 0.5942 0.634 (0.20) 0.643 (0.20) 1.871 (0.31) 0.613 (0.19) 0.607 (0.19)
M8 0.5106 0.538 (0.18) 0.573 (0.22) 0.552 (0.18) 0.556 (0.22) 0.524 (0.17)
M9 3.9353 7.525 (1.76) 4.242 (1.20) 11.752 (1.27) 4.392 (1.06) 4.087 (1.09)

M10 1.4223 1.783 (0.47) 1.567 (0.49) 2.016 (0.42) 1.647 (0.58) 1.667 (0.44)
M11 1.5512 1.951 (0.52) 1.687 (0.49) 2.888 (0.53) 1.858 (0.65) 1.661 (0.47)
M12 2.3194 3.469 (0.92) 2.516 (0.76) 5.174 (0.82) 2.497 (0.70) 2.421 (0.71)
M13 1.8303 2.070 (0.32) 1.953 (0.33) 2.383 (0.17) 2.673 (0.91) 2.033 (0.41)
M14 1.7407 1.811 (0.47) 1.856 (0.51) 10.627 (1.13) 1.824 (0.46) 1.761 (0.46)
M15 1.6979 1.759 (0.34) 1.773 (0.36) 8.061 (0.73) 2.111 (0.55) 1.785 (0.35)
M16 1.2929 1.338 (0.24) 1.344 (0.24) 3.675 (0.21) 1.677 (0.43) 1.704 (0.41)
M17 2.7758 3.619 (0.77) 2.927 (0.66) 7.752 (0.60) 3.122 (0.71) 2.901 (0.65)
M18 7.7070 7.889 (1.78) 8.149 (1.92) 33.585 (1.08) 8.272 (1.77) 7.803 (1.74)
M19 1.6228 1.801 (0.37) 1.720 (0.35) 3.211 (0.33) 2.136 (0.76) 1.951 (0.75)
M20 1.7820 1.845 (0.48) 1.924 (0.54) 2.961 (0.43) 1.996 (0.57) 1.828 (0.48)

M1 0.0000 0.013 (0.03) 0.013 (0.03 0.023 (0.02) 0.008 (0.01) 0.007 (0.01)
M2 0.2002 0.214 (0.08) 0.217 (0.08 0.207 (0.08) 0.203 (0.07) 0.202 (0.07)
M3 0.3069 0.356 (0.13) 0.328 (0.12 0.357 (0.12) 0.311 (0.11) 0.315 (0.11)
M4 0.6790 0.983 (0.30) 0.714 (0.21 1.912 (0.32) 0.704 (0.20) 0.699 (0.21)
M5 0.6403 0.960 (0.28) 0.671 (0.19 1.622 (0.26) 0.658 (0.18) 0.661 (0.20)
M6 0.2789 0.324 (0.09) 0.297 (0.09 0.288 (0.07) 0.327 (0.09) 0.295 (0.08)
M7 0.2559 0.270 (0.08) 0.268 (0.07 1.452 (0.28) 0.258 (0.07) 0.261 (0.07)
M8 0.2196 0.227 (0.07) 0.234 (0.07 0.249 (0.07) 0.225 (0.06) 0.221 (0.07)
M9 1.7392 3.617 (0.77) 1.811 (0.48) 7.790 (0.65) 1.827 (0.42) 1.768 (0.46)

M10 0.6306 0.794 (0.20) 0.666 (0.18) 1.104 (0.19) 0.661 (0.17) 0.655 (0.18)
M11 0.6922 0.869 (0.22) 0.722 (0.18) 1.687 (0.23) 0.733 (0.15) 0.704 (0.17)
M12 1.0539 1.576 (0.36) 1.093 (0.24) 3.211 (0.37) 1.094 (0.25) 1.093 (0.26)
M13 1.0348 1.302 (0.19) 1.069 (0.15) 2.045 (0.10) 1.136 (0.16) 1.061 (0.16)
M14 0.7395 0.773 (0.18) 0.764 (0.18) 7.232 (0.51) 0.751 (0.16) 0.742 (0.17)
M15 0.7442 0.756 (0.12) 0.762 (0.13) 7.040 (0.77) 0.817 (0.13) 0.757 (0.12)
M16 0.5674 0.581 (0.08) 0.578 (0.08) 3.290 (0.24) 0.618 (0.10) 0.573 (0.08)
M17 1.2668 1.696 (0.34) 1.304 (0.26) 5.657 (0.32) 1.350 (0.23) 1.289 (0.26)
M18 3.2966 3.396 (0.67) 3.381 (0.67) 23.727 (0.59) 3.373 (0.64) 3.311 (0.65)
M19 0.7614 0.851 (0.16) 0.784 (0.14) 2.308 (0.17) 0.809 (0.14) 0.788 (0.16)
M20 0.7675 0.782 (0.17) 0.800 (0.18) 1.614 (0.19) 0.787 (0.17) 0.772 (0.17)
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Table 9
Comparative study for higher dimensions with sample size n = 1000: up to down blocks

correspond to dimensions q = 3, 4, 5. Columns of the selector • represents the
MISE(•)× 100, with bold type for the minimum of the errors. The standard deviation of the

ISE× 100 is given between parentheses

Model hMISE hLCV hLSCV hROT hAMI hEMI

M1 0.0000 0.006 (0.02) 0.006 (0.02) 0.008 (0.01) 0.008 (0.01) 0.005 (0.01)
M2 0.2201 0.230 (0.06) 0.229 (0.06) 0.224 (0.05) 0.224 (0.05) 0.221 (0.06)
M3 0.4536 0.528 (0.13) 0.470 (0.12) 0.456 (0.11) 0.456 (0.11) 0.462 (0.12)
M4 1.2583 1.568 (0.23) 1.281 (0.19) 2.350 (0.24) 1.291 (0.18) 1.288 (0.20)
M5 0.6392 0.846 (0.18) 0.657 (0.14) 0.909 (0.16) 0.667 (0.12) 0.651 (0.14)
M6 0.3575 0.401 (0.07) 0.370 (0.06) 0.387 (0.06) 0.397 (0.08) 0.370 (0.06)
M7 0.2808 0.294 (0.06) 0.288 (0.06) 1.425 (0.18) 0.283 (0.06) 0.284 (0.06)
M8 0.2623 0.269 (0.06) 0.271 (0.06) 0.266 (0.06) 0.271 (0.05) 0.264 (0.06)
M9 6.9786 17.556 (2.08) 7.139 (1.49) 19.477 (1.75) 7.303 (1.29) 7.064 (1.44)

M10 1.2743 1.567 (0.25) 1.302 (0.20) 1.903 (0.26) 1.308 (0.21) 1.303 (0.22)
M11 1.4724 2.117 (0.34) 1.506 (0.26) 2.465 (0.34) 1.612 (0.22) 1.485 (0.26)
M12 1.4808 1.922 (0.26) 1.506 (0.20) 2.500 (0.26) 1.522 (0.20) 1.512 (0.22)
M13 0.4761 0.509 (0.06) 0.492 (0.05) 0.594 (0.04) 0.666 (0.22) 0.505 (0.07)
M14 1.4327 1.543 (0.25) 1.459 (0.24) 10.893 (0.94) 1.466 (0.22) 1.436 (0.23)
M15 0.8662 0.883 (0.08) 0.879 (0.08) 4.351 (0.35) 0.993 (0.10) 0.877 (0.08)
M16 0.5830 0.592 (0.06) 0.591 (0.06) 1.895 (0.12) 0.636 (0.07) 0.706 (0.08)
M17 5.2376 10.032 (1.16) 5.373 (1.01) 19.474 (0.94) 5.506 (0.85) 5.320 (0.92)
M18 13.3175 13.954 (2.18) 13.529 (2.13) 43.085 (2.21) 13.713 (2.09) 13.357 (2.11)
M19 2.6298 3.743 (0.47) 2.699 (0.48) 7.433 (0.43) 2.758 (0.45) 2.701 (0.48)
M20 2.1853 2.276 (0.33) 2.222 (0.32) 4.823 (0.32) 2.268 (0.29) 2.193 (0.31)

M1 0.0000 0.004 (0.01) 0.004 (0.01) 0.008 (0.01) 0.008 (0.01) 0.004 (0.00)
M2 0.2356 0.243 (0.05) 0.243 (0.05) 0.243 (0.05) 0.243 (0.05) 0.237 (0.05)
M3 0.6224 0.705 (0.14) 0.637 (0.12) 0.629 (0.11) 0.629 (0.11) 0.629 (0.12)
M4 1.8521 2.023 (0.17) 1.870 (0.16) 2.899 (0.18) 1.927 (0.17) 1.886 (0.16)
M5 0.4269 0.488 (0.09) 0.437 (0.07) 0.479 (0.08) 0.495 (0.08) 0.436 (0.08)
M6 0.4448 0.486 (0.06) 0.455 (0.06) 0.507 (0.05) 0.507 (0.05) 0.463 (0.05)
M7 0.2765 0.287 (0.05) 0.282 (0.05) 0.819 (0.09) 0.284 (0.04) 0.278 (0.05)
M8 0.2953 0.301 (0.05) 0.303 (0.05) 0.296 (0.05) 0.311 (0.05) 0.297 (0.05)
M9 9.9498 19.713 (1.88) 11.588 (1.53) 19.502 (1.66) 14.847 (4.08) 10.004 (1.43)

M10 2.3370 2.629 (0.23) 2.364 (0.21) 3.338 (0.24) 2.521 (0.31) 2.369 (0.22)
M11 2.9424 4.518 (0.57) 2.993 (0.43) 4.557 (0.54) 3.358 (0.38) 2.963 (0.43)
M12 1.9610 2.290 (0.21) 1.980 (0.17) 2.769 (0.21) 2.071 (0.21) 1.996 (0.19)
M13 0.1732 0.180 (0.02) 0.180 (0.02) 0.180 (0.02) 0.207 (0.12) 0.187 (0.02)
M14 2.2517 2.393 (0.28) 2.278 (0.26) 11.171 (0.81) 2.391 (0.25) 2.255 (0.26)
M15 0.8263 0.842 (0.05) 0.836 (0.05) 2.384 (0.16) 0.883 (0.07) 0.834 (0.05)
M16 0.5189 0.525 (0.04) 0.526 (0.04) 1.069 (0.06) 0.527 (0.06) 0.568 (0.06)
M17 18.2152 38.755 (2.66) 18.815 (3.26) 55.977 (1.91) 19.331 (3.03) 18.403 (2.94)
M18 74.2135 87.710 (16.21) 77.381 (16.68) 215.090 (11.43) 75.489 (16.94) 74.833 (16.58)
M19 7.8653 12.311 (0.97) 8.093 (1.26) 18.594 (0.72) 8.325 (1.23) 8.061 (1.22)
M20 4.1058 4.235 (0.44) 4.152 (0.44) 7.416 (0.45) 4.461 (0.42) 4.115 (0.43)

M1 0.0000 0.001 (0.00) 0.004 (0.01) 0.010 (0.01) 0.010 (0.01) 0.004 (0.00)
M2 0.2539 0.260 (0.05) 0.260 (0.05) 0.266 (0.04) 0.266 (0.04) 0.255 (0.05)
M3 0.8986 1.004 (0.17) 0.912 (0.15) 0.915 (0.14) 0.915 (0.14) 0.905 (0.15)
M4 2.4674 2.522 (0.14) 2.484 (0.14) 3.340 (0.15) 2.620 (0.18) 2.521 (0.15)
M5 0.3296 0.356 (0.06) 0.336 (0.05) 0.339 (0.05) 0.379 (0.07) 0.352 (0.06)
M6 0.5562 0.592 (0.07) 0.565 (0.06) 0.666 (0.05) 0.666 (0.05) 0.586 (0.06)
M7 0.2715 0.280 (0.04) 0.276 (0.04) 0.551 (0.05) 0.287 (0.03) 0.273 (0.04)
M8 0.3342 0.341 (0.05) 0.341 (0.05) 0.336 (0.05) 0.358 (0.04) 0.335 (0.05)
M9 12.4415 23.477 (2.05) 20.881 (3.64) 21.104 (1.89) 31.948 (19.84) 12.539 (1.57)

M10 2.6473 2.775 (0.17) 2.669 (0.16) 3.108 (0.18) 2.800 (0.28) 2.964 (0.28)
M11 6.3810 10.020 (0.94) 6.454 (0.87) 9.398 (0.92) 7.191 (0.88) 6.430 (0.82)
M12 2.4791 2.700 (0.18) 2.496 (0.16) 3.072 (0.18) 2.580 (0.18) 2.569 (0.18)
M13 0.0704 0.085 (0.01) 0.076 (0.01) 0.071 (0.01) 0.071 (0.01) 0.072 (0.01)
M14 3.1635 3.300 (0.33) 3.205 (0.31) 11.378 (0.73) 3.576 (0.30) 3.167 (0.31)
M15 0.8038 0.816 (0.04) 0.812 (0.04) 1.625 (0.09) 0.879 (0.22) 0.926 (0.28)
M16 0.4712 0.476 (0.03) 0.477 (0.03) 0.738 (0.04) 0.683 (0.11) 0.775 (0.15)
M17 20.2938 37.587 (2.73) 22.014 (3.55) 52.149 (2.25) 31.485 (15.35) 20.508 (3.34)
M18 74.4378 74.868 (13.64) 83.389 (16.68) 133.737 (9.48) 108.546 (36.67) 74.639 (13.26)
M19 8.3636 11.984 (0.98) 8.832 (1.14) 17.672 (0.81) 12.430 (5.23) 8.494 (1.08)
M20 7.4037 7.701 (0.73) 7.467 (0.70) 11.502 (0.68) 8.450 (0.82) 7.415 (0.71)
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Manteiga, W. (2012). Exploring wind direction and SO2 concentration
by circular–linear density estimation. Stoch. Environ. Res. Risk Assess.

http://www.ams.org/mathscinet-getitem?mr=0808153
http://www.ams.org/mathscinet-getitem?mr=0971170
http://www.ams.org/mathscinet-getitem?mr=2249858
http://www.ams.org/mathscinet-getitem?mr=0513936
http://www.ams.org/mathscinet-getitem?mr=2668700
http://www.ams.org/mathscinet-getitem?mr=1379053
http://www.ams.org/mathscinet-getitem?mr=2571770
http://www.ams.org/mathscinet-getitem?mr=2772221
http://www.ams.org/mathscinet-getitem?mr=2067006
http://www.ams.org/mathscinet-getitem?mr=2370817
http://www.ams.org/mathscinet-getitem?mr=2741206
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