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Comment on Article by Schmidl et al.

Mark Girolami ˚ and Antonietta Mira :

We thoroughly enjoyed reading this paper and are delighted to contribute to its dis-
cussion. The authors have been particularly innovative in drawing upon quite different
areas of statistical inference to devise efficient Markov transition kernels for complex
posterior distributions. Landmark papers provoke discussion and raise many open ques-
tions leading to potentially fruitful new avenues of investigation and this paper is no
exception.

1 Statistical inference for dynamic systems

The authors have arguably chosen one of the most challenging problems for Bayesian
inference: sampling from the induced posterior of the parameters of a deterministic
nonlinear dynamic system. To illustrate the problem, consider the simple dynamic
system1 below

dx

dt
“

72

36` y
´ k3

dy

dt
“ k4x´ 1. (1)

Setting initial conditions of xp0q “ 7, yp0q “ ´10 and parameters to values of k3 “ 2
and k4 “ 1, the system is forward simulated in time steps of 0.5 from t “ 0 to t “ 60.
An additive zero mean Gaussian observation error with covariance 0.5I2 then generates
the 120 observations of the system dynamics D. The induced posterior under flat priors
ppk3, k4|Dq is shown in Figure 1. The multiple elongated ridges show strong nonlinear
correlation separated by regions of low density. This simple low dimensional model
presents challenges due to the near isolated ridges and their long correlated structure,
making them challenging to traverse and move between.

Statistical inference for systems described by nonlinear ordinary differential equa-
tions is a relatively recent area of interest. The non-Bayesian tradition has had major
contributions from the likes of Ramsay et al. (2007); Maiwald and Timmer (2008).
Bayesian approaches have been spearheaded by, for example, Wilkinson (2009); Toni
et al. (2009); Raue et al. (2013). Recent work by Gutenkunst et al. (2007) has de-
scribed the posterior distributions of dynamic system parameters as sloppy, a catchy
term describing the effects of the lack of identifiability and complexity of the underlying
models. The authors of this paper under discussion therefore have made an important
contribution to an area of research that is much in need of innovation and new insight.
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Figure 1: Posterior density for the two parameters, k3 and k4. The multiple peaked
ridges, with strong nonlinear correlation, induced by the occurrence of limit cycles in
the dynamics, present a major problem for posterior simulation. The dots show a run
of Parallel Tempering that is required to allow the chain to move between the ridges
(limit cycles of dynamics).

2 Copula-based MCMC

The copula-based approach to MCMC is extremely interesting and may suggest links
to other seemingly unrelated work such as the use of deterministic optimal maps as
suggested by El Moselhy and Marzouk (2012). Once the copula is defined and parame-
terised, it seems that sampling will proceed quickly with little computational expense.
The overhead associated with the characterisation of the copula is pushed back to a
tuning prerun phase of the overall procedure. On the one hand this is an attractive fea-
ture of the methodology, on the other hand however it does raise a number of questions
that it would be useful to hear the authors elaborate upon.

2.1 Questions

� The prerun Markov chain is required to define the marginals for the copula. One
wonders how much effort must be expended to ensure that the marginals are
estimated appropriately. If the target posterior is as complex as that discussed
in the simple example above, then considerable effort will be required to ensure
the chain mixes well enough to get reasonable estimates of the marginals. Have
the authors any guidelines that can be provided regarding this prerun phase and
the implications for the overall performance, e.g , the number of samples required
to adequately identify the copula, how well should this be characterised to ensure
good mixing of the chain?
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� Rather than the overhead of a full blown MCMC prerun would the adoption of
one of the many posterior deterministic approximations, e.g , Nested Laplace
Approximations, Variational Approximations, etc , be of use?

� The choice of the functional form of the copula, the structure of the vine, its
implications for the rapidity of convergence and quality of the MCMC mixing are
not entirely clear. It would be interesting to hear from the authors how sensitive
performance is to these choices.

� The tuning obtained by the copula is capturing the global characteristics of the
multivariate target posterior. However it is clear that there is rich local micro-
structure in the posteriors for deterministic dynamic systems. One then considers
whether this is really optimal in the sense of efficiently exploring and covering the
support of the posterior. An example of such a distribution was considered in the
discussion of Girolami and Calderhead (2011), shown in Figure 2 and it would
be interesting to see how the vine-copula scheme performs on such distributions
in the authors’ response. We suspect this would be a much more informative
example than the bivariate Gaussian example included in the paper and it would
provide a valuable insight.

� We note that the simulations were initialised at the mode of the distribution which
is perfectly sensible and in accordance with standard practice, again it would be
interesting to hear how the vine-copula scheme performs in the transient phase of
the chain and how quickly convergence occurs.

� The vine-copula method is agnostic to the underlying dynamic system save from
what can be estimated via the MCMC prerun and subsequent adaption of the cop-
ula. For dynamic systems with limit cycles such as the simple oscillator described
above, exploitation of the dynamics is almost a necessity to ensure efficiency of
convergence, sampling, and subsequent Monte Carlo errors. It would be interest-
ing to consider how, if at all possible, such information could be exploited in this
copula-based MCMC scheme.

� The proof of convergence of CIMH (and consequently of ACIMH), relies on being
able to design and sample from a heavy-tailed independence proposal (q3, in the
notation of the paper). For multi-dimensional and highly complex target distri-
butions, this is not an easy task. For example, if the target has extreme value
marginals and the dependence structure is itself defined by a non standard ex-
treme value copula (here, by non standard, we mean hard to get i.i.d. samples
from) what could be a suitable q3?

� We wonder how the performance indices (I1 and I2), scale as the dimension of the
target increases in particular with reference to the first example of the paper.

� The appearance of the acceptance rate in the numerator of the performance index
I1 may not provide an unbiased comparison across different MCMC methods.
The RWMH and the AM algorithms are tuned to the “optimal” 23% acceptance
probability whereas the vine-copula sampler naturally aims at an acceptance rate
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of 100%, which is achieved if r1 “ 1 and q1 is the target. Therefore an optimally
tuned RWMH (or AM) will have a performance score of at most 0.23. This would
seem to be a general issue for the comparison of MCMC methods (e.g. Hamiltonian
Monte Carlo compared to Langevin algorithms) and some normalisation taking
account of target acceptance rates seems to be required. We wonder if such a
performance index could be devised to further evaluate the methods considered
in the paper and if so how will this impact the conclusions one can make?

3 Local information structure MCMC

The direct exploitation of local structure of a distribution by way of the Fisher-Rao
Metric Tensor and Levi-Civita Connection was suggested by Girolami and Calderhead
(2011). In Figure 2 the local metric tensor which induces a local covariance structure at
a range of points for the banana shaped distribution is highlighted and the performance
of such MCMC methods is discussed in Girolami and Calderhead (2011). For dynamic
systems the Fisher-Rao metric tensor emerges as an inner product of the solution of
the systems sensitivity equations. This explicitly captures the local posterior structure
induced by the underlying dynamics at that precise point in the parameter space. This
of course carries a computational overhead in that both the equations of dynamics and
sensitivity have to be solved in producing the metric. If the Levi-Civita Connection is
also exploited, then second-order sensitivities are required. In addition to the enhanced
sampling performance achievable these gradients and metric structures can also be used
directly in Monte Carlo estimate variance reduction using the Zero-Variance method-
ology (Mira et al. 2012). Inference over the parameters of the JAK - STAT5 cellular
signalling example was addressed by such geometric MCMC methods in Calderhead and
Girolami (2011) and it would be interesting to consider if a mixture transition kernel
of the vine-copula and a metric tensor based kernel would be of use in these particu-
larly challenging sampling problems. A clever way of “mixing” would be through the
Delayed Rejection strategy first introduced in Tierney and Mira (1999) and further re-
fined and extended in Green and Mira (2001): at the first stage a vine-Copula proposal
could be used and only upon rejection the more computationally demanding gradients
and metric local structures could be exploited by way of the Fisher-Rao Metric Tensor
and Levi-Civita Connection. This way, global and local moves can be mixed efficiently,
resorting to higher order local computation only upon demand.

In closing we are delighted to have been able to discuss this highly innovative and
interesting paper and are of the opinion it will spark off other investigations in this
exciting area of Bayesian inference in dynamic systems.
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Figure 2: The banana shaped distribution as used in Girolami and Calderhead (2011).
The metric tensor and hence the proposal covariance at each of the points is highlighted.
It is clear that the local adaptivity comes naturally from the underlying geometric
structure of the statistical model without the need for online estimation of a global
proposal covariance.
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