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Abstract: For estimating a lower bounded parametric function in the
framework of Marchand and Strawderman [6], we provide through a unified
approach a class of Bayesian confidence intervals with credibility 1−α and
frequentist coverage probability bounded below by 1−α

1+α
. In cases where the

underlying pivotal distribution is symmetric, the findings represent exten-
sions with respect to the specification of the credible set achieved through
the choice of a spending function, and include Marchand and Strawder-
man’s HPD procedure result. For non-symmetric cases, the determination
of a such a class of Bayesian credible sets fills a gap in the literature and
includes an “equal-tails” modification of the HPD procedure. Several ex-
amples are presented demonstrating wide applicability.
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1. Introduction

Bayesian credible sets are not designed (e.g., Robert [7]) and are far from guar-
anteed (Fraser [3]) to have satisfactory, exact or precise frequentist coverage
but it is nevertheless of interest to investigate (Wasserman [9]) to what extent
there is convergence or divergence in various situations. A historically resonat-
ing example where there is exact convergence arises for estimating the mean of
a N(µ, σ2) distribution, and where the use of the non-informative prior leads to
a (1−α)×100% HPD credible set (i.e. the z or t confidence interval) with exact
frequentist coverage. This, however, is very much the exception. Even, in the
simple presence of a lower bound on the mean parameter µ (e.g., Mandelkern
[4]), with the prior taken to be the truncation of the non-informative prior onto
the restricted parameter space, the frequentist coverage of the (1 − α) × 100%
HPD credible set fluctuates from its credibility (or nominal coverage) 1 − α.
However, the HPD procedure does not fare poorly as a frequentist procedure
for large 1−α as witnessed by the lower bound 1−α

1+α
on its frequentist coverage

due to Roe and Woodroofe ([8], known σ2) and Zhang and Woodroofe ([10],
unknown σ2), as well as the better lower bound 1− 3α

2 (for α < 1/3, known σ2)
obtained by Marchand et al. [6].

In a generalization of the above, Marchand and Strawderman ([6]) introduced
a unified framework for which the (1 − α) × 100% HPD credible set of a lower
bounded parametric function has frequentist coverage greater than 1−α

1+α
for all

values lying in the restricted parameter space. This framework, as well as its
various applications, will be revisited in Sections 2 and 5, but let us consider for
sake of illustration the basic examples: (i) X ∼ f0(x− θ) with known f0, θ ≥ 0;
and (ii) X ∼ Gamma(α, θ) with θ ≥ 1 with known α. For location family den-
sities as in (i) with f0 unimodal and symmetric, Marchand and Strawderman’s
results apply for the flat prior on the truncated parameter space [0,∞) and the
corresponding (1 − α) × 100% HPD credible set, with the guarantee that the
actual frequentist coverage is bounded below by 1−α

1+α
for all θ ≥ 0. However,

if f0 is not symmetric, such a result does not hold in general ([6], Example 1).
The same is true for a vast number of so-called non-symmetric situations arising
in Marchand and Strawderman’s framework, including the Gamma models in
(ii) where the prior is given by 1

θ
I[1,∞)(θ), that is the truncation on [1,∞) of

the usual non-informative prior 1
θ
I(0,∞)(θ). It is true that the bound holds for

certain specific classes of f0’s ([6], Theorem 2, a), and it is also the case that
numerical evaluations of a theoretical and unexplicit lower bound for frequen-
tist coverage provides further evidence for satisfactory coverage for a specific
Gamma model in (ii) ([6], Example 2). Nevertheless, a clear analytical result
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or lower bound for frequentist coverage in such non-symmetric cases is lacking,
and it our motivation here to try to fill this gap.

For a large variety of situations with a lower bounded parametric constraint,
we obtain here a class of Bayesian (1 − α) × 100% credible sets which pro-
vide minimal frequentist probability coverage exceeding 1−α

1+α
. These Bayesian

confidence intervals include an “equal-tails” modification, or approximation, of
the HPD credible set, which also coincides with the latter in situations of un-
derlying symmetry. Our findings are achieved by introducing and exploiting a
spending function interpretation of Bayesian confidence intervals, and lead to a
class of procedures (rather than a single one) which share the above lower bound
for frequentist coverage. The rest of the paper is organized as follows. Prelimi-
nary results, definitions and model assumptions, including those related to the
spending function associated with a Bayesian credible interval, are presented in
Section 2, while Bayesian credible interval representations are outlined in Sec-
tion 3. The main findings concerning frequentist coverage appear in Section 4
and various applications are presented and commented on in Section 5.

2. Definitions and preliminary results

2.1. Assumptions, invariance, pivot, prior, and implications

As in basic examples (i) and (ii), we consider model densities f(x; θ); x ∈ X ,
θ ∈ Θ ⊂ R

p; for an observable X , and we are concerned with interval estimation
of a parametric function τ(θ) (Rp → R) with the additional constraint τ(θ) ≥ 0.

We assume there exists a pivot of the form T (X, θ) = a1(X)−τ(θ)
a2(X) ; a2(·) > 0;

such that −T (X, θ) has cdf G and Lebesgue density g0. This pivot assumption
means that the frequentist or conditional distribution of T (X, θ), or −T (X, θ),
given θ does not depend on θ, θ ∈ R

p. We can thus set G as the common cdf
of −T (X, θ). In the basic location-family example (i) with X ∼ f0(x − θ)(=
g0(θ − x), say), the above is illustrated by the fact that −T (X, θ) = θ−X is a
pivot with cdf G and pdf g0. In the Gamma example, or more generally scale
families with X ∼ 1

θ
f1(

x
θ
), θ ≥ 1, a corresponding T (X, θ) pivot is obtained

with a1(X) = log(X), a2(X) = 1, τ(θ) = log(θ).
We further assume that the unrestricted decision problem is invariant under

a group G of transformations and that the pivot satisfies the invariance require-
ment T (x, θ) = T (gx, ḡθ), for all x ∈ X , θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ, with X , Θ, G, and
Ḡ being isomorphic. For instance, in basic example (i), the invariance is achieved
with the additive group G on R

p and since T (x, θ) = x− θ = (x+ g)− (θ+ g) =
T (gx, ḡθ) for all group elements g.

Collecting the above assumptions, we have for further reference.

Assumption 1. We have a model density f(x; θ); x ∈ X , θ ∈ Θ; for an observ-
able X, with both X and θ being vectors, and we seek to estimate a parametric
function τ(θ) (Rp → R) with the constraint τ(θ) ≥ 0. We assume there exists

a pivot T (X, θ) = a1(X)−τ(θ)
a2(X) ; a2(·) > 0; such that −T (X, θ) has cdf G and
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Lebesgue density g0. We further assume that the decision problem is invariant
under a group G of transformations and that the pivot satisfies the invariance
requirement T (x, θ) = T (gx, ḡθ), for all x ∈ X , θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ, with X ,
Θ, G, and Ḡ being isomorphic.

We consider prior measures πH and π0, where π0(θ) = πH(θ)I[0,∞)(τ(θ)), and
πH is the Haar right invariant measure which satisfies the property πH(A ḡ) =
πH(A) for every measurable subset A of Θ, and for every g ∈ G. The right
Haar measure πH exists and is unique up to a multiplicative constant for locally
compact groups such as location, scale, and location-scale. For the basic location
and the Gamma model (or scale model) examples of the Introduction, right Haar
invariant measures are given by πH(θ) = 1 and πH(θ) = 1

θ
respectively. For a

sample from a location-scale family with Xi ∼ind. 1
θ2
f2(

xi−θ1
θ2

) , i = 1, . . . , n,

the common non-informative prior π(θ) = 1
θ2

is right Haar invariant. We refer
to [1] and [2] for detailed treatments of invariance and Haar invariant measures.

A key feature relative to Assumption 1 and the choice of the right Haar
invariant measure is that the frequentist distribution of T (X, θ); which is free
of θ by virtue of the pivot assumption for T (X, θ); coincides with the posterior
distribution of T (x, θ) under πH for any given x, i.e.,

T (x, θ)|x =d T (X, θ)|θ , for all x, θ. (1)

We will continue, after the next Lemma, by illustrating the above and drawing
implications of immediate interest. For sake of completeness, we reproduce here
a key lemma from [6] justifying (1) and we refer to their work for further details.

Lemma 1 ([6], Corollary 1). Suppose X , Θ, G, and Ḡ are all isomorphic,
and that T (X, θ) is a function for which T (x, θ) = T (gx, ḡθ), for all x ∈ X ,
θ ∈ Θ, g ∈ G, ḡ ∈ Ḡ. Then condition (1) holds, that is Pθ[T (X, θ) ∈ B] =
P πH(θ|x)[T (X, θ) ∈ B] for each measurable set B.

Now, for the basic unrestricted location family example with the flat prior
πH(θ) = 1, which is Haar right invariant, observe that the posterior density of
θ is given by

πH(θ|x) =
f0(x− θ)∫

θ
f0(x− θ) dθ

= f0(x− θ) = g0(θ − x) ,

so that the posterior density of −T (x, θ) = θ − x associated with πH is given
by g0 as well. This correspondence for basic example (i) illustrates property (1)
which is, of course, more general under Assumption 1.

In general, observe that the posterior cdf under πH for τ(θ) is available from

the fact that −T (X, θ) = τ(θ)−a1(X)
a2(X) ∼ G yielding

PπH
(τ(θ) ≤ y|x) = G(

y − a1(x)

a2(x)
) . (2)

Now, under the truncation π0 of πH , the above correspondence between the
frequentist and posterior distributions of −T (X, θ) does not hold, and the pos-
terior cdf under π0 of τ(θ) differs. However, we can still express the posterior
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distribution of τ(θ) under π0 in terms of πH and G. Indeed, with π0(θ) =

πH(θ) I[0,∞)(τ(θ)) and
τ(θ)−a1(x)

a2(x)
|x ∼ G under πH , we have for a measurable set

A ⊂ Θ0 = {θ ∈ Θ : τ(θ) ≥ 0}, and for any x:

Pπ0(θ ∈ A|x) =

∫
A

π0(θ|x) dθ

=

∫
A
π0(θ) f(x|θ) dθ∫

Θ0
π0(θ) f(x|θ) dθ

=

∫
A
πH(θ) f(x|θ) dθ∫

Θ0
πH(θ) f(x|θ) dθ

=
PπH

(θ ∈ A|x)

PπH
(θ ∈ Θ0|x)

.

In terms of the posterior survival function of τ(θ) under π0, the above yields
along with (2), for y ≥ 0,

Pπ0(τ(θ) ≥ y|x) =
Pπ(τ(θ) ≥ y|x)

Pπ(τ(θ) ≥ 0|x)
=

1−G(y−a1(x)
a2(x)

)

1−G(−a1(x)
a2(x)

)
. (3)

We will make use, in Section 3, of the above in setting and describing the
bounds of Bayesian credible sets for τ(θ) under π0.

2.2. The spending function associated with a Bayesian credible set

With the objective of constructing a (1−α)× 100% Bayesian credible set or re-
gion, the determination of a posterior distribution for τ(θ) supported on [0,∞)
leaves open many choices and various different approaches (e.g., [1], section
4.3.2). The HPD credible set is one such region chosen to minimize volume and
leading to intervals for unimodal posterior densities. In our set-up, (1−α)×100%
Bayesian credible intervals are, more generally, of the form [l(x), u(x)], x ∈ R,
where P (l(x) ≤ τ(θ) ≤ u(x)|x) = 1−α. An alternative (and equivalent) way to
set or view the bounds l(x) and u(x), for a given x, is to focus on the complemen-
tary set [0, l(x))∪ (u(x),∞) and to allocate (or “spend”) probabilities α−α(x)
and α(x) respectively on its two disjoint parts, with α(x) ∈ [0, α]. It is clear
(when the posterior density is absolutely continuous) that the choice α(x) leads
to a unique choice of [l(x), u(x)], and vice-versa. Since we are interested in the
frequentist properties of such Bayesian credible intervals, we will represent this
allocation as a spending function. Moreover, our findings guaranteeing minimal
frequentist coverage of at least 1−α

1+α
for a class of Bayesian credible sets will be

conveniently expressed as conditions on the corresponding spending function.

Definition 1. For a given prior π for θ and a credibility coefficient 1 − α, a
spending function α(·) : Rp → [0, α] is a function such that, for all x, Pπ(τ(θ) ≥
u(x)|x) = α(x), Pπ(τ(θ) ≤ l(x)|x) = α−α(x), and [l(x), u(x)] is a (1−α)×100%
Bayesian credible interval for τ(θ).
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For example, a lower-tailed credible interval for a given x corresponds to the
selection α(x) = α, an upper tailed credible interval corresponds to α(x) = 0,
and an equal tailed (based on the posterior π) corresponds to α(x) = α/2.

2.3. Checklist

To facilitate the further presentation of the results, here is a list of definitions
and notations used.

Checklist

• 1 − α: credibility or posterior coverage or nominal frequentist coverage
(α ∈ (0, 1))

• T (X, θ) = a1(X)−τ(θ)
a2(X) : pivot

• πH : unrestricted prior density chosen as the right Haar invariant measure
• π0: prior density given by the truncation of πH onto the restricted param-
eter space

• G: cumulative distribution function (cdf) of −T (X, θ)|x and of −T (X, θ)|θ
under πH (which coincide for all x, θ)

• g0 = G′: probability density function (pdf) of −T (X, θ)
• G−1: inverse cdf
• α(·): spending function
• Iπ0,α(·)(X) = [l(X), u(X)]: Bayesian credible set of credibility 1− α asso-
ciated with the prior π0 and the spending function α(·)

• C(θ): the frequentist coverage at θ of the confidence interval Iπ0,α(·)(X)
given by C(θ) = Pθ(Iπ0,α(·)(X) ∋ τ(θ))

• y0 = −G−1( α
1+α

)

• t(x) = a1(x)
a2(x)

• ∆0(x) = (1− α)(1 −G(−t(x)))

3. Bayesian credible intervals: Representations and properties

In this section, we expand upon two different, yet equivalent, and instructive
approaches to constructing a credible set for τ(θ) associated with prior π0. These
are: (A) the spending function approach, and (B) the approach based on the
quantiles of the pivot.

(A) (Spending function approach)
As seen above, a (1−α)× 100% credible interval for τ(θ) associated with
prior π0 can be generated by a spending function α(·) : Rp → [0, α], such
that Iπ0,α(·)(X) = [l(X), u(X)] with Pπ0(τ(θ) ≥ u(x)|x) = α(x). More
precisely, we have the following under Assumption 1.

Lemma 2. For a given spending function α(·), the bounds of Iπ0,α(·)(x)
are given by: lα(·)(x) = a1(x) + a2(x)G

−1{G(−t(x)) + (α − α(x))(1 −
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G(−t(x))} and uα(·)(x) = a1(x)+a2(x)G
−1{1−α(x)(1−G(−t(x))}, with

t(x) = a1(x)
a2(x)

.

Proof. With the survival function Pπ0(τ(θ) ≥ y|x) =
1−G(

y−a1(x)

a2(x)
)

1−G(−t(x)) , as

given in (3), we obtain for β ∈ (0, 1), y > 0, Pπ0(τ(θ) ≥ y|x) = β ⇔
y = a1(x)+a2(x)G

−1{1−β+βG(−t(x))}, and the result follows with the
choices β = α(x) and β = 1−(α−α(x)) for u(x) and l(x) respectively.

Example 1. The HPD procedures studied by [6] for symmetric about 0
and unimodal g0 are given by the bounds l(x) = max{0, a1(x) + a2(x)

G−1(1−(1−α)G(t(x))
2 )} and u(x) = a1(x) + a2(x)min{G−1(1 − αG(t(x))),

G−1(1+(1−α)G(t(x))
2 )} . With these given bounds, one may verify directly

from (3) that the corresponding spending function is equal to

min{α,
α

2
+

G(−t(x)

2(1−G(−t(x)))
}, (4)

with α(x) = α if and only if t(x) ≤ −G−1( α
1+α

) = G−1( 1
1+α

) since g0
is symmetric about 0. Conversely, applying Lemma 2 with the spending
function choice α(·) in (4) leads to the HPD procedure above (using the
equality of G(·) and 1−G(−·) for symmetric about 0 g0’s).

(B) (Approach based on quantiles of the pivot)
Alternatively, a second approach for cases where l(x) > 0 begins with
choices γ1 and γ2, which will be made for each x, such that G(γ2) −
G(−γ1) = ∆, for a given ∆ ∈ (0, 1). Since, for any x, we require 1 − α =
Pπ0(l(x) ≤ τ(θ) ≤ u(x)|x), we must have by (3):

G(
u(x) − a1(x)

a2(x)
)−G(

l(x) − a1(x)

a2(x)
) = (1− α)(1 −G(−t(x))),

and this can be achieved with choices −γ1 and γ2 above for ∆ = ∆0(x) =

(1 − α)(1 − G(−t(x))) yielding u(x)−a1(x)
a2(x)

= γ2(∆0(x)) and l(x)−a1(x)
a2(x)

=

−γ1(∆0(x)), in other words

l(x) = a1(x)−a2(x) γ1(∆0(x)), and u(x) = a1(x)+a2(x) γ2(∆0(x)) , (5)

whenever l(x) > 0. In view of the lower bound restriction on τ(θ) (i.e.,
τ(θ) ≥ 0), and the corresponding requirement that l(X) ≥ 0, observe that
not all choices of −γ1 (and hence of γ2) are feasible in (5) and that we
must have

−γ1(∆0(x)) ≥ −
a1(x)

a2(x)
.

Example 2. With the above construction in (5), an equal-tails choice of −γ1
and γ2, that is −γ1(∆) = G−1(1−∆

2 ) and γ2(∆) = G−1(1+∆
2 ), leads to the

credible interval bounds

l(x) = a1(x)+a2(x)G
−1(

1−∆0(x)

2
), and u(x) = a1(x)+a2(x)G

−1(
1 + ∆0(x)

2
),

(6)
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when l(x) > 0. These above bounds coincide with those of the HPD procedure
(when l(x) > 0) in the symmetric case of Example 1, as well as for the spending
function given in (4) which can be verified directly from (3).
NOTE: We wish to emphasize that the terminology “equal tails” does not mean
α(x) = α/2 (i.e., equal tails under the posterior distribution), but rather refers
to the choice of (equal tails) quantiles −γ1 and γ2 under G.

The next section’s lower bound of 1−α
1+α

on frequentist coverage applies to a
class of Bayesian credible intervals. This class will include an equal-tails credible
interval Iπ0,αeqt(·) which relates to both approaches presented in this section. On
one hand, it borrows the bounds (and hence the spending function) of the HPD
procedure for symmetric about 0 unimodal densities and, on the other hand, it
is defined through the above equal-tailed choice (whenever l(x) > 0).

Definition 2. In the context of Assumption 1, the G-equal-tails credible inter-

val Iπ0,αeqt(·)(X) has bounds l(x) = max{0, a1(x) + a2(x)G
−1(1−(1−α)G(t(x))

2 )}

and u(x) = a1(x)+a2(x)min{G−1(1−αG(t(x))), G−1(1+(1−α)G(t(x))
2 )} . Equiv-

alently, Iπ0,αeqt(·)(X) is given by the spending function

αeqt(x) = min{α,
α

2
+

G(−t(x)

2(1−G(−t(x)))
}. (7)

4. Frequentist coverage properties

We study here the frequentist coverage properties, under Assumption 1, of a
class of Bayesian credible intervals which includes the equal-tails credible inter-
val Iπ0,αeqt(·)(X). This procedure, as well as Example 1’s HPD procedure for
symmetric g0, produces estimates of the form [0, u(x)] if and only if t(x) ≤ y0,

where y0 = −G−1( α
1+α

) (and t(x) = a1(x)
a2(x)

as above). We thus focus on a class

of credible intervals with the same behaviour. Said otherwise in terms of the
spending function, we impose the choice α(x) = α whenever t(x) ≤ y0. We
hence seek conditions on α(x), for those x’s such that t(x) ≥ y0, for which
minimal frequentist coverage is bounded below by 1−α

1+α
.

Theorem 1. Under the conditions of Theorem 1 in [6], that is Assumption
1, consider Bayesian credible intervals Iπ0,α(·) associated with prior π0 and a
spending function α(·) such that α(x) = α for all x with t(x) ≤ y0. For the
frequentist coverage C(θ) = Pθ(Iπ0,α(·)(X) ∋ τ(θ)), we then have

(a) C(θ) = 1
1+α

(> 1−α
1+α

) for all θ such that τ(θ) = 0;

(b) Moreover, we have C(θ) > 1−α
1+α

for all θ such that τ(θ) ≥ 0 as long as
α(x) satisfies, for all x,

(1− α)G(−t(x)) + α2

1+α

1−G(−t(x))
≤ α(x) ≤ (

α

1 + α
)

1

1−G(−t(x))
. (8)
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Proof. (a) First, observe that for θ such that τ(θ) = 0, the pivot assump-

tion for −T (X, θ) = τ(θ)−a1(X)
a2(X) implies that −t(X) = −a1(X)

a2(X) has cdf G

whenever τ(θ) = 0. Hence, for θ such that τ(θ) = 0, we have

Pθ(Iπ0,α(·)(X) ∋ 0) = Pθ(α(X) = α) = Pθ(t(X) ≤ y0)

= 1−G(−y0) =
1

1 + α
.

(b) With the case τ(θ) = 0 addressed in part (a), we consider τ(θ) > 0.
First, observe that the confidence interval I1(X) = [l1(X), u1(X)] =
max{0, a1(X)+a2(X)G−1( α

1+α
)}, a1(X)+a2(X)G−1( 1

1+α
)} has the same

frequentist coverage as I∗1 (X) = [a1(X) + a2(X)G−1( α
1+α

)}, a1(X) +

a2(X)G−1( 1
1+α

)}] equal to Pθ(G
−1( α

1+α
) ≤ τ(θ)−a1(X)

a2(X) ≤ G−1( 1
1+α

)) =

G(G−1( 1
1+α

))−G(G−1( α
1+α

)) = 1−α
1+α

. Now, we show that the given condi-
tions on α(·) imply that Iπ0,α(·) ⊇ I1; with the inclusion being strict with
probability greater than 0 for all θ; which will lead to the result directly.
Indeed, we have by the upper bound in (8) and Lemma 2: uα(·)(x) ≥
a1(x) + a2(x)G

−1(1 − α
1+α

) = u1(x). Similarly, from the lower bound

(8) and Lemma 2 we obtain l(x) ≤ a1(x) + a2(x)G
−1{G(−t(x) + α(1 −

G(−t(x)))− α2

1+α
−(1−α)G(−t(x))} = a1(x)+a2(x)G

−1( α
1+α

) = l1(x).

Corollary 1. Under Assumption 1, the G-equal-tails credible interval Iπ0,α(·),

given in Definition 7, has minimum frequentist coverage C(θ) greater than 1−α
1+α

for all θ such that τ(θ) ≥ 0.

Proof. It suffices to show directly that (8) is satisfied for the selection α(x) =
αeqt(x) given in (4) for x such that t(x) ≥ y0. Indeed, we have for such x’s:

αeqt(x)(1 −G(−t(x))) =
α

2
+

1− α

2
G(−t(x)) ≤

α

2
+

1− α

2
G(−y0) =

α

1 + α
,

and

αeqt(x)(1 −G(−t(x))) − (1 − α)G(−t(x)) −
α2

1 + α

=
α(1 − α)

2(1 + α)
−

1− α

2
G(−t(x))

≥
α(1 − α)

2(1 + α)
−

1− α

2
G(−y0)) = 0.

Remark 1. In cases where the underlying pivotal distribution is non-symmetric,
Corollary 1 is a new result, generalizing Theorem 1 of [6], and is widely appli-
cable given the lack of assumptions on g0. Also, the bounds of the equal-tails
procedure are easier to evaluate than that of the HPD credible interval. Addi-
tionally, the findings of Theorem 1 go beyond a single procedure, even in the
symmetric case, by providing a class of credible sets, as specified by a spending
function, with frequentist coverage bounded below by 1−α

1+α
.
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We do not have a recommended prescription for the choice of the spend-
ing function among those specified by Theorem 1 as guaranteeing minimal
frequentist coverage of at least 1−α

1+α
. The G−equal-tails choice is simple, in-

tuitively appealing and matches the HPD procedure under symmetry of the
pivotal density, while upper tailed and lower tailed choices are not allowed for
x such that t(x) ≥ y0. The particular choices of spending function in (8): (i)

α1(x) =
(1−α)G(−t(x))+ α2

1+α

1−G(−t(x)) and (ii) α2(x) = ( α
1+α

) 1
1−G(−t(x)) , are other inter-

esting choices that push Iπ0,α(·) as much as allowed by (8) towards one sided
credible intervals with upper bound equal to +∞ or lower bound equal to 0,
respectively.

5. Examples

At the risk of some repetition with the examples provided by [6], it is still
beneficial here to present various applications with accompanying commentary.
Assumption 1 is satisfied in all of the examples below with the underlying family
of distributions being the location family, the scale family, or the location-scale
family. In all of the examples, Theorem 1 and Corollary 1 provide conditions
on the spending function α(·) so that the Bayesian intervals Iπ0,α(·)(X) have

minimal frequentist coverage greater than 1−α
1+α

for all θ such that τ(θ) ≥ 0.
These intervals include the equal-tails procedure given in Definition 2 and can
be evaluated in general using the expression given in Lemma 2.

(A) (a single location parameter) X ∼ f0(x− θ); τ(θ) = θ ≥ 0; T (X, θ) =
X − θ; πH(θ) = IR(θ), π0(θ) = I[0,∞)(θ). In such cases, all Bayes credi-
ble sets Iπ0,α(·) (with credibility 1 − α), with the spending function α(·)
satisfying the conditions of Theorem 1 and the bounds in (8), have neces-
sarily minimum frequentist coverage bounded below by 1−α

1+α
. Through the

transformations X → X − a and X → −X + a, one can reduce all lower
bounded restrictions θ ≥ a and upper bounded restrictions θ ≤ a to the
case θ ≥ 0 considered here and we will not make further explicit mention
of such transformations below.

Remark 2. Results such as those in (A) are applicable as well for several
observations by conditioning on a maximal invariant statistic V . Such a maximal
invariant statistic V is an ancillary statistic and specifically an invariant function
such that every other invariant statistic is a function of V . Indeed, suppose that
X = (X1, . . . , Xn) ∼ f0(x1−θ, . . . , xn−θ), where f0 is known and where theXi’s
are not necessarily independently distributed. Here, V = (X2−X1, . . . , Xn−X1)
is a maximal invariant statistic. One can then proceed, for a given value v of
V , with an interval estimate Iπ0,α(·,v)(X1, v) as given in Lemma 2 with G ≡ Gv

representing the cdf of the pivot X1 − θ conditional on V = v, and α(x, v)
satisfying the conditions of Theorem 1 and (8). This is feasible by the pivot and
ancillarity property with the joint distribution of (X1−θ, V ) independent of θ. In
such a case, Theorem 1 applies to the conditional frequentist coverage C(θ, v) =
Pθ(Iπ0,α(·,v)(X, v) ∋ τ(θ)|V = v) yielding the inequality C(θ, v) > 1−α

1+α
for all
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θ ≥ 0. Since this is true for all v, the unconditional frequentist coverage C(θ)
of the Bayes credible set Iπ0,α(·,·)(X,V ) will also exceed 1−α

1+α
for all θ ≥ 0 (see

[6] for more details related to a multivariate Student model). In the same vein,
all the scenarios below (B to G), although presented for simplicity in the single
observation case, are also applicable in presence of a sample by conditioning on
a maximal invariant statistic.

(B) (a lower bounded scale parameter) X ∼ 1
θ
f1(

x
θ
) I(0,∞)(x) with θ ≥ a;

τ(θ) = log(θ) − log(a) ≥ 0; T (X, θ) = log(X) − log(a) − τ(θ); πH(θ) =
1
θ
I(0,∞)(θ), π0(θ) =

1
θ
I[0,∞)(τ(θ)). Here, an interval estimate of τ(θ) pro-

vides an interval estimate of θ. Important models include Gamma,Weibull,
Fisher, Inverse Gaussian, among others. A familiar set-up where the re-
sults can be applied arises in random effects analysis of variance models
with a Fisher distributed pivot (see [11], for details). As in (A), for a
sample X = (X1, . . . , Xn) ∼ 1

θn f1(
x1

θ
, . . . , xn

θ
)
∏

i I(0,∞)(xi), Theorem 1
and Corollary 1 are applicable by conditioning on the maximal invariant
statistic V = (X1

Xn
, . . . , Xn−1

Xn
).

Remark 3. Further applications consist of power parameter families where
we have a scale family for an observable Y and the model of interest are the
distributions for X = eY . As as simple illustration, consider the Pareto model
for X with densities γ

xγ+1 1(1,∞)(x) and the parametric constraint γ ∈ (1, γ0). In
such cases, we have that γ0 log(X) ∼ Exp(θ) with θ = γ0

γ
≥ 1 and the results in

(B) apply.

(C) (location-scale families) (X1, X2) ∼
1
θ2
2
f2(

x1−θ1
θ2

, x2

θ2
) I(0,∞)(x2); τ(θ) =

θ1 ≥ 0; T (X, θ) = X1−θ1
X2

; πH(θ) = 1
θ2
I(0,∞)(θ2)I(−∞,∞)(θ1), π0(θ) =

1
θ2
I(0,∞)(θ2)I[0,∞)(θ1). This set-up encompasses, but is not limited to, the

basic normal case: Y1, . . . Yn ∼ind. N(µ, σ2) with σ2 unknown and µ ≥ 0,
and by taking X1 and X2 respectively as the sample mean and standard
deviation of the Yi’s. More generally, the results apply for linear models
Y = Zβ + ǫ, ǫ ∼ N(0, σ2In) where the objective is to estimate a lower-

bounded linear combination τ(θ) = l′β, by setting X1 = β̂(Z ′Z)−1Z ′Y ,
X2

2 = ‖Y − Zβ‖2, θ1 = β, θ2 = σ. Here, the pivot T (X, θ) has a Student
distribution. Alternatively, if the objective is to estimate a lower bounded
scale θ2, one can proceed as in (B).

(D) (linear combination of several location parameters) X = (X1, . . . ,
Xp) ∼ f0(x1 − θ1, . . . , xp − θp); τ(θ) =

∑p
i=1 aiθi; πH(θ) = IRp(θ), π0(θ) =

I[0,∞)(τ(θ)), T (X, θ) = (
∑p

i=1 aiXi) − τ(θ). This set-up includes, for in-
stance, estimating a difference θ1 − θ2 with an order constraint θ1 ≥ θ2.

(E) (multivariate location-scale families with homogeneous scale)
In (D), we can incorporate a common scale and apply the results of
this paper for estimating a lower bounded linear combination with X =
(X1, . . . , Xp, Xp+1) ∼ f0(

x1−θ1
θp+1

, . . . ,
xp−θp
θp+1

,
xp+1

θp+1
), τ(θ) =

∑p
i=1 aiθi,

T (X, θ) =
(
∑p

i=1 aiXi)−τ(θ)

Xp+1
, and π0(θ) =

1
θp+1

1(0,∞)(θp+1)1[0,∞)(τ(θ)).
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(F) (several scale parameters) (X1, . . . , Xp) ∼ (Πp
i=1

1
θi
) f1(

x1

θ1
, . . . ,

xp

θp
);

τ(θ)=
∑p

i=1 ai log(θi), πH(θ)=
∏

i
1
θi
I(0,∞)(θi), π0(θ)= πH(θ) I[0,∞)(τ(θ)).

This can consist, for instance with p = 2, a1 = 1, a2 = −1, of estimating
a lower bounded ratio θ2

θ1
≥ 1 of two scale parameters.

(G) (quantiles in location-scale families) Xi ∼
ind. N(µ, σ), i = 1, . . . n,

θ = (µ, σ), τ(θ) = µ+ησ ≥ 0, πH(θ) = 1
θ2
I(0,∞)(θ2)I(−∞,∞)(θ1), π0(µ, σ) =

1
σ
I(0,∞)(σ)I[0,∞)(µ+ ησ). T (X, θ) = X̄−µ−ησ

S
. Here, T (X, θ) is distributed

as non-central Student. The applications are not restricted to normality
and are applicable in general for location-scale families as in (C).

6. Concluding remarks

For a large variety of situations with a lower bounded parametric constraint,
we have obtained a class of Bayesian (1 − α) × 100% credible sets which pro-
vide minimal frequentist probability coverage exceeding 1−α

1+α
. These Bayesian

confidence intervals include an equal tailed modification or approximation of
the HPD credible set which coincides with the latter when the distribution of
the underlying pivot is symmetric. In non-symmetric cases not covered by [6],
our findings provide instances of Bayesian credible sets with given minimal fre-
quentist coverage and hence fill a gap in the literature. In comparison to earlier
results for normal models, as well as the symmetric models considered by [6],
the findings here relative to the HPD are not new, but those related to other
Bayesian credible sets are an addition. In seeking to evaluate the frequentist per-
formance of Bayesian confidence intervals, our results illustrate that the choice
of bounds or spending function matters, so that there does not necessarily exist
a single universal assessment of their frequentist performance even in a given
specific problem.
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