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Bayesian Inference for P pX ă Y q Using
Asymmetric Dependent Distributions

Francisco J. Rubio ˚ and Mark F. J. Steel :

Abstract. This paper studies Bayesian inference for θ “ PpX ă Y q in the case
where the marginal distributions of X and Y belong to classes of distributions
obtained by skewing scale mixtures of normals. We separately address the cases
where X and Y are independent or dependent random variables. Dependencies
between X and Y are modelled using a Gaussian copula. Noninformative bench-
mark and vague priors are provided for these scenarios and conditions for the
existence of the posterior distribution of θ are presented. We show that the use of
the Bayesian models proposed here is also valid in the presence of set observations.
Examples using simulated and real data sets are presented.

Keywords: Gaussian copula, posterior existence, set observation, skewness, stress-
strength model.

1 Introduction

Stress–strength models have attracted the attention of statisticians for many years due
to their applicability in diverse areas such as medicine, engineering, quality control,
among others. For example, if X and Y are the outcomes of a treatment and a con-
trol group, respectively, then the quantity θ “ PpX ă Y q can be interpreted as the
effectiveness of the treatment (Kotz et al. 2003; Ventura and Racugno 2011). Another
important use of θ “ PpX ă Y q in medicine is related to the analysis of receiver oper-
ating characteristic (ROC) curves, where θ naturally appears as an index of diagnostic
accuracy (Zhou 2008). The parameter θ can be seen as a function of the parameters
of the distribution of the random vector pX,Y q and can be calculated in closed form
for a limited number of cases (Kotz et al. 2003; Nadarajah 2005; Genç 2012). There is
a large amount of literature about the estimation of θ using different approaches and
distributional assumptions on pX,Y q (e.g. Kotz et al. 2003, Greco and Ventura 2011
and Ventura and Racugno 2011). For instance, it has been assumed that

(i) X and Y are independent (Zhou 2008; Ventura and Racugno 2011).

(ii) The distributions of X and Y share common parameters (Gupta and Peng 2009).

(iii) The distributions of X and Y are independent skewed normals (Azzalini and
Chiogna 2004; Gupta and Brown 2001).
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(iv) X and Y are dependent with a bivariate normal distribution (Nandi and Aich
1994; Barbiero 2012)

(v) X and Y are conditionally (on certain unobservable variables) independent expo-
nential random variables (Shoukri et al. 2005).

Although closed expressions for the profile likelihood and modified profile likelihood
of θ have been calculated for some particular cases (Montoya 2008; Ventura and Racugno
2011; Dı́az-Francés and Montoya 2012), it is difficult (if at all feasible) in the general
case to find a reparameterization of the model parameters that involves θ (Azzalini and
Chiogna 2004; Dı́az-Francés and Montoya 2012). This complicates the calculation of
the profile likelihood of the parameter θ, and therefore, the interval estimation using
the classical approach.

Alternative inferential approaches for estimating this parameter have also been pro-
posed; for example, the use of confidence intervals (see Kotz et al. 2003), asymptotic
confidence intervals and bootstrap (Zhou 2008), Bayesian inference using reference priors
(Sun et al. 1998), nonparametric estimators using kernel methods (Baklizi and Eidous
2006), and Jackknife empirical likelihoods (Jing et al. 2009). Ventura and Racugno
(2011) consider modified profile likelihoods and Bayesian inference using matching pri-
ors (see e.g. Datta and Ghosh 1995 for a more general discussion on matching priors).
Most of these approaches were proposed under specific distributional assumptions.

To our knowledge, there is a gap in the cases analysed in the literature. The case
where X and Y are dependent and the case where their marginal distributions are
skewed with support on R have been analysed separately. This paper tries to fill this
gap by analysing the case where X and Y are dependent with marginal distributions
belonging to the class of distributions obtained by skewing scale mixtures of normals.
In addition, we address this problem in the context of set observations, which can
immediately account for censoring.

In Section 2, we study the case where X and Y are independent with particular focus
on the case where their distributions are skewed. We consider skewed distributions
obtained with two different skewing mechanisms: two-piece distributions (Fernández
and Steel 1998; Mudholkar and Hutson 2000; Arellano-Valle et al. 2005) and skew-
symmetric distributions (Wang et al. 2004). We propose noninformative benchmark
priors and present mild conditions for the existence of the posterior distribution of θ.
In Section 3, we study the case where X and Y are dependent random variables with
skewed marginal distributions. Dependencies between X and Y are modelled using a
Gaussian copula. Exploiting the interpretability of the parameters, we provide “vague”
proper priors in this context. In Section 4, we show that the Bayesian models presented
here can be used in the presence of set observations. Finally, Section 5 illustrates the
use of these models using simulated and real data sets.
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2 Independent case

In this section, we present Bayesian models to conduct inference on θ “ PpX ă Y q in
the case where X and Y are independent variables with densities f1p¨; ξ1q and f2p¨; ξ2q,
respectively. Cumulative distribution functions are denoted with the corresponding
uppercase letters throughout. We focus on the case where f1 and f2 are skewed distri-
butions and we also present conditions for the existence of the posterior distribution of
θ under the use of improper benchmark priors.

If we adopt a product prior structure

Ppξ1,ξ2q9Pξ1 ˆ Pξ2 , (1)

where Pξ1 and Pξ2 are priors such that the corresponding posteriors are well-defined,
then the posterior distribution of θ is well-defined as shown in the next result.

Remark 1. Let X and Y be two independent random variables with distributions
f1p¨; ξ1q and f2p¨; ξ2q, respectively. Let x “ px1, . . . , xn1q and y “ py1, . . . , yn2q be
two independent samples from X and Y . Then, the posterior distribution of θ, using
the product prior structure p1q, is proper if the corresponding posteriors of ξ1 and ξ2
are proper.

Proof. See Appendix.

Examples of this are the use of the Jeffreys prior of ξ1 and ξ2 in a normal or
exponential sampling model as in Ventura and Racugno (2011), and the use of reference
priors for ξ1 and ξ2 in a Weibull sampling model as studied in Sun et al. (1998). In
the following sections, we study the cases where the marginal distributions of X and
Y belong to the family of skewed scale mixtures of normals obtained by two different
skewing mechanisms. Let us recall that a density s corresponds to a scale mixture of
normals if it can be written as

spx|νq “

ż 8

0

τ1{2ϕpτ1{2xqdPτ |ν ,

where ϕ is the standard normal density and Pτ |ν is a mixing distribution on R`. This
class is quite wide and covers, for example, Student-t, symmetric stable, exponential
power and hyperbolic distributions (see Fernández and Steel 2000 for a more complete
overview).

2.1 Two-Piece marginals

Let s1 and s2 be two symmetric densities with support on R, location parameters µj P R
and scale parameters σj P R`, j “ 1, 2 respectively. Let X and Y be two independent
continuous random variables with densities given respectively by (Arellano-Valle et al.
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2005)

f1px;µ1, σ1, γ1q “
2

σ1rapγ1q ` bpγ1qs

ˆ

„

s1

ˆ

x´ µ1

σ1bpγ1q

˙

Ip´8,µ1qpxq ` s1

ˆ

x´ µ1

σ1apγ1q

˙

Irµ1,8qpxq

ȷ

,

f2py;µ2, σ2, γ2q “
2

σ2rapγ2q ` bpγ2qs

ˆ

„

s2

ˆ

y ´ µ2

σ2bpγ2q

˙

Ip´8,µ2qpyq ` s2

ˆ

y ´ µ2

σ2apγ2q

˙

Irµ2,8qpyq

ȷ

, (2)

where γj P Γ and Γ depends on the choice of tap¨q, bp¨qu where ap¨q and bp¨q are
positive and differentiable functions. The main examples found in the literature are
tapγq, bpγqu “ tγ, 1{γu, γ ą 0 (Fernández and Steel 1998) and tapγq, bpγqu “ t1´ γ, 1`

γu, γ P p´1, 1q (Mudholkar and Hutson 2000). The densities f1 and f2 can be inter-
preted as skewed versions of s1 and s2, and are often called “two-piece” distributions.
If we measure skewness using the measure in Arnold and Groeneveld (1995) (which
is defined as one minus twice the probability mass to the left of the mode and takes
values in r´1, 1s), Rubio and Steel (2011) find that for these distributions this skewness
measure becomes

AG “ AGpγjq “
apγjq ´ bpγjq

apγjq ` bpγjq
, j “ 1, 2.

Therefore, we can see that γj controls the allocation of mass each side of the mode
of the transformed distribution. This result lets us interpret the parameter γj as a
skewness parameter for the typical choices of tap¨q, bp¨qu found in the literature.

For the purpose of conducting Bayesian inference for the parameter θ “ PpX ă Y q

we consider the priors

ppµj , σj , γj |αj , βjq9
1

σj

|a1pγjqbpγjq ´ apγjqb
1pγjq|

rapγjq ` bpγjqsαj`βj
apγjq

αj´1bpγjq
βj´1, j “ 1, 2. (3)

The structure of these priors is the product of the independence Jeffreys prior for
a symmetric location-scale model and a Betapαj , βjq distribution on the parameter
pAGpγjq ` 1q{2 (Rubio and Steel 2011). Note that if αj “ βj “ 1, then the latter prior
is equivalent to setting a uniform prior over the measure of skewness AG. This prior
structure was proposed in Rubio and Steel (2011) as a modification of the independence
Jeffreys prior for two-piece location-scale models with the aim of producing a proper
posterior for a wider range of sampling models than the original one. They also show
through a simulation study that the coverage of the credibility intervals obtained with
this prior is reasonably close to the nominal value. Conditions for the existence of the
posterior distribution of θ using this prior are given in the following corollary.

Corollary 1. Let x “ px1, . . . , xn1q and y “ py1, . . . , yn2q be two independent samples
from the models in p2q and p3q, where s1 and s2 are scale mixtures of normals. Then,
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(i) The posterior distribution of θ is proper for any parameterization tap¨q, bp¨qu if
n1, n2 ě 2 and all the observations are different.

(ii) Suppose that the samples x and y contain repeated observations. Let k1 be the
largest number of observations with the same value in x and let k2 be the largest
number of repeated observations in y. If 1 ă k1 ă n1 and 1 ă k2 ă n2, then the
posterior of θ is proper if and only if the mixing probabilities of s1 and s2 satisfy

ż

0ăτ1ď¨¨¨ďτnj
ă8

τ
´pnj´2q{2
nj´kj

ź

i‰nj´kj ,nj

τ
1{2
i dPpτ1,...,τnj

q ă 8, j “ 1, 2. (4)

In the case of two-piece normal sampling models (i.e. normal s1 and s2), it suffices
to have two different observations in each sample.

Proof. (i) is a consequence of Remark 1 above and Theorem 6 from Rubio and Steel
(2011). (ii) follows from the proof of Theorem 6 from Rubio and Steel (2011) and
Theorem 2 from Fernández and Steel (1999).

2.2 Skew-symmetric marginals

We now consider the case where X and Y are independent random variables with skew-
symmetric distributions as in Wang et al. (2004). Let s1 and s2 be two symmetric
densities with support on R, location parameters µj P R, scale parameters σj P R`,
j “ 1, 2 respectively, and define

f1px;µ1, σ1, π1q “
2

σ1
s1

ˆ

x´ µ1

σ1

˙

π1

ˆ

x´ µ1

σ1

˙

,

f2py;µ2, σ2, π2q “
2

σ2
s2

ˆ

y ´ µ2

σ2

˙

π2

ˆ

y ´ µ2

σ2

˙

, (5)

where πjp¨q are functions that satisfy 0 ď πjpxq ď 1 and πjp´xq “ 1 ´ πjpxq. We use
parametric skewing functions πjp¨;λjq, λj P Λj , and adopt the prior structure

ppµj , σj , λjq9σj
´1ppλjq, j “ 1, 2, (6)

where ppλjq is an integrable function over Λj . The structure of these priors is again the
product of the independence Jeffreys prior for a symmetric location-scale model and
a prior distribution on the skewness parameter λj . This prior can be interpreted as
an extension of the reference prior of pλj , µj , σjq for the skew–normal case calculated
in Liseo and Loperfido (2006), which turns out to have this product structure. Bayes
and Branco (2007) show that, in the skew-normal case, this prior produces reasonable
coverage probabilities under a certain choice of pλj pλjq detailed below. Conditions for
the existence of the posterior distribution of θ using the prior p6q are given in the
following corollary.

Corollary 2. Let x “ px1, . . . , xn1q and y “ py1, . . . , yn2q be two independent samples
from the model p5q ´ p6q, where s1 and s2 are scale mixtures of normals. Then
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(i) The posterior distribution of θ is proper if n1, n2 ě 2 and all the observations are
different.

(ii) Suppose that the samples x and y contain repeated observations. Let k1 and k2 be
the largest number of observations with the same value in x and y, respectively.
If 1 ă k1 ă n1 and 1 ă k2 ă n2, then the posterior of θ is proper if and only if
the mixing probabilities of s1 and s2 satisfy p4q. In the case of skew-symmetric
normal sampling models (i.e. normal s1 and s2), it suffices to have two different
observations in each sample.

Proof. See Appendix.

A particular case of model (5) is the Azzalini skew-normal (Azzalini 1985), which
is obtained by setting πjpx;λjq “ Φpλjxq, λj P R, and s1 “ s2 “ ϕ, where Φ and ϕ
are the standard normal CDF and PDF, respectively. This model is frequently used
in applications and will be considered for the examples in Section 5 together with the
prior

ppµj , σj , λjq9σj
´1pJ pλjq, j “ 1, 2. (7)

This prior uses pJ pλjq, which is the Jeffreys prior of λj derived in the model without
location and scale parameters, and was proposed in Liseo and Loperfido (2006), who
also prove existence of the posterior under this prior. Bayes and Branco (2007) show
that the Jeffreys prior of λj can be approximated by a Student-t distribution with 1{2
degrees of freedom.

3 Dependent case

In this section, we focus on Bayesian inference for θ “ PpX ă Y q in the case where X
and Y are dependent random variables with marginal distributions f1p¨; ξ1q and f2p¨; ξ2q,
respectively. We pay special attention to the case where the marginal distributions are
skewed and we use a Gaussian copula for modelling dependencies between X and Y .
The density of the Gaussian copula is given by

spx, y; ξ1, ξ2, ρq “
1

a

1 ´ ρ2
exp

„

´
V T pR´1 ´ IqV

2

ȷ

ˆ f1px; ξ1qf2py; ξ2q, (8)

where

R “

ˆ

1 ρ
ρ 1

˙

,

is a correlation matrix with ρ P p´1, 1q and V “ pΦ´1rF1px; ξ1qs,Φ´1rF2py; ξ2qsqT .
This copula presents some appealing features like being comprehensive, symmetric (in
the sense that positive and negative dependence is treated equally) and also that the
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Spearman’s measure of association, rρ P p´1, 1q, can be calculated in closed form as
(Carta and Steel 2012)

rρ “
6

π
arcsin

´ρ

2

¯

.

We adopt a proper prior distribution with independence between ρ, ξ1 and ξ2 and
density function

ppξ1, ξ2, ρq “ ppξ1qppξ2qppρq, (9)

where ppξ1q, ppξ2q and ppρq are probability density functions. Thus, the posterior
distribution of θ is well-defined for this Bayesian model. The choice of these priors for
the case of two–piece marginals or skew–symmetric marginals is discussed in the next
sections.

3.1 Two-piece marginals

Consider the case where X and Y are dependent random variables with marginal distri-
butions given by (2). The dependency between X and Y is modelled with a Gaussian
copula as in (8). Figure 1 shows some contour plots obtained for this copula density us-
ing the parameterization in Mudholkar and Hutson (2000), tapγq, bpγqu “ t1´ γ, 1` γu

and s1 “ s2 “ ϕ. By appropriately choosing the parameters γ1, γ2 and ρ, we can assign
a wide range of shapes to the density. The mode of the density is not affected by changes
in the parameters, in line with the mode-preserving property of the two-piece skewing
mechanism.

For the parameters of this model, we adopt the product prior structure

ppµ1, µ2, σ1, σ2, γ1, γ2, ρq “ ppµ1qppσ1qppµ2qppσ2qppρq

ˆ
|a1pγ1qbpγ1q ´ apγ1qb1pγ1q|

rapγ1q ` bpγ1qsα1`β1
apγ1qα1´1bpγ1qβ1´1

ˆ
|a1pγ2qbpγ2q ´ apγ2qb1pγ2q|

rapγ2q ` bpγ2qsα2`β2
apγ2qα2´1bpγ2qβ2´1.

(10)

In order to come up with “vague” or weakly informative proper priors, we consider
uniform priors for each of the location parameters pµ1, µ2q on a suitable interval. For
each of the scale parameters pσ1, σ2q, we recommend the use of a half-t distribution with
scale parameters Aj and νj degrees of freedom, j “ 1, 2. This prior was proposed in
Gelman (2006) as a weakly informative prior for this sort of parameters. Of particular
interest is the case with αj “ βj “ 1 in (10) together with

ppρq9
1

1 ´ pρ{2q
2 , (11)

which corresponds to AG „ Up´1, 1q for both marginals and rρ „ Up´1, 1q.
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Figure 1: Contour plots: two-piece skew-normal marginals with µ1 “ µ2 “ 0, σ1 “ σ2 “ 1
and (a) γ1 “ γ2 “ 0, ρ “ 0; (b) γ1 “ γ2 “ 0, ρ “ 0.5; (c) γ1 “ 0.5, γ2 “ 0, ρ “ 0; (d)
ρ “ γ1 “ γ2 “ 0.5.

3.2 Skew-symmetric marginals

Here we focus on the case where X and Y are dependent random variables with skew-
symmetric marginal distributions (5). Figure 2 shows some contour plots obtained
for the copula density in (8) with Azzalini skew-normal marginals. By varying the
parameters, it is possible to cover a wide range of shapes, but note that there is a shift
of the mode relative to the symmetric case.

For the parameters of this model, we adopt a product structure for the prior

ppµ1, µ2, σ1, σ2, λ1, λ2, ρq “ ppµ1qppσ1qppµ2qppσ2qppλ1qppλ2qppρq. (12)

For pµ1, µ2, σ1, σ2, ρq we employ the priors described in the previous section. For
the skewness parameters pλ1, λ2q we employ a Student-t distribution with 1{2 degrees
of freedom as described in Section 2.2.
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Figure 2: Contour plots: Azzalini skew-normal marginals with µ1 “ µ2 “ 0, σ1 “ σ2 “ 1
and (a) λ1 “ λ2 “ 0, ρ “ 0; (b) λ1 “ λ2 “ 0, ρ “ 0.5; (c) λ1 “ ´5, λ2 “ 0, ρ “ 0; (d)
λ1 “ λ2 “ ´5, ρ “ 0.5.

4 Set observations

A common phenomenon in reliability and survival analysis is the presence of set ob-
servations under a continuous sampling model. A set observation S is produced when
a measurement is recorded as a set of positive probability, i.e. PrObserving Ss ą 0,
where S is a Borel set. In practice, this corresponds to any observation recorded with
finite precision, as well as left, right and interval censoring. When the quantitative
effect of censoring is significant, this must be formally taken into account in the model
(Heitjan 1989). In addition, the use of set observations allows us to avoid dangerous
paradoxes induced by the implicit practice of conditioning on sets of measure zero when
using point observations in continuous sampling models (Fernández and Steel 1999). In
Corollaries 1-2 above, this is reflected in the extra conditions needed in the presence of
repeated (point) observations. In the following theorem, conditions for the existence of
the posterior distribution of θ using the Bayesian models from Section 2 in the context
of set (interval) observations are presented.

Theorem 1. Let Sx “ pS1, . . . , Sn1q and Sy “ pS1
1, . . . , S

1
n2

q be two independent samples
of set observations from the model p2q´p3q or p5q´p6q, where s1 and s2 are scale mixtures
of normals. Then, the posterior distribution of θ is proper if n1, n2 ě 2 and there exist
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two pairs of sets, say pSi, Sjq and pS1
i, S

1
jq, such that

inf
xiPSi,xjPSj

|xi ´ xj | ą 0,

inf
yiPS1

i,yjPS1
j

|yi ´ yj | ą 0. (13)

Proof. See Appendix.

Thus, whenever each sample of set observations contains at least two intervals that
do not overlap, the posterior distribution of θ is proper. In practice, of course, this is
very likely to be satisfied for any samples that we would seriously consider analysing.

For the copula models presented in Section 3, the posterior distribution of θ is well-
defined in the presence of set observations due to the properness of the priors.

5 Examples

In this section, three examples are presented to illustrate the use of the Bayesian models
for θ “ PpX ă Y q in different scenarios: independent observations, dependent observa-
tions and set observations. Throughout, in order to obtain inferences for θ, we consider
the use of the marginal sampling models (2) and (5) with s1 “ s2 “ ϕ. In the case
of the two-piece marginal we adopt the parameterization tapγq, bpγqu “ t1 ´ γ, 1 ` γu,
γ P p´1, 1q, and use the prior in (3) and (10) with αj “ βj “ 1. We compare this model
with the Bayesian model with Azzalini skew-normal marginals and the prior in (7) and
(12). For the dependent cases, modelled as in (8), we use the prior on ρ in (11). Using
a Metropolis-Hastings algorithm, a posterior sample of size 10, 000 of the correspond-
ing model parameters was simulated using a burn-in period of 50, 000 iterations and
a thinning of 100 iterations. Then, through numerical integration, the corresponding
posterior sample of θ was calculated.

5.1 Independent case

Simulated data

First, we present an example using simulated data which illustrates the importance of
taking departures from symmetry into account, particularly in the case where X and Y
display quite different skewness properties. Two independent samples of size 50 from the
two-piece skew-normal model were drawn with µi “ 10, σi “ 1, i “ 1, 2 and X generated
with γ1 “ 0.75 and Y using γ2 “ ´0.75. Using these data, a posterior sample of θ for
the following three Bayesian models was simulated: (i) (2)-(3), with αj “ βj “ 1; (ii)
(5)-(7); and (iii) a normal sampling model for X and Y together with the independence
Jeffreys prior ppµ1, µ2, σ1, σ2q9σ´1

1 σ´1
2 . Figure 3 shows the posterior distribution of θ

for these models. We can observe a clear discrepancy between the inference obtained
with the symmetric and the asymmetric sampling models. Properly accounting for
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skewness centers the inference nicely around the theoretical value (calculated using
unidimensional numerical integration) for θ of 0.9646. In addition, both skewed models
produce very similar inference about θ.

0.8 0.85 0.9 0.95 1
0

10

20

30

Figure 3: Simulated data: posterior distribution of θ, two-piece skew-normal (solid line),
Azzalini skew-normal (dashed) and normal (bold).

In the applications with real data, the skewness properties of X and Y are much
more similar, and thus the inference on θ is not as crucially affected by allowing for
skewness in the marginals. Of course, inference related to the marginals themselves will
typically be more sensitive to the modelling of skewness.

Body measurements

An important goal of forensic studies is to determine the gender of adults given their
skeletal remains (Heinz et al. 2003). Therefore, it is important to assess if certain body
measurements are informative about the gender. Here we analyse the variable “Chest
depth between spine and sternum at nipple level, mid-expiration” from the data set
presented in Heinz et al. (2003). This sample consists of 507 measurements taken on
physically active adults, 260 females and 247 males. In this case, it seems reasonable
to assume independence between the measurements on females and males given that no
relationship between the individuals is known. In addition, the histograms in Figure
4 suggest departure from symmetry. Figure 5 shows the posterior distributions of θ “

P pfemale chest depth ă male chest depthq. This figure indicates that this variable can
be informative about the gender given that the posterior of θ assigns most of the mass
to values bigger than 0.5. Both models produce similar inferences about θ.



54 Inference for P pX ă Y q under Asymmetry and Dependence

15 20 25
0

0.1

0.2

15 20 25
0

0.1

0.2

(a) (b)

Figure 4: Histograms of Chest depth data: (a) females; (b) males.

0.8 0.85 0.9
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20

Figure 5: Chest depth data: posterior distribution of θ, two-piece skew-normal (solid line)
and Azzalini skew-normal (dashed).

5.2 Dependent case

We now analyse the data set presented in Venkatraman and Begg (1996), which con-
tains 72 lesion scores obtained using both, a clinical scheme without a dermoscope (X
Test), and a dermoscopic scoring scheme (Y Test). Their main interest is to assess
the information provided by the use of the dermoscope. This data set was also con-
sidered in Gupta and Peng (2009) using bootstrap and asymptotic confidence intervals
but assuming independence between the X Test and the Y Test. This assumption is
somewhat restrictive because each pair of observations was measured in the same pa-
tient. In fact, the population correlation coefficient is 0.794 and we can observe this
positive correlation in the scatter plot in Figure 6. Here, we analyse the subset of 51
non-diseased patients (diagnosed using a biopsy) and compare the Bayesian inferences
obtained under both assumptions: independence and dependence of the tests. We em-
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ploy A1 “ A2 “ ν1 “ ν2 “ 1 for the hyperparameters of the scale parameters in the
priors (10) and (12). For the location parameters we use uniform priors on (-50,50).
Figure 7 shows the posterior distributions of θ “ P pY Test ă X Testq for both scenar-
ios. We see that the conclusions are substantially affected by taking the dependence
of the variables into account. In contrast, both marginal specifications lead to similar
results, as in the previous application. Changing the prior specification by multiplying
Aj , j “ 1, 2 and the boundaries of the uniform priors on µ1 and µ2 by a factor 5 or
1/5 does not noticeably affect the results, suggesting a satisfactory amount of prior
robustness.
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Figure 6: Melanoma data: scatter plot.

5.3 Set observations

To illustrate the use of the Bayesian models for θ in the presence of censoring, we consider
the breast cancer data set from Finkelstein and Wolfe (1985). This data set contains
the times until cosmetic deterioration, determined by evaluation of breast retraction,
observed for two treatments (46 observations for the first treatment and 48 observations
for the second one): Radiotherapy (R) and Radiotherapy + Chemotherapy (RC). The
presence of cosmetic deterioration is observed in between two appointments, so that
the observations are recorded as intervals. The assumption of independence between
X and Y seems to be reasonable here, but we do take the censoring into account.
Since these observations are positive and some of them are close to zero, we analyse
the logarithm of the original observations. Figure 8 shows the posterior distribution
of θ “ P pR ă RCq. The posterior mass is clearly concentrated on values smaller
than 0.5. This is in line with the conclusion in Finkelstein and Wolfe (1985) that the
group receiving both radiotherapy and chemotherapy experiences an earlier cosmetic
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Figure 7: Melanoma data: posterior distributions of θ; two-piece skew-normal independent
case (solid line), Azzalini skew-normal independent case (dashed), two-piece skew-normal de-
pendent case (bold) and Azzalini skew-normal dependent case (bold dashed).

deterioration.
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Figure 8: Breast cancer data: posterior distributions of θ; two-piece skew-normal model (solid
line), Azzalini skew-normal model (dashed).

6 Conclusions

We have presented Bayesian models for the parameter θ “ P pX ă Y q in the case where
the marginal distributions of X and Y belong to the family of skewed scale mixtures of



F. J. Rubio and M. F. J. Steel 57

normals. In general, the Bayesian approach overcomes the classical issue regarding the
need for an explicit transformation involving this parameter of interest. This allows us
to study this problem in more complex scenarios such as the case where X and Y are
dependent variables and the context of set observations. Section 5 illustrates, through
different examples using simulated and real data sets, the relevance of including these
assumptions into the model.

Despite the similarities of the inference using two-piece marginals and skew-symmetric
marginals observed in the examples, simulating from the posterior distribution of θ using
two-piece distributions tends to be easier than with skew-symmetric distributions. The
reason may be the ill-behaved likelihood function obtained with these skewing functions
(Arnold et al. 1993; Ley and Paindaveine 2010).

Finally, we mention two natural directions in which the results presented here can
be extended. Firstly, Remark 1 can immediately be applied to contexts with different
marginal distributional assumptions. Secondly, we can consider the use of other bi-
variate copulas (e.g. Archimedean copulas) for modelling dependencies between X and
Y .
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Appendix: Proofs

Proof of Remark 1

Using the fact that the transformation from pξ1, ξ2q to θ,

θ “

ż

R
F1py; ξ1qf2py, ξ2qdy,

is a measurable function of the parameters (Enis and Geisser 1971), we get that the
posterior distribution of θ is proper if the posterior of ξ1 and ξ2 is also proper.

Proof of Corollary 2

(i) follows using the upper bound

fjpx|µj , σj , πjq ď
2

σj
sj

ˆ

x´ µj
σj

˙

, (14)

together with Remark 1 above and the properness of the posterior in the symmetric
case under this prior structure implied by Theorem 1 from Fernández and Steel (1999).

(ii) follows using this upper bound and Theorem 2 from Fernández and Steel (1999).

Proof of Theorem 1

Using Remark 1 we have that it suffices to prove existence of the posterior distribution
of the model parameters.

For model p2q ´ p3q, let s1 be a scale mixture of normals with τj the mixing variable
associated with xj and where the τj ’s are independent random variables defined on
R` with distribution Pτj . We get an upper bound for the marginal distribution of
x “ px1, . . . , xn1q proportional to

ż

S1ˆ¨¨¨ˆSn1

ż

R`
n1

ż

Γ1

ż 8

0

ż 8

´8

˜

n1
ź

j“1

τ
1
2
j

¸

σ
´pn1`1q
1

rapγ1q ` bpγ1qsn1

ˆ exp

«

´
1

2σ2
1hpγ1q2

n1
ÿ

j“1

τjpxj ´ µ1q2

ff

pγ1pγ1q dµ1dσ1dγ1dPpτ1,...,τn1 qdx,

where hpγ1q “ maxtapγ1q, bpγ1qu and pγ1pγ1q is the factor dependent of γ1 in p3q. Con-
sider the change of variable ϑ “ σ1hpγ1q and rewrite the upper bound as follows

ż

Γ1

„

hpγ1q

apγ1q ` bpγ1q

ȷn1

pγ1pγ1q dγ1

ż

S1ˆ¨¨¨ˆSn1

ż

R`
n1

ż 8

0

ż 8

´8

˜

n1
ź

j“1

τ
1
2
j

¸

ϑ´pn1`1q

ˆ exp

«

´
1

2ϑ2

n1
ÿ

j“1

τjpxj ´ µ1q2

ff

dµ1dϑdPpτ1,...,τn1 qdx.
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The integral with respect to γ1 is finite for any n1 and by Theorem 4 from Fernández
and Steel (1999) we have that the integral in pµ1, ϑ, τ1, . . . , τn1 ,xq is finite if p13q is
satisfied. Analogously for y.

For model p5q ´ p6q, using inequality p14q, we find that for skew-symmetric scale
mixtures of normals sampling models the posterior of θ exists whenever the posterior
distribution of the parameters in the symmetric case exists. Thus, by Theorem 4 from
Fernández and Steel (1999) this happens whenever p13q is satisfied.


