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Abstract: Respondent-driven sampling (RDS) is a widely used method for
generating chain-referral samples from hidden populations. It is an exten-
sion of the snowball sampling method and can, given that some assumptions
are met, generate unbiased population estimates. One key assumption, not
likely to be met, is that the acquaintance network in which the recruitment
process takes place is undirected, meaning that all recruiters should have
the potential to be recruited by the person they recruit. Using a mean-field
approach, we develop an estimator which is based on prior information
about the average indegrees of estimated variables. When the indegree is
known, such as for RDS studies over internet social networks, the estimator
can greatly reduce estimate error and bias as compared with current meth-
ods; when the indegree is not known, which is most common for interview-
based RDS studies, the estimator can through sensitivity analysis be used
as a tool to account for uncertainties of network directedness and error in
self-reported degree data. The performance of the new estimator, together
with previous RDS estimators, is investigated thoroughly by simulations
on networks with varying structures. We have applied the new estimator
on an empirical RDS study for injecting drug users in New York City.
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1. Introduction

Hidden populations (hard-to-reach populations), such as injecting drug users
(IDU), men who have sex with men (MSM), and sex workers (SW) and their
sexual partners, are generally considered as critical actors in the HIV epi-
demic [41, 24, 14]. Consequently, obtaining population characteristics and risk
behaviors of these populations are critical for developing efficient disease control
strategies. However, the lack of sampling frames for such populations makes tra-
ditional estimation methods based on random samples practically useless. Other
methods have been proposed for such situations, for example key informant sam-
pling [5], targeted/location sampling [45] and snowball sampling [7].

A more recent method is Respondent Driven Sampling (RDS), which was
proposed to overcome difficulties when sampling hidden populations [17, 18, 43].
The RDS method starts with an initial selection of respondents, which are called
“seeds”. Each seed is given a number of “coupons” – tickets for participation in
the study – to distribute to friends and acquaintances within the population of
interest. When interviewed (anonymously), a new respondent is in turn given
coupons to distribute. Everyone is rewarded both for completing the interview,
and for recruiting their peers into the study. Additionally, information about
who recruits whom and each respondent’s personal network size (degree) are
recorded.

Suppose a RDS study is performed on a connected undirected network with
the additional assumptions that:

(i) sampling of peer recruitment is done with replacement;
(ii) each participant recruits one new participant to the study; and
(iii) participants recruit randomly from their neighbors.

Then, the sampling probability of an individual i will be proportional to its de-
gree when the sample reaches equilibrium (which is however approached asymp-
totically and thus unlikely to be reached in practice). The population fraction
pA having a certain property A (e.g. pA could denote the fraction among intra-
venous drug-users that are HIV-positive) can then be estimated by the weighted
proportion of the sample fraction as in Volz and Heckathorn [43]:

p̂VHout

A =

∑

i∈U∩A

di
−1

∑

i∈U

di
−1 , (1)

where the sample population U has been divided into two disjoint subsets A and
B = AC depending on the reported properties of respondents, and di denotes
the degree of individual i in the sample.

Based on equating the number of crossrelations between subgroups of prop-
erty A and B, Salganik and Heckathorn [35] proposed another widely used
estimator for pA:

p̂SHout

A =
ŝBA

ˆ̄DB

ŝAB
ˆ̄DA + ŝBA

ˆ̄DB

, (2)
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where ˆ̄DA = nA∑

i∈U∩A

di
−1 and ˆ̄DB = nB∑

i∈U∩B

di
−1 are the estimated harmonic mean

degrees for the two subgroups. (nA and nB denote the number of A- and B-
individuals in the sample respectively), and ŝBA denotes the sample fraction of
all B-respondents naming A-peers and similarly ŝAB denotes the sample fraction
of all A-respondents naming B-peers. For simplicity, we henceforth refer to (1)
and (2) the V Hout and SHout estimators respectively; the subscript out indicates
that respondents out-degrees have been recorded, which will be important when
we move to directed networks later on.

The ability to produce population estimates with desirable properties and a
feasible field implementation have contributed to a rapid increase in RDS stud-
ies conducted globally in past years [24, 20]. However, the assumptions based
on which the RDS estimators are developed can rarely be met in real prac-
tice [46, 40, 15]. In a thorough test of the effect of violating the assumptions,
Lu et al [22] have shown that when the sample size is relative small (< 10% of
the population), the RDS estimators have a strong resistance to violations of
some assumptions, such as low response rate and errors in self-reported degrees.
On the other hand, large bias and variance may result from differential recruit-
ment. Similar studies were also made by Gile and Handcock in [11], where they
evaluated the performance of RDS estimators when the sample size is relatively
large (> 50% of the population). For these reasons, there has been an increase in
studies evaluating the performance of RDS estimators as well as in developing
new estimators [21, 15, 11, 40, 10].

Previous studies are mostly based on the assumption that relationships are
reciprocal, i.e., the network among which recruitments could take place is undi-
rected. However, it is well-known that social networks, such as friendship net-
works, are generally directed to various extents. For example, in the study of
Scott and Dana [39], only 6,669 out of 12,931 “best friend” nominations were
found to be reciprocal, and in the study conducted by Wallace [44, 8], an average
of 55.0 reciprocal nominations per respondent were found while the mean de-
gree was 94.8. Evidence of irreciprocal recruiter-recruitee relationships has also
been found in many RDS studies, e.g., in a RDS study of IDUs in Sydney, Aus-
tralia [31], 29% of the respondents consider the relationship to their recruiter to
be “not very close”, and in a study of IDUs in Tijuana, Mexico [2], only 62%
of the respondents consider their relationship with their recruiter as “friend”.
Additionally, in a study for MSM in Beijing, China [23], 8.5% participants said
they received their coupons from a stranger, and between 3% to 7% of recruit-
ments were found to be from strangers in the RDS studies on drug users and
MSMs in three US cities and in St. Petersburg, Russia [19].

In [22], it has been shown that current RDS estimators may generate rela-
tively large biases and errors if the studied networks are directed, indicating that
estimates from previous RDS studies should be interpreted and generalized with
caution. This study aims to further evaluate the influence of structural network
properties, such as directedness, degree correlation, indegree-outdegree correla-
tion, homophily and the like, on the performance of RDS estimators under the
assumption that the underlying social network is (partially) directed, and to
derive new estimators allowing networks to be directed.



RDS on directed networks 295

2. RDS estimation on directed networks

We now investigate the properties of the RDS process on a directed network. For
the purpose of this study, we focus on the problem of estimating the community
fraction pA having a certain dichotomous property A. Let G denote a (partially)
directed network and let eij = 1 if there is a directed edge from i to j and
eij = 0 otherwise. A reciprocal edge between i and j is hence reflected by
eij = eji = 1. We assume that G is strongly connected [36], i.e., there is a
directed path between any pair of nodes – otherwise we of course would not
be able to to estimate pA well since it may then be impossible to reach certain
parts of the community with RDS. Finally, we let N denote the community
size, most often an unknown quantity in hidden or hard-to-reach populations.
In what follows, assumptions (i)-(iii) are assumed to be fulfilled in the RDS
process.

2.1. Extension of V Hout estimator to directed networks

When a RDS process takes place on a strongly connected network G, the re-
cruitment of new respondents are dependent only on the current respondent,
since he will select a new respondent uniformly from his peers. Thus, RDS pos-
sesses the Markov property [16] and can be modeled as a Markov process with
transition matrix R = {aij = eij/d

out
i , 1 6 i, j 6 N}, where douti is the out-

degree of node i [43, 22]. This process has a unique equilibrium distribution
π = [π1 · · ·πN ] satisfying RTπT = πT , indicating that π is the eigenvector cor-
responding to eigenvalue 1 for RT . Consequently, πi can be used to obtain the
Hansen-Hurwitz estimator where observations are weighted by the inverse of
the sampling probability [22]:

p̂Eig
A =

∑

i∈U∩A

πi
−1

∑

j∈U

πj
−1

. (3)

It has been shown that when the network is undirected, πi = di/
N
∑

j=1

dj is the

analytical solution for π and, if the process samples from the stationary distribu-

tion, p̂A can be estimated by the V Hout estimator: p̂VHout

A =
∑

i∈U∩A

di
−1

/

∑

i∈U

di
−1.

Unfortunately, no analytical solution for π is available for a general directed
network. However, note that under the above assumptions, the RDS process is
merely a random walk on the network, for which we can easily adopt the mean
field approach in [9, 4] to derive an approximation of π:

Let K ≡ (Kin,Kout) be the set of nodes in the network with indegree Kin

and outdegree Kout, and let fK be the proportion of K-nodes in the set; then,
the average inclusion probability of nodes in K is

π̄(K) ≡
1

NfK

∑

i∈K

πi. (4)
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Using that we have a random walk assumed to be in equilibrium, and taking
the average over all nodes of degree K, we get

π̄(K) =
1

NfK

∑

i∈K

∑

j:kout(j) 6=0

eji
kout(j)

πj , (5)

where kout(j) is the outdegree of node j.
Then, the sum over j is parted into two, one over the degree classes K′ and

the other over the nodes within each degree class K′. At this point we apply
the mean field approximation by substituting πj with the mean value within its
degree class K′, yielding

π̄(K) ≃
1

NfK

∑

K′

π̄(K′)

K′
out

∑

i∈K

∑

j∈K′

eji =
1

NfK

∑

K′

π̄(K′)

K′
out

EK′→K, (6)

where EK′→K is the total number of edges pointing from nodes of degree K′

to nodes of degree K, which we can write as EK′→K = KinfKN
E

K′→K

KinfKN =
KinfKNfK′|K, where fK′|K is the proportion of edges pointing to nodes in K
originating in K′.

We finally obtain

π̄(K) = Kin

∑

K′

fK′|K

K′
out

π̄(K′). (7)

If the network is uncorrelated, the quantity fK′|K (viewed as a conditional
probability) will not depend on K, and, also using the definition of π̄(K′) in (4),
(7) becomes

π̄(K) = Kin

∑

K′

K′
outfK′

/

K̄in

K′
out

π̄(K′) =
1

N

Kin

K̄in
, (8)

where K̄in is the average indegree in the network, implying that for networks
with no degree-degree correlations, the RDS sample can be weighted by respon-
dents’ indegrees to estimate population proportions, which gives us the modified
V Hout estimator:

p̂VHin

A =

∑

i∈U∩A

(dini )
−1

∑

j∈U

(dinj )
−1 . (9)

For many networks, and for social networks in particular, assuming that
there is no degree-degree correlations in the network is likely to be fallacious;
however, the theory described above provides a natural extension of current
RDS estimation to directed networks, and it is of interest to further validate and
assess the robustness of this new estimator on network with different structures,
including varying degree-degree correlation.

Note that the use of this estimator requires collection of respondents’ inde-
grees, which are not known from the RDS sample, thus possibly bringing new
challenges to the practical implementation of RDS.
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2.2. Extension of SHout estimator to directed networks

The SHout estimator was developed based on the fact that in any undirected
network, the number of crossgroup edges pointing from A to B, equals the
number of edges pointing from B to A. Similarly, in a directed network, the
sum of nodes’ indegrees in a group equals the total number of edges pointing to

nodes in that group, i.e., if we let S∗ =
[

S∗

AA S∗

AB

S∗

BA S∗

BB

]

be the recruitment matrix

in the network, where, e.g., S∗
AB is the proportion of edges originating in group

A which end in group B, then we have
{

NAD̄
out
A S∗

AA +NBD̄
out
B S∗

BA = NAD̄
in
A

NAD̄
out
A S∗

AB +NBD̄
out
B S∗

BB = NBD̄
in
B

, (10)

where, e.g., D̄out
A is the average outdegree in group A.

For simplicity, let m∗ =
D̄in

A

D̄in
B

and w∗ =
D̄out

A

D̄out
B

be the average indegree and

outdegree ratio of the two groups of nodes in the network, and let φ = NA

NB
be

the relative group size proportion. Dividing the above equations (10) gives a
solution of φ:

φ =
w∗S∗

AA −m∗S∗
BB

2m∗w∗S∗
AB

+

√

S∗
BA

m∗w∗S∗
AB

+ (
m∗S∗

BB − w∗S∗
AA

2m∗w∗S∗
AB

)
2

. (11)

Then, if we can correctly estimate m∗, w∗ and S∗, we obtain a generalization
of the SHout estimator:

p̂SHin

A =
φ̂

1 + φ̂
, (12)

in which we replace unknown population quantities in φ by their estimates from
the RDS sample.

From the previous section, the average indegree ratio m∗ in SHin can be
estimated by the harmonic mean ratio of indegrees from the sample for networks

with no degree correlation: m̂∗ =
nA/

∑

i∈U∩A

(din
i )

−1

nB/
∑

i∈U∩B

(din
i )−1 . It is however generally not

possible to consistently estimate w∗ and S∗ using only the average outdegree and
observed recruitment matrix. The sample mean outdegree will be an unbiased
estimator only if there is no correlation between the indegree and outdegree of
nodes, while the harmonic mean of outdegree is expected to have higher precision
if the indegree-outdegree correlation is high. However, in simulations it is seen
that there is little difference in using either the (arithmetic) mean or harmonic
mean of outdegree to estimate w∗ and thereby we continue to use the harmonic
mean in the following analysis. We have also tried to adjust potential bias in
the estimation of S∗ by replacing individual inclusion probabilities with group
inclusion probabilities (see Appendix for details), which however didn’t improve
the results and we therefore prefer to use the observed recruitment matrix from

the sample, i.e., ŝ =
[

ŝAA ŝAB

ŝBA ŝBB

]

, to estimate S∗ in SHin.
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The factor w∗ was named the activity ratio in [11], since it quantifies how
active nodes in different groups are in building their personal networks. Follow-
ing this, we henceforth refer to m∗ as the attractivity ratio, as it reflects how
“attractive” nodes in different groups are, or to which group of nodes edges are
inclined to connect to.

2.3. Sensitivity analysis when indegree is not known

Hardly ever is the indegree observed in RDS studies. Consequently, the use
of V Hin and SHin is limited in practice. It is however possible to use both
estimators if prior information is available. In SHin, if the indegree is not known,
the estimate of average indegree ratio, m̂∗, becomes an unknown parameter in
(12). This is true also for V Hin, since we can rewrite (9) as:

p̂VHin

A =

∑

i∈U∩A

(dini )
−1

∑

j∈U

(dinj )
−1 =

nA/
ˆ̄Din
A

nA/
ˆ̄Din
A + nB/

ˆ̄Din
B

=
nA/nB

nA/nB + ˆ̄Din
A / ˆ̄Din

B

.

Replacing ˆ̄Din
A / ˆ̄Din

B with m, we have:

p̂V Hm

A =
nA/nB

nA/nB +m
. (13)

Prior information may, for example, be obtained by expert opinion, or by us-
ing previous empirical results. What’s more, even if there is little prior knowledge
about the targeted population, we can, instead of providing a point estimate
with fixed parameters, use a range of m values to generate an estimate interval
for p∗A. That is, if m

∗ is assumed to lie within a certain range, [mmin,mmax], we
get an interval of p̂A, [p̂A(mmin), p̂A(mmax)], by varying m in (12). We empha-
size that this interval is not a confidence interval, but a range of point estimates
of pA reflecting the dependence on the plausible values of m∗.

Following this, we will denote SHm∗ and V Hm∗ as SHm and V Hm when
they are used for sensitivity analysis with tested m values. Sensitivity analysis
is an illustrative tool which has been used in connection with RDS before, see
e.g. [28]. By varying the ratio of average indegrees m we get an interval of
the estimates of p∗A, [p̂A(mmin), p̂A(mmax)], with m lying in a certain range,
[mmin,mmax]. By choosing an interval centered on a value of m based on prior
information, we will get intervals of possible p̂A values which more fully accounts
for the situation when the network is directed, and provides valuable results on
the sensitivity of estimators to the correctness of indegree assumptions about
the network.

3. Network data and study design

We will evaluate the performance of our suggested estimators and compare them
with existing estimators through simulations of RDS processes on directed net-
works. The simulations will be performed on both artificially generated families
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of directed networks as well as a real MSM online social network [22], which
makes it possible to study the impact of different, carefully controlled, struc-
tural network properties on our estimators as well as looking at their behavior
in a more realistic setting using actual data.

In our evaluation, we will consider the following parameters which are im-
portant both to directed networks and RDS estimation:

Directedness ; if Edir is the number of directed edges in a network with E
edges, then the proportion of directed edges is:

λ = Edir/E, (14)

i.e., λ = 0 when the network is undirected, and λ = 1 when the network is
(extremely) directed in a way such that there are no reciprocal edges.

Indegree correlation; the tendency that nodes with high indegrees are con-
nected with each other. To quantify this, we use the assortativity ratio defined
in [29]:

γ =
E−1

∑

i jiki − [E−1
∑

i
1
2 (ji + ki)]

2

E−1
∑

i
1
2 (j

2
i + k2i )− [E−1

∑

i
1
2 (ji + ki)]

2 , (15)

where ji and ki are the indegrees of vertices at the end of the ith edge, i =
1, . . . , E.

Indegree-outdegree correlation; unlike the indegree correlation, which describes
associations between nodes, the indegree-outdegree correlation measures the cor-
relation between indegree and outdegree for the same node. We use the Pearson
correlation calculated from all nodes in the network:

ρ = Cov(din, dout)
/

σdinσdout . (16)

Homophily; the probability that nodes connect with neighbors that are similar
to themselves with respect to the studied feature A rather than that they connect
randomly [26, 32, 25, 18]. Letting hA be the homophily for nodes with trait A,
it holds that S∗

AA = hA + (1− hA)pA, implying that hA can be calculated as:

hA = 1− S∗
AB/pB. (17)

The activity ratio w∗, as well as the attractivity ratio m∗, are also used as
network structure parameters in our assessment.

3.1. Network data

We will focus our study of network properties on directedness and attractivity
ratio, as they are of general interest to the study of directed networks, and of
particular interest to our estimators. Furthermore, we will vary other network
structural properties that are likely to affect our estimators. For example, the
VHin estimator is based on the assumption of no indegree correlation in the net-
work, and the estimate of average outdegree in SHin is based on the assumption
of positive indegree-outdegree correlation, etc.
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Table 1. Basic statistics of Net1, Net2, Net3 and the MSM network

Network Average Directed- indegree corre- indegree-outdegree Homophily Attractivity
size (N) degree (D̄) ness (λ) lation (γ) correlation (ρ) (h) ratio (m∗) P

Net1 10, 000 10 [0, 1] [−0.09, 0.01]* ≈ 0 [−0.30, 0.22]* [0.7, 1.4] 70%

Net2 10, 000 10 [0, 1] [−0.03, 0.14]* ≈ 1− λ [0, 0.5] [0.7, 1.4] 30%
age 0.23 0.95 77%

MSM 16, 082 17.2 0.61 0.03 0.39 ct 0.50 1.32 39%
Network cs 0.03 0.96 40%

pf 0.06 1.05 38%

Net3 −−† −− [0.61, 0.91]* [0, 0.4] −− −− −− −−
* parameter not controlled during the generation process;
† same as the MSM network.

In order to study the behavior of our estimators with respect to variation in
directedness and attractivity ratio, we will use two families of generated net-
works, Net1, where there is little or no indegree correlation and no indegree-
outdegree correlation, and Net2, which have varying homophily and positive
indegree-outdegree correlation. This setting makes it possible to see how differ-
ent structural properties, e.g. homophily, will affect our estimators as directed-
ness and attractivity ratio are varied.

Net1 is generated starting from a random pure directed network, in which in-
degree and outdegree are uncorrelated (ρ ≈ 0). Then, the irreciprocal edges are
rewired in a particular way that doesn’t change nodes’ degree in order to gen-
erate networks with different levels of directedness (down to λ = 0.2) while the
indegree-outdegree correlation remains unchanged. Finally, nodes are assigned
either property A or B to achieve different attractivity ratios m∗ ∈ [0.7, 1.4]
(see Table 1). The generating process for Net2 starts with a random undirected
network. To obtain directedness, reciprocal edges are randomly rewired in such
a way, that for any network in Net2 with directedness λ, the indegree-outdegree
correlation is ρ ≈ 1− λ. Then, different attractivity ratios are generated as for
Net1, and we further rewire edges with respect to nodes’ properties in order
to achieve different levels of homophily: hA ∈ [0, 0.5] (see Table 1). As we in
this study are mostly interested in the case when sample size is relatively small
compared to the population size, these networks are both of size 10,000.

The anonymized online social MSM network used in this study (previ-
ously analyzed in [33, 22]) comes from the Nordic region’s largest and most
active web community for homosexual, bisexual, transgender and queer per-
sons (www.qruiser.com) and includes information on the relationships between
members as well as members’ personal information. Contacts between members
on the web site are maintained by a “favorites list”, on which each member can
add any other member without approval from that member, so that the resulting
social network is directed. The network has 16,082 nodes which forms a strongly
connected component and are members who identify themselves as homosexual
males. Both the indegree and outdegree distributions are quite skewed (see [22]),
for instance, half of the members in G2 have no more than 10 outgoing edges,
whereas a small proportion of members have a large number of outgoing edges.
Utilizing information from their user profiles, we can evaluate our estimators on

www.qruiser.com
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different personal characteristics, and we will focus on four dichotomous proper-
ties: age (born before 1980), county (live in Stockholm, ct), civil status (married,
cs), and profession (employed, pf). The proportions of nodes having a specific
value of these properties are listed in Table 1.

While this network provides an opportunity to study our estimators in a
more realistic setting, it and the studied personal properties will obviously have
certain structural properties. In order to keep this level of realism, while still
varying some structural network properties, based on the MSM network, we
generate a family of networks, Net3, which have different levels of indegree
correlation (γ ∈ [0, 0.4]). Detailed information on the generation process of
Net3 and the other networks can be found in the Appendix.

3.2. Simulation design

RDS processes are then simulated on the above networks and estimates of RDS
estimators are compared with true population properties. In each simulation,
seeds are uniformly selected and coupons are randomly distributed to the re-
cruiters’ neighbors. To simulate RDS in real practice, we let the number of seeds
be 10 and the number of distributed coupons be 3 when shorter sample waves
are desirable, and, 6 and 2 for longer sample waves (provided in the supporting
information). Sampling is done without replacement and we choose sample size
500 for Net1 and Net2, and 1000 for the MSM network and Net3. All simulations
are repeated 1000 times.

For each simulation, we estimate the population proportion with our sug-
gested estimators as well as existing estimators. Then, the root mean square
error (RMSE), standard deviation (SD) and bias of estimators are calculated in
order to quantify the results. The estimators are divided into four categories:

(i) The näıve estimator: The raw sample composition;
(ii) Outdegree-based estimators: SHout and V Hout;
(iii) Indegree-based estimators: SHin and V Hin;
(iv) Estimators based on known parameter m∗: SHm∗ and V Hm∗ .
Note that the indegree-based estimators are practically useless, since individ-

ual indegrees are not known from the RDS sample, and are therefore presented
merely for comparison and theoretical purposes.

Additionally, we include the estimator SS (Succesive Sampling) suggested
in [10] for reference; note that this estimator is based on a different estimation
procedure and requires knowledge of the population size (N) in order to yield
correct estimates. Since the SS estimator is developed for RDS on undirected
networks, two versions of it will be used in order to adapt it for use with directed
networks: SSout using outdegrees of respondents in the sample in the estima-
tion procedure and SSin using their indegrees. In the estimation procedure of
SSout and SSin, M = 500 times successive sampling samples per each of r = 3
iterations are used.
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4. Results

4.1. Estimation performance on networks with known properties

4.1.1. Networks with varying structural properties

We start by looking at how varying directedness and attractivity ratio affects
RDS estimators in an otherwise uncomplicated setting, i.e., the generated net-
works with close to zero indegree correlation and no indegree-outdegree correla-
tion, Net1. In Figure 1, the bias, SD and RMSE of the raw sample composition,
V Hout and V Hm∗ are shown in the top row (SHin, SHm∗ , and V Hin perform
very similar to V Hm∗ and are thus left out), and the same figures for V Hm∗ ,
SSout, and SSin are shown in the bottom row for visual clarity.

We can see in the top row that both the raw sample composition and V Hout

are biased with increasing |m∗−1|, and that V Hout has the same level of bias and
RMSE as the sample composition as long as the network is directed, i.e., λ > 0.
The indegree-based estimator, V Hm∗ , generates negligible bias and consistently
smaller RMSE. These results are not surprising, since V Hm∗ is equal to the
sample mean when m∗ = 1, but better utilizes differences in average indegrees
and is expected to perform better when |m∗ − 1| is large.

In the bottom figures, we see that SSin and SSout have varying bias (smaller
than V Hout) as directedness and attractivity ratio changes, while retaining a
substantially lower SD; on the other hand, V Hm∗ has smaller bias but larger
SD. Consequently, the RMSE of SSin and SSout becomes similar with that of
V Hm∗ due to their small SD; sometimes, the RMSE of SSin and SSout is even
smaller than that of V Hm∗ .

The results in Figure 2 for RDS on networks with varying indegree-outdegree
correlation, but no homophily, Net2, are similar to those seen in Figure 1,
except that the bias and RMSE of V Hout now increase gradually with the
directedness of the network, generating bias and RMSE smaller than the raw
sample composition, but larger than V Hm∗ . This effect might come from a
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estimators on Net2, homophily hA = 0.4. The top figures show comparison between V Hm∗ ,
raw sample proportion and V Hout, the bottom figures show comparison between V Hm∗ , SSout

and SSin. Sampling without replacement, number of seeds=10, coupons=3, sample size=500.

lower indegree-outdegree correlation following an increased directedness; the two
estimators both give the same results when λ = 0 (and ρ = 1), but as λ increases,
the indegree-outdegree correlation decreases from 1, and the estimators will
differ. These results indicates that V Hm∗ could be more robust to changes in
indegree-outdegree correlation than previous estimators; it is however hard to
say something in general about the implications of changes in indegree-outdegree
correlation to our estimators.

However, the results for V Hout on Net1 and Net2 shows that for RDS on
networks with indegree-outdegree correlation, the traditional outdegree-based
estimators, can still be expected to give less estimate bias and error than the
raw sample composition, while indegree-outdegree correlation have little effect
on the performance of estimators utilizing known parameters, i.e., SSin, SSout,
and V Hm∗ .

In Figure 3, where homophily h = 0.4, we see that the magnitude of bias,
SD and RMSE all increase for the raw sample composition, V Hout and V Hm∗ ,
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indicating a clear effect of homophily on increasing RDS estimate bias and
error. However, on the other hand, SSin and SSout are quit robust to the effect
of homophily, their SD ([0.008, 0.01]) remains substantially smaller than the rest
estimators ([0.02, 0.04]), and in most cases they produce minimum RMSE.

Overall, it is clear that previous RDS estimators are seriously affected by
letting RDS processes take place on directed networks, and that our suggested
estimators and the SS estimators, although all relying on previous knowledge
about the network, shows major improvements in the quality of estimates.

4.1.2. The MSM network and its modifications

In the MSM network we look at four dichotomous user properties and how the
estimators behave on each of them. As the structural properties of the MSM
network are fixed, we illustrate estimator behavior through box plots, which
are shown in the left panel of Figure 4. In each box, the central line is the
median, the dot is the mean, the edges of the box are the 25th (q1) and 75th
(q3) percentiles. Estimates being at least 1.5(q3 − q1) away from the edges of
the box are shown as outliers beyond the whiskers.

The traditional outdegree-based estimators, SHout and V Hout, have large
bias when estimating variables with large homophily and attractivity ratios
which significantly differ from 1, i.e., age and county. For example, their esti-
mates of the proportion of MSM members who live in Stockholm are on average
over 5 percentage units higher than the true value, and for age, civil status and
profession, the sample mean has even less bias than them.

The indegree-based estimators, SHin and V Hin, are generally much less bi-
ased for all variables, indicating that the indegree is a good approximation of
sampling probability for nodes in directed networks. The m∗-based estimators,
SHm∗ and V Hm∗ , have a similar performance on the biasedness, with slightly
smaller SD.

Lastly, when we look at the N -based estimators, SSout and SSin, they are
biased for all the four variables, however, the (substantially) smaller SD makes
their error lie within an acceptable range compared to SHout and V Hout.

In Figure 5, we can see that the results from simulations on the modified
MSM network, Net3 with indegree correlation γ = 0.4, are very similar to
the results from the unmodified MSM network. The indegree correlation gives
the indegree-based estimators, SHin and V Hin, together with the m∗-based
estimators, SHm∗ and V Hm∗ , a slightly increased bias, however, the overall
performance of these estimators are better than SHout and V Hout.

The results from the two SS estimators are practically unchanged from the
MSM network, which indicates that these estimators are very robust to changes
in indegree correlation. Again we find (substantially) smaller SD over all vari-
ables generated by these estimators, which makes the estimated error of SSout

and SSin comparatively small despite that they are biased on directed networks.
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4.2. Sensitivity analysis

We perform sensitvity analysis on SHm and V Hm with respect to the attrac-
tivity ratio m. The results from the generated networks can be seen in Figure 6.

Figure 6(a) shows how the RMSE of V Hm changes with directedness and
attractivity ratio when different values of m are given to the estimator as sim-
ulations are performed on Net1. It is clear that proper prior information on
m will give small error in the estimator; note also that changes in directedness
does not affect estimator performance.

Figures 6(b) and 6(c) shows the RMSE of V Hm and SHm from simulations
on Net2 with homophily h = 0 and h = 0.4 respectively, and it can be seen
that while the estimators have similar performance when homophily is low,
V Hm generate less RMSE when m is far away from m∗ and homophily is high,
implying that when m∗ is not known, V Hm may be a better option than SHm

in real practice.

In the sensitivity analysis on the MSM network and Net3, which can be
seen on the right side of Figures 4 and 5, there is more variability in the estimates
from age and county than from profession and civil status, as would be expected
from the previous results. We see that the change in V Hm is smaller than in
SHm as m is varied; this is however negligible for profession and civil status.
Generally, we see that we will cover the true value well by using the average
estimates from the sensitivity analysis, which is especially interesting for county,
the only property of which m∗ significantly differs from 1.

Overall, we can see that V Hm performs better than SHm, making it the
preferred choice for RDS in real practice. We also did simulations on the above
networks with 6 seeds and 2 coupons; however, no substantial differences are
found in the results on the performance of estimators nor for the sensitivity
analysis, see supplementary material.

4.3. Confidence interval and implementation

An problem associated with the use of VHm, is to construct a confidence in-
terval around p̂V Hm

A when m∗ = m. Traditionally, the standard error of RDS
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Fig 7. 95% bootstrap coverage probability of p̂V Hout
A

and p̂
VHm∗

A
(shown in brackets) on Net1,

and Net2 with hA = 0.4. Sampling without replacement, number of seeds=10, coupons=3,
sample size=500.

estimates are generated by a bootstrap procedure [34], in which replicated sam-
ples are drawn based on the recruitment property of original RDS samples. We
modify the traditional bootstrap method by letting p̂VHm

A substitute the tra-
ditional RDS estimator when each bootstrapped sample is produced, and then
let the middle 90% (95%) of the ordered estimates from the bootstrap samples’
estimates be the approximation of the confidence interval.

We test the above procedure on Net1 and Net2; for each simulation setting
([λ,m∗, hA]), we take 1000 RDS samples and for each of these 1000 samples we
construct 90% and 95% confidence intervals based on 1000 replicate samples
drawn by the above bootstrap procedure. The proportion of times that the
generated confidence interval contains the true population value p∗A, denoted
as Φ90 and Φ95, are compared with the coverage rates of the traditional RDS
estimator based method and are presented in Figure 7 and Figure 18.

Apparently, due to the large bias of V Hout when network directedness and
attractivity ratio is high, the traditional bootstrap procedure performs quite
poorly with respect to Φ90 and Φ95. The attractivity ratio has substantial im-
pact; when m∗ = 1, the coverage rate is generally close to the desired confidence
level; however, the coverage rate drops rapidly as m∗ deviates away from 1. For
example, when m∗ = 0.8, the coverage rate of the 90% confidence interval is
only 29% even when the network (Net1) is undirected.
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On the other hand, the V Hm-based bootstrap procedure gives reliable and
consistent confidence intervals over all network settings. With the exception of
some extreme cases, i.e., when m∗ ≤ 0.9, λ > 0.6, and hA = 0.4, the coverage
rate is fairly close to the desired confidence level and are overall better than
that of the V Hout-based procedure.

We have also simulated CIs using w∗ in V Hout, i.e., we have replaced m with
w∗ in V Hm. When there is no indegree-outdegree correlation (Net1), the proce-
dure produces no better results than V Hout; when the indegree and outdegree
is correlated (Net2), the procedure generally performs better than the original
method when λ is small, but the coverage rates decrease fast when λ increases
and m∗ deviates from 1 (results not shown).

It is of interest to use the previously suggested sensitivity analysis together
with the given bootstrap procedure. As an illustration on how to implement
the proposed methods in real RDS practice, when indegree information is not
collected, we take data given in [1] and perform sensitivity analysis with V Hm,
providing confidence intervals for all values of m. A sample of 618 drug users
in New York City, and their personal characteristics, were collected using RDS
with eight seeds. By using our methods on this data, we produce estimates
and 90% confidence intervals on the proportion of males and the proportion of
injectors.

It is not obvious which values of m that should be used in the sensitivity
analysis. One suggestion is to let m vary around the observed activity ratio ŵ∗,
since the indegree-outdegree correlation is positive in most social networks [39,
44, 8]. The activity ratio (ŵ∗, weighted) for males is 0.99, indicating that there is
little difference of the size of personal networks with respect to gender. However,
the activity ratio for injectors is 1.58, indicating that injecting drug users know
substantially many more drug users than those who don’t inject drugs. The
length of the interval of m is arbitrarily set to 1.

In Figure 8, we can see that when m = ŵ∗, the VHm estimates are equal to
those given by V Hout. When the network is assumed directed and m ∈ [0.5, 1.5],
the estimated proportion of male drug users will vary from 0.88 to 0.66. The
proportion of injecting drug users, varies from 0.45 to 0.62 when m ∈ [1, 2]. The
m intervals used here are arbitrarily chosen and their precision thus unknown,
and therefore, it is hard to draw major conclusions from this example. However,
the above analysis conveys another important information: for each change of
0.1 in the average indegree ratio, the change in the RDS estimates will be about
2 percentage units, which also may be an indication of how sensitive the RDS
estimates are to uncertainties in the collected degree data.

5. Conclusion and discussion

Despite the widely acknowledged evidence of the existence of directedness among
social networks, the effect of directedness on RDS estimates has seldom been
evaluated. This could be problematic since all previously reported RDS esti-
mates rely on the assumption that the studied networks are purely reciprocal,
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the violation of which will result in unknown biases. To address this situation, we
have extended previous RDS estimators onto directed networks and evaluated
their performance on networks with various structural properties.

Our study shows that the individual indegree is a fair approximation to nodes’
sampling probabilities in a RDS process on a directed network, and that this ap-
proximation is robust to changes in indegree-outdegree correlation and indegree
correlation etc. We have developed a sensitivity analysis method, based on the
attractivity ratio m∗, to incorporate the uncertainties in both network directed-
ness and reported outdegrees. Our results show that, while it is of course best to
have correct indegree information on the network, it is possible to get a deeper
understanding of how RDS estimation is influenced by network directedness by
using sensitivity analysis.

The use of the suggested indegree-based estimators SHm and V Hm brings
new challenges for RDS practice, as indegrees are difficult to collect. However,
firstly, sometimes it is reasonable to make assumptions about the ratios of av-
erage indegrees between studied groups, thus making it possible to utilize our
estimators through sensitivity analysis. To the simplest scenario, for example,
one might assume that those with HIV will be less known compared to those
without in a population where HIV is strongly socially stigmatized; thusm∗ < 1,
and it is safe to chose an interval of m with a maximum value less than 1. Sec-
ondly, since many social networks have positive indegree-outdegree correlation,
the activity ratio ŵ∗, which is observed from the sample, may be an indicator of
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where to vary m from. Thirdly, prior information about m∗ may be obtained by
using empirical studies related to the studied population. For example, in the
Baltimore Needle Exchange Program [42, 37], the authors suggest to use bar-
coded syringes to infer the inner needle exchange network among IDUs, where
“outdegree” is inferred by the number of people who returned each person’s
needles, and “indegree” is the number of people for whom each person returned
needles. While such estimates will contain many uncertainties, the wide exis-
tence of long-term following up studies on the networks of friendship, sexual
behavior, and needle sharing for HIV-related high risk populations, such as the
HIV Transmission Network Metastudy Project [27, 3], enable researchers to gain
a deeper understanding of such populations and thus come closer to inferringm∗

from such populations. Lastly, the rapid increase of internet-based surveys have
pointed out a promising application field for the proposed method. For exam-
ple, when participants are restricted to recruit only through established contacts
on their membership website, a Web-based RDS study would easily adopt the
new method and utilize indegree information which are already available in the
database such as the “qruiser” website used in this study. Additionally, the
indegree-based estimators would have a wide application in sampling web con-
tents, where the indegree of webpages are likely to be more accessible than in
empirical RDS studies.

An alternative to choosing m∗ using one of the methods described above
could be to treat indegrees of sampled individuals as unobserved/latent vari-
ables. Then, given a relation between observed outdegree and indegree utilizing
unknown parameters, the EM algorithm could be used to estimate these pa-
rameters [6]. This will induce a distribution on m, which enables the possibility
of taking the uncertainty of m into account. Another possibility is to use a
Bayesian framework for the process. By assuming a prior distribution for m or
the indegree, and then utilizing the observed outdegree data together with a
relation between outdegree and indegree a posterior distribution for m can be
obtained, and this posterior distribution could then possibly be used in other
RDS studies as prior distribution [12].

From the results of sensitivity analysis on Net1 and Net2, we can see that
the performance of V Hm and SHm is determined primarily by the attractivity
ratio m∗, rather than network directedness λ. Thus, if the network instead is
assumed undirected, in which the ratio of indegrees is equal to the ratio of
outdegrees (m∗ = w∗), the sensitivity analysis may instead be used to assess
the uncertainty of reported (out)degrees. The differential function of V Hm over

m, ∂V Hm

∂m |m=ŵ∗ =(
nA
nB

nA
nB

+m
)′ |m=ŵ∗ = −

nA
nB

(
nA
nB

+ŵ∗)
2 , then provides the magnitude

of how much the RDS estimate would change if there is any reporting error in
the degree information.

Another finding, which has not been highlighted in previous research, con-
cerns the SS estimator [10]. This estimator has small and overall consistent
standard error among the networks tested in our paper. Given that the popu-
lation size is known, this estimator is expected to produce RDS estimates with
acceptable bias and error.
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While it is in the interest of this study to do a full evaluation of RDS on di-
rected networks, it is worth noting that since RDS utilizes a peer-driven mech-
anism, and the recruitment rights are limited and valuable, respondents are
usually inclined to recruit those that they know reasonably well. Such a mecha-
nism to a large extent avoids the occurrence of recruitment via directed edges,
and in most RDS studies, the proportion of recruitment through strangers are
relatively small, usually less than 10% [47, 19, 23, 31, 2]; as pointed out earlier,
this proportion may in some cases be larger though. In our results, we see that
already small proportions of directed edges affects previous estimators, so while
networks with extremely high directedness is very unlikely to occur in reality,
and primarily are included out of theoretical interests, our evaluation shows that
estimators will be sensitive to directedness and that it is therefore an important
issue to address.

For actual RDS practice, network directedness has previously not been a
highlighted issue. The suggested sensitivity analysis gives RDS practitioners the
possibility to take directedness into account as it provides means to understand
the robustness of sample inference to the violation of certain assumptions: that
the network may be partially directed, and that the degree data collected from
respondents may contain reporting error. As there are no methods available on
how to quantify network directedness, an interval of estimates based on a range
of m values is currently the best way of understanding this issue; additionally,
it may give researchers a more detailed image of the situation and advice on
how to understand the studied population.

We hope that the current study can inspire research beyond the purpose of
studying hidden populations, such as sampling the contents of webpages, where
indegree may be used as a cheap and efficient parameter to approximate the
inclusion probability of random walks on internet [9, 30, 38, 13]. Other factors
that might affect inclusion probabilities, such as transitivity, degree distribution,
closeness, etc., yet need to be investigated in future studies.
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Appendix A: Generation process of Net1, Net2 and Net3

A.1. Net1

Net1 is the set of networks with different levels of directedness, in which the
indegree and outdegree are not correlated (ρ ≈ 0).

Step 1 Base network. At first, a random purely directed network (λ = 1) is
generated by randomly distributing ND̄ irreciprocal/directed edges between N
nodes with the restriction that no reciprocal edges should be formed.
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VjViVk Vl

VjViVk Vl

(a)

(b)

Fig 9. Net1: Illustration of the rewiring process leading to a decrease in λ

Step 2 Varying directedness. In order to decrease the directedness to a given
λ ∈ [0.2, 1], irreciprocal edges in the base network are randomly chosen and
rewired to form reciprocal edges. Specifically, at each step, an edge i → j be-
tween nodes vi and vj is randomly chosen; then, if there is no link pointing
from j to i, we randomly find an irreciprocal incoming edge of i, k → i and
an irreciprocal outgoing edge of j, j → l (Figure 9(a)). These edges are then
rewired as k → l, and j → i (Figure 9(b)), such that a new reciprocal pair of
edges i ↔ j is formed, and the degrees of i, j, k and l remain unchanged. The
rewiring process is restarted from the beginning if the network is disconnected.

Step 3 Varying attractivity ratio. Let m∗ be the desired attractivity ratio.
For each network generated in Step 2, NP ∗ (0 < P ∗ < 1) nodes are randomly
picked and assigned property A, and the remaining nodes are assigned property

B. Then, the attractivity ratio of the network, m′ =
d̄in
A

d̄in
B

, where d̄inA , d̄inB are the

average indegrees of nodes with property A and B respectively, is calculated. If
m′ 6= m∗, the following algorithm is carried out in order to generate a network
with the required m∗ value:

(i) Randomly pick two nodes, vi and vj , with different properties;
(ii) If m′ > m∗ and d̄inA > d̄inB , exchange the property of vi and vj ;
(iii) Else if m′ < m∗ and dinA < dinB , exchange the property of vi and vj ;
(iv) Repeat (i)-(iii) until m′ = m∗.
Step 4 A random undirected network of the same size and average degree is

generated separately for λ = 0, and the method described in Step 3 is used to
generate different m∗ values in this network.

A.2. Net2

Net2 is the set of networks with a certain amount of indegree-outdegree corre-
lation and different levels of directedness and homophily.

Step 1 Base network. At first, a random purely undirected network (λ = 0) is
generated by randomly distributing ND̄/2 reciprocal/undirected pairs of edges
between N nodes.

Step 2 Varying directedness. In order to increase the directedness to a given
λ ∈ [0, 1], reciprocal edges in the base network are randomly chosen and rewired
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Vk Vl

(a)

(b)

VjVi

Vk VlVjVi

Fig 10. Net2: Illustration of the rewire process carried out to increase λ

to form irreciprocal edges. Specifically, in each step, a pair of reciprocal edges
i ↔ j is randomly chosen. If there is no link between two randomly chosen nodes
k and l (Figure 10(a)), then we randomly pick one of the two links between i
and j and use it to connect k and l (Figure 10(b)). Such a process leads to an
indegree-outdegree correlation ρ ≈ 1−λ. The rewiring process is restarted from
the beginning if the network is disconnected.

Step 3 Varying attractivity ratio. The same process as described in Step 3
in Section A.1 is used to generate different m∗ values for each network generated
in Step 2.

Step 4 Homophily. In order to generate networks with different homophily
for group A, hA, links are further rewired in each network generated in Step 3,
Let h′

A be the homophily of group A in the current network. At each step, either
a pair of irreciprocal links or reciprocal links are randomly picked (Figure 11); if
h′
A > hA, meaning that there are too many within-group connections, we rewire

the within group links, i → k, l → j (or i ↔ k, l ↔ j), to i → j, k → l (or
i ↔ j, k ↔ l), or vice versa if h′

A < hA. The above process is repeated until
h′
A = hA.

(a)

VjVi

VlVk

VjVi

VlVk

(b)

(c)

VjVi

VlVk

VjVi

VlVk

(d)

Fig 11. Net2: Illustration of the rewire process resulting in a change of hA. Red: trait A,
Blue: trait B
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VjVi

VlVk

VjVi

VlVk

(a) (b)

Fig 12. Net3: Illustration of the shuffling process used for network generation. Vj and Vl have
the same property.

A.3. Net3

Net3 is the set of networks with different levels of indegree correlation (γ ∈
[0, 0.4]), varied from the MSM network; all four node properties (age, county,
civil status and profession) are kept.

Step1 Base network. The MSM friendship network obtained from the web
community [33, 22].

Step2 Varying γ. A shuffling method slightly different from what was de-
scribed in [48] is used to generate networks with different indegree correlation.
At each step, we randomly pick a pair of edges, i → j, k → l (Figure 12). If
the indegrees of i and l are the two largest or the two smallest among the four
nodes, and j and l have the same property, we rewire the two edges as i → l,
k → j. Then, the degree distribution and homophily of the network is kept,
and the indegree correlation increases as the rewiring process progresses. We
generate networks with γ up to 0.4 for each of the four properties in the MSM
network.

Appendix B: Discussions on the estimate of S∗

XY
in SHin

It can be proven that when the network is undirected, a node will be recruited
into a RDS sample with a probability proportional to its degree if the assump-
tions for SHout are fulfilled [35, 43]: {πi ∼ di/

∑

i di}. Consequently, each edge
in the network, {ei→j}, has a probability {πi→j = πi/di ∼ 1/

∑

i di} to be sam-
pled, and the observed recruitment matrix from the RDS sample is an unbiased
estimate of S∗.

However, when the network is directed, the inclusion probability for a node is
no longer proportional to its degree, and the observed recruitment matrix from
the sample will be representative only if individuals of the same group have
similar edge formations, i.e., the personal recruitment matrix, {S∗

XY (i)}, is the
same for individuals in group X . Then, the observed raw recruitment matrix
could be an appropriate estimate of S∗

XY .
A more general way is to develop a Hansen-Hurwitz type estimator for S∗

XY

using the edges’ inclusion probabilities ({πi→j = πi/d
out
i }):

ŝXY =

∑

i→j,i∈X,j∈Y

dout
j

πi

∑

i→j,i∈X

dout
j

πi

, (18)
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whereX and Y are the set of nodes with corresponding properties in the sample.
Since {πi} is usually not known when knowledge about the structure of the
network is incomplete, we might use the mean field approach to approximate
{πi} with the average inclusion probability for nodes within group X :

ŝXY =

∑

i→j,i∈X,j∈Y

dout
j

πX

∑

i→j,i∈X

dout
j

πX

=

∑

i→j,i∈X,j∈Y doutj
∑

i→j,i∈X doutj

. (19)

Frankly, both using the observed recruitment matrix from the sample, and
approximating as described by (19), are brutal methods for estimating S∗

XY . We
have tried both in the SHin estimator; however, it turns out that the adjustment
for ŝ made by (19) always generates larger error and bias; we thus only provide
the discussions here and choose not to show any results in the paper.

Appendix C: Supporting figures

0
0.5

1

0.8
1

1.2

0

0.05

0.1

B
ia

s

0
0.5

1

0.8
1

1.2

0

0.01

0.02

0.03

S
D

0
0.5

1

0.8
1

1.2

0

0.05

0.1

R
M

S
E

0
0.5

1

0.8
1

1.2

0

0.05

0.1

B
ia

s

0
0.5

1

0.8
1

1.2

0

0.01

0.02

0.03

S
D

0
0.5

1

0.8
1

1.2

0

0.05

0.1

R
M

S
E

Raw

V Hout

V Hm∗

V Hm∗

SSout

SSin

m∗

direct
edness (λ) m∗

direct
edness (λ) m∗

direct
edness (λ)

m∗

direct
edness (λ)m∗

direct
edness (λ)m∗

direct
edness (λ)
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Fig 14. Bias (left), Standard Deviation (middle), and Root Mean Square Error (right) of RDS
estimators on Net2, homophily hA = 0. The top figures show comparison between V Hm∗ , raw
sample proportion and V Hout, the bottom figures show comparison between V Hm∗ , SSout

and SSin. Sampling without replacement, number of seeds=6, coupons=2, sample size=500.
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Fig 15. Bias (left), Standard Deviation (middle), and Root Mean Square Error (right) RDS
estimators on Net2, homophily hA = 0.4. The top figures show comparison between V Hm∗ ,
raw sample proportion and V Hout, the bottom figures show comparison between V Hm∗ , SSout

and SSin. Sampling without replacement, number of seeds=6, coupons=2, sample size=500.
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Fig 18. 90% and 95% bootstrap coverage probability of p̂V Hout
A

and p̂
VHm∗

A
(shown in brack-

ets) on Net1, and Net2. Sampling without replacement, number of seeds=10, coupons=3,
sample size=500.
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 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4   0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 

0.0 .16 (.91) .44 (.88) .75 (.89) .91 (.90) .73 (.91) .37 (.90) .11 (.90) .01 (.88)  0.0 .23 (.95) .55 (.95) .83 (.95) .96 (.96) .82 (.96) .49 (.94) .18 (.95) .02 (.94) 

0.2 .17 (.89) .46 (.91) .74 (.90) .90 (.91) .77 (.89) .42 (.90) .14 (.92) .02 (.91)  0.2 .26 (.94) .59 (.95) .85 (.95) .95 (.96) .86 (.95) .55 (.95) .22 (.97) .04 (.96) 

0.4 .14 (.90) .42 (.91) .73 (.90) .90 (.90) .74 (.91) .43 (.90) .17 (.92) .02 (.91)  0.4 .22 (.94) .55 (.96) .82 (.95) .96 (.95) .85 (.95) .57 (.95) .26 (.96) .05 (.96) 

0.6 .11 (.88) .43 (.90) .77 (.91) .91 (.90) .76 (.90) .48 (.91) .21 (.89) .04 (.88)  0.6 .18 (.94) .55 (.94) .84 (.96) .96 (.95) .85 (.95) .64 (.96) .32 (.95) .08 (.93) 

0.8 .08 (.89) .38 (.92) .73 (.89) .91 (.91) .75 (.91) .50 (.90) .21 (.90) .06 (.86)  0.8 .15 (.94) .50 (.96) .83 (.95) .96 (.96) .84 (.95) .62 (.96) .31 (.95) .11 (.92) 

1.0 .06 (.90) .37 (.90) .68 (.92) .91 (.93) .76 (.90) .48 (.89) .20 (.89) .07 (.88)  1.0 .12 (.95) .48 (.95) .78 (.96) .95 (.97) .86 (.96) .60 (.95) .31 (.94) .13 (.94) 

 

 
 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4   0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 

0.0 .23 (.90) .55 (.89) .83 (.91) .96 (.92) .82 (.91) .49 (.91) .18 (.91) .02 (.92)  0.0 .80 (.95) .89 (.94) .93 (.96) .96 (.96) .94 (.96) .88 (.95) .79 (.96) .61 (.96) 

0.2 .26 (.89) .59 (.89) .85 (.89) .95 (.92) .86 (.89) .55 (.91) .22 (.90) .04 (.91)  0.2 .63 (.94) .79 (.94) .91 (.94) .96 (.95) .93 (.95) .84 (.95) .67 (.95) .51 (.95) 

0.4 .22 (.81) .55 (.86) .82 (.89) .96 (.90) .85 (.90) .57 (.90) .26 (.90) .05 (.89)  0.4 .46 (.86) .70 (.92) .89 (.94) .96 (.95) .90 (.95) .78 (.95) .56 (.95) .36 (.94) 

0.6 .18 (.64) .55 (.85) .84 (.89) .96 (.91) .85 (.92) .64 (.88) .32 (.87) .08 (.84)  0.6 .24 (.76) .64 (.91) .86 (.94) .96 (.96) .89 (.96) .69 (.94) .42 (.93) .23 (.90) 

0.8 .15 (.53) .50 (.75) .83 (.85) .96 (.92) .84 (.91) .62 (.83) .31 (.85) .11 (.80)  0.8 .12 (.65) .46 (.83) .82 (.92) .95 (.96) .86 (.96) .61 (.91) .37 (.91) .14 (.89) 

1.0 .12 (.25) .48 (.59) .78 (.84) .95 (.90) .86 (.91) .60 (.85) .31 (.80) .13 (.77)  1.0 .02 (.35) .26 (.71) .79 (.92) .96 (.95) .89 (.95) .55 (.92) .26 (.89) .07 (.86) 
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Fig 19. 90% and 95% bootstrap coverage probability of p̂V Hout
A

and p̂
VHm∗

A
(shown in brack-

ets) on Net1 and Net2. Sampling without replacement, number of seeds=6, coupons=2, sample
size=500.
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