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Comment on Article by Müller and Mitra

Anthony O’Hagan*

Müller and Mitra have given us a superb paper, eloquently arguing for the many
applications of Bayesian nonparametric (BNP) methods. There is no doubt that such
techniques have enormous value in a wide range of contexts. I want to raise two linked
areas of quite general concern, but these should not be read as detracting in any way
from the quality and importance of this paper.

1 Prior information

Bayesian methods require a prior distribution that encodes genuine prior information
about the model parameters. I find it quite depressing how rarely this fact is taken
seriously in published work which professes to be Bayesian. To illustrate ideas I will
look at the prior distribution in the authors’ Example 1 and ask what genuine prior
information it encodes.

All BNP methods involve specifying a prior distribution for a function. In Example 1,
the unknown function in question is the probability mass function F , where F (y) is the
probability that a given type of T-cell will be observed y times in the probe. The problem
requires that we specify our prior knowledge about F ; that is, we need to specify a joint
prior distribution for {F (0), F (1), F (2), . . .}. This is an infinite-dimensional distribution
(as will invariably be the case in BNP applications), so we are looking at a complex
problem.

Complex problems benefit from being build up in stages, so first consider a simple
parametric model. A natural choice in this problem is to suppose that F is a Poisson
distribution Po(λ), for some λ, and then to put a prior distribution on λ. The use of
the word ‘model’ here is enlightening — all models involve some degree of simplification
of reality. In this case, the parametric model is a simplification of our real prior beliefs.
It states that the prior distribution for F gives zero prior probability for all possible
distributions F that are not Poisson distributions. What the prior for λ says about F
depends to some extent on what judgements were actually used to derive it. Typically,
because λ is generally seen as the mean of the Poisson distribution (although of course
it is also the variance), its prior distribution will be elicited by making judgements
about the mean µ(F ) =

∑∞
y=0 yF (y) of F . A few specific judgements such as median

and quartiles of µ(F ) will have been made and a convenient distribution fitted to those
judgements. The full distribution for F is then completed by a judgement that F is likely
to be unimodal and similar to a Poisson distribution, and the parametric assumption
of a Poisson distribution is then a convenient choice that is ‘fitted’ to this judgement.

The underlying approach applies to all pragmatic prior distribution specification: a
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few specific judgements are made or elicited about that distribution, and then the rest
is filled in by convenient choices which ‘fit’ those judgements. We see that approach
here in both the specification of a univariate distribution for µ(F ) and then the spec-
ification of a prior distribution for all other aspects of F . The simplification of reality
lies basically in the second step of making arbitrary, convenient choices to fit the few
real, firm judgements that we are prepared to make. Given a particular problem, there
are always different ways to simplify, leading to different models, or in this case differ-
ent prior distribution choices. When eliciting a distribution we can arrive at different
distributions in two ways, by starting with different elicited judgements or by having
the same judgements but choosing a different distribution to fit them. So now consider
alternative prior formulations for the authors’ Example 1.

The first kind of BNP model that we might use in this case is a Dirichlet process
(DP). Although the authors go straight to a DP mixture model in Example 1, and in
the main text argue that this avoids the discreteness of the DP, in Example 1 F is
necessarily discrete anyway. So in their notation we could let F | λ ∼ DP (α, Po(λ)), so
that the expectation is a Poisson distribution, and it is natural then to give λ the same
prior distribution as in the parametric model. Or is it?

In the parametric model the distribution of µ(F ) in the infinite-dimensional prior
distribution for F is the same as the distribution assigned to λ but this no longer holds
in the DP model. Conditional on λ, µ(F ) is a random variable. Its expectation is the
expectation of λ but there is uncertainty around this value. A formula for the variance
can be derived, but is a complicated expression involving α and the prior distribution
of λ. I do not think a closed form expression exists for the implied distribution of µ(F ),
and therefore we cannot readily fit the DP model to elicited judgements about µ(F ) such
as median and quartiles. This is not a problem unique to BNP models. In hierarchical
models generally it is not easy to formulate prior distributions for hyperparameters, and
the fitting of hierarchical models to judgements about quantities such as µ(F ) that are
meaningful in the original problem is rarely addressed properly in the literature; indeed
it is usually ignored.

The DP model clearly relaxes the parametric model’s very strong assumption that
F is exactly Poisson, but any such relaxation requires additional judgements in order
to fit the more complex model. In this case, we need something to identify a suitable
value for α. This parameter controls how close F is to a Poisson distribution, but it is
not easy to see how this might be linked to realistic judgements about F .

The DP mixture model actually employed in Example 1 is given in equation (3) in
the paper. Again, although it might be thought natural to equate the distribution G∗

to that of λ in the parametric model this is wrong — G∗ is not the distribution of µ(F )
in this model.



A. O’Hagan 321

2 Extrapolation

Here is something else that I think is wrong: statisticians routinely act as if inferences
about the parameters of empirically fitted statistical models were meaningful. To illus-
trate my point, consider a regression problem with one explanatory variable x and a
response variable Y . Let the regression function be η(x) = E(Y | x) and suppose that
we know η(0) = 0. Then a simple parametric model for η might be the linear regression
η(x) = βx with a known distribution of Y around its mean (perhaps with unknown
variance σ2). We proceed to put a prior distribution on β (and if necessary on σ2) and
to derive a posterior distribution for β. But all models are wrong and in reality the
regression line will not be linear. In this case, my previous comment would ask, what
does the prior distribution of β mean (and how might we specify/elicit it)? We can now
also add, what does the posterior distribution of β mean?

These questions raise issues of extrapolation. We know well enough that even if the
straight line fits well within the range of the x values in the data it is dangerous to
extrapolate in the sense of predicting outside the range of the data. There is, however,
another important kind of extrapolation, which is to treat inferences about parameters
as meaningful.

Science progresses by a process of extrapolating what has been learnt from individual
experiments to give insight into what we might see in other experiments and in real-
world situations. Parameters that represent real physical quantities, and which thereby
relate to scientific theories, are the key to this kind of extrapolation. When a scientist
runs an experiment he or she is doing so in order to learn something of scientific value.
That is rarely confined to the specific context of the experiment itself; the scientist
rarely wants only to be able to predict the outcome of more repetitions of exactly the
same kind of circumstances. No, he or she is generally trying to learn something that
can be extrapolated. They are hoping that the statistician analysing those data will
provide useful inferences about those physical parameter values.

But the model is wrong. As I said before, the essence of a model is that it simplifies
— the true regression relationship may be close to linear but not exactly so, and so on.
Even a model that empirically fits the data very well is wrong, and we cannot extract
from it reliable inferences about physically meaningful parameters no matter how many
observations we have. Consider again the linear regression model. If we get more and
more data for x values in a given range, the posterior distribution of β will converge to
what is in a well-defined sense (see Walker, 2013) a best-fitting value. But when the
model is wrong this limit depends not only on the range of x values over which we are
fitting but on the distribution of x within that range. We have all been taught that the
x values are ancillary, but that only applies when the model is true. The value of β to
which the posterior converges is clearly not of scientific interest in itself and does not
extrapolate in either of the above senses.

What about BNP models? A nonparametric regression model of the kind discussed
in Section 4 of the paper, particularly the fully nonparametric models in Section 4.3,
may not be wrong in the sense of giving zero prior probability in the neighbourhood of
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the true regression function, but their parameter estimates are no more guaranteed to
have scientific meaning than parametric models. They allow us to reliably predict Y
within the range of the data (arbitrarily accurately as the sample size increases), which
is one way in which they improve on parametric models, but they do not provide a
basis for extrapolation. Indeed, they often bury what might be potentially meaningful
parameters deeper in the modelling hierarchy.

Statisticians are good at fitting data in such a way as to produce useful predictions
of the process in repetitions of the same kind of conditions. But we often cloak those
predictions in inferences about model parameters and pretend that these are somehow
meaningful. It takes more than that to do real science. It is necessary not only to use
nonparametric models but to provide carefully thought out prior information. That is
the link between my two apparently disparate comments on Müller and Mitra’s paper. I
am aware that I have only sketched this link here. More can be found in Brynjarsdott́ır
and O’Hagan (2013), but this is also work in progress.
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