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Bayesian Nonparametric Inference —
Why and How

Peter Miiller * and Riten Mitra t

Abstract. We review inference under models with nonparametric Bayesian (BNP)
priors. The discussion follows a set of examples for some common inference prob-
lems. The examples are chosen to highlight problems that are challenging for
standard parametric inference. We discuss inference for density estimation, clus-
tering, regression and for mixed effects models with random effects distributions.
While we focus on arguing for the need for the flexibility of BNP models, we also
review some of the more commonly used BNP models, thus hopefully answering a
bit of both questions, why and how to use BNP.

Keywords: Nonparametric models, Dirichlet process, Polya tree, dependent Dirich-
let process

1 Introduction

All models are wrong, but some are useful (Box 1979). Most statisticians and scientists
would agree with this statement. In particular, it is convenient to restrict inference
to a family of models that can be indexed with a finite dimensional set of parameters.
Under the Bayesian paradigm inference builds on the posterior distribution of these
parameters given the observed data. In anticipation of the upcoming generalization we
refer to such inference as parametric Bayes. However, it can be dangerous to forget
the simplification implied by this process. There are problems where inference under
the simplified model can lead to misleading decisions and inference. We discuss a class
of statistical inference approaches that relaxes this framework by allowing for a richer
and larger class of models. This is achieved by considering infinite dimensional families
of probability models. Priors on such families are known as nonparametric Bayesian
(BNP) priors.

For example, consider a density estimation problem, with observed data y; ~ G,
1 =1,...,n. Inference under the Bayesian paradigm requires a completion of the model
with a prior for the unknown distribution G. Unless G is restricted to some finite
dimensional parametric family this leads to a BNP model with a prior p(G), that is a
probability model for the infinite dimensional G. A related application of BNP priors
on random probability measures is for random effects distributions in mixed effects
models. Such generalizations of parametric models are important when the default
choice of multivariate normal random effects distribution might understate uncertainties
and miss some important structure. Another important class of BNP priors is priors on
unknown functions, for example a prior p(f) for the unknown mean function f(z) in a
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regression model y; = f(x;) + €;.

In this article we review some common BNP priors. Our argument for BNP inference
rests on a set of examples that highlight typical situations where parametric inference
might run into limitations, and BNP can offer a way out. Examples include a false sense
of posterior precision in extrapolating beyond the range of the data, the restriction
of a density estimate to a unimodal family of distributions and more. One common
theme is the honest representation of uncertainties. Restriction to a parametric family
can mislead investigators into an inappropriate illusion of posterior certainty. Honest
quantification of uncertainty is less important when the goal is to report posterior means
E(G | y), but could be critical if either the primary inference goal is to characterize
this uncertainty or the goal is prediction, if the probability model is part of a decision
problem, or if the nonparametric model is part of a larger encompassing model. Some
of these issues are highlighted in the upcoming examples. For each example we briefly
review appropriate methods, but without any attempt at an exhaustive review of BNP
methods and models. For a more exhaustive discussion of BNP models see, for example,
recent discussions in Hjort et al. (2010), Hjort (2003), Miiller and Rodriguez (2013),
Miiller and Quintana (2004), Walker et al. (1999), and Walker (2013).

2 Density Estimation
2.1 Dirichlet Process (Mixture) Models

Example 1 (T-cell diversity). Guindani et al. (2012) estimate an unknown distribution
F for count data y;. Assumingy; ~ F,i=1,...,n, i.i.d., the problem can be character-
ized as inference for the unknown F. The data are shown in Table 1. The application is

Table 1: Clonal size distribution for one of the experiments reported in Guindani et
al. (2012, Table 2). For example, there are f; = 37 T-cell receptor types that were
observed once (y; = 1) in the data, fo = 11 that were observed twice (y; = 2), etc. The
number f of T-cell receptors that were not observed in the sample (y; = 0) is censored.
(We thank the discussant Peter Hoff for correcting an error in the original manuscript.)

yi=j |0 1 2 3 4 other
frequency f; ‘ - 37 11 5 2 0

to inference for T-cell diversity. Different types of T-cells are observed with counts y;.
T-cells are white blood cells and are a critical part of the immune system. In particular,
investigators are interested in estimating F(0), for the following reason. The experiment
generates a random sample of T-cells from the population of all T-cells that are present
in a probe. The sample is recorded by tabulating the counts y; for all observed T-cell
types, i = 1,...,n. However, some rare but present T-cell types, i =n—+1,..., N, might
not be recorded, simply by sampling variation, that is when y; = 0 for a rare T-cell type.
Naturally, zero counts are censored by the nature of the experiment. Inference for F(0)
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Figure 1: T-cell diversity. Panel (a) shows the data (as pin plot) and a posterior
sample F' ~ p(F | y) under a DP mixture prior (grey curves) and the posterior estimate
F = E(F | y) (black curve). The plotted curves connect the point masses F(i) and F (i)
for better display (the connection itself is meaningless). Panel (b) shows the implied
posterior p(N | y) on the total number of T-cell types.
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would allow us to impute the number of not observed zero counts and thus infer the total
number of T-cell types. The latter is an important characteristic of the strength of the
immune system.

Table 1 shows the observed data y; for one of the experiments reported in Guindani
et al. (2012, Table 2). There are n = 55 distinct T-cell receptor sequences. The total
number of recorded T-cell receptor sequences is Z?le - f; = 82.

Figure 1 shows the empirical distribution F(y;) together with a BNP estimate E(F |
y). Inference on F(-) allows imputation of N — n, the number of zero-censored T-cells.
A parametric model Fy(y), like a simple Poisson model or a finite mizture of Poissons
models would report misleadingly precise inference for 0 — and thus Fp(0) — based on
the likelihood p(y | 0) = [1i—y Fo(y:)/(1 — Fp(0)). Guindani et al. (2012) use instead
a Dirichlet process (DP) mizture of Poisson model for F. We discuss details below.
Figure 1b shows the posterior distribution p(N | y) under the same model that was used
for the posterior inference in Figure 1a.

The DP prior (Ferguson 1973) is arguably the most commonly used BNP prior.
We write G ~ DP(a,G*) for a DP prior on a random probability measure G. The
model uses two parameters, the total mass parameter « and the base measure G*.
The base measure specifies the mean, F(G) = G*. The total mass parameter deter-
mines, among other implications, the uncertainty of G. Consider any (measureable)
set A. Then the probability G(A) under G is a beta distributed random variable with
G(A) ~ Be[aG*(A),a(1 — G*(A))]. Similarly, for any partition {A4;, As, ..., Ax} of the
sample space S, i.e., A;NA; = 0 for i # j and Uszl Ay = S, the vector of random prob-
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abilities (G(A41),...,G(Ak)) follows a Dirichlet distribution, p(G(A41),...,G(Ak)) ~
Dir(aG*(A1),...,aG*(Ak)). This property is a defining characteristic. Alternatively
the DP prior can be defined as follows. Let d,(-) denote a point mass at . Then G is
a discrete probability measure

G(0) = mndy, (1)
h=1

with 6, ~ G*, i.i.d., and 7), = vy, [1,cr(1 =) for vy, ~ Be(1, ), i.i.d. The constructive
definition (1) is known as the stick-breaking representation of the DP prior (Sethurman
1994). For a recent discussion of the DP prior and basic properties see for example
Ghosal (2010). An excellent review of several alternative constructions of the DP prior
is included in Lijoi and Priinster (2010).

Implicit in this constructive definition is the fact that a DP random measure is a.s.
discrete and can be written as a sum of point masses €. In many applications the
a.s. discreteness of the DP is awkward. For example, in a density estimation problem,
yi ~G(-),7=1,...,n, it would be inappropriate to assume G ~ DP if the distribution
were actually known to be absolutely continuous. A simple model extension fixes the
awkward discreteness by assuming y; ~ F' and

F(y) = /p(y | 0) dG(0) with G ~ DP(«, Go). (2)

In words, the unknown distribution is written as a mixture with respect to a mixing
measure with DP prior. Here p(y | 0) is some model indexed by #. The model is known
as the DP mixture (DPM) model. If desired, a continuous distribution p(y | 8) creates
a continuous probability measure F. Often the mixture is written as an equivalent
hierarchical model, by introducing latent variables 6;:

p(yi | 0:) ~ plyil|0)
0, ~ G
G ~ DP(a,G¥). (3)

Marginalizing with respect to 6;, model (3) reduces again to y; ~ [ p(y | ) dG(9), i.i.d.,
as desired.

Example 1 (ctd.). Let Poi(y; 6) denote a Poisson model with parameter 6. In Guin-
dani et al. (2012) we use a DPM model with p(y | 0) = Poi(y; 0). Here the motivation
for the DPM is the flexibility compared to a simpler parametric family. Also, the latent
variables 0; that appear in the hierarchical model (3) are attractive for this application to
inference for T-cell diversity. The latent 0; become interpretable as mean abundance of
T-cell type i. The use of the BNP maodel for F(-) addressed several key problems in this
inference problem. The BNP model allowed the critical extrapolation to F(0) without
relying on a particular parametric form of the extrapolation. And equally important, the
extrapolation is based on a coherent probability model. The latter is important for the
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derived inference about N. In Figure 1a, the grey curves illustrate the posterior distri-
bution p(F | y). The implied histogram of F(y) at y = 0 estimates p(F'(0) | y) and it
implies in turn the posterior distribution p(N | y) for the primary inference target that
is shown in Figure 1b. Implementing the same inference in a parametric model would
be challenging.

In the context of inference for SAGE (serial analysis of gene expression) data, Morris
et al. (2003) use parametric inference for similar data. However, in their problem
estimation of N is not the primary inference target. Their main aim is to estimate
the unknown prevalance of the different species, equivalent to estimating F'(i), ¢ > 1 in
the earlier description.

One of the attractions of DP (mixture) models is easy computation, including the
availability of R packages. For example, posterior inference for DP mixture models and
many extensions is implemented in the R package DPpackage (Jara et al. 2011).

2.2 Polya Tree Priors

Many alternatives to the DP(M) prior for a random probability measure G have been
proposed in the BNP literature. Especially for univariate and low-dimensional distribu-
tions the Polya tree (PT) prior (Lavine 1992, 1994; Mauldin et al. 1992) is attractive.
It requires no additional mixture to create absolutely continous probability measures.

The construction is straightforward. Without loss of generality assume that we
wish to construct a random probability measure G(y) on the unit interval, 0 < y < 1.
Essentially we construct a random histogram. We start with the simplest histogram,
with only two bins by splitting the sample space into two subintervals By and B; and
assigning random probability

YO = G(Bo) ~ Be(ao, al)

and Y7 = G(B;) = 1-Y) to the two intervals, using a beta prior to generate the random
probability Y. Next we refine the histogram by splitting By in turn into two subintervals
By = By U Bp1 and similarly for By = Big U By;. We use the random splitting
probabilities YOO = G(BQO | Bo) ~ Be(aoo,am) and YlO = G(B10 | Bl) ~ Be(alo,an).
Again let Yy = 1 — Yy etc. Let e = €1 --- &, denote a length m binary sequence. After
m refinements we have a partition {Bq,....,.; €; € {0,1}} of the sample space with

G(Be) = ﬁ YVEynEj'
j=1

In summary, the PT prior is indexed by the nested sequence of partitions II = {B.}
and the beta parameters A = {a.}. We write G ~ PT(II,.A). One of the attractions of
the PT prior is the easy prior centering at a desired prior mean G*. Let ¢, denote the
quantile with G*{[O,qa]} = a. Fix Bo = [O,ql/z)7 Bl = [Q1/27 1], B()O = [O,q1/4),B()1 =
[91/4:q1/2), -+ B11 = [q3/4,1], Booo = [0,q1/8), etc. In other words, we fix II as the
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dyadic quantiles of the desired G*. If additionally o = ¢,, is constant across all level
m subsets, then E(G) = G*, as desired. Alternatively, for arbitrary II, fixing ae, =
¢mG*(Be)/G*(B.), x = 0,1 also implies F(G) = G*. With a slight abuse of notation
we write G ~ PT(G*, A) and G ~ PT(II, G*) to indicate that the partition sequence
or the beta parameters are fixed to achieve a prior mean G*. A popular choice for ¢,
is ¢,,, = cm?, which guarantees an absolutely continous random probability measure G
(Lavine 1992). On the other hand, with a. = aG*(B.), and thus a, = a0 + a1, the PT
reduces to a DP(«, G*) prior with an a.s. discrete random probability measure G.

Example 2 (Prostate cancer study). Zhang et al. (2010) use a PT prior to model the
distribution of time to progression (TTP) for prostate cancer patients. The data are
available in the on-line supplementary materials for this paper (TTP, treatment indica-
tor and censoring status). The application also includes a regression on a longitudinal
covariate and a possible cure rate. For the moment we only focus on the PT prior for
the survival time. The study includes two treatment arms, androgen ablation (AA) and
androgen ablation plus three 8-week cycles of chemotherapy (CH). Zhang et al. (2010)
used a PT prior to model time to progression y; for n; = 137 patients under CH and
for no = 149 under AA treatment. Let G1 and Gy denote the distribution of time to
progression under AA and CH treatment, respectively. We assume G; ~ PT{( B,A)
with ac = cm? and centering measure Gy = Weib(r, B), a Weibull distribution with
T=4.52 and B = 1.23.

Figure 2a shows the data as a Kaplan-Meier plot together with the posterior estimated
survival functions. Inference for G1 and G2 is under G ~ PT(GE,A), independently
across G1 and Gs, for fived G7. Inference in Zhang et al. (2010) is based on a larger
model that includes the PT prior as a submodel for the TTP event times. Additionally,
the model adds the possibility of patients being cured of the disease, i.e., the model
replaces i.i.d. sampling of TTP’s Tj; ~ G; by a hierarchical model with p(wj; = 1) = p;
and p(Tj; | wj; = 0) = G; where wj; is an indicator for a patient under treatment j
being cured, and p; is the cured fraction under treatment j. Also, the model includes an
additional regression on a longitudinal covariate yj; = (yjik, k = 1,...,n5;) (prostate
specific antigen, PSA). For the implementation of inference on these two additional
model features it is important that posterior inference on G; remain flexible and be fully
model-based. In particular, inference on the tails of G; immediately impacts inference
on the cured fractions, as it speaks to the possibility of possible (latent) later TTP
beyond the censoring time. The full description of uncertainties is equally important for
the regression on longitudinal PSA measurements. The imputed G; is used to impute
latent TTP wvalues for susceptible patients. Imputed large TTP’s could easily become
influential outliers in the regression problem. Figure 3 shows inference on G;, now
also including the cured fraction and the regression on PSA. See Zhang et al. (2010)
for details on the implementation of the regression model. The secondary mode around
T = 8 is interesting from a clinical perspective, but would be almost impossible to find
with parametric inference. It was not revealed by the initial Kaplan-Meier plot. A
parametric model can only accommodate such features if the possibility of a second mode
were anticipated in the model construction. But this is not the case here.
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(a) p(Gj | y) as survival function (b) p(G2 | y) as p.d.f.

Figure 2: The horizontal axis indicates years after treatment. In panel (a), the step
function shows the Kaplan-Meier (KM) estimates (with censoring times marked as +).
The solid line and the dashed line are estimates based on the BNP model. Panel (b)
shows the posterior p(G2 | y) and the posterior mean F(G3 | y) (thick line).

A minor concern with inference under the PT prior in some applications is the depen-
dence on the chosen partition sequence. Figure 2b shows inference for (G, represented
by its probability density function. The partition boundaries are clearly visible in the
inference. This is due to the fact that the PT prior assumes independent conditional
splitting probabilities Y, independent across m and across the level m partitioning
subsets. The same independence persists a posteriori. There is no notion of smoothing
inference on the splitting probabilities across partitioning subsets. This awkward depen-
dence on the boundaries of the partitioning subsets can easily be mitigated by defining
a mixture of PTs (MPT), mixing with respect to the parameters of the centering mea-
sure . Let n denote the parameters of the centering measure G7. In the example,
n = (1,5). We augment the model by adding a hierarchical prior p(8), leaving 7 fixed.
This leads to an MPT model, G;(-) = [PT(G;; G}, A) dp(n). Here PT(G; G*,A)
indicates a PT prior for the random probability measure G, with the nested partition
sequence defined by dyadic quantiles of G* and beta parameters 4. Such MPT con-
structions were introduced in Hanson (2006) and in a variation in Paddock et al. (2003).
In the prostate cancer data, the estimated survival curve remains practically unchanged
from Figure 2a. The p.d.f. is smoothed (not shown).

Branscum et al. (2008) report another interesting use of PT priors. They implement
inference for ROC (receiver operating characteristic) curves based on two independent
PT priors for the distribution of scores under the true positive (G1) and true negative
population (Gp), respectively. In this application uncertainty about G; is critical. A
commonly reported summary of the ROC curves is the area under the curve (AUC),
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which can be expressed as AUC = p(X > Y) for X ~ Gy and Y ~ Gy. Complete
description of all uncertainties in the two probability models is critical for the estimate
of the ROC curve. A fortiori, it is critical for a fair characterization of uncertainties
about the ROC curve. The latter becomes important, for example, in biomarker trials
(Pepe et al. 2001). Uncertainty about the ROC curve in an earlier still exploratory trial
is used to determine the sample size for a later prospective validation trial. A complete
description of uncertainties is critical in such applications.

(a) E(Gy | y) for j =1,2 (b) Parametric m.l.e., Gy for 0 = (?]

Figure 3: Prostate cancer study. Inference from Zhang et al. (2010) on G;. The model
included a cured fraction and a regression on a longitudinal covariate (prostate specific
antigen) in addition to y;; ~ G;.

Finally, a brief note on computation. Posterior updating for a PT prior is straightfor-
ward. It is implemented in the R package DPpackage (Jara et al. 2011). The definition
of a PT prior for a multivariate random probability measure requires a clever definition
of the nested partition sequence and can become cumbersome in higher dimensions.
Hanson and Johnson (2002) propose a practicable construction for multivariate PT
construction centered at a multivariate normal model.

2.3 More Random Probability Measures

Many alternative priors p(G) for random probability measures have been proposed.
Many can be characterized as natural generalizations or simplifications of the DP prior.
Ishwaran and James (2001) propose generalizations and variations based on the stick-
breaking definition (1). The finite DP is constructed by truncating (1) after K terms,
with vg = 1. The truncated DP is particularly attractive for posterior computation.
Ishwaran and James (2001) show a bound on the approximation error that arises when
using inference under a truncated DP to approximate inference under the corresponding
DP prior. The beta priors for v, in (1) can be replaced by any alternative vy, ~
Be(ap, by,), without complicating posterior simulations. In particular, vy, ~ Be(l—a,b+
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ha) defines the Pitman Yor process with parameters a,b (Pitman and Yor 1997).

Alternatively we could focus on other defining properties of the DP to motivate
generalizations. For example, the DP can be defined as a normalized gamma process
(Ferguson 1973). The gamma process is a particular example of a much wider class
of models known as completely random measures (CRM) (Kingman 1993, chapter 8).
Consider any non-intersecting measureable subsets Aj, ..., Ar of the desired sample
space. The defining property of the CRM p is that the p1(A;) be mutually independent.
The gamma process is a CRM with u(A;) ~ Ga(Mpuo(A), 1), mutually independent, for
a probability measure pg and M > 0. Normalizing u by G(A) = u(A)/u(S) defines a
DP prior with base measure proportional to ug. Replacing the gamma process by any
other CRM defines alternative BNP priors for random probability measures.

Such priors are known as normalized random measures with independent increments
(NRMI) and were first described in Regazzini et al. (2003) and include a large number of
BNP priors. A recent review of NRMI’s appears in Lijoi and Priinster (2010). Besides
the DP prior other examples are the normalized inverse Gaussian (NIG) of Lijoi et al.
(2005a) and the normalized generalized gamma process (NGGP), discussed in Lijoi et al.
(2007). The construction of the NIG in many ways parallels the DP prior. Besides the
definition as a CRM, a NIG process G can also be characterized by a normalized inverse
Gaussian distribution (Lijoi et al. 2005a) for the joint distribution of random probabil-
ities (G(41),...,G(Ag)), and like for the DP the probabilities for cluster arrangements
defined by ties under i.i.d. sampling are available in closed form. For the DP, we will
still consider this distribution in more detail in the next section. The NIG, as well as
the DP are special cases of the NGGP.

Two recent papers (Barrios et al. 2013; Favaro and Teh 2013) describe practicable
implementions of posterior simulation for mixtures with respect to arbitrary NRMIs,
based on a characterization of posterior inference in NRMIs discussed in James et al.
(2009) who characterize p(G | y) under i.i.d. sampling y; ~ G, ¢ = 1,...,n, from a
random probability measure G with NRMI prior. Both describe algorithms specifically
for the NGGP. Both use conditioning on the same latent variable U that is introduced
as part of the description in James et al. (2009). Favaro and Teh (2013) describe what
can be characterized as a modified version of the Polya urn. The Polya urn defines
the marginal distribution of (y1,...,y,) under the DP prior, after marginalizing with
respect to G. We shall discuss the marginal model under the DP in more detail in the
following section. Barrios et al. (2013) describe an approach that includes sampling
of the random probability measure. This is particularly useful when desired inference
summaries require imputation of the unknown probability measure. The methods of
Barrios et al. (2013) are implemented in the R package BNPdensity, which is available
in the CRAN package repository (http://cran.r-project.org/).
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3 Clustering
3.1 DP Partitions

The DP mixture prior (3) and variations are arguably the most popular BNP priors for
random probability measures. The popularity is mainly due to perhaps two reasons.
One is computational simplicity. In model (3) it is possible to analytically marginalize
with respect to G, leaving a model in 6; only. This greatly simplifies posterior inference.
The second, and related, reason is the implied clustering. As samples from a discrete
probability measure G, the latent 6; include many ties. One can use the ties to define
clusters. Let 6;, k = 1,..., K denote the K < n unique values among the §;, i =
1,...,n. Then Sy = {i: 6; = 0}}, k =1,..., K, defines a random partition of the
experimental units {1,...,n}. Let p, = {S1,...,5k} denote the random partition.
Sometimes it is more convenient to use an alternative description of the partition in
terms of cluster membership indicators s = (s1,...,8,) with s; = k if ¢ € S;. We add
the convention that clusters are labeled in the order of appearance, in particular s; = 1.
One of the attractions of the DP prior is the simple nature of the implied prior p(py,).
Let ny = |Sk| denote the size of the k—th cluster. Then

K
plon) o o T (i — 1)t (4)

k=1

implying in particular the following complete conditional prior. We write s~ for s
without s;, n, for the size of S} without unit 7, etc.

n, fork=1...,K~

o (5)
«o fork=K +1.

p(si:k|s_)o<{

Here s; = K~ + 1 indicates that ¢ forms a new (K~ + 1)-st singleton cluster of its own.
The probability model (5) is known as the Polya urn.

Many applications of the popular DPM exploit the implied prior p(p,,) in (4). Often
the random probability measure G itself is not of interest. The model is only introduced
for the side effect of creating a random partition. In such applications the use of the
DP prior can be questioned, as the prior p(p,) includes several often inappropriate
features. The cluster sizes are a priori geometrically ordered, with one large cluster and
geometrically smaller clusters, including many singleton clusters. However, this is less
of a concern when either prediction is the focus or only major clusters are interpreted.

BNP inference on p,, offers some advantages over parametric alternatives. A para-
metric model might induce clustering of the experimental units, for example, by spec-
ifying a mixture model with J terms, y; ~ ijl w;p;(y; | 8;). Replacing the mixture
model by a hierarchical model, p(y; | s; = 7,0;) = p;(y: | 0;) and p(s; = j) = w;
with latent indicator variables s; implicitly defines a random partition by interpreting
the indicators s; as cluster membership indicators. Such random partition models are
known as model based clustering or mixture of experts models (when the weights are
allowed to include a regression on covariates). In contrast to the nonparametric prior,
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the parametric model requires one to specify the size J of the mixture, either by fixing
it or by extending the hierarchical model with a hyperprior on J.

Recall the definition of BNP models as probability models on infinite dimensional
random elements. However, there are only finitely many partitions p,,, leaving the ques-
tion why random partition models should be considered BNP models. Traditionally they
are. Besides tradition, perhaps another reason is a one-to-one correspondence between
an exchangeable random partition and a discrete probability measure (Pitman 1996,
Proposition 13). An exchangeable random partition p(p,) can always be thought of as
arising from the configuration of ties under i.i.d. sampling from a discrete probability
measure.

3.2 Hierarchical Extensions

An interesting class of extensions of the basic DP model defines hierarchical models and
other extensions to multiple random probability measures. One of the earlier extensions
was the hierarchical DP (HDP) of Teh et al. (2006), who define a prior for random
probability measures G;, j = 1,...,J, with G, | G* ~ DP(M, G*), independently. By
completing the model with a prior on the common base measure, G* ~ DP(B, H), they
define a joint probability model for (Gy,...,G ). Importantly, the discrete nature of
the G* as a DP random measure itself introduces positive probabilities for ties in the
atoms of the random G, and thus the possibility of ties among samples 6;; ~ Gj,
t=1,...,n5,and j = 1,...,J. We could again use these ties to define a random
partition. Let {6;*, k =1,..., K} denote the unique values among the 6;; and define
clusters Sy = {(ji) : 6;; = 0;*}. This defines random clusters of experimental units
across j. In summary, the HDP generates random probability measures G; that share
the same atoms across j. However, the random distributions G; are different. The
common atoms have different weights under each GG;. This distinguishes the HDP from
the related nested DP (NDP) of Rodriguez et al. (2008). The NDP allows for some of
the G to be identical. While the HDP uses a common discrete base measure G* to
generate the atoms in the G,’s, the NDP uses a common discrete prior Q(G;) for the
distributions G; themselves, thus allowing p(G; = G;+) > 0 for j # j'. The prior for Q
is a DP prior whose base measure has to generate random probability measures which
serve as the atoms of . Another instance of a DP prior is used for this purpose. In
summary, G; ~ Q and @ ~ DP(M,DP(a,G*)). Another related extension of the DP
is the enriched DP of Wade et al. (2011).

3.3 More Random Partitions

Several alternatives to DP priors for random partitions have been discussed in the
literature. The special feature of the DP prior is the simplicity of (5). While any
discrete random probability measure gives rise to a prior p(p,), few are as simple as
(5). The already mentioned Pitman-Yor process (Pitman and Yor 1997) implies very
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similar conditionals for s;, with

n, — B3 k=1,..., K~

— ks
pls: |S)O({a+BK_ k=K +1

where 0 < < 1 and o > —f. See also the discussion in Ishwaran and James (2001).
Similarly, any NRMI defines a prior p(p,,). For the NGGP Lijoi et al. (2007) give explicit
expressions for p(s; = k | s7). They discuss the larger family of Gibbs-type priors as
a class of priors p(p,) that include the one implied under the NGGP as a special case.
While the simple nature of (5) is computationally attractive, it can be criticized for lack
of structure. For example, the conditional probabilities for cluster membership depend
only on the sizes n, of the clusters, not on the number of clusters or the distribution
of cluster sizes. For a related discussion see also Quintana (2006) and Lee et al. (2013).

For alternative constructions of p(p,,) we could focus on the form of (4) as a product
over functions ¢(S;) = a(ny — 1)! that depend on only one cluster at a time. Random
partition models of the form p(p,) Hle ¢(Sg) for some function ¢(Sg) are known
as product partition models (PPM) (Hartigan 1990). Together with a sampling model
that assumes independence across clusters the posterior p(p, | ¥) is again of the same
form.

Miiller et al. (2011) define a variation of the PPM by explicitly including covariates.
Let z; denote covariates, let y; denote responses, and let z} = {z;; ¢ € S} denote
covariates arranged by clusters. The goal is to a priori favor partitions with clusters
that are more homogeneous in x. Posterior predictive inference then allows one to define
regression based on clustering. We define a function g(z}) > 0 such that g(z*) is large
for a set of covariates z} that are judged to be very similar, and small when z* includes
a diverse set of covariate values. The definition of g(-) is problem-specific. For example,
for a categorical covariate x; € {1,...,Q}, let my denote the number of unique values
x; in cluster k. and we could use g(z}) = 1/myg. A cluster with all equal x; has the
highest similarity. Miiller et al. (2011) define the PPMx model

plon | 2) o I e(Sk)g(at).

k=1

Example 3 (Sarcoma trial). Leon-Nowvelo et al. (2012) consider clustering of different
sarcoma types. Table 2 shows data from a phase II clinical trial with sarcoma patients.
Sarcoma is a rare type of cancer affecting connective or supportive tissues and Ssoft
tissue (e.g., cartilage and fat). There are many subtypes of sarcomas, reflecting the
definition of sarcomas as cancers of a large variety of tissues. Some subtypes are very
rare, making it attractive to pool patients across subtypes. Leon-Novelo et al. (2012)
propose to pool patients on the basis of a random partition of subtypes. Keeping the
clustering of subtypes random acknowledges the uncertainty about the different nature
of the subtypes. However, in setting up a prior probability model for the random par-
tition of subtypes, not all subtypes are exchangeable. For example, some are known
to have better prognosis than others. Leon-Novelo et al. (2012) exploit this informa-
tion. Let x; € {—1,0,1} denote an indicator of poor, intermediate or good prognosis
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Table 2: Number of patients n; and number of responses y; for sarcoma subtypes
i1=1,...,n.

Intermediate Prognosis Intermediate (ctd.) Good Prognosis
subtype mn; y; subtype mn; y; subtype mn; y;
Leiomyosarcoma 28 6 Synovial 20 3 Ewing’s 13 0
Liposarcoma 29 7 Angiosarcoma 15 2 Rhabdo 2 0
MFH 29 3 MPNST 5 1
Osteosarcoma 26 5  Fibrosarcoma 12 1

for subtype i. We define a prior model p(py, | x1,...,x,) with increased probability of
including any two subtypes of equal prognosis in the same cluster. Let Q = 3 denote
the number of different prognosis types, and let my, denote the number of x; = q for all
i € Sk and n = Zq My the size of the k—th cluster. We use the similarity function
d(z}) = HqQ:1 Mmiq!/(Q—1)!/(nk, + Q — 1)! The particular choice is motivated mainly by
computational convenience.! It allows a particularly simple posterior MCMC scheme.
Miller et al. (2011) argue that with this choice of d(z}) the posterior distribution on p,
is identical to the posterior in a DPM model under a model augmentation, and thus any
MCMC scheme for a DPM models can be used. The important feature, however, is the
increased probability for homogeneous clusters. Let Bin(y; n,m) denote a binomial prob-
ability distribution for the random variable y with binomial sample size n and success
probability m. Let w* = (n}, k=1,...,K) denote cluster specific success rates. Condi-
tional on p, and T we assume a sampling model p(y; | s; = k,7}) = Bin(y;; ni, 7y).
The probability model is completed with a conjugate prior for the cluster-specific suc-
cess rates m. Let m; = w, denote the success probability for sarcoma type i. Figure
4 shows posterior means and 90% credible intervals for w; by sarcoma type, compared
with inference under an alternative partially exchangeable model, i.e., a model with sep-
arate submodels for x; = —1,0 and 1. Notice how the BNP model strikes a balance
between the separate analysis of a partially exchangeable model and the other extreme
which would pool all subtypes. In summary, the use of the BNP model here allowed one
to borrow strength across the related subpopulations while acknowledging that it might
not be appropriate to pool all.

A practical problem related to posterior inference for random partitions is the prob-
lem of summarizing p(p, | y). Many authors report posterior probabilities of co-
clustering. Let d;; denote a binary indicator with d;; = 1 when s; = s;, and d;; = 0
otherwise, and define D;; = p(d;; = 1 | y). Dahl (2006) went a step further and intro-
duced a method to obtain a point estimate of the random clusters based on least-square
distance from the matrix of posterior pairwise co-clustering probabilities. Quintana
and Iglesias (2003) address the problem of summarizing p(p, | y) as a formal decision

!Leon-Novelo et al. (2012) use d(z}) without the (Q — 1)! = 2 factor, which, however, in the light
of (4) is equivalent to simply rescaling o by 2.
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Figure 4: Central 90% posterior credible intervals of success probabilities 7; for each
sarcoma subtype under the BNP model (black lines) and under a comparable parametric
model (grey lines). The central marks (“+”) are the posterior means, the triangles are
the m.l.e.’s.

problem.

3.4 Feature Allocation Models

In many applications the strict mutually exclusive nature of the cluster sets in a partition
is not appropriate. For example, in an application to find sets of proteins that correspond
to some common biologic processes, one would want to allow for some proteins to be
included in multiple sets, i.e., to be involved in more than one process. Such structure
can be modeled by feature allocation models. For example, the Indian buffet process
(IBP) (Griffiths and Ghahramani 2006) defines a prior for a binary random matrix whose
entries can be interpreted as membeship of proteins (rows) in protein sets (columns).
Ghahramani et al. (2007) review some applications of the IBP. An excellent recent
discussion of such models and how they generalize random partition models appears in
Broderick et al. (2013).

4 Regression

4.1 Nonparametric Residuals

Consider a generic regression problem y; = f(z;) + ¢; with responses y;, covariates z;
and residuals €; ~ p(e;) for experimental units ¢ = 1,...,n. In a parametric regression
problem we assume that the regression mean function f(-) and the residual distribution
p(+) are indexed by a finite dimensional parameter vector, f(z) = fy(x) and p(e) = pg(e).
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Sometimes a parametric model is too restrictive and we need nonparametric extensions.
The earlier stylized description of a regression problem suggests three directions of such
model extensions. We could relax the parametric assumption on f(-), or go nonpara-
metric on the residual distribution py(-), or both. We refer to the first as BNP regression
with a nonparametric mean function, the second as a nonparametric residual model and
the combination as a fully nonparametric BNP regression or density regression.

Hanson and Johnson (2002) discuss an elegant implementation of a nonparametric
residual model. Assuming ¢; ~ G and a nonparametric prior G ~ p(G) reduces the
problem to essentially the earlier discussed density estimation problem, the only differ-
ence being that now the i.i.d. draws from G are the latent residuals ¢;. In principle,
any model that was used for density estimation could be used. However, there is a
minor complication. To maintain the interpretation of ¢; as residuals and to avoid iden-
tifiability concerns, it is desireable to center the random G at zero, for example, with
E(G) = 0 or median 0. Hanson and Johnson (2002) cleverly avoid this complication by
using a PT prior. The PT prior allows simple centering of G by fixing By = (—0o0, 0]
and Yy = %, thus fixing the median at 0.

4.2 Nonparametric Mean Function

Example 4 (Cepheid data). Barnes et al. (2003) discuss an application of BNP regres-
sion to analyze data from Cepheid variable stars. Cepheid variable stars serve as mile
stones, or standard candles, to establish distances to galazies in the universe. This is
because the luminosities for these stars are highly correlated with their pulsation periods,
allowing indirect measurement of a Cepheid star’s luminosity (light output), which in
turn can be related to the observed brightness to infer the distance. Calibration of the
luminosty-period relation involves a non-linear relationship that includes among others
the integral AR of radial velocity with respect to phase. Figure 5a plots radial veloc-
ity versus phase for the Cepheid variable star T Monocerotis. The circles indicate the
observed data points. The short vertical line segments show the (known) measurement
error standard deviation. The periodic nature of the data adds a constraint f(0) = f(1)
for the phase-velocity curve f(x). The sparse data around x = 0 makes it difficult
to determine the regression mean function around x = 0. The many data points in
other parts of the curve mislead a parametric model to believe in precisely estimated
parameters, including the critical interpolation around x = 0. We therefore consider a
nonparametric regression.

A convenient way to define a BNP prior for an unknown regression mean function
is the use of a basis representation. Let {¢;} denote a basis, for example, for square
integrable functions. Any function of the desired function space can be represented as

FC) = dnen(), (6)
h

i.e., functions are indexed by the coefficients dj, with respect to the chosen basis. Putting
a prior probability model on {dy} implicitly defines a prior on f. Wavelets (Vidakovic
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Figure 5: Phase-velocity curve f(z) for T Monocerotis. Panel (a) shows the posterior
estimated phase-velocity curve E(f | y) (thick central line), and pointwise central HPD
50% (light grey) and 95% (dark grey) intervals for f(z). The circles shows the data
points. Inference is under a BNP model p(f) using a basis expansion of f with wavelets.
Panel (b) shows posterior inference on the range A = max(f) — min(f).

1998) provide a computationally very attractive basis. The (super) fast wavelet trans-
form allows quick and computationally efficient mapping between a function f and
the coefficients. The basis functions ¢y (+) are shifted and scaled versions of a mother
wavelet, ¥, () = 21/24h(27 2 — k), j > Jo, together with shifted versions of the scaling
function ¢ 1 (x) = 270/2¢(2%x — k), k € Z, i.e.,

FO = corban@) + DY dintjr(). (7)
k

jzJdo k

The coefficients d = (¢, dji j > Jo, k € Z) parametrize the function. The ;5 and
¢,k form an orthonormal basis. The choice of Jy is formally arbitrary. Consider J > Jp.

The mapping between ¢y, and (cjk, djk,j = Jo,-..,J) is carried out by an iterative
algorithm known as the pyramid scheme. Let f = (f1,..., fos) denote the function
evaluated on a regular grid. In view of the normalization property, ||¢ k|| = 1, scaling

coefficients at a high level of detail J are aproximately proportional to the represented
function, ¢y, ~ 277/2f;.. Thus for large J the mapping between cyj, and (cy,, dji,J =
Jo, ..., J) effectively becomes a mapping between f and the coefficients and defines the
super fast one-to-one map between f and the coefficients that we mentioned before.
The nature of the basis functions ;. as shifted and scaled versions of the mother
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wavelet allows an interpretation of d;; as representing a signal at scale j and shift
k. This interpretation suggests a prior probabilty model with increasing probability of
zero coefficients, increasing with level of detail j. Barnes et al. (2003) use p(djr = 0) =
1 — /! and a multivariate normal prior for the non-zero dj;, and c,, conditional on
keeping the zero coefficients. And the periodic nature of the function, with f(0) = f(1),
adds another constraint. Chipman et al. (1997), Clyde et al. (1998) and Vidakovic
(1998) discuss Bayesian inference in similar models assuming equally spaced data, i.e.,
covariate values x; are on a regular grid. Non-equally spaced data do not add significant
computational complications.

Example 4 (ctd.). Figure 5a shows f = E(f | y) under a BNP regresssion model based
on (7) with p(d;, = 0) =1 — oIt and a multivariate normal dependent prior on c,.
The primary inference target here is the range A = max(f) — min(f) whose posterior
uncertainty is mostly determined by the uncertainty in f(-) around x = 0 and thus AR.
Figure 5b shows the implied p(A | y).

Morris and Carroll (2006) build functional mixed effects models with hierarchical
extensions of (7) across multiple functions. Wavelets are not the only popular basis
used for nonparametric regression models. Many alternative basis functions are used.
For example, Baladandayuthapani et al. (2005) represent a random function using P-
splines.

Gaussian process priors. Besides basis representations like (6), another commonly used
BNP prior is the Gaussian process (GP) prior. A random function f(z) with z € R¢ has
a GP prior if for any finite set of points z; € R?, i = 1,...,n, the function evaluated at
those points is a multivariate normal random vector. Let f*(z), x € R¢ denote a given
function and let r(z1,z2) for x; € R denote a covariance function, i.e., the (n x n)
matrix R with R;; = r(z;,x;) is positive definite for any set of distinct z; € R, We
write f ~ GP (f*(z),r(x,y)) if

(f(x1)y. oy f(@n)) ~ N ((f*(z1),..., [ (zn)),R).

Assuming normal residuals, the posterior distribution for f = (f(z1),...,f(z,)) is
multivariate normal again. Similarly, f(z) at new locations x,; that were not recorded
in the data is characterized by multivariate normal distributions again. See O’Hagan
(1978) for an early discussion of GP priors, and Kennedy and O’Hagan (2001) for a
discussion of Bayesian inference for GP models in the context of modeling output from
computer simulations.

4.3 Fully Nonparametric Regression

Regression can be characterized as inference for a family of probability models on y
that are indexed by the covariate z, i.e., y | * ~ G,(y) and a BNP prior p(G) on
G = {Gx(y), * € X}. In BNP regression with a nonparametric mean function the
model G, is implied by a parametric residual distribution and a BNP prior for the



286 Bayesian Nonparametric Inference

mean function f(-). In contrast, in fully nonparametric regression the BNP prior is put
on the family G.

Example 5 (Breast cancer study). We illustrate fully nonparametric regression with
surival regression in a cancer clinical trial. The trial is described in Rosner (2005). The
data record the event-free survival time t; in months for n = 761 women. A subset of
ng = 400 observations are censored. Researchers are interested in determining whether
high doses of the treatment are more effective for treating the cancer compared to lower
doses. We consider two categorical and one continuous covariate, and one interaction
variable: treatment dose (TRT) (—1 = low, 1 = high), estrogen receptor (ER) status
(—1 = negative, 1 = positive), the size of the tumor (standardized to zero mean and
unit variance), and a dose/ER interaction (1 if a patient receives high treatment dose
and has positive ER status and 0 otherwise). This defines a vector x; of covariates for
each patient. The desired inference is to learn about G (y) = p(y | x), in particular, the
comparison with respect to TRT. Figure 6a shows the data as a Kaplan-Meier plot.

De Iorio et al. (2009) implement inference using a dependent Dirichlet process model
(DDP). The DDP was proposed by MacEachern (1999) as a clever extension of the DP
prior for one random probability measure G to the desired prior p(G,; = € X) for a
family of random probability measures. The construction builds on the stick-breaking
representation (1) of the DP. Consider a DP prior for G,

Go(0) =D 705, (4 (6) (8)
h=1

with 6, (z) ~ G% independent across h and 7, = vy, [1,cr (1 —ve) with vy, ~ Be(1, M),
i.i.d. Definition (8) ensures that G, ~ DP(G%, M), marginally. The key observation is
that we can introduce dependence of gh(a?) across x. That is all. By defining a dependent
prior on {§h(x)}r€ x we create dependent random probability measures G,.. As a default
choice MacEachern (1999) proposes a Gaussian process prior on {9~h (2)}zex. Depending
on the nature of the covariate space X other models can be useful too. The DDP model
(8) is sometimes referred to as variable location DDP. Alternatively the weights 7, (),
or both weights and locations, could be indexed with x, leading to variable weight and
variable weight and location DDP.

Example 5 (ctd.). De Iorio et al. (2009) define inference for a set {Gz; = € X}
indexed by a covariate vector x that combines two binary covariates and one continous
covariate. In that case, a convenient model for dependent probability distributions on
(On(z); = € X) is a simple ANOVA model for the categorical covariates. Adding a
continuous covariate (tumor size) defines an ANCOVA model. Figure 6b shows inference
under the ANOVA DDP model. For comparison, Figure 6¢ show inference for the same
data under a semiparametric accelerated failure time (AFT) median regression model
with a mizture of PT’s on the error distribution. The model is described in Hanson and
Johnson (2002). The PT is centered at a Weibull model. Panels (b) and (c) report
inference for a patient with average tumor size (this explains the discrepancy with the
KM plot). The BNP model recovers a hint of crossing survival functions.
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Figure 6: Cancer clinical trial. Panel (a) shows the data as a Kaplan-Meier (KM) plot
arranged by dose and ER status. Posterior survivor functions under the ANOVA DDP
model (panel b) and alternatively under the AFT median regression model (panel c).
In both plots, the solid line refers to low treatment dose and negative ER status. The
dashed line corresponds to high treatment dose and negative ER status, while the long
dashed line shows the survival for a patient in the low dose group but with positive ER
status.

A construction similar to the DDP is introduced in Gelfand et al. (2005) who define
a spatial DP mixture by considering a DP prior with a base measure G* which itself is
a GP, indexed with a spatial covariate z, say € R?. In other words, a realization of
the spatial DP is a random field (8(x),z € R2). Focusing on one location x we see that
the spatial DP induces a random probability measure for 6(x), call it G,. However, the
spatial DP defines a stick-breaking mixture of GP realizations, i.e., 8(-) ~ thégh(_).
For example, one observation (6(z1), #(z2)) at a pair of spatial locations is based on one
realization of the base measure GP. In contrast, under the DDP a pair of realizations
0(x1),0(x2), could be based on two realizations of the base measure GP (with the
possibility of a tie only because of the discrete nature of the distributions). Under the
spatial DP, a sampling model for observed data might still add an additional regression.

Many other variations of the DDP have been proposed, including matrix stick-
breaking (Dunson et al. 2008) and the kernel stick-breaking of Dunson and Park (2007).
Matrix stick-breaking introduces dependence for a set of random probability measures
that are arranged in a matrix, i.e., indexed by two categorical indices, say {G;; =
>_mijndg, }. In contrast to the common weights 7, in the basic DDP model (8) the

model uses varying weights and common locations 5;1. The construction starts with
stick-breaking as in (1), but then assumes vijn = Usp Wy, with the independent beta
priors on U, and Wjj,. Similarly, kernel stick-breaking introduces dependence across
random probability measures G, = wahdgh by replacing v, in the stick breaking
construction by V,, K (z,T},), where V}, is common across all 2, K(x,m) is a kernel cen-
tered at m and I'j, are kernel locations. The intention of the construction is to create
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e that are a continuous function of z. The specific nature of 7., as a function of x is
hidden in the kernel.

In the recent literature several alternatives to the DDP have been proposed. Dun-
son et al. (2007) propose density regression as a locally weighted mixture of a fixed
set of independent random probability measures. The weights are written as functions
of the covariates. A similar model is the already mentioned kernel stick-breaking pro-
cess of Dunson and Park (2007). Trippa et al. (2011) define a dependent PT model
by replacing the random splitting probabilities Y. by a stochastic process (Ye(x))zex,
maintaining the marginal beta distribution for any z. Jara and Hanson (2011) propose
a similar construction, but with the random splitting probabilties Y, (x) defined by a
transformation, for example a logistic transformation, of a GP. The constructed family
of dependent random probability measures is known as dependent tail-free processes
(DTFP). A special case is the linear dependent tailfree process (LDTFP) that is also
discussed in Hanson and Jara (2013).

5 Random Effects Distributions
5.1 Mixed Effects Models

An important application of nonparametric approaches arises in modeling random ef-
fects distributions in hierarchical mixed effects models. Often little is known about the
specific form of the random effects distribution. Assuming a specific parametric form is
typically motivated by technical convenience rather than by genuine prior beliefs. Al-
though inference about the random effects distribution itself is rarely of interest, it can
have implications on the inference of interest, especially when the random effects model
is part of a larger model. Thus it is important to allow for population heterogeneity,
outliers, skewness, etc.

In this context of a mixed effects model with random effects 6; a BNP model can
be used to allow for more general random effects distribution G(6;). Let y;; = 6; +
B'z;; + €;; denote a randomized block ANOVA with residuals €;; ~ N(0,0?), fixed
effects B and random effects 6; for blocks of experimental units, ¢ = 1,...,I. For
technically convenient posterior analysis one could assume a normal random effects
distribution §; ~ N(0,72) and conditionally conjugate priors p(3,02,7%). While the
prior for the fixed effects might be based on substantive prior information, the choice of
the random effects distribution is rarely based on actual prior knowledge. The relaxation
of the convenient, but often arbitrary distributional assumption for the random effects
distribution is a typical application of BNP models. A nonparametric Bayesian model
can relax the assumption without losing interpretability and without substantial loss
of computational efficiency. Many nonparametric Bayes models allow us to center the
prior model p(G) around some parametric model p,, indexed by hyperparameters 7.
For example, we could center a prior p(G) for a random effects distribution G around a
N(0,7%) model with hyperparameter n = 7. The construction allows us to think of the
nonparametric model as a natural extension of the fully parametric model.
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In the nonparametric extension the random effects distribution itself becomes an
unknown quantity. We replace the normal random effects distribution with 6; ~ G, G ~
p(G) with a BNP prior p(GQ) for the unknown G. For later reference we state the full
mixed effects model

p(ylj | 5791'); .7: 13"'777‘1'
p(0; | G) = G and G ~ p(G). (9)

Here the sampling model p(y;; | §,6;) could, for example be an ANOVA model. The
nonparametric prior p(G) is a prior for a density estimation with the (latent) random
effects 6;. We could use any prior that was discussed earlier. The only difference is that
now the latent 6; replace the observed data in the straightforward density estimation
problem. There is one complication. The nature of G(-) as a random effects distribution
requires centering at 0 to ensure identifiability. Often, this detail is ignored, or only
mitigated by setting up the prior with a prior mean G* = E(G) such that G* is centered
around 0. However, centering the prior mean does not imply centering of G. A non-
zero mean of G could be confounded with corresponding fixed effects. Li et al. (2011)
propose a clever postprocessing step of MCMC output to allow the use of DPM models
including MCMC without any constraint.

Bush and MacEachern (1996) propose a DP prior for §; ~ G, G ~ DP(G*, M).
Kleinman and Ibrahim (1998) propose the same approach in a more general framework
for a linear model with random effects. They discuss an application to longitudinal ran-
dom effects models. Miiller and Rosner (1997) use DP mixtures of normals to avoid the
awkward discreteness of the implied random effects distribution. Also, the additional
convolution with a normal kernel greatly simplifies posterior simulation for sampling
distributions beyond the normal linear model. Mukhopadhyay and Gelfand (1997) im-
plement the same approach in generalized linear models with linear predictor 6; + 3
and a DP mixture model for the random effect 6;. In Wang and Taylor (2001) random
effects 0; are entire longitudinal paths for each subject in the study. They use integrated
Ornstein-Uhlenbeck stochastic process priors for 6;.

Example 6 (Phage display experiment). Leon-Novelo et al. (2013) discuss an appli-
cation of BNP priors for random effects distributions that includes a decision problem
on top of the inference problem. The BNP prior matters. The decision hinges on a
full description of uncertainties in the random effects distribution. Leon-Nowvelo et al.
(2013) analyze count data from a phage display experiment with three stages. The data
come from three consecutive human subjects who met the formal criteria for brain-based
determination of death. The primary aim of the experiment is to identify peptides that
bind with high affinity to particular tissue (bone-marrow, fat, muscle, prostate and skin).
Bacteriophages, phages for short, are viruses. They provide a convenient mechanism
to study the preferential binding of peptides to tissues, essentially because it is possi-
ble to experimentally manipulate the phages to display various peptides on the surface
of the viral particle. See Leon-Novelo et al. (2013) for a more detailed description of
the experimental setup and the study. The data are tripeptide counts by tissue and
stage. The experiment is set up in such a way that peptides that preferentially bind
to a particular organ should be recorded with systematically increasing counts over the
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three stages. The inference goal is to select from a large list of peptide and tissue pairs
those with significant increase over stages. Figure 7 shows the data. Leti =1,...,n,

Figure 7: Observed counts y;1,¥i2,yi3 over stages 1 through 3. Each line connects
the three counts for one tripeptide-tissue pair. Tripeptide/tissue pairs with increasing
counts y;1 + 1 < y;2 and y;2 + 1 < y;3 are plotted in black (adding the increment 1 to
avoid a cluttered display). Others are plotted in grey.

index all n = 2763 recorded tripeptide/tissue pairs. Each line connects the three counts
Vi1, Yiz, Yiz for one tripeptide/tissue pair. Of course, even if there were no true prefer-
ential binding, and all counts were on average constant across stages, one would expect
about 1/4 of the observed counts to be increasing across the 3 stages. The decision prob-
lem is to select pairs with significant increase and report them for preferential binding.
Let Poi(\) denote a Poisson distribution. We assume y;1 ~ Poi(u;), yio ~ Poi(u;5;)
and yi3 ~ Poi(p;0;) for random effects (w;, Bi, 0;). The event of increasing mean counts
becomes A; = {1 < B; < &;}. We use a random effects distribution (B;,0;) ~ G with
BNP prior p(G). Figure 8a shows E(G | y). The event A= {0 < 8 < ¢} is in the right
upper quadrant, between the two lines. The main inference summary is the posterior
probabilities for increasing mean counts, p; = p(A; | y). Thresholding p; defines a deci-
sion rule §; = I(p; > ¢) for reporting preferential binding for the tripeptide/tissue pair
i. Leon-Novelo et al. (2013) use a bound on the posterior expected false discovery rate
to fix the threshold c. Figure 8b highlights the importance of the BNP model here. The
figure reports (B;,0;) = E(Bs,6; | y) under two alternative models, the described BNP
model (marked as “semiparametric” in the figure) and a corresponding parametric model
(“EB”). Results in (b) are for a — different — simulated data set. Short line segments
connect (B;,0;) under the two models for each tripeptide/tissue pair i. The corrections
are substantial, impacting the posterior probabilities p; and thus changing the decisions
&; for many pairs.
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Figure 8: Estimated random effects distribution (panel a) and posterior estimated ran-
dom effects E(5;,0; | y) (panel b, marked with “*”) versus posterior means under a
similar parametric model (“+”). Results in (b) are under a — different — simulated data
set.

5.2 Multiple Subpopulations and Classification

The use of BNP priors for random effects distributions becomes particularly useful when
the model includes subpopulations, say v = 1,...,V with separate, but related random
effects distributions G,. We let G = (G, v =1,...,V) and augment (9) to

Yvij p(yvz’j \ Bvovi); J=1
91v|g ~ vaizla"'ania
g ~ p9). (10)

Here p(G) is a BNP prior for a family or random probability measures, for example the
DDP model introduced in (8).

Example 7 (Hormone data). De la Cruz et al. (2007) analyze hormone data for 173
pregnancies. The data report repeat measurements on the pregnancy hormone 3-HCG
for 173 young women during the first 80 days of gestational age. Figure 9 shows the
data. The data include ng = 124 normal pregnancies and nq, = 49 pregnancies that were
classified as abnormal. The goal is to predict normal or abnormal pregnancy for a future
woman on the basis of the longitudinal data as it accrues over time. Figure 10c shows the
desired inference. The figure plots the posterior probability of a normal pregnancy against
the number of hormone measurements for two hypothetical future women, one with a
normal pregnancy and one with an abnormal pregnancy. Let y; = (Yi1,- - ., Yin;) denote
the B-HCG repeat measurments for the i-th woman, recorded at timest;;, j =1,...,n4.
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Figure 9: Hormone data. Observed repeat S-HCG measurement for normal (left panel)
and abnormal (right) pregnancies.

Let v; € {0,1} denote an indicator for abnormal pregnancy. The longitudinal data are
modeled as a non-linear mized-effects model

p(yij | vi = v, Bu, 02,0;) = N(mij,02) with mi; = 0; [1 + exp {—(t; — Bro)/Bau}] ",

i.e., a logistic regression with coefficients B, and scaled by random effects 6; and with
normal residuals. Both B3,,02 are specific to each group, v =0 and v = 1. Let ¢ =
(By,02%, v =0,1). The model includes a patient-specific random effect 0; with 0; | v; =
x ~ Gy(0;). We assume a BNP prior p(Go,G1). We use an ANOVA DDP prior on
G, = th(S(;h(v), v =0,1. The binary nature of v € {0, 1} makes the model particularly

simple, with gh(x) =My, + Apy + €y, Where apg = 0 and epy ~ N(0,72). The model is
completed with a bivariate normal prior G*(my, ap1) and conditionally conjugate priors
for ¢. Figure 10ab shows the estimated random effects distributions.

A simple augmentation of model (10) allows to use the same model for classification.
First we change indexing of experimental units ¢ torun ¢ = 1,...,n across all subgroups,
and add v; € {1,...,V} as an indicator for unit (patient) ¢ being in group v. Then add
a prior p(v; = v) = m,, to get

P(Unt1 =0 | Yn+1,15- -+ >yn+1,ja7r>y) x Ty B |:/p(yn+1 | Ony1,0) dGy(Onir) | ?J} )

(11)
for v = 1,...,V. The expectation in square brackets is with respect to the posterior
probability model on G, ¢ given the observed data (y;,v;; i =1,...,n).

Example 7 (ctd.). Figure 10c shows the posterior probability p(vn41 = 1| Ynt1,1...5,Y)
for two hypothetical future patients i = n + 1, plotted against j = 0,1,...,6, as repeat
observations accrue. The evaluation of the classification rule in (11) makes use of
p(G1,Go | y). The BNP model matters.
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Figure 10: Hormone data. Estimated random effects distributions E(G, | y) for v =0
(Panel a) and v = 1 (b). Panel (c) shows the classification of a hypothetical (n + 1)-st
pregnancy as a function of the number j of observed hormone measurements.

6 Asymptotics

With sufficiently large data, the posterior distribution should be concentrated more
and more tightly around the true parameter 6y. This property is known as poste-
rior consistency. Posterior consistency statements are results about probabilities under
repeat experimentation under some unknown truth 6y, i.e., results about frequentist
probabilities. A lot of recent BNP research is concerned with such asymptotic re-
sults. In the world of Bayesian nonparametrics, the true parameter is typically an
infinite dimensional object. It could be a probability density function, a c.d.f., the spec-
tral density of a time series, etc. We therefore consider distances in function spaces.
Some commonly studied metrics in posterior consistency are the Hellinger distance,
the Kullback-Leibler metric, and the the L; metric. Neighborhoods defined by the L,
metric are known as strong neighborhoods. A weak neighborhood V of a function fy
is a set indexed by € and a finite set of bounded continuous functions ¢ ... ¢ such
that V.= {f : | [&if — [¢ifo| <€ i=1...k}. We say that a measure f; is in the
support of a prior p(f) if every weak neighborhood of fy has positive p measure. For
the rest of the discussion we assume that the goal is inference for an unknown distri-
bution Fy, and the data are i.i.d. observations, x; ~ Fp, i = 1,...,n. We say that a
model exhibits posterior consistency with respect to a particular topology (strong or
weak) if p(U | x1...2,) — 1 a.s.-Fp for all neighborhoods U of Fy corresponding to
that topology.

Freedman (1963) proposed tail-free distributions as a class of priors for which pos-
terior consistency holds. Consider a nested sequence of partitions (,,) of the sample
space, m1 = {By,B1}, ma = {Boo, Bo1, B1o, B11}, etc., such that w41 is a refine-
ment of m,,, i.e., B = B U B¢, where ¢ = ejes---e,, is an m-digit binary in-
dex. A prior p(G) is called tail-free with respect to a nested sequence of partitions
if {G(Bo)},{G(Boo | Bo),G(Bo1 | Bo)}, etc. are independent across partitions. Two
important priors that exhibit consistency due to a tail-free property are the DP and the
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PT priors. However the tail-free property is not common and can be destroyed when
the process is convoluted with a mixing measure. This concern generated a need to
formalize good priors in terms of consistency theorems that impose general sufficient
conditions on the true density Fy and the prior p(F'). Schwartz’s theorem (1965) is the
first important step in this direction and forms a strong basis for a lot of subsequent
work.

Schwartz (1965) proposed an important condition for consistency. The prior should
put positive mass on all Kullback Leibler (KL) neighborhoods of the true density. This
is referred to as Schwartz’s prior positivity condition or the KL property of the prior.
A second condition is the existence of a sequence of uniformly exponentially consistent
tests of Hy : F = Fy vs. Hy : F € U°€ for every neighborhood U of Fy. Together, these
conditions ensure consistency. The second condition is readily met for weak topology.
Thus, as a corollary, prior positivity becomes a sufficient condition for weak consistency.

We review some results on weak consistency of DPM’s of normals models. Let
¢(x; 0,h) denote a normal p.d.f. with location € and scale h. We consider DPM models
of the form F(z) = [ ¢(z; 6,h)dG() with G ~ DP(G*, M). The model is completed
with a prior p(h). We refer to such DPM models as DP location mixture of normals, for
short “location mixtures.” Ghosal et al. (1999) prove prior positivity, and hence weak
consistency for a location mixture. The sufficient conditions are that the true density
itself is a convolution, i.e., Fy = [ ¢(z; 6, hg)dPy(0) where Py is compactly supported
and belongs to the weak support of the DP prior and hg is in the support of p(h).
In the same paper, the result is extended to DPM location-scale mixture of normals
F(z) = [ ¢(z; 0,h)dG(0,h), for short “location-scale mixtures.”

To establish strong consistency of DPM of normal models, additional techniques,
like constructions of sieves, are required. Using such constructions, Ghosal et al. (1999)
prove strong consistency for location mixture priors when the true Fp is in the KL sup-
port of the prior, subject to some conditions on p(h) and the tail of the base measure
G* of the DP prior. These conditions are satisfied for a normal base measure for 6
and an inverse gamma prior p(h?). Lijoi et al. (2005b) improved upon these results by
replacing the exponential tail condition by [|0|G*(6) < co. Ghosal and van der Vaart
(2001) established a convergence rate of log(n)*/,/n for strong consistency in location-
scale mixtures, where k& depended on the tail behavior of the base measure. The result
assumed that the true densities are DPMs with compactly supported mixing measure
and that h is in a bounded interval. Such densities are known as super-smooth. Ghosal
and van der Vaart (2007) generalize the result to the larger class of twice differentiable
true densities. They assume location mixtures, with the prior p, (h) on the scale chang-
ing with sample size. A rate, lower than that in Ghosal and van der Vaart (2001), but
equal to an optimal rate of a kernel estimator is obtained in this setting. Tokdar (2006)
established both strong and weak consistency for a large class of true densities Fj satis-
fying [ |z|"Fy(z) < oo for some n > 0. This class includes heavy tailed distributions like
the t density. The priors are location-scale mixtures with some regularity conditions on
the tail of the base measure G*, which are shown to be satisfied for normal and inverse
gamma base measures.
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Although most arguments use sieves and Schwartz’s framework, there are some al-
ternative approaches too. Walker and Hjort (2002) and Walker (2004, 2003) use the
martingale property of marginal densities as a unifying tool. For recent reviews of con-
sistency and convergence rates in DPM models, see Walker et al. (2007) and Ghosal
(2010).

Some recent work considers posterior consistency for models beyond DP priors. Jang
et al. (2010) showed that in the class of Pitman-Yor process priors, DP priors are the
only ones with posterior consistency. Gaussian processes are another important class
of priors with well known consistency results. For example, assume a regression setting
with binary outcomes y; where the success probabilities p(y; = 1 | z;) are a smooth
unknown function f(z;) of a set of covariates z;. Let h() denote an inverse logit link
(or any other monotone mapping from $ to the unit interval) and define a prior p(f)
by assuming f(z) = h[f(x)] for a Gaussian process () ~ GP. Ghosal and Roy (2006)
discussed posterior consistency for such models. More general results on consistency and
rates of convergence for a large class of GP priors (e.g., Brownian motion) are shown in
van der Vaart and van Zanten (2008).

7 Conclusion

We tried to motivate BNP inference by a discussion of some important inference prob-
lems and examples that highlight the limitations of parametric inference. The statement
is meant in reference to a standard, default parametric model. Naturally, in each of these
examples one could achieve similar inference with sufficiently complicated parametric
models like a finite mixture. However, inference under such models is usually no easier
than under the BNP model. For example, inference with a finite mixture model gives
rise to all the same complications as a nonparametric mixture, such as the DPM model.

We have not discussed two important aspects of BNP inference. Inference for many
models quickly runs into computation intensive posterior inference problems. We did not
discuss many such details. Also, a large part of the recent BNP literature is concerned
with asymptotic properties of BNP inference, which we only briefly summarized in this
review. For an excellent recent review of posterior asymptotics in DP and related models
see Ghosal (2010).

Finally, we owe a comment about the term “nonparametric.” We started out by
defining BNP as probabilty models for infinite dimensional random quantities like curves
or densities. It might be more fittingly called “massively parametric Bayes”. The label
nonparametric has been used because inference under BNP models often looks similar
to (genuinely) nonparametric classical inference.
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