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Abstract. The joint modeling of mean and dispersion has been used to model
many problems in statistics, especially in industry, where not only the mean
of response, but also the dispersion depends on the covariates. In scientific
research, one of the crucial points is the experimental design, which when
properly implemented, will create a reliable structure, essential to improve
the statistical inference and for the development of the next phases of the
experimental process. The theory of optimal design of experiments is a pow-
erful and flexible approach to generate efficient experimental designs. In the
context of optimal designs, the General Equivalence Theorem plays a fun-
damental role, because it permits to check if a design found is optimal. In
this article, we investigated the validity of the General Equivalence Theorem
for obtaining Bayesian D and DS optimal designs in joint generalized linear
models for the mean and dispersion.

1 Introduction

In many real problems, not only the mean but also, in the more general case, the
dispersion depends on a set of explanatory variables. Thus, the analysis of such
problems requires the joint modeling of mean and dispersion (JMMD) that usually
can be performed by using two interlinked generalized linear models. Joint gen-
eralized linear models of the mean and dispersion were introduced by Nelder and
Lee (1991) as an alternative to Taguchi’s methods in quality-improvement exper-
iment. Further examples appeared in Lee and Nelder (1998) and Lee and Nelder
(2003).

As well as modeling, experimentation plays an important part in the scientific
method. For experimental data, proper estimation of model parameters depends on
well-designed experiments. When conducting an experiment there are many de-
sign issues to consider, including deciding which treatments to study, which factors
to control, what aspects of an experiment to randomize, how many experimental
units are needed, how many replications should be allocated to each treatment, or
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what levels of other input or control variables should be used. Limitations due to
costs, time, ethics or human resources are such that sample sizes are usually re-
stricted, therefore, efficient use of available resources is critical. The purpose of
optimal experimental design is to improve statistical inference regarding the quan-
tities of interest by optimally selecting the combinations of levels of design factors
under the control of the investigator, within, of course, the constraints of available
resources (Clyde, 2001).

When we consider obtaining optimal designs for generalized linear or nonlin-
ear models, we come across the problem of dependence of the design on the val-
ues of the parameters being estimated. One way to overcome this problem is to
consider Bayesian experimental designs. The Bayesian approach to experimen-
tal design provides a way to incorporate prior information in the design process.
Bayesian approaches to the optimal design of experiments, when the statistical
model is nonlinear, have been reviewed by Atkinson et al. (2007) and by Chaloner
and Verdinelli (1995). In the theory of optimal designs, the General Equivalence
Theorem (GET) proposed by Kiefer and Wolfowitz (1960) and Kiefer (1974) plays
an important role. Most algorithms that search for optimal designs make use of the
GET given that it provides a way to verify whether a given design is in fact optimal.
Without some sort of version of a GET, construction of D-optimal designs reduces
to a difficult optimization problem with multiple maxima and no mechanism for
assessing when the optimum has been obtained (Atkinson and Cook, 1995). An ex-
tension of GET to Bayesian D-optimality is given by Chaloner and Larntz (1989)
and, for a more general case, by Firth and Hinde (1997), both following Whittle
(1973).

Bayesian optimal designs for JMMD was introduced by Pinto and Ponce de
Leon (2004) and Pinto and Ponce de Leon (2007), however, the validity of the
General Equivalence Theorem has not been proven anywhere. In this article, we
prove the validity of the GET for obtaining Bayesian D and DS -optimal designs
in joint generalized linear models for the mean and dispersion, following Chaloner
and Larntz (1989).

In Section 2, we present the Equivalence Theory for nonlinear models and the
Whittle’s Theorem, that will be the basis of our work. In Section 3, we present the
theory of the joint modeling of mean and dispersion and introduce the Bayesian
version of the criteria for D and DS -optimality, as well as the version of the GET
for the JMMD. Final considerations are given in Section 4.

2 Equivalence theory

Let X be a compact set representing the design region. Define � to be the set of
all probability measures over X and consider a continuous design, represented by
the measure ξ ∈ �, satisfying the conditions: ξ(u) ≥ 0 and

∫
X dξ(u) = 1 for all

u ∈ X . The total information or the expected Fisher information matrix M(θ |ξ) is
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obtained as the expected Fisher information matrix per observation, with respect
to the design measure ξ on X , that is,

M(θ |ξ) =
∫
X

I(u|θ) dξ(u). (2.1)

The design problem consists in finding a measure ξ∗ in � that maximizes a
criterion function �(M(θ |ξ)), which for nonlinear models is dependent on the
value of parameter θ . For two measures ξ1 and ξ2 in �, the Fréchet derivative of
� at M1 = M(θ |ξ1) in the direction of M2 = M(θ |ξ2) is defined, when the limit
exists, by

F�(M1,M2) = lim
ε→0+

1

ε

{
�

[
(1 − ε)M1 + εM2

] − �(M1)
}

(2.2)

with � :M → R, where M = {M(θ |ξ) : ξ ∈ �, θ ∈ �} and � is the parameter
space. We denote ξu as the measure that puts point mass at a single point u in X ,
and further define D�(u, θ, ξ) = F�[M(θ |ξ),M(θ |ξu)].

The theorem proposed by Whittle (1973) for linear models and used by
Chaloner and Larntz (1989) for nonlinear models forms the basis for checking
whether particular designs are optimal or not and is reproduced below in our nota-
tion.

Theorem 2.1 (Whittle, 1973). If � is concave, then a �-optimal design ξ∗ can
be equivalently characterized by any of the three conditions:

(i) ξ∗ maximizes �;
(ii) ξ∗ minimizes supu∈X D�(u, θ, ξ);

(iii) supu∈X D�(u, θ, ξ∗) = 0.

As pointed out by Chaloner and Larntz (1989), the proof of Whittle’s Theorem,
for linear design problems, can be applied to general nonlinear problems under
the following additional assumptions, namely X is a compact set, the derivatives
exist and are continuous in u ∈ X , there is at least one measure in � for which �

is finite, and � is such that if ξi → ξ in weak convergence then �(M(θ |ξi)) →
�(M(θ |ξ)).

3 General Equivalence Theorem for the joint modeling of mean and
dispersion

Let x be a vector representing the set of factors presumed to influence the response
expected value and let z be a vector representing the set of factors presumed to
influence the dispersion. Let u be a vector containing factors occurring in x and in
z. We allow z to contain some or all of the elements of x as well as other elements.
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For the joint modeling of the mean and dispersion, let yu be the response to
be observed in the experimental unit u ∈ X . Suppose that the distribution of Y is
unknown, nevertheless, it is assumed that E(Yu) = μu and Var(Yu) = φuV (μu),
where φu is the dispersion parameter and V (·) is the variance function. Let k be
a link function for the mean model, that is, ηu = k(μu) = ft (xu)β , with ft (xu) =
[f1(xu), . . . , fp(xu)], where fj (xu), for j = 1, . . . , p, is a known function of xu

and β is a p × 1 vector of unknown parameters; for the dispersion model, let
l be the link function, usually ln, that is, τu = l(φu) = gt (zu)γ , with gt (zu) =
[g1(zu), . . . , gq(zu)], where gj (zu), for j = 1, . . . , q , is a known function of zu

and γ is a q × 1 vector of unknown parameters. We are considering that f1(xu) =
g1(zu) = 1.

Using the extended quasi likelihood as a criterion of estimation and supposing
the model for dispersion as gamma (see Pinto and Ponce de Leon, 2004), the quasi
Fisher information matrix per observation is given by

IC(u|θ) =
[
wuf(xu)ft (xu) 0

0 vug(zu)gt (zu)

]
, (3.1)

where θ t = (β t ,γ t ), wu = (
∂μu

∂ηu
)
2 1

φuV (μu)
and vu = (

∂φu

∂τu
)
2 1

2φ2
u

.

For a design ξ ∈ �, the quasi information matrix for the JMMD is given by

MC(θ |ξ) =
∫
X

IC(u|θ) dξ(u) =
[

C 0
0 D

]
, (3.2)

where C = C(θ |ξ) = ∫
X wuf(xu)ft (xu) dξ(u) and D = D(θ |ξ) = ∫

X vug(zu) ×
gt (zu) dξ(u).

Note that the quasi information matrix MC(θ |ξ) depends on the value of the pa-
rameter θ . In this case, we will use the Bayesian approach as described by Chaloner
and Larntz (1989) and Atkinson et al. (2007) for nonlinear models.

3.1 Bayesian D-optimal criterion

The Bayesian D-optimal criterion for the JMMD is defined as

ψ
(
MC(θ |ξ)

) = Eθ

[
ln

∣∣MC(θ |ξ)
∣∣], (3.3)

with ψ :M → R, where M = {MC(θ |ξ) : ξ ∈ �, θ ∈ �}, Eθ refers to expecta-
tion with respect to a prior distribution on θ and ln |MC(θ |ξ)| represents the nat-
ural logarithm of the determinant of the quasi information matrix. In this way, the
Bayesian D-optimal problem consists of finding the design measure ξ∗, from a
specified class of design measures �, that maximizes ψ .

Proposition 3.1. The Bayesian criterion function ψ = Eθ [ln |MC(θ |ξ)|] is strictly
concave over M+, the subset of M where ψ is finite.

Let the quasi information matrix associated to the design ξu, which puts point
mass at a single point u in X , be denoted by MC(θ |ξu).
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Proposition 3.2. The Fréchet derivative of the criterion function ψ at MC(θ |ξ) in
the direction of MC(θ |ξu) is given by

Dψ(u, ξ) = Eθ

[
tr

(
MCuM−1

C

)] − t, (3.4)

where MC = MC(θ |ξ), MCu = MC(θ |ξu), t is the number of parameters in the
models of the mean and dispersion and tr(·) represents the operator trace.

In (3.4) MCu = IC(u|θ) is given in (3.1), thus

Dψ(u, ξ) = Eθ

[
wuft (xu)C−1f(xu) + vugt (zu)D−1g(zu)

] − t. (3.5)

We further define the sensitivity function as dψ(u, ξ) = Eθ [tr(MCuM−1
C )],

thereby the sensitivity function at the point u is given by

dψ(u, ξ) = Eθ

[
wuft (xu)C−1f(xu) + vugt (zu)D−1g(zu)

]
. (3.6)

Theorem 3.1 (GET). Let � be the class of all probability measures on X . Let
ψ = Eθ [ln |MC(θ |ξ)|] be the Bayesian D-optimal criterion for the JMMD. Then
a ψ-optimal design ξ∗ can be equivalently characterized by any of the three con-
ditions.

(a) The design ξ∗ maximizes ψ over �;
(b) ξ∗ minimizes supu∈X Dψ(u, ξ);
(c) supu∈X dψ(u, ξ) = t .

Where Dψ(u, ξ) and dψ(u, ξ) are given in (3.5) and (3.6), respectively and t is the
number of parameters in the models of the mean and dispersion.

As ψ = Eθ [ln |MC(θ |ξ)|] is a concave function by Proposition 3.1, the proof
of Theorem 3.1 follows directly from Chaloner and Larntz (1989) using the Theo-
rem 2.1.

3.2 Bayesian DS -optimal criterion

The theory of DS -optimality consists in finding optimal designs when we have
no interest in the estimation of all parameters in the model. DS -optimality is a
particular case of T -optimality when we are interested in discriminating between
two nested models (see Atkinson et al., 2007 and Silvey, 1980).

For the JMMD, we could be interested in a reduced number of parameters both
in the mean model as in the dispersion model. Suppose that we are interested in
sm parameters in the mean model and in sd parameters in the dispersion model,
with 1 ≤ sm ≤ p and 1 ≤ sd ≤ q . Thus, we can write ft (xu) = (ft1(xu), ft2(xu))

and gt (zu) = (gt
1(zu),gt

2(zu)) with ft1(xu) = (f1(xu), . . . , fsm(xu)), ft2(xu) =
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(fsm+1(xu), . . . , fp(xu)), gt
1(zu) = (g1(zu), . . . , gsd (zu)) and gt

2(zu) = (gsd+1(zu),

. . . , gq(zu)). The quasi information matrix for the JMMD, given in (3.2), can be
written as follows

MC(θ |ξ) =

⎡
⎢⎢⎣

C11 C12 0 0
C21 C22 0 0

0 0 D11 D12
0 0 D21 D22

⎤
⎥⎥⎦ , (3.7)

where Cij = Cij (θ |ξ) = ∫
X wufi(xu)ftj (xu) dξ(u) and Dij = Dij (θ |ξ) =∫

X vugi (zu)gt
j (zu) dξ(u), for i, j = 1,2. Thus, considering the Bayesian approach,

Pinto and Ponce de Leon (2007) proposed the Bayesian criterion function for the
DS -optimality as follows

ϕ
[
MC(θ |ξ)

] = Eθ

{
ln

[ |C|
|C22|

]
+ ln

[ |D|
|D22|

]}
, (3.8)

with ϕ :M → R, where M = {MC(θ |ξ) : ξ ∈ �, θ ∈ �}, Eθ refers to expectation
with respect to a prior distribution on θ , ln represents the natural logarithm and |B|
represents the determinant of the matrix B. In this way, the Bayesian DS -optimal
problem consists of finding the design measure ξ∗, from a specified class of design
measures �, that maximizes ϕ.

Proposition 3.3. The Bayesian criterion function ϕ is strictly concave over M+,
the subset of M where ϕ is finite.

The Fréchet derivative for DS -optimality of ϕ at MC1 in the direction of MC2 ,
where MC1 = MC(θ |ξ1), MC2 = MC(θ |ξ2) and ξ1, ξ2 ∈ �, is given by

Fϕ(MC1,MC2) = Eθ [tr(C2C−1
1

) − tr
(
C2,22C−1

1,22

)
(3.9)

+ tr
(
D2D−1

1

) − tr
(
D2,22D−1

1,22

)] − s,

where s = sm + sd , Cj = C(θ |ξj ), Dj = D(θ |ξj ), Cj,22 = C22(θ |ξj ) and Dj,22 =
D22(θ |ξj ), for j = 1,2. The proof of (3.9), given by Pinto and Ponce de Leon
(2007), is conducted showing that

Fϕ(MC1,MC2) = Fψ(C1,C2) − Fψ(C1,22,C2,22)
(3.10)

+ Fψ(D1,D2) − Fψ(D1,22,D2,22),

where Fψ(M1,M2) = Eθ [tr(M2M−1
1 )] − m is the Fréchet derivative for the

Bayesian D-optimality of ψ at M1 = M(θ |ξ1) in direction of M2 = M(θ |ξ2), as
shown by Proposition 3.2. Here, m = dim(M1) = dim(M2), where dim(A) repre-
sents the dimension of the square matrix A.



Bayesian D-optimal design in joint generalized linear models 489

Thus, using (3.9), the Fréchet derivative of ϕ at MC = MC(θ |ξ) in the direction
of MCu = MC(θ |ξu) is given by

Dϕ(u, ξ) = Fϕ(MC,MCu)

= Eθ [tr(CuC−1) − tr
(
Cu,22C−1

22

)
(3.11)

+ tr
(
DuD−1) − tr

(
Du,22D−1

22

)] − s,

where Cu = wuf(xu)ft (xu), Cu,22 = wuf2(xu)ft2(xu), Du = vug(zu)gt (zu), Du,22 =
vug2(zu)gt

2(zu), thus

Dϕ(u, ξ) = Eθ [wuft (xu)C−1f(xu) + vugt (zu)D−1g(zu)
(3.12)

− wuft2(xu)C
−1
22 f2(xu) − vugt

2(zu)D
−1
22 g2(zu)

] − s.

As before, the sensitivity function at the point u is defined as

dϕ(u, ξ) = Eθ {wu

[
ft (xu)C−1f(xu) − ft2(xu)C

−1
22 f2(xu)

]
(3.13)

+ vu

[
gt (zu)D−1g(zu) − gt

2(zu)D
−1
22 g2(zu)

]}
.

Theorem 3.2 (GET). Let � denote the class of all probability measures on X . Let
ϕ be the Bayesian DS -optimal criterion for the JMMD. Then a ϕ-optimal design
ξ∗ can be equivalently characterized by any of the three conditions.

(a) The design ξ∗ maximizes ϕ over �;
(b) ξ∗ minimizes supu∈X Dϕ(u, ξ);
(c) supu∈X dϕ(u, ξ) = s.

Where Dϕ(u, ξ) and dϕ(u, ξ) are given in (3.12) and (3.13), respectively and s =
sm + sd .

Again, as ϕ is a concave function by Proposition 3.3, the proof of Theorem 3.2
follows directly from Chaloner and Larntz (1989) using the Theorem 2.1.

4 Final considerations

The attainment of optimal designs for joint models of mean and dispersion is very
important, specially in quality-improvement experiments, because it promotes the
reduction of the number of points to be considered in the experiment, resulting in
savings of both time and money. The optimal design ensures the model parameters
will be estimated as best as possible. The General Equivalence Theorem enables
optimal designs to be found, giving a form to verify if in fact the design at hand is
optimal. For more details and examples about optimal designs for the JMMD see
Pinto and Ponce de Leon (2004) and Pinto and Ponce de Leon (2007).
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Appendix

A.1 Proof of the Proposition 3.1

We consider MC1 = MC(θ |ξ1), MC2 = MC(θ |ξ2) two information matrices based
on the designs ξ1 and ξ2, respectively. Let be 0 < α < 1 a real number. Then
for ψ[MC(θ |ξ)] = Eθ [ln |MC(θ |ξ)|] we have that ψ[αMC1 + (1 − α)MC2] =
Eθ [ln |αMC1 + (1 − α)MC2 |] > Eθ [ln |MC1 |α + ln |MC2 |(1−α)] = αEθ ln |MC1 | +
(1 − α)Eθ ln |MC2 | = αψ(MC1) + (1 − α)ψ(MC2).

A.2 Proof of the Proposition 3.2

The Fréchet derivative of the function ψ at MC = MC(θ |ξ) in the direction
of MCu = MC(θ |ξu) is given by Fψ(MC,MCu) = limε→0+ 1

ε
{ψ[(1 − ε)MC +

εMCu] − ψ(MC)}.
Our proof is based on Silvey (1980, page 21). The Bayesian criterion for the

D-optimality is ψ = Eθ [ln |MC(θ |ξ)|]. We start by calculating Fψ(MC,MCu) for
nonsingular MC and the Fréchet derivative via the Gâutex derivative given by
Gψ(MC,MCu) = limε→0+ 1

ε
{ψ[MC + MCu] − ψ(MC)}. Then, Gψ(MC,MCu) =

limε→0+ 1
ε
{Eθ ln |(MC + εMCu)| − Eθ ln |MC |} = limε→0+ 1

ε
{Eθ ln[|(MC +

εMCu)||MC |−1]} = limε→0+ 1
ε
{Eθ ln[|(It + εMCuM−1

C |]} = limε→0+ 1
ε
{Eθ ln[1 +

ε tr(MCuM−1
C ) + O(ε2)]} = limε→0+ 1

ε
Eθ {ε tr(MCuM−1

C ) + O(ε2)]} =
Eθ limε→0+ 1

ε
[ε tr(MCuM−1

C ) + O(ε2)] = Eθ [tr(MCuM−1
C )]. Here, It is the iden-

tity matrix t × t .
It is known that (see Silvey, 1980) Fψ(MC,MCu) = Gψ(MC,MCu − MC) =

Eθ {tr[(MCu − MC)M−1
C )]} = Eθ {tr[(MCuM−1

C − It ))]} = Eθ {tr[MCuM−1
C ]} − t .

A.3 Proof of the Proposition 3.3

We Consider the matrix MC = MC(θ |ξ) partitioned as the equation (3.7),
let be MC1 = MC(θ |ξ1), MC2 = MC(θ |ξ2), also partitioned as the equation
(3.7), two quasi information matrices based on the designs ξ1 and ξ2, respec-
tively. The Bayesian criterion for the DS -optimality is ϕ[MC] = Eθ {ln[ |C|

|C22| ] +
ln[ |D|

|D22| ]}. Let be 0 < α < 1 a real number, then ϕ[αMC1 + (1 − α)MC2] =
Eθ {ln[ |αC1+(1−α)C2||αC1,22+(1−α)C2,22| ] + ln[ |αD1+(1−α)D2||αD1,22+(1−α)D2,22| ]} = Eθ {ln |αC1 + (1 − α)C2| +
ln |αC1,22 + (1 − α)C2,22|−1 + ln |αD1 + (1 − α)D2| + ln |αD1,22 + (1 − α) ×
D2,22|−1} > Eθ {ln[|C1|α|C2|(1−α)] + ln[|C1,22|−α|C2,22|−(1−α)] + ln[|D1|α ×
|D2|(1−α)] + ln[|D1,22|−α|D2,22|−(1−α)]} = Eθ {α[ln(

|C1||C1,22|) + ln(
|D1||D1,22|)] + (1 −

α)[ln(
|C2||C2,22|) + ln(

|D2||D2,22|)]} = αϕ(MC1) + (1 − α)ϕ(MC2). The properties about
determinants can be found in Fedorov (1972).
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