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smooth distributions
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Abstract: We develop a clustering framework for observations from a
population with a smooth probability distribution function and derive its
asymptotic properties. A clustering criterion based on a linear combina-
tion of order statistics is proposed. The asymptotic behavior of the point
at which the observations are split into two clusters is examined. The re-
sults obtained can then be utilized to construct an interval estimate of the
point which splits the data and develop tests for bimodality and presence
of clusters.
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1. Introduction

In this article, we develop a general framework for univariate clustering based on
the ideas in Hartigan (1978) for the case of observations from a population with
smooth and invertible distribution function. Contrary to Hartigan’s approach,
which was based on a quadratic function of the observed data, our clustering
criterion function possesses the advantage of being a linear combination of order
statistics—in fact, it is a combination of trimmed sums and sample quantiles.

It is common in certain applications to assume that the data are taken from a
population with smooth distribution function. One important example is mod-
eling in continuous-time mathematical finance, wherein observations are typi-
cally increments from a continuous-time stochastic process, and therefore, have
smooth distributions because of presence of Itô integral components. Keeping
this in mind, we deviate from the Hartigan’s framework and concentrate our
attention on a function of the derivative of his split function. This approach
permits us to obviate the existence of a finite fourth moment assumption im-
posed by Hartigan in the asymptotic investigation of his criterion function—a
second moment assumption at the cost of an additional smoothness condition on
our criterion function suffices. As an added benefit, this modification of Harti-
gan’s approach provides us with the genuine possibility of extending our existing
theory to more interesting scenarios involving dependent observations.

The notion of a “cluster” has several reasonable mathematical definitions. As
in Hartigan (1978), we adopt a definition based on determining a point which
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splits the data into clusters via maximizing the between cluster sums of squares.
The main results in this article involve the asymptotic behavior of this partic-
ular point. The theoretical properties of k-means clustering procedure for the
univariate and the multivariate cases have been extensively investigated. Pol-
lard (1981), Pollard (1982) proved strong consistency and asymptotic normality
results in the univariate case. Serinko and Babu (1992) proved some weak limit
theorems under non-regular conditions for the univariate case. With the inten-
tion of having a more robust procedure for clustering, Garćıa-Escudero, Gordal-
iza and Matrán (1999), and Cuesta-Albertos, Gordaliza and Matrán (1997) pro-
pose the trimmed k-means clustering and provide a central limit theorem for
the multivariate case. Throughout the article we are primarily concerned with
the case k = 2 on the real line. For extension of the split point approach to the
case k > 2 we refer readers to the discussion in Hartigan (1978).

On a more practical note, our results enable us to construct an interval esti-
mate of the point at which the data splits; this naturally allows us to develop
simple tests for bimodality and presence (or absence) of clusters. Hypothesis
tests for the presence (or absence) of clusters in a dataset has attracted con-
siderable interest over the years. One of the earliest work in this area was by
Engleman and Hartigan (1969); they developed a univariate method to test the
null hypothesis of normally distributed cluster against the alternative of a two-
component mixture of normals. Wolfe (1970) extended the work of Engleman
and Hartigan (1969) to the multivariate normal setup using MLE techniques
and applied his method to Fisher’s Iris data. Motivated by applications in mar-
ket segmentation, Arnold (1979) proposed a test for clusters based on examining
the within-groups scatter matrix. A dataset generated from a large-scale survey
of lifestyle statements was considered and the objective was to capture het-
erogeneity in the distribution of the responses to an appropriate questionnaire.
Based on statistics concerning mean distances, minimum-within clusters sums
and the resulting F-statistics, Bock (1985) presented several significance tests
for clusters. In fact, he generalized some of the results in Hartigan (1978) to
the multivariate setup. In similar spirit, we note that in our method, the point
which splits the data is invariant to scaling and translation of the data. This
permits us to examine the behavior of the point under the null hypothesis of
“no cluster” and thereby construct a suitable test.

In Hartigan and Hartigan (1985), a popular test for unimodality, referred to
as Dip test, was proposed and was applied to a dataset pertaining to the qual-
ity of 63 statistics departments. Indeed, their test did not possess good power
against the specific bimodal alternative. More recently, Holzmann and Vollmer
(2008) proposed a parametric test for bimodality based on the likelihood princi-
ple by using two-component mixtures. Their method was applied to investigate
the modal structure of the cross-sectional distribution of per-capita log GDP
across EU regions. Using the Kolmogorov-Smirnov and the Anderson-Darling
statistics, Schwab, Podsiadlowski and Rappaport (2012), performed a test for
bimodality in the distribution of neutron-star masses. They compared the empir-
ical cumulative distribution function to the distribution functions of a unimodal
normal and a bimodal two-component normal mixture. Our results enable us to



1080 K. Bharath et al.

construct, on identical lines as the test for clusters, a test for bimodality. The
test statistic, again, is based on the point at which the data is split—the split
point is the same for all unimodal distributions with finite second moment and
can hence be used as the test statistic.

In section 2 we introduce the relevant constructs of our clustering framework:
a theoretical criterion function and its zero followed by the empirical criterion
function and its “zero”. These quantities are of chief interest in this article.
In section 3, we prove limit theorems for the empirical zero by examining the
asymptotic behavior of the empirical criterion function and offer numerical ver-
ification of the limit results via simulation. Furthermore, we demonstrate the
utility of our results on the popular faithful dataset pertaining to eruption
times for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.
Finally, in section 4 we highlight the salient features of our approach, note its
shortcomings and comment on possible remedies and extensions.

2. Clustering criterion

In this section, based on Hartigan’s approach, we propose an alternative clus-
tering criterion and examine its properties. We first state our assumptions for
the rest of the paper.

2.1. Assumptions

Let W1,W2, . . . ,Wn be i.i.d. random variables with cumulative distribution
function F . We denote by Q the quantile function associated with F . We make
the following assumptions:

A1. F is invertible for 0 < p < 1 and absolutely continuous with respect to
Lebesgue measure with density f .

A2. E(W1) = 0 and E(W 2
1 ) = 1.

A3. Q is twice continuously differentiable at any 0 < p < 1.

Note that owing to assumption A1, the quantile function Q is the regular inverse
of F and not the generalized inverse.

2.2. Empirical cross-over function and empirical split point

Let us first consider the split function that was introduced in Hartigan (1978)
for partitioning a sample into two groups. The split function of Q at p ∈ (0, 1)
is defined as

B(Q, p) = p(Ql(p))
2 + (1− p)(Qu(p))

2 −
(
∫ 1

0

Q(q)dq

)2

, (2.1)

where

Ql(p) =
1

p

∫

q<p

Q(q)dq =
1

p
E[W1IW1<Q(p)]
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and

Qu(p) =
1

1− p

∫

q≥p

Q(q)dq =
1

1− p
E[W1IW1≥Q(p)]

represent the conditional expectations of the random variables Wi up to and
from Q(p). Here IA denotes the indicator function of a set A. In our case since
EW1 = 0 the last term in the definition of the split function is 0. A value p0
which maximizes the split function is called the split point. It is seen that if Q
is the regular inverse, as in our case, p0 satisfies the equation

(Qu(p0)−Ql(p0))[Qu(p0) +Ql(p0)− 2Q(p0)] = 0, (2.2)

where the LHS is the derivative of B(Q, p). Evidently, (Qu(p)−Ql(p)) > 0 for
all 0 < p < 1 and we hence, for our purposes, consider the cross-over function,

G(p) = Ql(p) +Qu(p)− 2Q(p), (2.3)

for examining clustering properties. From a statistical perspective, we would
like to work with the empirical version of (2.3). We deviate here from Harti-
gan’s framework and consider the empirical cross-over function(ECF), defined
in Bharath, Pozdnyakov and Dey (2012) as

Gn(p) =
1

k

k
∑

j=1

W(j) −W(k) +
1

n− k

n
∑

j=k+1

W(j) −W(k+1), (2.4)

for k−1
n ≤ p < k

n and

Gn(p) =
1

n

n
∑

j=1

W(j) −W(n), (2.5)

for n−1
n ≤ p < 1, where 1 ≤ k ≤ n− 1.

The random quantity Gn, represents the empirical version of (2.3) and de-
termines the split point for the given data. Gn is an L-statistic with irregular
weights and hence not amenable for direct application of existing asymptotic
results for L-statistics. Observe that

Gn

(

0

n

)

= W(1) −W(1) +
1

n− 1

n
∑

j=2

W(j) −W(2) ≥ 0,

Gn

(

n− 1

n

)

=
1

n

n
∑

j=1

W(j) −W(n) ≤ 0.

This simple observation captures the typical behavior of the empirical cross-
over function. It starts positive and then at some point crosses the zero line.
The index k at which this change occurs determines the datumW(k) at which the
split occurs. In Bharath, Pozdnyakov and Dey (2012), it is shown that Gn(p) is a
consistent estimator of G(p) for each 0 < p < 1 and also that

√
n(Gn(p)−G(p))

is asymptotically normal.
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We now introduce the empirical split point in range [a, b], 0 < a < b < 1, the
empirical counterpart of the p0 as

pn = pn(a, b) :=























0, if Gn

(

k−1
n

)

< 0 ∀k such that na < k < nb+ 1;

1, if Gn

(

k−1
n

)

> 0 ∀k such that na < k < nb+ 1;

1
n

[

max{na < k < nb : Gn

(

k−1
n

)

Gn

(

k
n

)

≤ 0}
]

, otherwise.

The quantity pn is our estimator of p0, the true split point (when it is in the
range). If pn is equal to 0 or 1, we declare that the split point is outside the
range. The asymptotic behavior of pn can be used for the construction of test
for the presence of clusters in the observations, or for the estimation of the true
split point.

Remark 1. Let us provide some intuition behind Hartigan’s split function. The
k-means clustering method for the case k = 2 requires us to minimize (with
respect to k∗) the following within group sum of squares:

W ∗ =

k∗

∑

i=1

(

W(i) −
1

k∗

k∗

∑

i=1

W(i)

)2

+

n
∑

i=k∗+1

(

W(i) −
1

n− k∗

n
∑

i=k∗+1

W(i)

)2

=

n
∑

i=1

W 2
(i) −

1

k∗

(

k∗

∑

i=1

W(i)

)2

− 1

n− k∗

(

n
∑

i=k∗+1

W(i)

)2

.

That is, minimizing W ∗ is equivalent to maximizing

1

k∗

(

k∗

∑

i=1

W(i)

)2

+
1

n− k∗

(

n
∑

i=k∗+1

W(i)

)2

or

k∗

n

(

1

k∗

k∗

∑

i=1

W(i)

)2

+
n− k∗

n

(

1

n− k∗

n
∑

i=k∗+1

W(i)

)2

,

which is basically an empirical version of Hartigan’s split function (2.1) and
k∗/n will be another version of empirical split point.

In this paper we proceed in parallel with Hartigan (1978) (his Theorem 1
and Theorem 2) and prove consistency and asymptotic normality of pn under a
uniqueness assumption. The theoretical conditions that guarantee the unique-
ness of the split point is an open question. It is easy to see that for a unimodal
symmetric distribution with a finite second moment, the split point is 1/2, and
for all unimodal symmetric light-tailed distributions that we checked the split
point was unique. However, Hartigan (1978) gives an example of a unimodal
symmetric heavy-tailed distribution for which every point in (0, 1) is a split
point. For a bimodal distribution the split point p0 is typically unique and
Q(p0) lies between the cluster means.
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The presented results can be employed for testing “no-clusters” hypothesis,
testing bimodality, and estimation of the split point. The extension of this tech-
nique to the case of k clusters is discussed in Hartigan (1978). In our case, instead
of one cross-over function one needs to introduce k− 1 functions; the split point
in this case will be a (k− 1)-dimensional vector. To find this split point we then
need to solve a system of k − 1 equations. For instance, for partition of data
into three groups we need to introduce two cross-over functions

G1n

[

k1−1

n
,
k2−1

n

]

=
1

k1

k1
∑

i=1

W(i) −W(k1) +
1

k2 − k1

k2
∑

i=k1+1

W(i) −W(k1+1),

G2n

[

k1−1

n
,
k2−1

n

]

=
1

k2−k1

k2
∑

i=k1+1

W(i) −W(k2) +
1

n−k2

n
∑

i=k2+1

W(i) −W(k2+1),

and, respectively, one needs to solve (in an appropriate sense) the following
system of equations:

G1n

[

k1 − 1

n
,
k2 − 1

n

]

= 0,

G2n

[

k1 − 1

n
,
k2 − 1

n

]

= 0.

We do not address the general k > 2 cluster situation in this paper.
Finally, as stated in the Introduction, let us remark on the main technical

difference between Hartigan’s assumptions and ours. Since we deal here with the
derivative of the split function, we need a stronger smoothness condition (the
second derivative of G instead of the first one). In return, we work with trimmed
means and a weakermoment condition suffices (the finite second moment instead
of the fourth one as in Hartigan (1978)).

Remark 2. Notice that if for constants α > 0 and β and i = 1, . . . , n,

Zi = αWi + β,

and we define Gz
n to be the ECF based on Zi, then,

Gz
n

(

k − 1

n

)

=
1

k

k
∑

j=1

Z(j) − Z(k) +
1

n− k

n
∑

j=k+1

Z(j) − Z(k+1)

= α





1

k

k
∑

j=1

W(j) −W(k) +
1

n− k

n
∑

j=k+1

W(j) −W(k+1)





= αGn

(

k − 1

n

)

,

and therefore, Gz
n and Gn cross-over 0 at the same point. Thus assumption A2

is not restrictive since pn is invariant to scaling and translation of the data; as it
should be, since in a clustering problem scale and location changes of the data
should not affect the clustering mechanism. We can hence quite safely assume
that we are dealing with random variables with mean 0 and variance 1.
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3. Main results

Let us start with the functional limit theorem for Un(p) =
√
n(Gn(p) − G(p))

proved in Bharath, Pozdnyakov and Dey (2012).

Theorem 1. Define

θp =
1

p
W1IW1<Q(p) −

1

p
Q(p)IW1<Q(p)

+
1

1− p
W1IW1≥Q(p) −

1

1− p
Q(p)IW1≥Q(p)

+
2IW1<Q(p)

f(Q(p))
.

Under assumptions A1-A3,
Un(p) ⇒ U(p),

in the Skorohod space D[a, b], 0 < a < b < 1 equipped with the J1 topology,
where U(p) is a Gaussian process with mean 0 and covariance function given by

C(p, q) = Cov(U(p), U(q)) = Cov(θp, θq). (3.1)

The next lemma states that the Gaussian process U(p) allows a continuous
modification. This fact will be employed, for example, to justify the usage of
the mapping theorem (for instance, Billingsley (1968) and Pollard (1984)).

Lemma 1. Under assumptions A1-A3, the centered Gaussian process U(p), a ≤
p ≤ b with covariance function in (3.1) is continuous.

Proof. First note that on the interval [a, b] the functions (of p) 1/p, 1/(1 − p),
Q(p), 1/f(Q(p)) = Q′(p), E[W1IW1<Q(p)] and E[W 2

1 IW1<Q(p)] are continuously
differentiable. Second, the functions max(p, q) and min(p, q) are (globally) Lip-
schitz continuous on [a, b] × [a, b]. Therefore, the covariance function C(p, q) is
Lipschitz continuous on [a, b]× [a, b]; i.e., there is a constant K such that for all
p, q, p′ and q′ from [a, b]

|C(p, q)− C(p′, q′)| ≤ K(|p− p′|+ |q − q′|).

Therefore,

E[U(p)− U(q)]2 = C(p, p) + C(q, q)− 2C(p, q)

≤ |C(p, q)− C(p, p)|+ |C(p, q)− C(p, p)|
≤ 2K|p− q|.

By Theorem 1.4 from Adler (1990) we get that U(p) is continuous.

This immediately leads us to the following important consequence.

Corollary 1. Under assumptions A1 −A3, as n → ∞,

sup
a≤p≤b

|Gn(p)−G(p)| P→ 0.



Clustering criterion 1085

Proof. Since the functional supp∈[a,b] |x(p)| is continuous on C[a, b] equipped
with the uniform metric, and the process U(p) is continuous (that is, U(p) ∈
C[a, b] with probability 1), by the mapping theorem (Pollard (1984), p. 70) we
have

sup
a≤p≤b

√
n |Gn(p)−G(p)| ⇒ sup

a≤p≤b
|U(p)|.

Therefore,

sup
a≤p≤b

|Gn(p)−G(p)| = 1√
n

sup
a≤p≤b

√
n |Gn(p)−G(p)| P→ 0.

The empirical cross-over function is a step-function. The next lemma tells us
that the jump at any p ∈ (0, 1) is op(1/

√
n).

Lemma 2. Under assumptions A1 − A3, for 0 < p < 1 and k−1
n ≤ p < k

n , as
n → ∞,

∣

∣

∣

∣

Gn

(

k − 1

n

)

−Gn

(

k − 2

n

)
∣

∣

∣

∣

= op

(

1√
n

)

.

Proof.

∣

∣

∣
Gn

(

k − 1

n

)

−Gn

(

k − 2

n

)

∣

∣

∣
=
∣

∣

∣

1

k

k
∑

i=1

W(i) −W(k) +
1

n− k

n
∑

k+1

W(i) −W(k+1)

− 1

k − 1

k−1
∑

i=1

W(i) +W(k−1) −
1

n− k + 1

n
∑

i=k

W(i) +W(k)

∣

∣

∣
.

Re-arranging terms, the RHS can written as

∣

∣

∣
−

k−1
∑

i=1

W(i)

k(k − 1)
+

n
∑

i=k+1

W(i)

(n− k)(n− k + 1)
+W(k)

(

n+ 1

k(n− k + 1)

)

+ (W(k−1) −W(k+1))
∣

∣

∣
.

Observe that, by the law of large numbers for trimmed sums (see Stigler (1973)),

1

(k − 1)

∣

∣

∣

k−1
∑

i=1

W(i)

∣

∣

∣

P→ η,

where η is a constant and hence, as n → ∞,

1

k(k − 1)

∣

∣

∣

k−1
∑

i=1

W(i)

∣

∣

∣
= Op

(

1

n

)

and similarly,

1

(n− k)(n− k + 1)

∣

∣

∣

∣

∣

n
∑

i=k+1

W(i)

∣

∣

∣

∣

∣

= Op

(

1

n

)

.
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Moreover, since W(k)
P→ Q(p), for k−1

n ≤ p < k
n , we have that

(n+ 1)

k(n− k + 1)
|W(k)| = Op

(

1

n

)

.

Suppose Mn = sup1≤k≤n(W(k) −W(k−1)), then from Devroye (1981), we have
that

Mn = Op

(

logn

n

)

,

and therefore

(W(k−1) −W(k+1)) = Op

(

logn

n

)

.

It is hence the case that the RHS is op
(

1√
n

)

. This concludes the proof.

Now, we are ready to prove consistency of pn. As in Hartigan (1978) (Theo-
rem 1) we require a uniqueness condition.

Theorem 2. Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solu-
tion, p0. Then for any 0 < a < p0 < b < 1

pn
P→ p0,

as n → ∞.

Proof. Note that by Cauchy-Schwarz inequality we have

[EW1IW1≥Q(p)]
2 ≤ E[W 2

1 IW1≥Q(p)]P [W1 ≥ Q(p)].

Since the second moment ofW1 is finite, we obtain that B(Q, 0+) = B(Q, 1−) =
0. That is, a nonnegative continuously differentiable split function B(Q, p) has
a unique maximum at p0, and, as a result, G(p) does change sign at p0. Choose
a, b such that 0 < a < p0 < b < 1. Because G is continuous on [a, b] we get that
G(p) > 0 for a ≤ p < p0 and G(p) < 0 for b ≥ p > p0. Moreover, for any δ > 0
there exists an ǫ > 0 and 0 < δ′ < δ such that

G(p) > ǫ for a ≤ p < p0 − δ′,

and
G(p) < −ǫ for b ≥ p > p0 + δ′.

By Corollary 1, as n → ∞

P

(

sup
a≤p≤b

|Gn(p)−G(p)| < ǫ

2

)

→ 1,

and therefore,

P

(

inf
a≤p<p0−δ′

Gn(p) >
ǫ

2
and sup

b≥p>p0+δ′
Gn(p) < − ǫ

2

)

→ 1.
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Using the result from Lemma 2, we obtain

P (pn ∈ [p0 − δ′, p0 + δ′]) → 1.

Note that since

P (pn ∈ [p0 − δ, p0 + δ]) ≥ P (pn ∈ [p0 − δ′, p0 + δ′]),

we finally have

P (pn ∈ [p0 − δ, p0 + δ]) → 1.

Now, under an additional assumption that G′(p0) < 0 (cf. with Theorem 2
from Hartigan (1978)) we will establish asymptotic normality of pn. This result
will be proved in three steps. First, we will establish that pn is in the Op(1/

√
n)

neighborhood of p0. Then we will show that in this neighborhood Gn(p) can
be adequately approximated by a line with slope G′(p0). Finally, an approach
based on Bahadur’s general method (see p. 95, Serfling (1980)) will be employed
to get the CLT for pn.

Lemma 3. Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,
p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1, then for any δ > 0
there exist N and C > 0 such that for all n ≥ N

P

(

|pn − p0| ≤
C√
n

)

> 1− δ.

Proof. Fix arbitrary δ > 0. Using Theorem 1 and mapping theorem we have

sup
a≤p≤b

√
n |Gn(p)−G(p)| ⇒ sup

a≤p≤b
|U(p)|.

Therefore, for any δ > 0 there exist N ′ and C′ > 0 such that for all n > N ′ we
have

P

(

sup
a≤p≤b

|Gn(p)−G(p)| < C′
√
n

)

> 1− δ. (3.2)

By the same argument as in Theorem 2, p0 is a unique split point, 0 < p0 < 1,
G(p) > 0 for p < p0 and G(p) < 0 for p > p0. Assumption G′(p0) < 0 tells us
that in a neighborhood of p0 the function G(p) behaves like a line. Taking this
into account we get that there exist N > N ′ and C > 0 such that for all n > N

G(p) >
2C′
√
n

for a ≤ p < p0 −
C√
n
,

and

G(p) < −2C′
√
n

for b ≥ p > p0 +
C√
n
.
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Then by (3.2) we find that for all n > N

P

(

inf
a≤p<p0−C/

√
n
Gn(p) >

C′
√
n

and sup
b≥p>p0+C/

√
n

Gn(p) < − C′
√
n

)

> 1− δ.

Therefore,

P

(

|pn − p0| ≤
C√
n

)

> 1− δ.

Lemma 4. Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,
p0, and G′(p0) < 0. Then for any C > 0

sup
p∈In

√
n |Gn(p)−Gn(p0)−G′(p0)(p− p0)| P→ 0, as n → ∞,

where In = [p0 − C√
n
, p0 +

C√
n
], and

G
′

(p0) =
1

p0
[Q(p0)−Ql(p0)]−

1

1− p0
[Q(p0)−Qu(p0)]− 2Q′(p0). (3.3)

Proof. Since the second derivative of G(p) is uniformly continuous on p0 −
C/

√
n ≤ p ≤ p0 − C/

√
n we have

G(p)−G(p0) = (p− p0)G
′(p) +O((p− p0)

2)

= (p− p0)G
′(p) +O(1/n)

It is hence sufficient to show that

sup
p∈In

√
n |[Gn(p)−G(p)] − [Gn(p0)−G(p0)]| P→ 0,

or that for any ǫ > 0 and δ > 0 there exists N such that for all n > N

P

(

sup
p∈In

√
n |[Gn(p)−G(p)]− [Gn(p0)−G(p0)]| > ǫ

)

< δ.

Take arbitrary δ′ > 0. The functional supp∈[p0−δ′,p0+δ′] |x(p)−x(p0)| is continu-
ous on C[a, b] equipped with the uniform metric. Therefore, Theorem 1 and the
mapping theorem informs us that

sup
p0−δ′≤p≤p0+δ′

√
n |[Gn(p)−G(p)] − [Gn(p0)−G(p0)]|

⇒ sup
p0−δ′≤p≤p0+δ′

|U(p)− U(p0)| .

Since for all sufficiently large n we have

sup
p∈In

√
n |[Gn(p)−G(p)] − [Gn(p0)−G(p0)]|

≤ sup
p0−δ′≤p≤p0+δ′

√
n |[Gn(p)−G(p)]− [Gn(p0)−G(p0)]| a.s.,
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it is indeed the case that

P
(

sup
p∈In

√
n |[Gn(p)−G(p)]− [Gn(p0)−G(p0)]| > ǫ

)

≤ P
(

sup
p0−δ′≤p≤p0+δ′

√
n |[Gn(p)−G(p)]− [Gn(p0)−G(p0)]| > ǫ

)

.

As a consequence,

lim sup
n

P
(

sup
p∈In

√
n |[Gn(p)−G(p)]− [Gn(p0)−G(p0)]| > ǫ

)

≤P
(

sup
p0−δ′≤p≤p0+δ′

|U(p)− U(p0)| > ǫ
)

.

Because the Gaussian process U(p) is continuous, supp0−δ′≤p≤p0+δ′ |U(p) −
U(p0)| → 0 with probability 1 as δ′ → 0, and, therefore, it converges to 0
in probability. Choosing δ′ small enough we can make

lim sup
n

P
(

sup
p∈In

√
n |[Gn(p)−G(p)] − [Gn(p0)−G(p0)]| > ǫ

)

< δ.

Lemma 5. Assume A1−A3 hold. Suppose that G(p) = 0 has a unique solution,
p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1 then as n → ∞

pn = p0 −
Gn(p0)

G′(p0)
+ op(n

−1/2),

where G′(p) is as defined in (3.3).

Proof. Consider the line Gn(p0)+G′(p0)(p−p0). Let random variable p∗ be the
solution of

Gn(p0) +G′(p0)(p− p0) = 0,

that is,

p∗ = p0 −
Gn(p0)

G′(p0)
. (3.4)

From Theorem 1, we know that

Gn(p0)−G(p0) = Gn(p0) = Op(n
−1/2)

and we hence have that p∗ = p0 + Op(n
−1/2). By Lemma 3 pn is also in a

Op(1/
√
n) neighborhood of p0. By Lemma 4 in Op(1/

√
n) neighborhood of p0

uniformly
Gn(p) = Gn(p0) +G′(p0)(p− p0) + op(n

−1/2),

by which we can claim that pn = p∗ + op(n
−1/2). The result follows by substi-

tuting for p∗ in (3.4).

This immediately give us the final result.
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Theorem 3. Assume A1 − A3 hold. Suppose that G(p) = 0 has a unique so-
lution, p0, and G′(p0) < 0. If a, b are such that 0 < a < p0 < b < 1 then as
n → ∞,

√
n(pn − p0) ⇒ N

(

0,
V ar(θp0

)

G′2(p0)

)

,

where θp0
is as defined in Theorem 1.

3.1. Numerical verification

In this section we provide verification of our results regarding the asymptotic
normality of pn along the lines of Table 1 in Hartigan (1978). Since our split
point p0 coincides with Hartigan’s split point (maximum of B(Q, p)), it is to
be expected that our empirical split point pn behaves asymptotically similar to
his. Hartigan verifies his results when observations are obtained from a N(0, 1)
population—a population with smooth distribution function; we do the same
and note that the asymptotic mean and the variance of pn agree with his.

It is a simple exercise to ascertain that, for the normal case, the split point
p0 is 0.5, G′2(0.5) ≈ 3.34 and V ar(θ0.5) = 2π − 4 ≈ 2.283. Consequently, we
observe that the asymptotic variance of

√
n(pn−0.5) is approximately 0.69. The

table below corroborates our theoretical results.

Table 1

Simulated mean and variance of
√

n(pn − 0.5) for different sample sizes for the normal

case. 1000 simulations were performed for each sample size

Sample sizes n = 100 n = 300 n = 500 n = 1000
Simulated Mean 0.506 0.504 0.501 0.502

Simulated Variance 0.614 0.646 0.700 0.691

3.2. An example: Confidence interval estimation

We demonstrate here how Theorem 3 can be employed to construct approximate
confidence intervals (CI) for a theoretical split point. We consider a classical ex-
ample of bimodal distribution—the variable “eruption” in the data set faithful
available in R package MASS. The data set contains 272 measurements of the
duration of eruption for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA.

First, we plot the ECF for the variable “eruption”; the plot is given in Fig-
ure 1. We can see that Gn(·) is generally a decreasing function that crosses zero
line once, far away from 0 and 1: the end-points of its domain which is the (0, 1)
interval. Thus our point estimate of theoretical split point is pn = 97/272 ≈ .357.

Now, to construct an approximate CI for p0 we need to estimate V ar(θp0
)/

G′2(p0). A straightforward (but rather tedious) calculation shows that this quan-
tity explicitly depends on the following terms: p0, Q(p0), f(Q(p0)), Ql(p0),
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Fig 1. Empirical Cross-over Function Gn(p) for data set faithful.

Qu(p0),

Bl(p0) =
1

p0
E[W 2

1 IW1<Q(p0)], and Bu(p0) =
1

1− p0
E[W 2

1 IW1≥Q(p0)].

We estimate these terms as follows:

p0 ≈ pn, Q(p0) ≈ W(98),

Ql(p0) ≈
1

98

98
∑

i=1

W(i), Qu(p0) ≈
1

272− 98

272
∑

i=99

W(i),

Bl(p0) ≈
1

98

98
∑

i=1

W 2
(i), Bu(p0) ≈

1

272− 98

272
∑

i=99

W 2
(i).

Finally, f(Q(p0)) is estimated by f̂(W(98)), where f̂ comes from the standard
R function density. As a result, for instance, the 95% confidence interval for a
theoretical split point p0 is given by

.357± .057.

4. Discussion

Admittedly, the definition of the empirical split point “in the range [a, b]” might
appear a bit artificial. But we still believe the results can be useful in practical
applications. For instance, as with the faithful data, if we know that the
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distribution at hand is bimodal, and we want to estimate a split point between
two clusters, it is safe to assume that the split point is in the range between two
modes.

It turns out that the behavior of the cross-over function when it is close to
0 or 1 can be rather complicated; under some natural assumptions, it can be
shown that lim supp↑1 G(p) < 0. For example, it is true if W1 is bounded from
above. When Q(1−) = +∞, the following condition

lim sup
x→∞

E(W1IW1≥x)

xP (W1 ≥ x)
< 2 (4.1)

is sufficient for lim supp↑1 G(p) < 0. It is easy to see that, for instance, distri-

butions with regularly varying tails and EW 2+ǫ
1 < ∞, for ǫ > 0, satisfy (4.1).

However, it is possible to construct a distribution with a “bumpy” tail for which
lim supp↑1 G(p) ≥ 0. Consequently, it is suggestive that any extension of defini-
tion of pn to the entire interval (0, 1) will require some additional assumptions.
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