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Comment on Article by Scutari

Hao Wang ˚

Scutari’s paper studies properties of the distribution of graphs ppGq. This is an interest-
ing angle because it differs from many works that focus on distributions over parameter
spaces for a given graph ppΘ | Gq. The paper’s investigation of ppGq centers around its
implied covariance matrix Σ “ CovpGq. The major theoretical results, as I see it, con-
cern eigenvalues of Σ as well as variance and covariance elements of Σ in the maximum
entropy case for DAGs (i.e., a uniform distribution over all DAGs). While these results
are certainly very worth noting by their own intellectual merits, what practical differ-
ence they might make is unclear to me. Eigenvalues of Σ might be hard to interpret in
terms of their intuitive connections with underlying graph structures. The maximum
entropy case is somehow limited as it is rarely the case for posterior graph distributions
and is also often less preferred than sparser cases for prior graph distributions. More
discussions on the implications of these theoretical results on real data analysis will be
very helpful.

The more general point raised by the paper is more interesting to me. It calls atten-
tion to deeper investigation on statistical properties of distributions of graphs ppGq. In
the literature of my own research topic of Gaussian graphical models (Dempster 1972),
existing studies usually only focus on a point estimation of G from ppGq – the mean
or the mode of ppGq is often used to represent prior belief or to summarize posterior
information. The paper’s framework extends this sort of simple summary to the covari-
ance matrix Σ of ppGq. It is then tempting to ask what will be gained from these extra
efforts. Specific questions include how to construct a prior ppGq with a consideration
beyond the implied mean or mode graphs, and how to put Σ into a perspective that
better illustrates graph structures than a point estimate alone.

I attempt to explore these questions in this discussion from a more applied point of view
than the paper. In addition, I have some doubts about the paper’s argument of using
variability measures in choosing learning algorithms or hyperparameters. The context
of my discussion is Gaussian graphical models under a fully Bayesian treatment (Jones
et al. 2005). Generalizations of the following points might be made to other undirected
graphs or even DAGs too.

1 Distribution ppGq and its covariance matrix

Similar to the paper, I use the edge set to represent a graph G. Let eij be the binary
edge inclusion indictor variable, that is, eij “ 1 if there is an edge between nodes i
and j in G, and eij “ 0 otherwise. Then the set of k “ ppp ´ 1q{2 binary variables
E “ teiju1ďiăjďp can be used in place of G. The distribution of graphs is ppEq and the
implied k ˆ k covariance matrix is Σ “ CovpEq.
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I start with the prior distribution of graphs ppEq. Perhaps the most commonly used
ppEq is the independent and identically distributed Bernoulli priors, namely

eij
iid
„ Bernpβq, 1 ď i ă j ď p, 0 ă β ă 1. (1)

The iid assumption makes the investigation of prior properties simple. One just needs
to focus on the marginal distribution Bernpβq. In this sense, the author’s results
based on Σ are less meaningful because here Σ has a simple diagonal matrix struc-
ture Σ “ βp1 ´ βqIk. The significance of the proposed framework for the prior only
comes when these binary variables in E are dependent. This poses a challenge about hy-
perparameter specification for such multivariate Bernoulli distributions as the number
of hyperparameters explodes quickly as p grows. The covariance matrix of the multivari-
ate Bernoulli alone requires kpk ` 1q{2 “ Opp4q parameters. Therefore, moving beyond
the independent Bernoulli case (1) requires an easy approach to construct interpretable
dependent Bernoulli priors for E . The question is how to develop such approaches.

I found one simple construction of multivariate dependent Bernoulli distributions al-
ready exists in the literature. The hierarchical prior (e.g, Scott and Carvalho 2008,
Wang 2010) belongs to the multivariate Bernoulli distribution framework. It modifies
the independent prior (1) by treating β as unknown and placing another hierarchy in
the form of a beta distribution on it:

eij
iid
„ Bernpβq, 1 ď i ă j ď p, β „ Betapa, bq, a, b ą 0. (2)

Clearly, marginalizing β in (2) gives the following first and second moments of eij :

Epeijq “
a

a ` b
, Varpeijq “

ab

pa ` bq2
,

Covpeij , eklq “
ab

pa ` bq2pa ` b ` 1q
, Corrpeij , eklq “

1

pa ` b ` 1q
. (3)

Thus, eij ’s are no longer independent but have constant values of variances and covari-
ances. Focus on a simpler case with a “ b. Then the expected value is Epeijq “ 1{2, the
variance is Varpeijq “ 1{4, and the covariance is Covpeij , eklq “ 1{p8a ` 4q. Note that
the expected value and the variance are equal to those of (1) with β “ 1{2, which is
also the maximum entropy case. The only difference in EpEq and CovpEq between (1)
with a “ b and (2) with β “ 1{2 lies on the off-diagonal covariance elements, making it
an interesting example to illustrate the role of Σ.

To characterize Σ, the author studies its eigenvalues in Lemma 2.1 and Example 3.1.
The exact values of these eigenvalues are hard to interpret in terms of what aspects
of graph structures they measure. Motivated by the popularity of the overall sparsity
level as a good summary of graph structures in the literature, I suggest to consider the
random variable of the total number of edges:

m “
ÿ

0ďiăjďp

eij P t0, 1, . . . , ku. (4)
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Then the covariance matrix Σ determines the variance of m according to the relation
Varpmq “ 11

kΣ1k. Comparing 11
kΣ1k provides an assessment of the variability of the

overall sparsity level. In Prior (1) with β “ 1{2, Varpmq “ 11
kΣ1k “ k{4; in Prior (2)

with a “ b,

Varpmq “
k

4
`

kpk ´ 1q

8a ` 4
.

A smaller a implies higher variability of the total number of edges m, although the
expected value is the same Epmq “ k{2 for all a.

The following example demonstrates the above point that EpEq may not illustrate in-
teresting patterns of ppEq but CovpEq may characterize ppEq.

Example Consider a p “ 6 (so k “ 15) case. Under Prior (2) with a “ b, let a “

0.01, 1, and `8. Note that the case of a “ `8 corresponds to Prior (1) with β “

1{2. A summary of variances and correlations of Σ is given in Panel (a) of Table 1.
The variances are the same Varpeijq “ 1{4 for all a. The constant correlations are
Corrpeij , eklq “ 0.98, 0.33, and 0 for a “ 0.01, 1, `8. The eigenvalues are shown in
Panel (a) of Table 2. Because of the constant correlation and variance structure, the
smallest to the second largest eigenvalues are the same for each a.

Now consider Varpmq. It is equal to 55.22, 21.25, and 3.75 for a “ 0.01, 1, `8.
This indicates that a “ 0.01 and a “ 1 cases place substantially higher uncertainties
about the overall sparsity level than the maximum entropy case. Panel (a) of Figure 1
displays the exact probability distributions of m. The a “ `8 case has a bell shape
due to the central limit theorem applied to the sum of independent eij ’s. The a “ 1
case corresponds to a unform distribution on the edge inclusion probability β. It places
equal probabilities on every possible outcome in t0, 1, . . . , 15u for m. When a “ 0.01,
higher probability masses are on the two ends of the range of all possible outcomes.
The outcomes of m “ 0 and m “ 15 both have probabilities close to 0.5 while all other
outcomes have probabilities close to zero. Note that the expectation of E is the same
across a. The difference in distributions of m is driven by higher-moments of E . Another
intuitive connection can be drawn between m and Σ. A higher correlation between eij ’s
indicates that eij ’s tend to be 1 or 0 together, which explains the higher probability
masses on the two ends for a “ 0.01.

To study posterior distributions, I use the scenario from Wang and Li (2012). Consider
a p ˆ n sample matrix Y consisting of n iid samples from a p-dimensional multivariate
normal Np0,Ω´1q. Then pS “ Y Y 1, nq are sufficient statistics of Ω. So I do not have to
generate Y directly; instead I let S “ nA´1 where n “ 18 and

A “

¨

˚

˚

˚

˝

1 0.5 0 0 0 0.4
1 0.5 0 0 0

1 0.5 0 0
1 0.5 0

1 0.5
1

˛

‹

‹

‹

‚

.

This choice of pS, nq represents 18 samples of Y from Np0, A´1q. I use the G-Wishart
prior (Dawid and Lauritzen 1993; Atay-Kayis and Massam 2005) WGp3, I6q on the
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Figure 1: Prior (a) and posterior (b) distributions of the total number of edgesm defined
in (4) for a p “ 6 example under Prior (2) with a “ b P t0.01, 1,`8u.

precision matrix Ω. The marginal likelihood ppY | Eq can be computed for all possible
E by integrating Ω out. Given these ppY | Eq and ppEq of (2), the exact values of Σ
can be computed. Summary statistics of the variance and correlation elements in Σ
are provided in Panel (b) of Table 1. These correlations are generally close to zero
for all a values, although the prior correlations can be as high as 0.98 when a “ 0.01.
Eigenvalues of Σ are in Panel (b) of Table 2, which seem to be hard to interpret in
terms of what aspects of graph structures they respond to.

Table 1: Summary of variance elements and correlation elements in Σ in the p “ 6
example

Variance Correlation
min lower median upper max min lower median upper max

quartile quartile quartile quartile

Panel (a): Prior Σ

a “ 0.01 0.25 0.25 0.25 0.25 0.25 0.98 0.98 0.98 0.98 0.98
a “ 1 0.25 0.25 0.25 0.25 0.25 0.33 0.33 0.33 0.33 0.33
a “ 8 0.25 0.25 0.25 0.25 0.25 0 0 0 0 0

Panel (b): Posterior Σ

a “ 0.01 0.018 0.032 0.072 0.087 0.145 -0.236 -0.015 0.000 0.023 0.046
a “ 1 0.018 0.032 0.072 0.088 0.143 -0.237 -0.015 0.000 0.016 0.040
a “ 8 0.017 0.029 0.079 0.095 0.127 -0.240 -0.019 -0.007 -0.001 0.025

The variances Varpmq obtained from Σ are 0.88, 0.84, and 0.73 for a “ 0.01, 1, and
`8, respectively. Combined with the mean value Epmq « 6.5 for all three values of a,
these variances give a good estimate of the possible range of the overall sparsity level.
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Table 2: Eigenvalues of Σ in the p “ 6 example

Panel (a): Prior Σ

λa“0.01 “(0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 1.417)
λa“1 “(0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 3.681)
λa“8 “(0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250)

Panel (b): Posterior Σ

λa“0.01 “(0.016 0.019 0.020 0.030 0.030 0.066 0.069 0.072 0.078 0.080 0.083 0.087 0.093 0.101 0.161)
λa“1 “(0.016 0.019 0.020 0.029 0.030 0.067 0.070 0.073 0.079 0.080 0.084 0.088 0.094 0.098 0.159)
λa“8 “(0.016 0.018 0.019 0.027 0.027 0.073 0.076 0.077 0.083 0.087 0.091 0.096 0.098 0.102 0.153)

When compared with the prior variances of m, these numbers indicate that a substantial
amount of information about the sparsity level is learned from the data. Panel (b) of
Figure 1 shows the exact posterior distributions of m. They appear to be similar across
a – all curves have the same mode m “ 6 and center around this mode alike.

2 Measures of variability as metrics for comparing algo-
rithms or choosing tuning parameters

In Section 4, the author proposes three measures of variability based on Σ and further
recommends that they can be used for comparing different structure learning algorithms
or choosing tuning parameters, which usually requires metrics that are based on a
“golden standard”. I have some doubts about this claim.

The claim seems to ignore the fact that both variance and bias are important in measur-
ing the performance of structure learning and to solely focus on the variance part. An
algorithm or a hyperparameter with a smaller variability measure does not necessarily
mean it is better because it might generate graphs systematically far away from the
true structure. Consider the previously used p “ 6 node example. For an extreme case,
let the prior be almost like a point mass on the empty graph. This can be achieved by
letting a “ 0.0001 and b “ 10000 so β « 0. The posterior will be tightly concentrated
around the empty graph, like a minimum entropy case; its covariance matrix Σ is close
to 0; and its variability measures such as V ART , V ARG and V ARF will be extremely
small. Then, according to the paper, the choice of a “ 0.0001 and b “ 10000 should
be favored against many other reasonable values of a and b, but apparently this is a
bad choice of tuning parameters. In fact, any Σ-based measures of variability including
V ART , V ARG and V ARF seem to only contain information about the variance of ppEq

and ignore the bias. They may not be used alone for comparing algorithms or choosing
tuning parameters. How to effectively use them for the purpose of comparing algorithms
or choosing tuning parameters is an open and very interesting question.
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3 Conclusion

The paper is interesting in its unique focus on distributions of graphs instead of dis-
tributions of parameters. Using Gaussian graphical models as illustrating examples, I
have discussed three challenges related to the paper’s new framework: how to construct
dependent multivariate Bernoulli distributions, how to better characterize distributions
of graphs ppEq using its second moment rather than the first moment alone, and how to
effectively use the variability measures for comparing algorithms and choosing tuning
parameters.

References
Atay-Kayis, A. and Massam, H. (2005). “The marginal likelihood for decomposable and
non-decomposable graphical Gaussian models.” Biometrika, 92: 317–335. 545

Dawid, A. P. and Lauritzen, S. L. (1993). “Hyper-Markov laws in the statistical analysis
of decomposable graphical models.” Annals of Statistics, 21: 1272–1317. 545

Dempster, A. (1972). “Covariance selection.” Biometrics, 28: 157–175. 543

Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., and West, M. (2005). “Exper-
iments in stochastic computation for high-dimensional graphical models.” Statistical
Science, 20: 388–400. 543

Scott, J. G. and Carvalho, C. M. (2008). “Feature-Inclusion Stochastic Search for
Gaussian Graphical Models.” Journal of Computational and Graphical Statistics,
17(4): 790–808. 544

Wang, H. (2010). “Sparse seemingly unrelated regression modelling: Applications in
finance and econometrics.” Computational Statistics & Data Analysis, 54(11): 2866–
2877. 544

Wang, H. and Li, S. Z. (2012). “Efficient Gaussian graphical model determination under
G-Wishart prior distributions.” Electronic Journal of Statistics, 6: 168–198. 545


	scutari.pdf
	On the Prior and Posterior Distributions Used in Graphical Modellingto.44em.M. Scutari


