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1. Introduction

Recently, several authors have been developing theory for linear and nonlin-
ear parametric models for regression analysis of count time series; see for in-
stance Fokianos et al. [9], Neumann [19], Woodard et al. [27], Fokianos and
Tjøstheim [11], Doukhan et al. [2] and Fokianos and Tjøstheim [11]. The main
issues addressed in those contributions, are the study of conditions under which
the observed process is ergodic and the associated problem of maximum likeli-
hood estimation. However, a missing part of those studies is the advancement
of goodness-of-fit methods for assessing the adequacy of the proposed models.
In this contribution, we fill this void, by developing methodology for testing
goodness of fit of parametric linear and nonlinear count time series models. The
problem of goodness of fit has been studied recently by Neumann [19] but the
proposed test statistic cannot be employed to detect local alternatives, in gen-
eral. In our approach, this obstacle is removed because the proposed test statis-
tics are based on a smooth approximation of the empirical process of Pearson
residuals; see McCullagh and Nelder [18].

In what follows, we assume the following setup. Consider a stationary vector
valued process {(Yt, λt)}, for t ∈ N0 = N ∪ {0}. In general, the process {Yt}
denotes the response count process which is assumed to follow the Poisson dis-
tribution conditionally on the past and {λt} denotes the mean process. In other
words, if we denote by Ft = σ(λ0, Ys : s ≤ t), we assume that the model is given
by

Yt | Ft−1 ∼ Poisson(λt), λt = f(λt−1, Yt−1), (1.1)

for some function f : [0,∞)× N0 → [λmin,∞) with λmin > 0.
To understand the usefulness of model (1.1), suppose that a count time series

is available and its autocorrelation function assumes relatively high values for
large lags. Then, it is natural to model such data by including a large number
of lagged regressor variables into a model. However such an approach can be
avoided when employing model (1.1); it simply provides a parsimonious way to
model this type of data; see Fokianos et al. [9] and Fokianos [8] for more. Such
a modeling approach follows the spirit of GARCH models (see Bollerslev [1])
whereby the volatility is regressed to its past and lagged regressors. For the case
of Poisson distribution, the mean equals the variance and therefore model (1.1)
can be viewed as an integer GARCH type of model.
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A special case of model (1.1) corresponds to the linear specification which
is given by λt = θ1 + θ2λt−1 + θ3Yt−1 and θ1, θ2, θ3 are nonnegative constants.
Below we will assume that θ1 > 0 and θ2 + θ3 < 1. Rydberg and Shephard
[22] proposed such a model for describing the number of trades on the New
York Stock Exchange in certain time intervals and called it BIN(1,1) model.
Stationarity and mixing properties for this model were derived by Streett [23],
Ferland et al. [7] who referred to it as INGARCH(1,1) model, Fokianos et al. [9]
and Neumann [19].

Recalling now the general model (1.1) we note that although estimation and
inference is quite well developed, goodness-of-fit methods have not attracted a
lot of attention. In this article we will be considering testing goodness of fit of
model (1.1) by focusing on the following two forms of hypotheses. The first one
refers to the simple hypothesis

H
(s)
0 : f = f0 against H

(s)
1 : f 6= f0, (1.2)

for some completely specified function f0 which satisfies the contractivity as-
sumption (C) below. However, in applications, the most interesting testing prob-
lem is given by the following composite hypotheses

H0 : f ∈ {fθ : θ ∈ Θ} against H1 : f 6∈ {fθ : θ ∈ Θ}, (1.3)

where Θ ⊆ R
d and the function fθ is known up to a parameter θ and satisfies

assumption (C) as before.
Those testing problems have been considered in a recent contribution by

Neumann [19]. Assuming that observations Y0, . . . , Yn are available he proposed
a simple procedure for testing (1.2) based on the following test statistic

Tn,0 =
1√
n

n∑

t=1

{
(Yt − f0(λ̃t−1, Yt−1))

2 − Yt

}
.

Here, the initial value λ̃0 is arbitrarily chosen and, for t = 1, . . . , n, λ̃t =
f0(λ̃t−1, Yt−1). It is clear that the test statistic Tn,0 is based on the observa-
tion that the conditional variance of Yt is equal to its mean because of the
Poisson assumption. In the case of the composite hypotheses (1.3), the above
test statistic is suitably modified as

Tn =
1√
n

n∑

t=1

{
(Yt − fθ̂n(λ̂t−1, Yt−1))

2 − Yt

}
,

where θ̂n is any
√
n-consistent estimator of θ, λ̂0 is chosen arbitrarily, and, as

before, λ̂t = fθ̂n(λ̂t−1, Yt−1), for t = 1, . . . , n. It turns out that both of these
test statistics are asymptotically normally distributed and offer easily imple-
mented specification tests for the intensity function f . However, they are not
suitable to detect local alternatives in general. In this contribution, we pro-
pose alternative test statistics which are able to detect local alternatives with
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a nontrivial asymptotic power. Those test statistics are formed on the basis
of Pearson residuals and a smoothing function as we show in Section 2. We
point out that the smoothing function does not need to depend upon any band-
width; in other words the proposed test statistic’s power is not influenced by
any suboptimal choice of a bandwidth. In developing these test statistics, we
extend the theory of specification testing to integer valued time series. In fact,
we study the asymptotic distribution of the proposed test statistics and we show
that they are consistent against Pitman’s local alternatives, at the usual rate
of n−1/2, where n denotes the sample size. In some sense, we extend the the-
ory of nonparametric goodness-of-fit tests for autoregressions (Koul and Stute
[16]) to include count time series with a feedback mechanism; recall (1.1). A
major difference though between our work and that of Koul and Stute [16] is
that the proposed methodology includes models with feedback mechanism and
employs the empirical process of the Pearson residuals. Based on our approach,
we relax the number of moments needed to obtain asymptotic results following
a recent approach outlined by Escanciano [5]. Furthermore, the goodness-of-fit
test statistics are easily computed and they are valid under a fairly large class of
problems. To implement the proposed test statistic for testing (1.3) we take full
advantage of model (1.1) by resorting to parametric bootstrap; see Section 3.
It is shown theoretically that the bootstrap replications successfully approach
the null distribution of the test statistic. Furthermore, Section 4 demonstrates
empirically that this method works well in practice and does not depend on the
particular smoothing function heavily.

2. Main results

Throughout this paper we assume that observations Y0, . . . , Yn are available and
they are generated from a stationary process ((Yt, λt))t∈T which satisfies model
(1.1). For simplicity of presentation we chose the index set T = Z which is
always possible due to Kolmogorov’s theorem. Before stating our main results,
we will impose the following contractive condition on the function f :

Assumption (C).

|f(λ, y) − f(λ′, y′)| ≤ κ1|λ− λ′| + κ2|y − y′| ∀λ, λ′ ≥ 0, ∀y, y′ ∈ N0,

where κ1 and κ2 are nonnegative constants with κ := κ1 + κ2 < 1 .

Assumption (C) is actually a key condition for proving absolute regularity of
the count process (Yt)t∈Z and ergodicity of the bivariate process ((Yt, λt))t∈Z; see
Neumann [19, Thm 3.1] but also Fokianos et al. [9, Prop. 2.3], where regularity of
a perturbed version of model (1.1) is shown. The generality of assumption (C) is
chosen to include also nonlinear specifications such as the exponential AR model
proposed in Doukhan et al. [2] and Fokianos and Tjøstheim [11]. In this case, the
intensity function is specified as f(λ, y) = θ1+(θ2+θ3 exp(−θ4λ

2))λ+θ5y, where
θ1, . . . , θ5 > 0. It follows from ∂f(λ, y)/∂y = θ5 and |∂f(λ, y)/∂λ| = |θ2+θ3(1−
2θ4λ

2) exp(−θ4λ
2)| ≤ θ2+θ3, that assumption (C) is fulfilled if θ2+θ3+θ5 < 1.
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Adapting an idea from Gao et al. [14], Fokianos and Tjøstheim [11] proposed
another nonlinear model given by the specification f(λ, y) = θ1(1+λ)−θ2+θ3λ+
θ4y, θ1, . . . , θ4 > 0. Then ∂f(λ, y)/∂y = θ4 and ∂f(λ, y)/∂λ = θ3 − θ1θ2/(1 +
λ)1+θ2 which implies that assumption (C) is fulfilled if max{θ3, θ1θ2−θ3}+θ4 <
1. Several other non-linear specifications for count time series models can be
studied within the framework of assumption (C), including smooth transition
autoregressions; for an excellent survey see Teräsvirta et al. [25].

2.1. Test statistic for testing simple hypothesis

It is instructive first to consider the case of the simple hypothesis (1.2). We first
give some notation. Denote by It = (λt, Yt)

′ the vector consisting of the values

of the intensity process and the count process at time t. Recall that if λ̃0 is some
initial value, then the process λ̃t = f0(λ̃t−1, Yt−1) can be recursively defined. Put

Ĩt = (λ̃t, Yt)
′. Define further ξt = (Yt − λt)/

√
λt and ξ̃t = (Yt − λ̃t)/

√
λ̃t. Note

that the sequence {ξt} consists of the so called Pearson residuals; see Kedem and
Fokianos [15, Ch.1]. For an x ∈ Π := [0,∞)2, define the following supremum
type of test statistic by

Gn(x) =
1√
n

n∑

t=1

ξ̃t w(x − Ĩt−1),

Tn = supx∈Π |Gn(x)|,
(2.1)

where w(·) is some suitably defined weight function. In the applications, we
consider the weight function to be of the form w(x) = w(x1, x2) = K(x1)K(x2)
where K(·) is a univariate kernel and x = (x1, x2) ∈ Π. We employ the uniform,
Gaussian and the Epanechnikov kernels. For instance, when the uniform kernel
is employed, compute the test statistic (2.1), by using the weights

w(x−It−1) = K(x1−λt−1)K(x2−Yt−1) =
1

4
1(|x1−λt−1| ≤ 1)1(|x2−Yt−1| ≤ 1),

where 1(A) is the indicator function of a set A. Then, the test statistic (2.1)
becomes

Tn = sup
x∈Π

|Gn(x)|,

where

Gn(x1, x2) =
1

4
√
n

n∑

t=1

ξ̃t1(|x1 − λ̃t−1| ≤ 1)1(|x2 − Yt−1| ≤ 1),

Obvious formulas hold for the other kernel functions that we are using and for
the case of the composite hypotheses that we consider in Section 2.2; see equa-
tion (2.2). Then Assumption (A1)(ii) is trivially satisfied for the Epanechnikov
kernel. We include also in simulations test statistics formed after employing the
uniform and Gaussian kernel even though they do not satisfy (A1)(ii); see below.
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It is not clear whether there exists an optimal choice of the weight function w(·).
However, given the theory developed in this paper, we suggest users to employ
weight functions that satisfy the following assumption.

Assumption (A1).

(i) The true data generating process is given by (1.1) such that the contraction
assumption (C) is fulfilled.

(ii) The weight function w(·) is not identical to zero and has bounded support
contained in [−C,C]2, for some constant C, and satisfies |w(x)−w(y)| ≤
Lw max{|x1 − y1|, |x2 − y2|} for all x, y ∈ Π and some Lw < ∞.

Proposition 2.1. Suppose that H
(s)
0 is true and assumption (A1) is fulfilled.

(i) Let Gn,0(x) = n−1/2
∑n

t=1 ξtw(x − It−1). Then

sup
x∈Π

|Gn(x) − Gn,0(x)| = oP (1).

(ii) It holds that

Gn
d−→ G

where G = (G(x))x∈Π is a centered Gaussian process with covariance func-
tion K,

K(x, y) = E [w(x − I0) w(y − I0)] ,

and convergence holds true w.r.t. the supremum metric.

Corollary 2.1. Suppose that the assumptions of Proposition 2.1 are satisfied.
Then

Tn
d−→ sup

x∈Π
|G(x)|.

The distribution of supx∈Π |G(x)| is absolutely continuous with respect to the
Lebesgue measure and

sup
u∈R

∣∣∣∣P (Tn ≤ u) − P (sup
x∈Π

|G(x)| ≤ u)

∣∣∣∣ −→
n→∞

0.

2.2. Test statistic for testing composite hypotheses

By employing a similar notation as above, put Ît = (λ̂t, Yt)
′, where λ̂t =

fθ̂n(λ̂t−1, Yt−1) is the estimated unobserved process. Similar to the case of simple

hypothesis, we define the estimated Pearson residuals, by ξ̂t = (Yt − λ̂t)/

√
λ̂t.

It is obvious that test statistic (2.1) can be adapted for testing (1.3) as follows:

Ĝn(x) =
1√
n

n∑

t=1

ξ̂t w(x − Ît−1),

T̂n = supx∈Π |Ĝn(x)|.
(2.2)
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Note that the processes (λ̃t)t∈N0
and (λ̂t)t∈N0

are not stationary in general. It
can be shown by backward iterations that, for given (Yt)t∈Z and θ ∈ Θ, the sys-
tem of equations λt = fθ(λt−1, Yt−1) (t ∈ Z) has a unique stationary solution
(λt(θ))t∈Z, where λt(θ) = gθ(Yt−1, Yt−2, . . .) for some measurable function gθ;
see also the proof of Theorem 3.1 in Neumann [19]. In the technical part below,

we will use λt(θ̂n) as an approximation for λ̂t. Under H0, we have λt = λt(θ0),
where θ0 denotes the true parameter value. The assumptions below are essential
to study the asymptotic behavior of test statistic (2.2). These are mild assump-
tions and are satisfied for many useful models; see Fokianos and Tjøstheim [11]
and Doukhan et al. [2].

Assumption (A2).

(i) Assume that θ̂n is an estimator of θ ∈ Θ ⊆ R
d which satisfies

θ̂n − θ0 =
1

n

n∑

t=1

lt + oP (n
−1/2), (2.3)

where

– lt = h(Yt, Yt−1, . . .),

– E(lt | Ft−1) = 0 a.s.,

– E[‖lt‖2/λt] < ∞.

(ii) λt(θ) is a continuously differentiable function with respect to θ such that,

– E‖λ̇t(θ0)‖l1 < ∞, where λ̇t = ∂λt(θ)/∂θ = (∂λt(θ)/∂θ1, . . . , ∂λt(θ)/
∂θd).

– Eθ0

[
supθ : ‖θ−θ0‖≤δ ‖λ̇t(θ) − λ̇t(θ0)‖2

]
−→
δ→0

0.

Assumption (A3). We assume that there exist C < ∞, κ1, κ2 ≥ 0 with
κ := κ1 + κ2 < 1 such that

(i) |fθ′(λ, y) − fθ0(λ, y)| ≤ C ‖θ′ − θ0‖ (λ + y + 1) ∀λ, y
(ii) |fθ′(λ, y) − fθ′(λ̃, ỹ)| ≤ κ1|λ− λ̃| + κ2|y − ỹ| ∀λ, y, λ̃, ỹ.

hold for all θ′ ∈ Θ with ‖θ′ − θ0‖ ≤ δ, for some δ > 0.

Assumption (A3)(i) will be used when terms such as |fθ̂n(λt−1, Yt−1) −
fθ0(λt−1, Yt−1)| have to be estimated; e.g. for the derivation of (A-11) be-
low. It is obvious that this condition is satisfied for the linear specification,
fθ(λ, y) = θ1 + θ2λ+ θ3y. Furthermore, by considering ∂fθ(λ, y)/∂θi, it can be
easily seen that this condition is also fulfilled for the specifications fθ(λ, y) =
θ1+(θ2+θ3 exp(−θ4λ

2))λ+θ5y and fθ(λ, y) = θ1(1+λ)−θ2+θ3λ+θ4y mentioned
in the discussion right after Assumption (C).

Proposition 2.2. Suppose that H0 is true and assume further that (A1) to (A3)
are satisfied. Then we have the following:

(i) sup
x∈Π

|Ĝn(x)− Ĝn,0(x)| = oP (1),
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where Ĝn,0(x) = n−1/2
∑n

t=1

{
ξtw(x−It−1)−Eθ0 [λ̇1(θ0)w(x−I0)/

√
λ1(θ0)] lt

}
.

(ii) Ĝn
d−→ Ĝ,

where Ĝ = (Ĝ(x))x∈Π is a centered Gaussian process with covariance func-

tion K̂,

K̂(x, y) = Eθ0

[(
ξ1 w(x − I0) − Eθ0 [λ̇1(θ0) w(x − I0)/

√
λ1(θ0)] l1

)

×
(
ξ1 w(y − I0) − Eθ0 [λ̇1(θ0) w(y − I0)/

√
λ1(θ0)] l1

)]
.

Corollary 2.2. Suppose that the assumptions of Proposition 2.2 are satisfied.
Then

T̂n
d−→ sup

x∈Π
|Ĝ(x)|.

If, additionally, there exists an x ∈ Π with var(Ĝ(x)) > 0, then the distribution

of supx∈Π |Ĝ(x)| is absolutely continuous with respect to the Lebesgue measure
and

sup
u∈R

∣∣∣∣P (T̂n ≤ u) − P (sup
x∈Π

|Ĝ(x)| ≤ u)

∣∣∣∣ −→
n→∞

0.

2.3. Behavior of the test statistic under fixed and local alternatives

In this part of the article we consider the behavior of the test statistic (2.2)
under fixed and local alternatives. In particular, for studying convergence under
a sequence of local alternatives, we impose assumptions analogous to A6 and
A3 of Escanciano [4] and Escanciano [5], respectively.

Proposition 2.3. Suppose that assumptions (A1)-(A3) are satisfied.

(i) Consider the fixed alternative

H1 : f 6∈ {fθ : θ ∈ Θ}

for the testing problem (1.3). Then, if θ̂n
P−→ θ̄ ∈ Θ where Θ is a set

where the contraction assumption (C) is satisfied, we have that

sup
x∈Π

∣∣∣n−1/2Ĝn(x) − E
[
(f(I0) − fθ̄(I0)) w(x − I0)/

√
fθ̄(I0)

]∣∣∣ P−→ 0.

(ii) Consider the sequence of local alternatives

H1,n : f(λ, y) = fθ0(λ, y) +
a(λ, y)√

n
+ o(n−1/2),
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where a : [0,∞)×N0 → R is a Lipschitz continuous function, for the testing
problem (1.3). Suppose further that under H1,n:

θ̂n = θ0 +
1√
n
θa +

1

n

n∑

t=1

lt + oPn
(n−1/2),

where (Pn)n∈N are the distributions according to H1,n. Then

Ĝn
d−→ G + D,

where

D(x) = Eθ0

[{
a(I0) − θa λ̇1(θ0)

}
w(x − I0)/

√
λ1(θ0)

]
.

The above results in conjunction with Proposition 3.1 indicate that the test
is expected to have nontrivial power.

Remark 1. Our initial attempt towards the problem of goodness-of-fit testing
for count time series was based on supremum-type tests of the following form
(Koul and Stute [16])

Hn(x) = n−1/2
n∑

t=1

ξ̂t1(Ît−1 ≤ x). (2.4)

In fact, Escanciano [5] introduced a method to prove stochastic equicontinuity
for processes such as (Hn)n∈N under ergodicity and minimal moment condi-
tions. Unfortunately, we were not able to verify conditions similar to those in
that paper. In particular, for the condition W3 of Escanciano [5] to hold true, the
author gives as a sufficient condition that some conditional densities are domi-
nated by the unconditional density. For count time series models, the conditional
distribution of (λt, Yt)

′ given Ft−2 is clearly discrete while this property is not
guaranteed for the unconditional distribution in general. Furthermore, Escan-
ciano and Mayoral [6] gave a set of alternative sufficient conditions for proving
stochastic equicontinuity. Because of the discrete distributions we consider, we
were not able to verify the counterpart of their condition A1(c). Nevertheless,
the asymptotic distribution of supremum-type test statistics based on (2.4) is
possible to be studied following the arguments of Koul and Stute [16] and uti-
lizing the recent results on weak dependence properties obtained by Doukhan
et al. [2].

Remark 2. It is some sort of folklore, mainly in the context of i.i.d. observations,
that alternatives with a difference of order less than n−1/2 from the null model
cannot be detected with an asymptotically nontrivial power. We believe that
this is also true in the case of Poisson count processes. As a simple example,
consider the simplified case where we have i.i.d. observations Y1, . . . , Yn, either
with Yt ∼ P0 = Poisson(λ0), λ > 0, or with Yt ∼ Pn = Poisson(λn), where
λn = λ0 + cn, n

1/2cn −→n→∞ 0. Then the squared Hellinger distance between
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P0 and Pn fulfills

H2(P0, Pn) =
1

2

∞∑

k=0

(√
e−λ0λk

0/k! −
√
e−λnλk

n/k!

)2

= 1 − exp
{
−(
√
λ0 −

√
λn)

2/2
}

≤ (
√
λ0 −

√
λn)

2/2 ≤ |cn|/2.

Denote by P ⋆n
0 and P ⋆n

n the n-fold products of the distributions P0 and Pn,
respectively. Then we obtain for the Hellinger affinity of these distributions
that

ρ(P ⋆n
0 , P ⋆n

n ) =

∞∑

k1,...,kn=0

√
P ⋆n
0 ({(k1, . . . , kn)})

√
P ⋆n
n ({(k1, . . . , kn)})

=

(
∞∑

k=0

√
P0({k})

√
Pn({k})

)n

=
(
1 − H2(P0, Pn)

)n

≥ (1 − |cn|/2)n −→
n→∞

1.

Therefore, we obtain for the Hellinger distance between the product measures
that

H2(P ⋆n
0 , P ⋆n

n ) = 1 − ρ(P ⋆n
0 , P ⋆n

n ) −→
n→∞

0,

which implies by the Cauchy-Schwartz inequality that
∑

k1,...,kn

|P ⋆n
0 ({(k1, . . . , kn)}) − P ⋆n

n ({(k1, . . . , kn)})|

≤
√
8 H(P ⋆n

0 , P ⋆n
n ) −→

n→∞
0.

This proves that no test of the hypothesis H0 : Yt ∼ P0 versus H
(n)
1 : Yt ∼ Pn

can have an asymptotically nontrivial power.

3. Bootstrap

Resampling methods have been used in different contexts by several authors
to approximate the null distribution of test statistics; see for instance Stute
et al. [24] and Franke et al. [12] among other authors. In the case of testing the
composite hypotheses (1.3) for count time series, we will take advantage of the
Poisson assumption and employ the following version of parametric bootstrap
to compute p-values for testing (1.3).

Parametric Bootstrap Algorithm

Step 1 Estimate the parameter θ by θ̂n which satisfies assumption (A2)(i);
e.g. the MLE.

Step 2 Take any starting value λ∗
0 and, conditioned on λ∗

0, generate Y ∗
0 ∼

Poisson(λ∗
0).
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Step 3 Given Y ∗
t−1, λ

∗
t−1, . . . , Y

∗
0 , λ

∗
0, compute λ∗

t = fθ̂n(λ
∗
t−1, Y

∗
t−1) and gener-

ate Y ∗
t ∼ Poisson(λ∗

t ).

Step 4 Based on the above sample, compute the bootstrap counterparts Ĝ∗
n(x)

and T̂ ∗
n of Ĝn(x) and T̂n, respectively.

The choice of the starting value λ∗
0 will be discussed in the next section. The

next theorem shows the appropriateness of the bootstrap approximation.

Proposition 3.1. Suppose that either the conditions of Proposition 2.2 or of
Proposition 2.3 are fulfilled.

(i) Under H0 and H1,n:

Ĝ∗
n

d−→ Ĝ in probability

(ii) Under H1:

Ĝ∗
n

d−→ Ḡ in probability,

where Ḡ is a zero mean Gaussian process.

Proposition 2.3 and part (ii) of Proposition 3.1 yield under H1 that

P
(
T̂n > t∗n

)
−→
n→∞

0

if E
[
(f(I0) − fθ̄(I0)) w(x−I0)/

√
fθ̄(I0)

]
6= 0 for some x ∈ Π, i.e., the proposed

test is consistent against fixed alternatives under this condition. The following
corollary states that our bootstrap-based test has asymptotically the prescribed
size.

Corollary 3.1. Suppose that the conditions of Proposition 2.2 are fulfilled.
Then

(i) T̂ ∗
n

d−→ T̂ in probability,

(ii) If, additionally, var(Ĝ(x)) > 0 for some x ∈ Π, then

(a)

sup
x∈[0,∞)

∣∣∣P
(
T̂ ∗
n ≤ x | Y1, . . . , Yn

)
− P (T̂n ≤ x)

∣∣∣ P−→ 0.

(b) P (T̂n > t∗n) −→
n→∞

α.

4. Examples

4.1. An empirical study

We illustrate the performance of the proposed goodness-of-fit methodology by
presenting a limited simulation study. More precisely, we study the test statistic
(2.2). To compute the value of the test statistic, we use weight functions w(·)
of the form w(x) = w(x1, x2) = K(x1)K(x2) where K(·) is a univariate kernel
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and x = (x1, x2) ∈ Π as discussed before. Note again that we employ three
types of kernels; the Gaussian, uniform and Epanechnikov kernels. The first two
do not satisfy assumption (A1)(ii). They are included for completeness of the
presentation and for demonstrating that assumption (A1)(ii) might be possible
to be relaxed. We also study empirically the asymptotic distribution of the
supremum type test statistic based on Hn(x) for the purpose of comparison;
recall (2.4).

We use the maximum likelihood estimator to calculate the Pearson residuals.
We set λ0 = 0 and ∂λ0/∂θ = 0 for initialization of the recursions in the case
of the linear model. To compute the p-value of the test statistic we use the
proposed bootstrap methodology. Accordingly, the test statistic is recalculated
for B parametric bootstrap replications of the data set. Then, if T̂n denotes
the observed value of the test statistic and T̂ ⋆

i;n denotes the value of the test
statistic in i’th bootstrap run, the corresponding p-value used to determine
acceptance/rejection is given by

p-value =
#{i : T̂ ⋆

i;n ≥ T̂n}
B + 1

.

Throughout the simulations (and for the data analysis) we use B = 499. All
results are based on 500 runs.

We first study the empirical size of the test. Table 1 shows the achieved
significance levels for testing the linear model given by λt = θ1+θ2λt−1+θ3Yt−1.
It can be shown, that for the linear model, the stationary mean is given by
E(Yt) = θ1/(1 − θ2 − θ3). Table 1 reports results when the stationary mean is
equal to 2 (relatively low value) for two different configurations of the parameters
and for different sample sizes. In both cases, we see that all test statistics achieve
the nominal significance levels quite satisfactorily, especially for larger sample
sizes. Furthermore, significance levels obtained by the test statistic based on
(2.4) tend to underestimate the significance levels computed by the proposed
goodness of fit tests.

Table 2 shows the power of the various test statistics for the model λt =
θ1+θ2λt−1+(θ3+θ4 exp(−θ5Y

2
t−1))Yt−1 with θ4, θ5 > 0 such that θ2+θ3+θ4 < 1.

This is a case of a model which belongs to the local alternative specification
studied in Proposition (2.3). In both cases, the power of all test statistics increase
with the sample size. Note that in the first case the power is relatively low for
the test statistic based on the Epanechnikov kernel but this behavior changes
when considering the other model. For the case of second model and for large
sample sizes the test statistics achieve relatively high power.

We study now the power of the test for testing the linear model against
a log-linear model specification as suggested by Fokianos and Tjøstheim [10].
More specifically, if we denote by νt = log λt the log-mean process, then the
log-linear model studied by Fokianos and Tjøstheim [10] is given by νt = θ1 +
θ2νt−1 + θ3 log(1 + Yt−1), for t ≥ 1. Note that for this model, the parameters
are allowed to be either positive or negative valued whereas for the linear model
all the parameters have to be positive. It is rather challenging to compute the
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Table 1

Achieved significance levels for testing goodness of fit for the linear model. Results are based

on 499 bootstrap replications and 500 simulations

θ1 = 0.4, θ2 = 0.2, θ3 = 0.6

n Level Hn Uniform kernel Gaussian kernel Epanechnikov kernel

10 9.2 9.2 10.6 10.4

500 5 4.8 5.4 5.4 5.8

1 1.6 1.0 0.6 0.6

10 8.6 8.6 9.4 8.8

1000 5 4.6 5.0 3.8 4.2

1 1.0 1.2 1.0 0.6

θ1 = 1, θ2 = 0.1, θ3 = 0.4

10 7.5 12.1 10.3 13.0

500 5 4.3 6.1 4.9 6.3

1 0.6 0.6 1.4 1.6

10 8.0 9.9 9.7 10.7

1000 5 4.2 4.6 5.0 5.0

1 0.8 0.6 0.6 0.8

Table 2

Power for testing goodness of fit for the linear model. Results are based on 499 bootstrap

replications and 500 simulations

θ1 = 0.4, θ2 = 0.2, θ3 = 0.6,θ4 = 0.4, θ5 = 0.1

n Level Hn Uniform kernel Gaussian kernel Epanechnikov kernel

500 10 34.6 35.6 30.0 22.2

5 23.8 23.4 19.2 12.4

1000 10 62.2 60.0 51.4 36.4

5 48.4 44.8 35.8 23.8

θ1 = 1, θ2 = 0.1, θ3 = 0.4, θ4 = 0.4, θ5 = 0.1

500 10 38.8 67.6 66.0 46.7

5 26.6 55.7 52.9 31.0

1000 10 81.1 97.6 96.2 86.7

5 68.5 95.2 93.6 78.9

mean and the autocovariance function of the process {Yt} with this particular
log-mean specification. However, Fokianos and Tjøstheim [10] have shown that
when θ2 and θ3 have the same sign such that |θ2 + θ3| < 1 then the maximum
likelihood estimator is consistent and asymptotically normally distributed. The
same conclusion is true when θ2 and θ3 have opposite signs but in this case the
required condition is θ22 + θ23 < 1. For the log-linear model, we use as starting
values ν0 = 1 and ∂ν0/∂θ = 0.

Table 3 shows values of the empirical power of the test statistic T̂n when
the data are generated by a log-linear model, as described before, for different
sample sizes. We note that when the coefficient of the feedback process (that is
θ2) is positive, then the proposed test statistic achieves good power even though
the sample size is relatively small. The performance of the test statistic based on
Ĥn compares favorably with the performance of all other test statistics in this
case. In particular, we note that the power of the test statistic T̂n formed after



806 K. Fokianos and M. H. Neumann

Table 3

Power for testing goodness of fit for the linear model when the data are generated by a log

linear model. Results are based on 499 bootstrap replications and 500 simulations

θ1 = 0.50, θ2 = 0.65, θ3 = −0.35

n Level Hn Uniform kernel Gaussian kernel Epanechnikov kernel

200 10 82.1 72.6 83.0 68.1

5 72.4 63.6 73.8 51.8

500 10 99.8 98.7 99.4 96.4

5 99.6 96.8 99.2 93.2

θ1 = 0.50, θ2 = −0.55, θ3 = 0.45

200 10 64.2 47.9 30.1 19.6

5 52.9 34.1 18.6 10.7

500 10 88.5 78.3 55.9 34.6

5 81.6 67.6 38.7 22.1

employing the Gaussian kernel is superior when compared with all other test
statistics. When the signs of coefficients change then we have a significant de-
crease of power for all test statistics. This significance decrease can be explained
by considering the autocorrelation function of the log–linear model. Although
the autocorrelation function cannot be computed analytically, it can be studied
by simulation. In the first case, in which the data are generated by a log-linear
model with θ1 = 0.5, θ2 = 0.65, θ3 = −0.35, the autocorrelation function takes
on negative values; hence the linear model will be rejected often since its au-
tocorrelation function is always positive (see Fokianos and Tjøstheim [10], and
Fokianos [8]). For the second case where data are generated by a log-linear model
with θ1 = 0.5, θ2 = −0.55, θ3 = 0.45, the autocorrelation function of the ob-
served process behaves like an alternating sequence with lag one value positive.
Therefore, the linear model might accommodate such dependence structure and
therefore it is rejected less often. We note that the test statistic based on Ĥn

performs better than all other test statistics.

4.2. Some data examples

The theory is illustrated empirically by two real data examples discussed in
detail by Fokianos [8]. We first examine the number of transactions for the stock
Ericsson B, for one day period; these data were reported by Fokianos et al. [9]
where a linear model was fitted to the data. This series is an example of a count
processes where the autocorrelation function decays slowly to zero; therefore it is
expected that a linear feedback model would fit the data adequately; for further
information see Fokianos [8]. Table 4 shows the test statistics accompanied with
their p-values which have been obtained after B = 499 bootstrap replications.
We note that the test statistic T̂n points to the adequacy of the linear model
regardless of the chosen kernel function that is employed. However, the test
statistic based on Hn raises some doubt about the linearity assumption though
not overwhelming. Given the simplicity of fitting the linear model to the data,
we conclude that it can describe the data adequately.
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Table 4

Test statistics and p-values for real data examples when testing for the linear model. Results

are based on B = 499 bootstrap replications

Transactions Data

Hn Uniform kernel Gaussian kernel Epanechnikov kernel

0.028 0.356 0.340 0.272

Series C3

0.580 0.238 0.530 0.672

Another data example that we consider is a time series of claims, referred to
as Series C3, of short-term disability benefits made by cut-injured workers in
the logging industry; see Zhu and Joe [28] and Fokianos [8]. In contrast to the
previous example, this is an example of count time series whose autocorrelation
function decays rapidly towards zero; hence the feedback mechanism might not
provide any further insight into the modeling of this series; for more see Fokianos
[8]. Table 4 shows that all test statistics point to the adequacy of linear model
for fitting those data. In this case, we note that the results are similar regardless
of the chosen test statistic.

Appendix

In what follows, we denote by ‖w‖∞ = supx∈Π ‖w(x)‖.
Proof of Proposition 2.1. To prove the first part of the proposition we use the
following decomposition:

|Gn(x) − Gn,0(x)| =

∣∣∣∣∣
1√
n

n∑

t=1

(
ξ̃t w(x − Ĩt−1) − ξt w(x − It−1)

)∣∣∣∣∣

≤ 1√
n

n∑

t=1

|ξ̃t − ξt| ‖w‖∞ +
1√
n

n∑

t=1

|ξt| Lw |λ̃t−1 − λt−1|.

From

|ξ̃t − ξt| ≤ |λ̃t − λt|√
λ̃t

+ |Yt − λt|

∣∣∣∣∣∣
1√
λ̃t

− 1√
λt

∣∣∣∣∣∣

≤ |λ̃t − λt|
(

1√
λmin

+
|Yt − λt|
2 λ

3/2
min

)
(A-1)

and the fact that |λ̃t − λt| ≤ κt
1|λ̃0 − λ0| which follows directly from assump-

tion (C), we obtain that assertion (i) holds true. In view of this result, it suffices
to prove that

Gn,0
d−→ G. (A-2)

Towards this goal, we need to prove convergence of the finite dimensional distri-
butions and stochastic equicontinuity. Weak convergence of the finite-dimensional
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distributions of Gn,0 to those of the process G follows from the Cramér-Wold
device and the CLT for martingale difference arrays; see Pollard [21, p. 171].

To study stochastic equicontinuity, it suffices to show that, for each ǫ, η > 0,
there exist a finite partition {Bj : j = 0, . . . , N} of the set Π and points xj ∈ Bj

such that

lim sup
n→∞

P

(
max

0≤j≤N
sup
x∈Bj

|Gn,0(x) − Gn,0(xj)| > ǫ

)
≤ η. (A-3)

Inspired by Escanciano [5], we base our proof on a Bernstein-type inequality
rather than on upper estimates of fourth moments of increments of the processes;
compare with Koul and Stute [16]. To this end, we truncate the ξt and define

ξn,t = ξt1(|ξt| ≤ √
n) and ξ̄n,t = ξn,t − E(ξn,t | Ft−1).

Then,

Gn,0(x) =
1√
n

n∑

t=1

ξ̄n,t w(x − It−1) +
1√
n

n∑

t=1

E(ξn,t | Ft−1) w(x − It−1)

+
1√
n

n∑

t=1

ξt1(|ξt| > √
n) w(x− It−1)

=: Tn,1(x) + Tn,2(x) + Tn,3(x), (A-4)

say. But

P
(
|ξt| >

√
n for at least one t ∈ {1, . . . , n}

)

≤ nP (|ε1| >
√
n
√
λmin)

≤ E

[
ε21

λmin
1(|ε1| > √

n
√
λmin)

]
−→
n→∞

0, (A-5)

where ε1 = Y1 − λ1. Therefore

P

(
sup
x∈Π

|Tn,3(x)| 6= 0

)
−→
n→∞

0, (A-6)

i.e., the effect of the truncation is asymptotically negligible. Furthermore, since
E(ξn,t | Ft−1) = −E(ξt1(|ξt| > √

n) | Ft−1) we obtain

E

[
sup
x∈Π

|Tn,2(x)|
]

≤ E

[
‖w‖∞

1√
n

n∑

t=1

∣∣E(ξt1(|ξt| > √
n) | Ft−1)

∣∣
]

≤ ‖w‖∞
1√
n

n∑

t=1

E

[
E(ξ2t 1(|ξt| > √

n) | Ft−1)√
n

]

= ‖w‖∞ E

[
ε21

λmin
1(|ε1| > √

n
√
λmin)

]
−→
n→∞

0,
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which implies that

P

(
sup
x∈Π

|Tn,2(x)| > ǫ/2

)
−→
n→∞

0. (A-7)

Hence, it remains to show that the processes (Tn,1(x))x∈Π can be approximated
by their values on a finite grid. We define, for j ∈ N and k1, k2 ∈ {1, 2, . . . , 23j},

Bj;k1,k2
= [(k1 − 1)2−j , k12

−j)× [(k2 − 1)2−j, k22
−j).

Moreover, let Πj =
⋃23j

k1,k2=1 Bj;k1,k2
= [0, 22j)2 andBj;0,0 = Π\Πj . From these

sets, we choose the points xj;k1,k2
= ((k1 − 1)2−j , (k2 − 1)2−j) (for k1, k2 ≥ 1)

and xj;0,0 = (22j, 22j). Finally, we define functions πj : Π −→ Π as πj(x) =∑
k1,k2

xj;k1,k2
1(x ∈ Bj;k1,k2

).

For any fixed α ∈ (0, 1), we define thresholds λj = 2−αj and “favorable
events” as

Ωj = {|Tn,1(xj;k1,k2
) − Tn,1(πj−1(xj;k1,k2

))| ≤ λj for all k1, k2} .

Since Tn,1 has continuous sample paths and πJ (x) −→
J→∞

x ∀x ∈ Π we obtain that

Tn,1(πJ (x)) −→
J→∞

Tn,1(x) ∀x ∈ Π,

i.e., Tn,1(x) is the pointwise limit of the approximations Tn,1(πJ (x)). Note that
Ωj can be rewritten as

Ωj = {|Tn,1(πj(x)) − Tn,1(πj−1(x))| ≤ λj for all x ∈ Π} .

Hence, if the event Ω∞
j0

=
⋂∞

j=j0+1 Ωj occurs, then we obtain from |Tn,1(x) −
Tn,1(πj0 (x))| ≤ |Tn,1(x) − Tn,1(πJ (x))| +

∑J
j=j0+1 λj ∀J ≥ j0 that

sup
x∈Π

{|Tn,1(x) − Tn,1(πj0x)|} ≤
∞∑

j=j0+1

λj ≤ ǫ/2, (A-8)

provided that j0 is sufficiently large.
It remains to show that the probability of the unfavorable event Ω \ Ω∞

j0 is
smaller than or equal to η for sufficiently large j0. Since

E
(
ξ̄2n,t
∣∣Ft−1

)
≤ E(ξ2n,t | Ft−1) ≤ E(ξ2t | Ft−1) = 1

we have, for 1 ≤ k1, k2 ≤ 23j , that

vj;k1,k2
:=

1

n

n∑

t=1

E
([

ξ̄n,t {w(xj;k1 ,k2
− It−1)− w(πj−1(xj;k1,k2

)− It−1)}
]2∣∣∣Ft−1

)

≤ 1

n

n∑

t=1

(w(xj;k1 ,k2
− It−1) − w(πj−1(xj;k1,k2

)− It−1))
2

≤ L2
w 2−2j
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and

aj;k1,k2
:= sup

x∈Π

{
n−1/2 |ξ̄n,t| |w(xj;k1,k2

− It−1) − w(πj−1(xj;k1,k2
)− It−1)|

}

≤ Lw 2−j+1.

Furthermore, we have

E (Tn,1(xj;0,0) − Tn,1(πj−1(xj;0,0)))
2

= E

[
1

n

n∑

t=1

(w(xj;0,0 − It−1) − w(πj−1(xj;0,0)− It−1))
2

]

≤ 4 ‖w‖∞ P (w(xj;0,0 − I0) − w(πj−1(xj;0,0)− I0) 6= 0)

= O
(
E[‖I0‖2] 2−2j

)
.

The last equality follows from the boundedness of the support of w.
Therefore, we obtain by the Bernstein-Freedman inequality (see Freedman

[13, Proposition 2.1]) that

P (Ωc
j) ≤

∑

k1,k2≤23j

P (|Tn,1(xj;k1,k2
) − Tn,1(πj−1(xj;k1,k2

))| > λj)

≤
∑

1≤k1,k2≤23j

2 exp

(
−

λ2
j

2 vj;k1,k2
+ 2 aj;k1,k2

λj

)

+
E (Tn,1(xj;0,0) − Tn,1(πj−1xj;0,0))

2

λ2
j

= O

(
26j exp

(
− 2−2αj

C1 2−2j + C2 2−(1+α)j

))
+ O

(
22(α−1)j

)
.

Hence, we obtain, for j0 sufficiently large, that

P


Ω \

∞⋂

j=j0+1

Ωj


 ≤

∞∑

j=j0+1

P (Ωc
j) ≤ η. (A-9)

Stochastic equicontinuity of Gn,0, i.e. (A-3), follows now from displays (A-4),
(A-6) to (A-9).

Proof of Corollary 2.1. The first assertion follows from Proposition 2.1 and the
continuous mapping theorem.

Absolute continuity of the distribution of supx∈Π |G(x)| will be derived from
a result from Lifshits [17]. Since G(λ, y) → 0 as either λ → ∞ or y → ∞, this

supremum has the same distribution as supλ,y∈[0,1] |G̃(λ, y)|, where

G̃(λ, y) =

{
G
(

λ
1−λ ,

y
1−y

)
, if λ, y ∈ [0, 1),

0, if λ = 1 or y = 1
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The process (G̃(λ, y))λ,y∈[0,1] is a centered Gaussian process defined on a com-
pact set and with continuous sample paths. Hence, Proposition 3 of Lifshits
[17] can be applied and it follows that supλ,y G̃(λ, y) is absolutely continuous
on (0,∞) with respect to the Lebesgue measure. For the same reason, the dis-

tribution of supλ,y(−G̃(λ, y)) is also absolutely continuous on (0,∞). Hence,
the distribution of supλ,y |G(λ, y)| has no atom unequal to 0. However, since
P (supλ,y |G(λ, y)| 6= 0) = 1, we obtain the second assertion. Convergence of the
distribution functions in the uniform norm can be deduced from the distribu-
tional convergence in conjunction with the continuity of the limiting distribution
function; see e.g. van der Vaart [26, Lemma 2.11].

Proof of Proposition 2.2. (i) To simplify calculations, we approximate the λ̂t by

their stationary counterparts, λt(θ̂n) = gθ̂n(Yt−1, Yt−2, . . .). It follows from the
contractive condition (A3)(ii) that

∣∣∣λ̂t − λt(θ̂n)
∣∣∣ ≤ κt

1

∣∣∣λ̂0 − λ0(θ̂n)
∣∣∣ ;

see e.g. inequality (5.13) in Neumann [19]. Therefore, we obtain that

sup
x∈Π

∣∣∣∣
̂̂
Gn(x) − Ĝn(x)

∣∣∣∣ = oP (1), (A-10)

where
̂̂
Gn(x) = n−1/2

∑n
t=1 ξt(θ̂n) w(x−It−1(θ̂n)) and It−1(θ) = (λt−1(θ), Yt−1)

′.
Consider the following decomposition

̂̂
Gn(x) = Ĝn,0(x) +

1√
n

n∑

t=1

ξt

[
w(x − It−1(θ̂n)) − w(x − It−1(θ0))

]

+
1√
n

n∑

t=1

(ξt − ξt(θ̂n))
[
w(x− It−1(θ̂n)) − w(x − It−1(θ0))

]

− 1√
n

n∑

t=1

[
ξt(θ̂n)− ξt − ξ̇t(θ0)

(
1

n

n∑

s=1

ls

)]
w(x − It−1(θ0))

−
(

1√
n

n∑

t=1

lt

)
× 1

n

n∑

s=1

[
ξ̇s(θ0)w(x − Is−1) − Eθ0 [ξ̇1(θ0)w(x − I0)]

]

=: Ĝn,0(x) + Rn,1(x, θ̂n) + Rn,2(x, θ̂n) − Rn,3(x, θ̂n) − Rn,4(x),

say. According to Neumann [19, Eq. (5.13)], if ‖θ̂n − θ0‖ ≤ δ, we obtain that

|λt(θ̂n) − λt(θ0)|
≤ C ‖θ̂n − θ0‖

{
(λt−1 + Yt−1 + 1) + κ1(λt−2 + Yt−2 + 1) + · · ·

+ κt−1
1 (λ0 + Y0 + 1)

}
+ κt

1 |λ0(θ̂n) − λ0(θ0)|. (A-11)

Since |w(x − It−1(θ̂n)) − w(x − It−1(θ0))| ≤ Lw |λt−1(θ̂n) − λt−1(θ0)| we see

that the summands in Rn,1(x, θ̂n) are essentially of order OP (n
−1/2) which
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suggests that the supx∈Π |Rn,1(x, θ̂n)| should be of negligible order. Apart from
this heuristic, a sound proof of this fact is however more delicate since we have
a supremum over x and the λt(θ̂n) depend via θ̂n on the whole sample. To

proceed, we will first approximate θ̂n by values from a sufficiently fine grid, apply
an exponential inequality to the corresponding sums, and use finally continuity
arguments to conclude. To invoke the Bernstein-Freedman inequality, we will
replace as in the proof of Proposition 2.1 the ξt by ξ̄n,t = ξn,t − E(ξn,t | Ft−1),
where ξn,t = ξt1(|ξt| ≤ √

n). We split up

Rn,1(x, θ̂n) =
1√
n

n∑

t=1

ξ̄n,t

[
w(x − It−1(θ̂n)) − w(x − It−1(θ0))

]

+
1√
n

n∑

t=1

E(ξn,t | Ft−1)
[
w(x − It−1(θ̂n)) − w(x − It−1(θ0))

]

+
1√
n

n∑

t=1

ξt 1(|ξt| > √
n)
[
w(x − It−1(θ̂n)) − w(x− It−1(θ0))

]

=: Rn,11(x, θ̂n) + Rn,12(x, θ̂n) + Rn,13(x, θ̂n).

We conclude from (A-5) that

sup
x∈Π

∣∣∣Rn,13(x, θ̂n)
∣∣∣ = oP (1). (A-12)

Furthermore, it follows from E(ξn,t | Ft−1) = −E(ξt1(|ξt| > √
n) | Ft−1) that

Eθ0

[
sup
x∈Π

|Rn,12(x, θ̂n)|
]

≤ 2 ‖w‖∞
1√
n

n∑

t=1

E
[
|ξt|1(|ξt| > √

n)
]

≤ 2 ‖w‖∞ E
[
(ε21/λmin)1(|ξ1| > √

n
√
λmin)

]
−→
n→∞

0,

which shows that
sup
x∈Π

∣∣∣Rn,12(x, θ̂n)
∣∣∣ = oP (1). (A-13)

It remains to show that Rn,11(x, θ̂n) is asymptotically negligible uniformly in
x ∈ Π. Let (γn)n∈N be a sequence of positive reals tending to infinity as n → ∞.
We choose two sequences of grids, Gn ⊆ {θ ∈ Θ: ‖θ − θ0‖ ≤ γnn

−1/2} and
Xn ⊆ {x ∈ Π: ‖x‖ ≤ γn}, with mesh sizes γ−1

n and of cardinality of order
O(nγ), for some γ < ∞. We conclude from the Bernstein-Freedman inequality
that

max
x∈Xn, θ∈Gn

|Rn,11(x, θ)| P−→ 0.

Using the Lipschitz continuity of w and the fact that P (‖θ̂n − θ0‖ >
γnn

−1/2)−→n→∞ 0 we obtain that

sup
x∈Xn

inf
θ∈Gn

‖Rn,11(x, θ̂n) − Rn,11(x, θ)‖ = oP (1),
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which implies

sup
x : ‖x‖≤γn

|Rn,11(x, θ̂n)| = oP (1).

Finally, since the weight function w has compact support [−C,C]2 we obtain

sup
x : ‖x‖>γn

|Rn,11(x, θ̂n)| ≤ 1√
n

n∑

t=1

|ξ̄n,t| Lw |λt−1(θ̂n)− λt−1(θ0)|

× 1(max{‖It−1(θ0)‖, ‖It−1(θ̂n)‖} > γn − C
√
2)

and, therefore we obtain that

sup
x : ‖x‖>γn

|Rn,11(x, θ̂n)| = oP (1).

This implies, in conjunction with (A-12) and (A-13) that

sup
x∈Π

|Rn,1(x, θ̂n)| = oP (1). (A-14)

Using the Lipschitz continuity of w we obtain the estimate

∣∣∣Rn,2(x, θ̂n)
∣∣∣ ≤ Lw√

n

n∑

t=1

|ξt(θ̂n)− ξt| |λt−1(θ̂n)− λt−1|.

Therefore, together with

|ξt(θ̂n)− ξt| ≤ |λt(θ̂n) − λt|√
λt(θ̂n)

+ |Yt − λt|

∣∣∣∣∣∣
1√

λt(θ̂n)

− 1√
λt

∣∣∣∣∣∣

≤ |λt(θ̂n)− λt|
(

1√
λmin

+
|Yt − λt|
2λ

3/2
min

)

and the fact that max1≤t≤n |Yt − λt| = oP (
√
n), we obtain that

sup
x∈Π

|Rn,2(x, θ̂n)| = oP (1). (A-15)

To estimate Rn,3(x, θ̂n), we split up

|Rn,3(x, θ̂n)| ≤ ‖w‖∞√
n

n∑

t=1

∣∣∣ξt(θ̂n) − ξt(θ0) − ξ̇t(θ0)(θ̂n − θ0)
∣∣∣

+
‖w‖∞√

n

n∑

t=1

‖ξ̇t(θ0)‖
∥∥∥∥∥(θ̂n − θ0) − 1

n

n∑

s=1

ls

∥∥∥∥∥ . (A-16)

Note that

ξ̇t(θ) = −λ̇t(θ)/λt(θ)
1/2 − (Yt − λt(θ))λ̇t(θ)/(2λt(θ)

3/2). (A-17)
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Hence, it follows from (A2)(ii) and (A-1) that

Eθ0

[
sup

θ : ‖θ−θ0‖≤δ

‖ξ̇1(θ) − ξ̇1(θ0)‖
]
−→
δ→0

0.

Since |ξt(θ̂n)− ξt(θ0) − ξ̇t(θ0)(θ̂n − θ0)| ≤ ‖ξ̇t(θ̃n)− ξ̇t(θ0)‖‖θ̂n − θ0‖, for some

θ̃n between θ0 and θ̂n we see that the first term on the right-hand side of (A-16) is

oP (1). We obtain from (A-17) and the ergodic theorem that n−1
∑n

t=1 ‖ξ̇t(θ0)‖
a.s.−→

Eθ0‖ξ̇0(θ0)‖. This shows that, in conjunction with assumption (A2)(i) that the
second term is also negligible. Hence, we obtain that

sup
x∈Π

|Rn,3(x, θ̂n)| = oP (1). (A-18)

To estimate supx |Rn,4(x)|, we use truncation by letting
¯̇
ξs(θ0) = ξ̇s(θ0)×1(|ξ̇s(θ0)| ≤ M), for some M < ∞. Note that the random functions

¯̇
ξs(θ0)w(x−

Is−1) are bounded and equicontinuous in x. Moreover, it follows from the er-

godicity of ((It−1,
¯̇
ξt(θ0)))t that

1

n

n∑

t=1

δ
(It−1,

¯̇ξt(θ0))
=⇒ P

I0,
¯̇ξ1(θ0)

θ0
.

Hence, we conclude from Corollary 11.3.4 in Dudley [3, p. 311] that

sup
x∈Π

∣∣∣∣∣n
−1

n∑

s=1

¯̇
ξs(θ0) w(x − Is−1) − Eθ0 [

¯̇
ξ1(θ0) w(x − I0)]

∣∣∣∣∣
a.s.−→ 0.

Furthermore, it follows from majorized convergence that

Eθ0

[
sup
x∈Π

∣∣∣∣∣n
−1

n∑

s=1

(ξ̇s(θ0)− ¯̇ξs(θ0))w(x− Is−1)−Eθ0 [(ξ̇1(θ0)− ¯̇ξ1(θ0))w(x− I0)]

∣∣∣∣∣

]

≤ 2 ‖w‖∞ Eθ0 [|ξ̄1|1(|ξ̄1| > M)] −→
M→∞

0.

These two estimates yield that

sup
x∈Π

|Rn,4(x)| = oP (1). (A-19)

The first assertion of the proposition follows now from (A-14) to (A-19).
To show the second part of the result, we need to establish stochastic equicon-

tinuity and convergence of finite dimensional distributions. Stochastic equiconti-
nuity of (Gn,0)n∈N was already shown in the second part of the proof of Proposi-

tion 2.1. Hence, it remains to show that the process (n−1/2
∑n

t=1 Eθ0 [λ̇1(θ0)w(x−
I0)/

√
λ1(θ0)]lt)x∈Π also possesses this property. We obtain from the Lipschitz

continuity of the weight function w that
∥∥∥Eθ0 [λ̇1(θ0) w(x − I0)/

√
λ1(θ0)] − Eθ0 [λ̇1(θ0) w(y − I0)/

√
λ1(θ0)]

∥∥∥

≤ Lw√
λmin

‖x− y‖ Eθ0‖λ̇1(θ0)‖.
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Furthermore, we have that

sup
x : ‖x‖≥c

∥∥∥Eθ0 [λ̇1(θ0) w(x − I0)/
√
λ1(θ0)]

∥∥∥

≤ ‖w‖∞√
λmin

sup
x : ‖x‖≥c

Eθ0 [‖λ̇1(θ0)‖ 1(I0 ∈ supp(w(x − ·)))] −→
c→∞

0.

These two facts yield, together with n−1/2
∑n

t=1 lt = OP (1) the desired stochas-
tic equicontinuity.

In addition, weak convergence of the finite-dimensional distributions of Ĝn,0

to those of the process Ĝ follows from the Cramér-Wold device and the CLT for
martingale difference arrays given on page 171 in Pollard [21].

Proof of Proposition 2.3. To prove the first part, note that from θ̂n
P−→ θ̄, we

obtain

sup
x∈Π

∣∣∣∣∣n
−1/2Ĝn(x) − 1

n

n∑

t=1

Yt − fθ̄(It−1)√
fθ̄(It−1)

w(x − It−1(θ̄))

∣∣∣∣∣ = oP (1).

We split up

1

n

n∑

t=1

Yt − fθ̄(It−1)√
fθ̄(It−1)

w(x − It−1(θ̄))

=
1

n

n∑

t=1

Yt − f(It−1)√
fθ̄(It−1)

w(x − It−1(θ̄))

+
1

n

n∑

t=1

f(It−1)− fθ̄(It−1)√
fθ̄(It−1)

w(x − It−1(θ̄))

=: Rn,1(x) + Rn,2(x).

We can see by calculations analogous to that for Gn,0 that (n1/2Rn,1(x))x∈Π

converges to a certain Gaussian process that yields

sup
x∈Π

|Rn,1(x)| = oP (1).

Furthermore, it follows from Corollary 11.3.4 of Dudley [3] and an appropriate
truncation argument that

sup
x∈Π

∣∣∣Rn,2(x) − E[(f(I0)− fθ̄(I0)) w(x − I0)/
√
fθ̄(I0)]

∣∣∣ = oP (1),

which completes the proof of (i).
To prove the second part, note that

Ĝn(x) =
1√
n

n∑

t=1

Yt − fθ̂n(It−1)√
fθ̂n(It−1)

w(x − Ît−1)
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=
1√
n

n∑

t=1

Yt − f(It−1)√
f(It−1)

w(x − Ît−1) (A-20)

+
1√
n

n∑

t=1

f(It−1) − fθ̂n(It−1)√
f(It−1)

w(x − Ît−1)

+ Rn,3(x),

say. It can be shown analogously to the proof of Proposition 2.2 that

sup
x∈Π

|Rn,3(x)| = oPn
(1).

Furthermore, we can show analogously to part (ii) of the proof of Proposi-
tion 2.1 that (n−1/2

∑n
t=1(Yt − f(It−1))/

√
f(It−1)w(x− It−1))x∈Π is stochasti-

cally equicontinuous.
To analyze the second term on the right-hand side of (A-20), we decompose

further:

1√
n

n∑

t=1

f(It−1) − fθ̂n(It−1)√
f(It−1)

w(x − It−1)

=
1

n

n∑

t=1

a(It−1) w(x − It−1)/
√
fθ0(It−1)

− 1√
n

n∑

t=1

fθ0(It−1) − fθ̂n(It−1)√
f(It−1)

w(x − It−1)

+ Rn,4(x),

where
sup
x∈Π

|Rn,4(x)| = oPn
(1).

But

sup
x∈Π

∣∣∣∣∣
1

n

n∑

t=1

a(It−1)w(x−It−1)/
√
fθ0(It−1)−Eθ0 [a(I0)w(x−I0)/

√
fθ0(I0)]

∣∣∣∣∣
Pn−→ 0.

Furthermore, we obtain from

θ̂n = θ0 +
1√
n
θa +

1

n

n∑

t=1

lt + oPn
(n−1/2)

that

1√
n

n∑

t=1

fθ0(It−1) − fθ̂n(It−1)√
f(It−1)

w(x − It−1)

= −
(
θa +

1√
n

n∑

t=1

lt

)
Eθ0 [λ̇1(θ0)w(x − I0)/

√
λ1(θ0)] + Rn,5(x),
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where
sup
x∈Π

|Rn,5(x)| = oPn
(1).

Summarizing the above calculations we obtain

Ĝn(x) =
1√
n

n∑

t=1

{
Yt − f(It−1)√

f(It−1)
w(x− It−1)− ltEθ0 [λ̇1(θ0)w(x− I0)/

√
λ1(θ0)]

}

+ D(x) + Rn(x) (A-21)

with
sup
x∈Π

|Rn(x)| = oPn
(1).

Moreover, the first term on the right-hand side of (A-21) is stochastically equicon-
tinuous. The assertion follows now from the Cramér-Wold device and the CLT
for martingale difference arrays given on page 171 in Pollard [21].

Proof of Proposition 3.1. In all cases, stochastic equicontinuity can be proved as
above. And we obtain from the contractive property that E∗(λ∗

0)
2 = OP (1). To

obtain part (i) of the proposition, note that under H0 and H1,n, the conditional
distributions of the bootstrap variables converge weakly to those of the original
random variables,

P I∗

t |I
∗

t−1
=x =⇒ P

It|It−1=x
θ0

, in probability. (A-22)

Therefore, we obtain by Lemma 4.2 of Neumann and Paparoditis [20] that also
the marginal distributions converge,

P I∗

t =⇒ P It
θ0
, in probability. (A-23)

Equations (A-22) and (A-23) eventually lead to

Ĝ∗
n

d−→ Ĝ,

again in probability.
To prove the second part of the results, note that under H1, we obtain

P I∗

t |I
∗

t−1
=x =⇒ P

It|It−1=x

θ̄
, in probability. (A-24)

This implies, again by Lemma 4.2 of Neumann and Paparoditis [20], that

P I∗

t =⇒ P It
θ̄
, in probability. (A-25)

Finally, (A-24) and (A-25) yield

Ĝ∗
n

d−→ Ḡ,

again in probability.
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