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Dawn B. Woodard ˚

The authors develop a novel Markov chain method (ACIMH) that is designed to
sample efficiently by adapting to the features of the target distribution, learning from
the samples obtained previously. Their approach is based on independence Metropolis-
Hastings (IMH), and takes the proposal distribution to be an estimate of the target
distribution. Its appeal is that the efficiency of IMH is controlled by how close the
proposal density is to the target density. If a very accurate estimate of the target
density can be obtained, then the samples obtained by the Markov chain are nearly
independent, leading to near-optimal accuracy of Monte Carlo approximations.

The authors’ estimate of the target density is based on D-vine copulas, an extremely
flexible class of models that has not been used previously for this purpose. Other
authors have proposed similar “adaptive” IMH methods based on alternative estimates
of the target density, in particular mixture distributions such as normal or t mixtures
(Andrieu and Moulines 2006; Andrieu and Thoms 2008). Continued development of
efficient general-purpose sampling algorithms like these is critical as we create robust
software packages for Bayesian statistics that will encourage its widespread use.

D-vine copulas use a factorization approach that may scale more effectively with
dimension than the mixture model approach. ACIMH factorizes the target density as

fpxq “ r

d´1
ź

j“1

d´j
ź

i“1

ci,pi`jq|pi`1q:pi`j´1qs ¨ r

d
ź

k“1

fkpxkqs x P X (1)

then drops the dependence of ci,pi`jq|pi`1q:pi`j´1q on xpi`1q:pi`j´1q, so that only uni-
variate and bivariate densities need to be estimated. However, I show that as ACIMH
is currently defined its efficiency still degrades exponentially in the dimension d. I do
this for several simple but representative target densities. So ACIMH is expected to be
ineffective for high-dimensional problems; this may explain why the examples used by
Schmidl et al. are low-dimensional (having d “ 2, 3, and 7). I will argue that this issue
is inherent to any IMH method that takes the proposal density to be an estimate of the
joint target density based on past samples. I then suggest that this problem may be
mitigated by applying ACIMH or a related method to blocks of parameters separately
rather than to the entire parameter vector simultaneously. ACIMH is a promising ad-
dition to the Markov chain toolbox, due to its ability to flexibly estimate aspects of the
target density; however, it needs to be used in a blocked fashion in order to scale well
with dimension.
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1 Efficiency of ACIMH

Here I analyze the efficiency of ACIMH as a function of the dimension d. ACIMH is
not an adaptive MCMC method in the purest sense, namely that the chain continues
to adapt forever. ACIMH stops updating the copula after a fixed number of iterations,
so one can view it instead as a standard Markov chain with a tuning period. Viewing
it in this way, I will give results on the convergence rate of the Markov chain after this
period. Take the number of iterations n in the tuning period to be fixed (not dependent

on d), and let f̂p¨q be the estimator of fp¨q obtained at the end of this period.

I argue that: (a) the accuracy of f̂ degrades exponentially in d, in the sense that

infxPX
f̂pxq

fpxq
decays exponentially; and (b) this implies that the convergence rate of IMH

with proposal density f̂ decays exponentially in d. I will show that (a) holds for several
simple but non-pathological target densities. The step (b) is proven by Liu (1996), al-
though the continuous-state-space case is handled incompletely. Specifically, Liu (1996)
shows that for a discrete state space the spectral gap (convergence rate) of IMH is

equal to infxPX
qpxq

fpxq
where qp¨q is the proposal distribution. In the continuous-state-

space case, which is more technically challenging, he gives evidence strongly suggesting
that this result still holds. Combined with (a), this suggests that the spectral gap of
ACIMH decays exponentially in d. Informally, this means that the number of iterations
of ACIMH required to attain a fixed accuracy increases exponentially in d. More for-
mally, the number of iterations required to decrease the (χ2) distance to the stationary
distribution by a fixed factor grows exponentially in d, in the worst case over start-
ing distributions (cf. Woodard, Schmidler, and Huber 2009). Similar implications hold
regarding the accuracy of Monte Carlo estimators.

To show (a) for several examples, I rely solely on the error introduced by estimation

of the term
śd

k“1 fkpxkq in (1). I assume that the bivariate densities ci,pi`jq|pi`1q:pi`j´1q

satisfy the modeling assumption (do not depend on xpi`1q:pi`j´1q) and are estimated
with perfect accuracy; taking into account this source of error would only increase the
overall error. Specifically, I will take target densities that have the product form fpxq fi
śd

k“1 fkpxkq for x P X , and assume that the bivariate densities ci,pi`jq|pi`1q:pi`j´1q are
correctly estimated to be equal to one on the support, so that the goal is to estimate
fpxq “

śd
k“1 fkpxkq by f̂pxq “

śd
k“1 f̂kpxkq. In this simplified context ACIMH can be

defined on any state space, not just the Euclidean spaces which are needed for the full
copula representation. All that is needed is a parametric form for f̂kpxkq, the parameters
of which are estimated by maximum likelihood as recommended by Schmidl et al. For
simplicity I will also assume that the samples xi “ pxi1, . . . , xidq for i P t1, . . . , nu from
the tuning (adaptation) period are i.i.d. according to fp¨q; taking into account their
autocorrelation would only inflate the error.

First, consider the discrete state space X “ t0, 1ud and the target density fpxq fi
śd

k“1 fkpxkq where fkpxkq fi pxk

k p1 ´ pkq1´xk and pk P p0, 1q. The maximum likelihood
estimator of pk is p̂k “ 1

n

řn
i“1 xik, for k P t1, . . . , du. To avoid a degenerate estimate

replace with 1
n if

ř

i xik “ 0 and n´1
n if

ř

i xik “ n.
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Say that the true values of pk are all pk “ 1
2 , and define

Wd fi ln
f̂p1, . . . , 1q

fp1, . . . , 1q
“

d
ÿ

k“1

rln f̂kp1q ´ ln fkp1qs “

d
ÿ

k“1

rln p̂k ´ ln
1

2
s.

The quantity Epln p̂kq does not depend on k or d, and by Jensen’s inequality Epln p̂kq ă

lnEp̂k “ ln 1
2 , so EWd “ cd for some c P p´8, 0q. Also, VarpWdq “ dVarpln p̂1q where

Varpln p̂1q does not depend on d. By Chebyshev’s inequality,

PrpWd ě cd1{4q ď Prp|Wd ´ EWd| ě ´cd3{4q ď
dVarpln p̂1q

c2d3{2

dÑ8
ÝÑ 0.

So Prpf̂p1, . . . , 1q{fp1, . . . , 1q ă exptcd1{4uq
dÑ8
ÝÑ 1, meaning that infxPX f̂pxq{fpxq de-

cays exponentially in d.

For a continuous-state-space example, take X “ Rd, fpxq “
śd

k“1 fkpxkq and
fkpxkq “ Npxk;µk, 1q. The maximum likelihood estimator of µk is µ̂k “ 1

n

řn
i“1 xik.

Say that the true values are µk “ 0, and define Wd fi ln f̂p0,...,0q

fp0,...,0q
“

řd
k“1r´ 1

2 µ̂
2
ks. We

have Eµ̂2
k ą pEµ̂kq2 “ 0, and the rest of the argument is analogous to the first example.

Here I relied only on the error associated with estimating fkpxkq, and the fact that it

combines multiplicatively when estimating
śd

k“1 fkpxkq. This is not specific to ACIMH;
attempting to estimate the joint density fpxq directly without any factorization assump-
tions would presumably lead to even higher error. So the inefficiency we have identified
is inherent to any IMH method that takes the proposal density to be an estimate f̂p¨q

of the joint density based on previous samples.

2 Conclusion

Although the authors focus on updating the entire parameter vector at once, when d
is large it may be more efficient to apply ACIMH to blocks of parameters. The blocks
would be chosen to contain highly dependent sets of parameters, and could overlap.
Specifically, one would select subsets Aj Ă t1, . . . , du of the parameter index set, for
j P t1, . . . , Ju where J is the desired number of blocks and YJ

j“1Aj “ t1, . . . , du. After
an initial sampling period, the samples would be used to estimate the marginal density
fjpxAj q of each subvector of the parameters, for instance with vine-copulas. Then one
would simulate a Metropolis-within-Gibbs chain, updating the subvectors xAj in turn

according to IMH moves with proposal density qjpxAj q “ f̂jpxAj q and acceptance rate

min

"

1,
fpxnewqqjpxold

Aj
q

fpxoldqqjpxnew
Aj

q

*

. This chain would be more efficient if each proposal density qj

were equal to the conditional density fpxAj |xt1,...,duzAj
q of xAj given the remainder of

the parameter vector, since then the acceptance rate would always be equal to one.
However, estimating the conditional density fpxAj |xt1,...,duzAj

q would suffer from the
same difficulties as estimating the joint density fpxq, so I am instead suggesting the use

of the estimated marginal density f̂jpxAj q. Although suboptimal, this substitution may
still yield an efficient algorithm.
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