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The problem of constructing confidence sets in the high-dimensional lin-
ear model with n response variables and p parameters, possibly p ≥ n, is
considered. Full honest adaptive inference is possible if the rate of sparse es-
timation does not exceed n−1/4, otherwise sparse adaptive confidence sets
exist only over strict subsets of the parameter spaces for which sparse estima-
tors exist. Necessary and sufficient conditions for the existence of confidence
sets that adapt to a fixed sparsity level of the parameter vector are given in
terms of minimal �2-separation conditions on the parameter space. The de-
sign conditions cover common coherence assumptions used in models for
sparsity, including (possibly correlated) sub-Gaussian designs.

1. Introduction. Consider the linear model

Y = Xθ + ε,(1)

where X is a n × p matrix, θ ∈ R
p , potentially p > n, and where ε is a n × 1

vector consisting of i.i.d. Gaussian noise independent of X, with mean zero and
known variance standardised to one. To develop the main ideas, let us assume for
the moment that the matrix X consists of i.i.d. N(0,1) Gaussian entries (Xij ),
reflecting a prototypical high-dimensional model, such as those encountered in
compressive sensing; our main results hold for more general design assumptions
that we introduce and discuss in detail below.

We denote by Pθ the law of (Y,X), by Eθ the corresponding expectation, and
will omit the subscript θ when no confusion may arise. For the asymptotic analysis
we shall let min(n,p) tend towards infinity, and the o,O-notation is to be under-
stood accordingly. Let B0(k) be the �0-“ball” of radius k in R

p , so all vectors
in R

p with at most k ≤ p nonzero entries. As common in the literature on high-
dimensional models, we shall consider p potentially greater than n but signals θ

that are sparse in the sense that θ ∈ B0(k) for some k significantly smaller than p.
We parameterise k as

k ≡ k(β) ∼ p1−β, 0 < β < 1.
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The parameter β measures the sparsity of the signal: if β is close to one, only
very few of the p coefficients of θ are nonzero. If β ∈ (0,1/2], one speaks of the
moderately sparse case and for β ∈ (1/2,1] of the highly sparse case. We include
the case β = 1 where, by convention, k ≡ const×p0 = const.

A sparse adaptive estimator θ̂ ≡ θ̂np = θ̂ (Y,X) for θ achieves for every n, every
k ≤ p, some universal constant c and with high Pθ -probability, the risk bound

‖θ̂ − θ‖2 ≤ c logp × k

n
,(2)

uniformly for all θ ∈ B0(k). Here ‖·‖ ≡ ‖·‖2 denotes the standard Euclidean norm
on R

p , with inner product 〈·, ·〉. Such estimators exist (see Corollary 2 below, for
example)—they attain the risk of an estimator that would know the positions of the
k nonzero coefficients, with the typically mild penalty of logp. The literature on
such estimators is abundant; see, for instance, Candès and Tao (2007), Bickel, Ri-
tov and Tsybakov (2009), and the monograph Bühlmann and van de Geer (2011),
where many further references can be found.

We are interested in the question of whether one can construct a confidence set
for θ that takes inferential advantage of sparsity as in (2). Most of what follows
applies as well to the related problem of constructing confidence sets for Xθ—we
discuss this briefly at the end of the Introduction. A confidence set C ≡ Cnp is
a random subset of Rp—depending only on the sample Y , X and on a significance
level 0 < α < 1—that we require to contain the true parameter θ with at least a
prescribed probability 1 − α. Our positive results rely on the in many ways natu-
ral universal assumption θ ∈ B0(k1), with k1 a minimal sparsity degree such that
consistent estimation is possible. Formally,

k1 ∼ p1−β1, β1 ∈ (0,1); k1 = o(n/ logp),

so that the risk bound in (2) converges to zero for k = k1. Our statistical procedure
should have coverage over signals that are at least k1-sparse. Given 0 < α < 1,
a level 1 − α confidence set C should then be honest over B0(k1),

lim inf
min(n,p)→∞ inf

θ∈B0(k1)
Pθ (θ ∈ C) ≥ 1 − α.(3)

Moreover, the Euclidean diameter |C|2 of C should satisfy that for every α′ > 0
there exists a universal constant L such that for every 0 < k ≤ k1,

lim sup
min(n,p)→∞

sup
θ∈B0(k)

Pθ

(
|C|22 > L logp × k

n

)
≤ α′.(4)

Such a confidence set would cover the true θ with prescribed probability and would
shrink at an optimal rate for k-sparse signals without requiring knowledge of the
position of the k nonzero coefficients.

A first attempt to construct such a confidence set, inspired by Li (1989), Beran
and Dümbgen (1998), Baraud (2004) in nonparametric regression problems, is
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based on estimating the accuracy of estimation in (2) directly via sample splitting.
Heuristically the idea is to compute a sparse estimator θ̃ based on the first sub-
sample of (Y,X) and to construct a confidence set centred at θ̃ based on the risk
estimate

1

n
(Y − Xθ̃)T (Y − Xθ̃) − 1

based on Y,X from the other subsample.

THEOREM 1. Consider the model (1) with i.i.d. Gaussian design Xij ∼
N(0,1) and assume k1 = o(n/ logp). There exists a confidence set C that is honest
over B0(k1) in the sense of (3) and which satisfies, for any k ≤ k1, and uniformly
in θ ∈ B0(k),

|C|22 = OP

(
logp × k

n
+ n−1/2

)
.

In fact, we prove Theorem 1 for general correlated designs satisfying Condi-
tion 2 below. As a consequence, in such situations full adaptive inference is possi-
ble if the rate of sparse estimation in (2) is not desired to exceed n−1/4.

One may next look for estimates of ‖θ̃ − θ‖ that have a better accuracy than just
of order n−1/4. In nonparametric estimation problems this has been shown to be
possible; see Hoffmann and Lepski (2002), Juditsky and Lambert-Lacroix (2003),
Cai and Low (2006), Robins and van der Vaart (2006), Bull and Nickl (2013).
Translated to high-dimensional linear models, the accuracy of these methods can
be seen to be of order p1/4/

√
n, which for p ≥ n is of larger order of magnitude

than n−1/4 and hence of limited interest.
Indeed, our results below will show that the rate n−1/4 is intrinsic to high-

dimensional models: for p ≥ n a confidence set that simultaneously satisfies (3)
and adapts at any rate

√
(k logp)/n = o(n−1/4) in (4) does not exist. Rather one

then needs to remove certain ‘critical regions’ from the parameter space in order
to construct confidence sets. This is so despite the existence of estimators satisfy-
ing (2); the construction of general sparse confidence sets is thus a qualitatively
different problem than that of sparse estimation.

To formalise these ideas, we take the separation approach to adaptive confidence
sets introduced in Giné and Nickl (2010), Hoffmann and Nickl (2011), Bull and
Nickl (2013) in the framework of nonparametric function estimation. We shall
attempt to make honest inference over maximal subsets of B0(k1) where k1 is
given a priori as above, in a way that is adaptive over the submodel of sparse
vectors θ that belong to B0(k0),

k0 ∼ p1−β0, k0 < k1, β0 > β1.

By tracking constants in our proofs, we could include β0 = β1 too if k0 ≤ ck1 for
c > 0 a small constant without changing our findings. However, assuming k0 =
o(k1) results in a considerably cleaner mathematical exposition.
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We shall remove those θ ∈ B0(k1) that are too close in Euclidean distance to
B0(k0), and consider

B̃0(k1, ρ) = {
θ ∈ B0(k1) :

∥∥θ − B0(k0)
∥∥ ≥ ρ

}
,(5)

where ρ = ρnp is a separation sequence and where ‖θ − Z‖ = infz∈Z ‖θ − z‖ for
any Z ⊂ R

p . Thus, if θ /∈ B0(k0), we remove the k0 coefficients θj with largest
modulus |θj | from θ , and require a lower bound on the �2-norm of the remain-
ing subvector. In other words, if |θ(1)| ≤ · · · ≤ |θ(j)| ≤ · · · ≤ |θ(p)| are any order
statistics of {|θj | : j = 1, . . . , p}, then

∥∥θ − B0(k0)
∥∥2 =

p−k0∑
j=1

θ2
(j)

needs to exceed ρ2. Defining the new model

�(ρ) = B0(k0) ∪ B̃0(k1, ρ),

we now require, instead of (3) and (4), the weaker coverage property

lim inf
min(n,p)→∞ inf

θ∈�(ρnp)
Pθ (θ ∈ Cnp) ≥ 1 − α(6)

for any 0 < α < 1, as well as, for some finite constant L > 0,

lim sup
min(n,p)→∞

sup
θ∈B0(k0)

Pθ

(
|Cnp|22 > L logp × k0

n

)
≤ α′(7)

and

lim sup
min(n,p)→∞

sup
θ∈B̃0(k1,ρnp)

Pθ

(
|Cnp|22 > L logp × k1

n

)
≤ α′(8)

and search for minimal assumptions on the separation sequence ρnp . Note that
any confidence set C that satisfies (3) and (4) also satisfies the above three con-
ditions for any ρ ≥ 0, so if one can prove the necessity of a lower bound on the
sequence ρnp , then one disproves in particular the existence of adaptive confidence
sets in the stronger sense of (3) and (4).

The following result describes our findings under the conditions of Theorem 1,
but now requiring adaptation to B0(k0) at estimation rate

√
(k0 logp)/n faster than

n−1/4 or, what is the same, assuming

k0 = o(
√

n/ logp).

When specialising to the high-dimensional case p ≥ n this automatically forces
β0 > 1/2. We require coverage over moderately sparse alternatives (β1 ≤ 1/2); the
cases β1 > 1/2, p ≤ n as well more general design assumptions will be considered
below.
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THEOREM 2. Consider the model (1) with i.i.d. Gaussian design Xij ∼
N(0,1) and p ≥ n. For 0 < β1 ≤ 1/2 < β0 ≤ 1 and k0 < k1 as above assume

k0 = o(
√

n/ logp), k1 = o(n/ logp).

An honest adaptive confidence set Cnp over �(ρnp) in the sense of (6), (7), (8)
exist if and only if ρnp exceeds, up to a multiplicative universal constant, n−1/4,
which is the minimax rate of testing between the composite hypotheses

H0 : θ ∈ B0(k0) vs. H1 : θ ∈ B̃0(k1, ρnp).(9)

The question arises whether insisting on exact rate adaptation in (7) is crucial
in Theorem 2 or whether some mild ‘penalty’ for adaptation (beyond logp) could
be paid to avoid separation conditions (ρ > 0). The proof of Theorem 2 implies
that requiring |C|22 in (7) to shrink at any rate o(n−1/2) that is possibly slower than
(k0 logp)/n but still o((k1 logp)/n) does not alter the conclusion of necessity of
separation at rate ρ � n−1/4 in Theorem 2. In particular, for p ≥ n, Theorem 1
cannot be improved if one wants adaptive confidence sets that are honest over all
of B0(k1).

Theorem 2 and our further results below show that sparse o(n−1/4)-adaptive
confidence sets exist precisely over those parameter subspaces of B0(k1) for which
the degree of sparsity is asymptotically detectable. Sparse adaptive confidence sets
solve the composite testing problem (9) in a minimax way, either implicitly or
explicitly. Theorem 2 reiterates the findings in Hoffmann and Nickl (2011) and
Bull and Nickl (2013) that adaptive confidence sets exist over parameter spaces for
which the structural property one wishes to adapt to–in the present case, sparsity—
can be detected from the sample.

The paper Ingster, Tsybakov and Verzelen (2010), where the testing problem (9)
is considered with simple H0 : θ = 0, is instrumental for our lower bound results.
Our upper bounds show that a minimax test for the composite problem (9) exists
without requiring stronger separation conditions than those already needed in the
case of H0 : θ = 0, and under general correlated design assumptions. In the setting
of Theorem 2 the tests are based on rejecting H0 if Tn defined by

tn
(
θ ′) = 1√

2n

n∑
i=1

[(
Yi − (

Xθ ′)
i

)2 − 1
]
, Tn = inf

θ ′∈B0(k0)

∣∣tn(θ ′)∣∣(10)

exceeds a critical value. In practice, the computation of Tn requires a convex re-
laxation of the minimisation problem as is standard in the construction of sparse
estimators. The proofs that such minimum tests are minimax optimal are based on
ratio empirical process techniques, particularly Lemmas 2 and 3 below, which are
of independent interest.

Our results give weakest possible conditions on the regions of the parameter
space that have to be removed from consideration in order to obtain sparse adaptive
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confidence sets for θ . Another separation condition that may come to mind would
be a lower bound γnp on the smallest nonzero entry of θ ∈ B0(k1). Then∥∥θ − B0(k0)

∥∥2 ≥ (k1 − k0)γ
2
np

and if one considers, for example, moderately sparse β1 < 1/2, and p ≥ n, k0 =
o(k1), the lower bound required on γnp for Theorem 2 to apply is in fact o(n−1/2).
A sparse estimator will not be able to detect nonzero coefficients of such size,
rather one needs tailor-made procedures as presented here, and similar in spirit to
results in sparse signal detection [Ingster, Tsybakov and Verzelen (2010), Arias-
Castro, Candès and Plan (2011)].

Our results concern confidence sets for the parameter vector θ itself in the Eu-
clidean norm ‖ · ‖. Often, instead of on θ , inference on Zθ is of interest, where
Z is a m × p prediction vector. If

‖Zθ‖ ≥ c‖θ‖ ∀θ ∈ B0(k1)

with high probability, including the important case Z = X under the usual coher-
ence assumptions on the design matrix X, then any honest confidence set for Zθ

can be used to solve the testing problem (13) below, so that lower bounds for sparse
confidence sets for θ carry over to lower bounds for sparse confidence sets for Zθ .
In contrast, for regular fixed linear functionals of θ such as low-dimensional pro-
jections, the situation may be different: for instance, in the recent papers of Zhang
and Zhang (2011), van de Geer, Bühlmann and Ritov (2013) and Javanmard and
Montanari (2013) one-dimensional confidence intervals for a fixed element θj in
the vector θ are constructed.

2. Main results. A heuristic summary of our findings for all parameters si-
multaneously is as follows: if the rate of estimation in the submodel B0(k0) of
B0(k1) one wishes to adapt to is faster than

ρ � min
(
n−1/4,

p1/4
√

n
,

√
k1 logp

n

)
,(11)

then separation is necessary for adaptive confidence sets to exist at precisely this
rate ρ. For p ≥ n this simply reduces to requiring that the rate of adaptive estima-
tion in B0(k0) beats n−1/4—the natural condition expected in view of Theorem 1,
which proves existence of honest adaptive confidence sets when the estimation rate
is O(n−1/4).

We consider the following conditions on the design matrix X.

CONDITION 1. Consider the model (1) with independent and identically dis-
tributed (Xij ) satisfying EXij = 0, EX2

ij = 1 ∀i, j .

(a) For some h0 > 0,

max
1≤j≤l≤p

E
(
exp(hX1jX1l)

) = O(1) ∀|h| ≤ h0.
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(b) |Xij | ≤ b for some b > 0 and all i, j .

Let next 
̂ := XT X/n denote the Gram matrix and let 
 := E
̂. We will some-
times write ‖Xθ‖2

n := θT 
̂θ to expedite notation.

CONDITION 2. In the model (1) assume the following:

(a) The matrix X has independent rows, and for each i ∈ {1, . . . , n} and each
u ∈ R

p with uT 
u ≤ 1, the random variable (Xu)i is sub-Gaussian with constants
σ0 and κ0:

κ2
0
(
E exp

[∣∣(Xu)i
∣∣2/κ2

0
] − 1

) ≤ σ 2
0 ∀uT 
u ≤ 1.

(b) The smallest eigenvalue 
2
min ≡ 
2

min,p of 
 satisfies infp 
2
min,p > 0.

Condition 1(a) could be replaced by a fixed design assumption as in Re-
mark 4.1 in Ingster, Tsybakov and Verzelen (2010). Condition 1(b) clearly im-
plies Condition 1(a); it also implies Condition 2 with 
 = I and universal con-
stants κ0, σ0: we have (Xu)i = ∑p

m=1 Ximum with mean zero and independent
summands bounded in absolute value by b|um|, so that by Hoeffding’s inequality
(Xu)i is sub-Gaussian,

P
(∣∣(Xu)i

∣∣ ≥ t
) ≤ 2e−t2/2b‖u‖2

2

and Condition 2 follows, integrating tail probabilities.

2.1. Adaptation to sparse signals when p ≥ n. We first give a version of The-
orem 2 for general (not necessarily Gaussian) design matrices. The proofs imply
that part (B) actually holds also for p ≤ n and for 0 < β1 < β0 ≤ 1.

THEOREM 3 (Moderately sparse case). Let p ≥ n, 0 < β1 ≤ 1/2 < β0 ≤ 1
and let k0 ∼ p1−β0 < k1 ∼ p1−β1 such that k0 = o(

√
n/ logp).

(A) Lower bound. Assume Condition 1(a) and that log3 p = o(n). Suppose for
some separation sequence ρnp ≥ 0 and some 0 < α, α′ < 1/3, the confidence set
Cnp is both honest over �(ρnp) and adapts to sparsity in the sense of (7), (8). Then
necessarily

lim inf
n,p

ρnp

n−1/4 > 0.

(B) Upper bound. Assume Condition 2 and k1 = o(n/ logp). Then for every
0 < α, α′ < 1 there exists a sequence ρnp ≥ 0 satisfying

lim sup
n,p

ρnp

n−1/4 < ∞

and a level α-confidence set Cnp that is honest over �(ρnp) and that adapts to
sparsity in the sense of (7), (8).
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We next consider restricting the maximal parameter space itself to highly sparse
θ ∈ B0(k1), β1 > 1/2. If the rate of estimation in B0(k1) accelerates beyond n−1/4,
then one can take advantage of this fact, although separation of B0(k0) and B0(k1)

is still necessary to obtain sparse adaptive confidence sets. The following result
holds also for p ≤ n.

THEOREM 4 (Highly sparse case). Let 1/2 < β1 < β0 ≤ 1 and let k0 ∼
p1−β0 < k1 ∼ p1−β1 such that k0 = o(

√
n/ logp).

(A) Lower bound. Assume Condition 1(a) and that log3 p = o(n). Suppose for
some separation sequence ρnp ≥ 0 and some 0 < α,α′ < 1/3, the confidence set
Cnp is both honest over �(ρnp) and adapts to sparsity in the sense of (7), (8). Then
necessarily

lim inf
n,p

ρnp

min(
√

logp × (k1/n), n−1/4)
> 0.

(B) Upper bound. Assume Condition 2 and that k1 = o(n/ logp). Then for ev-
ery 0 < α′, α < 1 there exists a sequence ρnp ≥ 0 satisfying

lim sup
n,p

ρnp

min(
√

logp × (k1/n), n−1/4)
< ∞

and a level α-confidence set Cnp that is honest over �(ρnp) and that adapts to
sparsity in the sense of (7), (8).

2.2. The case p ≤ n—approaching nonparametric models. The case of highly
sparse alternatives and p ≤ n was already considered in Theorem 4, explaining the
presence of

√
(k1 logp)/n in (11). We thus now restrict to 0 < β1 ≤ 1/2 and,

moreover, to highlight the main ideas, also to β0 > 1/2 corresponding to the most
interesting highly sparse null-models. We now require from any confidence set Cn

the conditions (6), (7), (8) with the infimum/supremum there intersected with

Br(M) =
{
θ ∈ R

p :‖θ‖r
r =

p∑
j=1

|θj |r ≤ Mr

}
.

Let us denote the new conditions by (6′), (7′), (8′).

THEOREM 5. Assume p ≤ n, let 0 < β1 ≤ 1/2 < β0 ≤ 1,0 < M < ∞, and let
k0 ∼ p1−β0 < k1 ∼ p1−β1 .

(A) Lower bound. Assume Condition 1(a), and suppose for some separation
sequence ρnp ≥ 0 and some 0 < α,α′ < 1/3, the confidence set Cnp is both honest
over �(ρnp) ∩ Br(M) and adapts to sparsity in the sense of (7′), (8′). If r = 2 or
if r = 1 and p = O(n2/3), then necessarily

lim inf
n,p

ρnp

p1/4n−1/2 > 0.
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(B) Lower bound. Assume Condition 1(b) holds and either r = 1, k1 =
o(n/ logp) or r = 2, β0 = 1, k1 = o(

√
n/ logp). Then for every 0 < α,α′ < 1

there exists a sequence ρnp ≥ 0 satisfying

lim sup
n,p

ρnp

p1/4n−1/2 < ∞

and a level α-confidence set C ≡ C(n,p, b,M) that is honest over �(ρnp) ∩
{θ :‖θ‖r ≤ M} and that adapts to sparsity in the sense of (7′), (8′).

The rate ρ in the previous theorems is related to the results in Bull and Nickl
(2013) and approaches, for p = const, the parametric theory, where the separation
rate equals, quite naturally, 1/

√
n. This is in line with the findings in Pötscher

(2009), Pötscher and Schneider (2011) in the p ≤ n setting, who point out that
a class of specific but common sparse estimators cannot reliably be used for the
construction of confidence sets.

3. Proofs. All lower bounds are proved in Section 3.1. The proofs of existence
of confidence sets are given in Section 3.2. Theorem 1 is proved at the end, after
some auxiliary results that are required throughout.

3.1. Proof of Theorems 2 (necessity), 3(A), 4(A), 5(A). The necessity part of
Theorem 2 follows from Theorem 3(A) since any i.i.d. Gaussian matrix satisfies
Condition 1(a), and since its assumptions imply the growth condition log3 p =
o(n). Except for the �r -norm restrictions of Theorem 5 discussed at the end of the
proof, Theorems 3(A) and 5(A) can be joined into a single statement with separa-
tion sequence min(p1/4n−1/2, n−1/4), valid for every p. We thus have to consider,
for all values of p, two cases: the moderately sparse case β1 < 1/2 with sepa-
ration lower bound min(p1/4n−1/2, n−1/4), and the highly sparse case β1 > 1/2
with separation lower bound min((logp × (k1/n))1/2, n−1/4). Depending on the
case considered, denote thus by ρ∗ = ρ∗

np either min((logp × (k1/n))1/2, n−1/4)

or min(p1/4n−1/2, n−1/4).
The main idea of the proof follows the mechanism introduced in Hoffmann and

Nickl (2011). Suppose by way of contradiction that C is a confidence set as in the
relevant theorems, for some sequence ρ = ρnp such that

lim inf
n,p

ρ

ρ∗ = 0.

By passing to a subsequence, we may replace the lim inf by a proper limit, and we
shall in what follows only argue along this subsequence nk ≡ n. We claim that we
can then find a further sequence ρ̄np ≡ ρ̄, ρ∗

np ≥ ρ̄np ≥ ρnp , s.t.√
logp × k0

n
= o(ρ̄), ρ̄ = o

(
ρ∗),(12)
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that is, ρ̄ can be taken to be squeezed between the rate of adaptive estimation in
the submodel B0(k0) and the separation rate ρ∗ that we want to establish as a
lower bound. To check that this is indeed possible, we need to verify that (logp ×
(k0/n))1/2 is of smaller order than any of the three terms√

logp × k1

n
, p1/4n−1/2, n−1/4

appearing in ρ∗. This is obvious for the first in view of the definition of k0, k1
(β1 < β0); follows for the second from β0 > 1/2; and follows for the third from our
assumption k0 = o(

√
n/ logp) [automatically verified in Theorem 5(A) as p ≤ n,

β0 > 1/2].
For such a sequence ρ̄ consider testing

H0 : θ = 0 vs. H1 : θ ∈ B̃0(k1, ρ̄).

Using the confidence set C, we can test H0 by � = 1{C ∩H1 �= ∅}—we reject H0
if C contains any of the alternatives. The type two errors satisfy

sup
θ∈H1

Eθ(1 − �) = sup
θ∈H1

Pθ(C ∩ H1 = ∅) ≤ sup
θ∈H1

Pθ(θ /∈ C) ≤ α + o(1)

by coverage of C over H1 ⊂ �(ρ) (recall ρ̄ ≥ ρ). For the type one errors we have,
again by coverage, since 0 ∈ B0(k0) for any k0, using adaptivity (7) and (12), that

E0� = P0(C ∩ H1 �= ∅) ≤ P0
(
0 ∈ C, |C|2 ≥ ρ̄

) + α + o(1) = α′ + α + o(1).

We conclude from min(α′, α) < 1/3 that

E0� + sup
θ∈H1

Eθ(1 − �) ≤ α′ + 2α + o(1) < 1 + o(1).(13)

On the other hand, we now show

lim inf
n,p

inf
�

(
E0� + sup

θ∈H1

Eθ(1 − �)
)

≥ 1,(14)

a contradiction, so that

lim inf
n,p

ρ

ρ∗ > 0

necessarily must be true. Our argument proceeds by deriving (14) from Theo-
rem 4.1 in Ingster, Tsybakov and Verzelen (2010). Let 0 < c < 1, b = ρ̄

c
√

k1
, h =

ck1
p

, and note that

b2ph = ρ̄2

c
≥ ρ̄2, b2k0 = o

(
b2ph

)
(15)

using that k0 = o(k1). Consider a product prior π on θ with marginal coefficients
θj = bεj , j = 1, . . . , p, where the εj are i.i.d. with P(εj = 0) = 1 − h,P (εj =
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1) = P(εj = −1) = h/2. We show that this prior asymptotically concentrates on
our alternative space H1 = B̃0(k1, ρ̄). Let Zj = ε2

j and denote by Z(j) the corre-
sponding order statistics (counting ties in any order, for instance, ranking numeri-
cally by dimension), then for any δ > 0 and n large enough, using (15),

π
(∥∥θ − B0(k0)

∥∥2
< (1 + δ)ρ̄2) = P

(
b2

p−k0∑
j=1

Z(j) < (1 + δ)ρ̄2

)

≤ P

(
b2

p∑
j=1

Z(j) < (1 + δ)ρ̄2 − b2k0

)

≤ P

(
b2

p∑
j=1

ε2
j < ρ̄2

)
= π

(‖θ‖2 < ρ̄2),
which by the proof of Lemma 5.1 in Ingster, Tsybakov and Verzelen (2010) con-
verges to 0 as min(n,p) → ∞. Moreover, that lemma also contains the proof
that π(θ ∈ B0(k1)) → 1 (identifying k there with our k1), which thus implies
π(B̃0(k1, ρ̄)) → 1 as min(n,p) → ∞. The testing lower bound based on this prior,
derived in Theorem 4.1 in Ingster, Tsybakov and Verzelen (2010) (cf. particularly
page 1487), then implies (14), which is the desired contradiction. Finally, for The-
orem 5, note that the above implies immediately that θ ∼ π asymptotically concen-
trates on any fixed �2-ball. Moreover, Eπ‖θ‖1 = bph = o(1) under the hypotheses
of Theorem 5 when p = O(n2/3), and likewise Varπ(‖θ‖1) = b2ph, so we con-
clude as in the proof of Lemma 5.1 in Ingster, Tsybakov and Verzelen (2010) that
the prior asymptotically concentrates on any fixed �1-ball in this situation.

3.2. Proofs of upper bounds: Theorems 2 (sufficiency), 3(B), 4(B), 5(B). We
first note that sufficiency in Theorem 2 follows from Theorem 3(B) as i.i.d. Gaus-
sian design satisfies Condition 2. The main idea, which is the same for all the-
orems, follows Hoffmann and Nickl (2011), Bull and Nickl (2013) to solve the
composite testing problem

H0 : θ ∈ B0(k0) vs. H1 : θ ∈ B̃0(k1, ρ)(16)

under the pa rameter constellations of k0, k1, ρ,p,n relevant in Theorems 3(B),
4(B), 5(B) [and in the last case with both hypotheses intersected with Br(M),
suppressed in the notation in what follows]. Once a minimax test � is available
for which type one and type two errors

sup
θ∈H0

Eθ�n + sup
θ∈H1

Eθ(1 − �n) ≤ γ(17)

can be controlled, for n large enough, at any level γ > 0, one takes θ̃ to be the esti-
mator from (30) below with λ chosen as in Lemma 4, and constructs the confidence



SPARSE REGRESSION 2863

set

Cn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
θ :‖θ − θ̃‖2 ≤ L′

√
logp

k0

n

}
, if �n = 0,

{
θ :‖θ − θ̃‖2 ≤ L′

√
logp

k1

n

}
, if �n = 1.

Assuming (17), we now prove that Cn is honest for B0(k0) ∪ B̃0(k1, ρnp) if we
choose the constant L′ large enough: for θ ∈ B0(k0) we have from Corollary 2
below, for L′ large,

inf
θ∈B0(k0)

Pθ {θ ∈ Cn} ≥ 1 − sup
θ∈B0(k0)

Pθ

{
‖θ̃ − θ‖2 > L′

√
logp

k0

n

}
→ 1

as n → ∞. When θ ∈ B̃0(k1, ρnp), we have that Pθ {θ ∈ Cn} exceeds

1 − sup
θ∈B0(k1)

Pθ

{
‖θ̃ − θ‖2 > L′

√
logp

k1

n

}
− sup

θ∈B̃0(k1,ρnp)

Pθ {�n = 0}.

The first subtracted term converges to zero for L′ large enough, as before. The
second subtracted term can be made less than γ = α, using (17). This proves that
Cn is honest. We now turn to sparse adaptivity of Cn: by the definition of Cn we
always have |Cn| ≤ L′√logp × k1/n, so the case θ ∈ B̃0(k1, ρnp) is proved. If
θ ∈ B0(k0), then

Pθ

{
|Cn| > L′

√
logp

k0

n

}
= Pθ {�n = 1} ≤ α′

by the bound on the type one errors of the test, completing the reduction of the
proof to (17).

3.2.1. Proof of Theorem 3(B). Throughout this subsection we impose the as-
sumptions from Theorem 3—in fact, without the restriction p ≥ n—and with
ρnp ≥ L0n

−1/4 for some L0 large enough that we will choose below. By the ar-
guments from the previous subsection, it suffices to solve the testing problem (17)
with this choice of ρ, for any γ > 0. Define tn(θ

′), Tn as in (10) and the test
�n = 1{Tn ≥ uγ } where uγ is a suitable fixed quantile constant such that, for ev-
ery θ ∈ B0(k0), the type one error Eθ�n is bounded by

Pθ(Tn ≥ uγ ) ≤ Pθ

(∣∣tn(θ)
∣∣ ≥ uγ

) = Pθ

(
1√
2n

n∑
i=1

(
ε2
i − 1

) ≥ uγ

)
≤ γ.(18)
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For the type two errors θ ∈ H1, let θ∗ be a minimiser in Tn (if the infimum is not
attained, the argument below requires obvious modifications). Then

√
2ntn

(
θ∗) =

n∑
i=1

[(
Yi − (

Xθ∗)
i

)2 − 1
]

=
n∑

i=1

[(
Yi − (Xθ)i + (Xθ)i − (

Xθ∗)
i

)2 − 1
]

=
n∑

i=1

[(
Yi − (Xθ)i

)2 − 1
] + 2

〈
Y − Xθ,X

(
θ − θ∗)〉 + ∥∥X(

θ − θ∗)∥∥2
,

so the type two errors Eθ(1 − �n) are controlled by

Pθ

(∣∣∣∣∣
n∑

i=1

[(
Yi − (Xθ)i

)2 − 1
] + 2

〈
Y − Xθ,X

(
θ − θ∗)〉

+ ∥∥X(
θ − θ∗)∥∥2

∣∣∣∣∣ <
√

2nuγ

)
(19)

≤ Pθ

(∣∣∣∣∣
n∑

i=1

(
ε2
i − 1

)∣∣∣∣∣ > ‖X(θ − θ∗)‖2

2
− √

nuγ

)

+ Pθ

(∣∣2〈ε,X(
θ − θ∗)〉∣∣ > ‖X(θ − θ∗)‖2

2
− √

nuγ

)
.

Since θ∗ ∈ B0(k0), θ ∈ B̃0(k1, ρ) and k0 + k1 = o(n/ logp), we have, from Corol-
lary 1 below with t = (k0 + k1) logp that, for n large enough and with probability
at least 1 − 4e−(k0+k1) logp → 1,∥∥X(

θ − θ∗)∥∥2 ≥ inf
θ ′∈H0

∥∥X(
θ − θ ′)∥∥2 ≥ c(
min)nρ

2
np ≥ L′√n(20)

for every L′ > 0 (choosing L0 large enough). We thus restrict to this event. The
probability in the last but one line of (19) is then bounded by

Pθ

(∣∣∣∣∣
n∑

i=1

(
ε2
i − 1

)∣∣∣∣∣ > √
n
(
L′ − uγ

))

for n large enough, which can be made as small as desired by choosing L′ ≥ 4uγ ,
as in (18). Likewise, the last probability in the display (19) is bounded, for n large
enough, by

Pθ

(∣∣2〈ε,X(
θ − θ∗)〉∣∣ > ‖X(θ − θ∗)‖2

4

)
≤ Pθ

(
sup

θ ′∈H0

2|〈ε,X(θ − θ ′)|〉
‖X(θ − θ ′)‖2 >

1

4

)
,

which converges to zero for large enough separation constant L0, uniformly in
B̃0(k1, ρ), proved in Lemma 2 below [using the lower bound (20) for ‖X(θ − θ ′)‖
and that

√
k0 logp/n = o(n−1/4)].
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3.2.2. Proof of Theorem 4(B). Throughout this subsection we impose the as-
sumptions from Theorem 4(B), with ρnp exceeding L0

√
(k1/n) logp for some L0

large enough that we will choose below (the n−1/4-regime was treated already in
Theorem 3(B), whose proof holds for all p). By the arguments from the beginning
of Section 3.2, it suffices to solve the testing problem (17) with this choice of ρ,
for any level γ > 0. Let θ̃ be the estimator from (30) below with λ chosen as in
Corollary 2 below, and define the test statistic

Tn = inf
θ∈B0(k0)

‖θ̃ − θ‖2, �n = 1
{
Tn ≥ D logp

k1

n

}

for D to be chosen. The type one errors satisfy, uniformly in θ ∈ H0, for D large
enough,

Eθ�n ≤ Pθ

(
‖θ̃ − θ‖2 ≥ D logp

k1

n

)
→ 0

as min(p,n) → ∞, by Corollary 2. Likewise, we bound Eθ(1 − �n) under θ ∈
B̃0(k1, ρ), for some θ∗ ∈ B0(k0), by the triangle inequality,

Pθ

(∥∥θ̃ − θ∗∥∥2
2 < C logp

k1

n

)
≤ Pθ

(
‖θ̃ − θ‖ >

∥∥θ∗ − θ
∥∥ −

√
C logp

k1

n

)

≤ Pθ

(
‖θ̃ − θ‖2 ≥ (L0 − C) logp

k1

n

)
→ 0

for L0 large enough, again by Corollary 2 below.

3.2.3. Proof of Theorem 5(B). Throughout this subsection we impose the as-
sumptions from Theorem 5(B), with ρnp ≥ L0p

1/4/
√

n for some L0 large enough
that we will choose below. By the arguments from the beginning of Section 3.2, it
suffices to solve the testing problem (17) [with both hypotheses there intersected
with Br(M)] for this choice of ρ and any level γ > 0. For θ ′ ∈ R

p we define the
U -statistic

Un

(
θ ′) = 2

n(n − 1)

∑
i<k

p∑
j=1

(
YiXij − θ ′

j

)(
YkXkj − θ ′

j

)
,

which equals ‖n−1XT Y − θ ′‖2 with diagonal terms (i = k) removed. Then

1

n
EθX

T Y = Eθ

(
1

n
XT X

)
θ = θ,

(21)
EθY1X1j = θj , EθUn

(
θ ′) = ∥∥θ − θ ′∥∥2

and we define the test statistic and test as

Tn = inf
θ ′∈B0(k0)

∣∣Un

(
θ ′)∣∣, �n = 1

{
Tn ≥ uγ

√
p

n

}
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for uγ quantile constants specified below. For the type one errors we have, uni-
formly in H0, by Chebyshev’s inequality

Eθ�n = Pθ

(
Tn ≥ uγ

√
p

n

)
≤ Pθ

(∣∣Un(θ)
∣∣ ≥ uγ

√
p

n

)
≤ Var(Un(θ))

u2
γ

n2

p
.(22)

Under Pθ the U -statistic Un(θ) is fully centered [cf. (21)], and by standard
U -statistic arguments the variance can be bounded by Varθ (Un(θ)) ≤ Dp/n2 for
some constant D depending only on M and max1≤j≤p EX4

1j ≤ b4; see, for in-
stance, display (6.6) in Ingster, Tsybakov and Verzelen (2010) and the arguments
preceding it. We can thus choose uγ = uγ (M,b) to control the type one errors
in (22).

We now turn to the type two errors and assume θ ∈ B̃0(k1, ρ): let θ∗ be a
minimiser in Tn, then Un(θ

∗) has Hoeffding decomposition Un(θ
∗) = Un(θ) +

2Ln(θ
∗) + ‖θ∗ − θ‖2 with the linear term

Ln

(
θ ′) = 1

n

n∑
i=1

p∑
j=1

(θj − YiXij )
(
θj − θ ′

j

)
.

We can thus bound the type two errors Eθ(1 − �n) as follows:

Pθ

(
Tn < uγ

√
p

n

)
≤ Pθ

(∣∣Un(θ)
∣∣ + 2

∣∣Ln

(
θ∗)∣∣ ≥ ∥∥θ − θ∗∥∥2 − uγ

√
p

n

)

≤ Pθ

(∣∣Un(θ)
∣∣ ≥ ‖θ − θ∗‖2

2
− uγ

√
p

2n

)

+ Pθ

(∣∣Ln

(
θ∗)∣∣ ≥ ‖θ − θ∗‖2

4
− uγ

√
p

4n

)
.

By hypothesis on ρnp we can find L0 large enough such that ‖θ − θ∗‖2 ≥
infθ ′∈H0 ‖θ − θ ′‖2 ≥ L

√
p/n for any L > 0, so that the first probability in the pre-

vious display can be bounded by Pθ(|Un(θ)| > uγ
√

p/n), which involves a fully
centered U -statistic and can thus be dealt with as in the case of type one errors.
The critical term is the linear term, which, by the above estimate on ‖θ − θ∗‖, is
less than or equal to

Pθ

(∣∣Ln

(
θ∗)∣∣ ≥ ‖θ − θ∗‖2

8

)
≤ Pθ

(
sup

θ ′∈H0

|Ln(θ
′)|

‖θ − θ ′‖2 >
1

8

)
.

The process Ln(θ
′) can be written as〈

θ − n−1XT Y, θ − θ ′〉 = 〈
θ − n−1XT Xθ, θ − θ ′〉 − 〈

n−1XT ε, θ − θ ′〉
= 1

n

〈(
EθX

T X − XT X
)
θ, θ − θ ′〉 − 1

n

〈
ε,X

(
θ − θ ′)〉

≡ L(1)
n

(
θ ′) + L(2)

n

(
θ ′)
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and we can thus bound the last probability by

Pθ

(
sup

θ ′∈H0

|L(1)
n (θ ′)|

‖θ − θ ′‖2 >
1

16

)
+ Pθ

(
sup

θ ′∈H0

|L(2)
n (θ ′)|

‖θ − θ ′‖2 >
1

16

)
.(23)

To show that the probability involving the second process approaches zero, it suf-
fices to show that

Pθ

(
sup

θ ′∈H0

|εT X(θ − θ ′)/n|
‖X(θ − θ ′)‖2/n

>
1

16


)
(24)

converges to zero, using that supv∈B0(k1)
‖Xv‖2

2/(n‖v‖2
2) ≤ 
 for some 0 < 
 <

∞, on events of probability approaching one, by Lemma 1 [noting k0 + k1 =
o(n/ logp)]. By Lemma 2 this last probability approaches zero as min(n,p) → ∞,
for L0 large enough, noting that the lower bound on Rt there is satisfied for our
separation sequence ρnp , by Corollary 1 and since (k0/n) logp = o(p1/2/n) in
view of β0 > 1/2. Likewise, using the preceding arguments with Lemma 3 instead
of Lemma 2, the probability involving the first process also converges to zero,
which completes the proof.

3.3. Remaining proofs.

LEMMA 1. Assume Condition 2(a) and denote by P the law of X. Let θ ∈
B0(k1) and k ∈ {1, . . . , p}. Then for some constants σ and κ depending only on σ0
and κ0, Ck,k1,p ≡ (k + k1 + 1) log(25p) and for all t > 0,

P

(
sup

θ ′∈B0(k),(θ ′−θ)T 
(θ ′−θ) �=0

∣∣∣∣(θ
′ − θ)T 
̂(θ ′ − θ)

(θ ′ − θ)T 
(θ ′ − θ)
− 1

∣∣∣∣

≥ 4σ

√
t + Ck,k1,p

n
+ 4κ

t + Ck,k1,p

n

)
≤ 4 exp[−t].

COROLLARY 1. Let X satisfy Conditions 2(a) and 2(b). Let σ , κ , θ , k, k1,
Ck,k1,p be defined as in Lemma 1. Suppose that k, k1 and t > 0 are such that(

8Ck,k1,p

n
∨ 8t

n

)
≤

(
1

4(σ ∨ κ)
∧ 1

)
.

Then for all θ ∈ B0(k1),

Pθ

((
θ ′ − θ

)T 
̂
(
θ ′ − θ

) ≥ 1

2

∥∥θ ′ − θ
∥∥2


2
min ∀θ ′ ∈ B0(k)

)
≥ 1 − 4 exp[−t].

PROOF OF LEMMA 1. The vector θ ′ − θ has at most k + k1 nonzero entries;
in the lemma we may thus replace θ ′ − θ by a fixed vector in B0(k + k1) and
take the supremum over all k + k1-sparse nonzero vectors. In abuse of notation let
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us still write θ ′ for any such vector, and fix a set S ⊂ {1, . . . , p} with cardinality
|S| = k + k1. Let Rp

S := {θ ∈ R
p : θj = 0 ∀j /∈ S}. We will show, for C̄(t, n) ≡

(t + 2(k + k1) log 5)/n, that

P

(
sup

θ ′∈Rp
S ,(θ ′)T 
θ ′ �=0

∣∣∣∣(θ
′)T 
̂θ ′

(θ ′)T 
θ ′ − 1
∣∣∣∣ ≥ 4σ

√
C̄(t, n) + 4κC̄(t, n)

)
≤ 4 exp[−t].

Since there are
( p
(k+k1)

) ≤ p(k+k1) sets S of cardinality k + k1, the result then fol-
lows from the union bound. To establish the inequality in the last display, it suffices
to show

P
(

sup
θ ′∈BS

∣∣(θ ′)T �θ ′∣∣ ≥ 4σ

√
C̄(t, n) + 4κC̄(t, n)

)
≤ 4e−t ,(25)

where BS := {(θ ′ ∈ R
p
S : (θ ′)T 
θ ′ ≤ 1} and � := 
̂ − 
.

We use the notation ‖Xu‖2

 := uT 
u, u ∈ R

p , and we let for 0 < δ < 1,
{Xθl

S}N(δ)
l=1 be a minimal δ-covering of ({Xθ ′ : θ ′ ∈ BS},‖ · ‖
). Thus, for every

θ ′ ∈ BS there is a θ l = θ l
S(θ ′) such that ‖X(θ ′ − θ l)‖
 ≤ δ. Note that {θ l

S} ⊂ R
p
S .

Following an idea of Loh and Wainwright (2012), we then have

sup
θ ′∈BS

∣∣(θ ′ − θ l
S

(
θ ′))T �

(
θ ′ − θ l

S

(
θ ′))∣∣ ≤ δ2 sup

ϑ∈BS

ϑT �ϑ

and also that supθ ′∈BS
|(θ ′ − θ l

S(θ ′))T �θ | ≤ δ supϑ∈BS
|ϑT �ϑ |. This implies with

δ = 1/3 that

sup
θ ′∈BS

∣∣(θ ′)�θ ′∣∣ ≤ (9/2) max
l=1,...,N(1/3)

∣∣(θ l
S

)
�
(
θ l
S

)∣∣.
Condition 2(a) ensures that for some constants σ and κ depending only on σ0

and κ0, for any u with ‖Xu‖
 ≤ 1, and any t > 0, it holds that

P

(∣∣uT �u
∣∣ ≥ σ

√
t

n
+ κ

t

n

)
≤ 2 exp[−t].

This follows from the fact that the ((Xu)i) are sub-Gaussian, hence, the squares
((Xu)2

i ) are sub-exponential. Bernstein’s inequality can therefore be used [e.g.,
Bühlmann and van de Geer (2011), Lemma 14.9]. Finally, the covering number
of a ball in k + k1-dimensional space is well known. Apply, for example, Lemma
14.27 in Bühlmann and van de Geer (2011): N(δ) ≤ ((2 + δ)/δ)k+k1 . If we take
δ = 1/3, this gives N(1/3) ≤ 9k+k1 . The union bound then proves (25). �

3.3.1. A ratio-bound for θ ′ �→ εT X(θ − θ ′).

LEMMA 2. Suppose that ε ∼ N(0, I ) is independent of X. Let δ > 0. Then
for any t ≥ max(1/δ,1), and for Rt = tC0

√
k0 logp/n where C0 is a universal
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constant, we have for some universal constants C1 and C2,

P

(
sup

θ ′∈B0(k0),‖X(θ−θ ′)‖n>Rt

|εT X(θ − θ ′)|/n

‖X(θ − θ ′)‖2
n

≥ δ

∣∣∣∣X
)

≤ C1 exp
[
− t2δ2k0 logp

C2

]
.

PROOF. Let GR(θ) := {θ ′ :‖X(θ − θ ′)‖n ≤ R,θ ′ ∈ B0(k0)}. Then, using the
bound log

(p
k0

) ≤ k0 logp and, for example, Lemma 14.27 in Bühlmann and van de
Geer (2011), we have, for H(u,B,‖ · ‖) = logN(u,B,‖ · ‖) the logarithm of the
usual u-covering number of a subset B of a normed space

H
(
u,

{
X
(
θ − θ ′) : θ ′ ∈ GR(θ)

}
,‖ · ‖n

) ≤ (k0 + 1) log
(

2R + u

u

)
+ k0 logp,

u > 0.

Indeed, if we fix the locations of the zeros, say, θ ′ ∈ B ′
0(k0) := {ϑ :ϑj = 0 ∀j >

k0}, then {Xθ ′ : θ ′ ∈ B ′
0(k0)} is a k0-dimensional linear space, so

H
(
u,

{
Xθ ′ : θ ′ ∈ B ′

0(k0),
∥∥Xθ ′∥∥

n ≤ R
}
,‖ · ‖n

) ≤ k0 log
(

2R + u

u

)
, u > 0.

Furthermore, the vector Xθ is fixed, so that GR(θ) is a subset of a ball with radius
R in the (k0 + 1)-dimensional linear space spanned by {Xj }k0

j=1,Xθ .
By Dudley’s bound [see Dudley (1967) or more recent references such as

van der Vaart and Wellner (1996), van de Geer (2000)], applied to the (condi-
tional on X) Gaussian process θ ′ �→ εT X(θ − θ ′), and using

∫ c
0

√
log(c/x) dx =

c
∫ 1

0
√

log(1/x) dx = cA, where A is the constant A = ∫ 1
0

√
log(1/x) dx, we ob-

tain

E
[

sup
θ ′∈GR(θ)

∣∣εT X
(
θ − θ ′)∣∣|X]

≤ C′
∫ R

0

√
nH

(
u,GR(θ),‖ · ‖n

)
du

≤ C
√

2k0 logp
√

nR

for some universal constants C ≥ 1 and C′. By the Borell–Sudakov–Cirelson
Gaussian concentration inequality [e.g., Boucheron, Lugosi and Massart (2013)],
we therefore have for all u > 0,

P

(
sup

θ ′∈GR(θ)

∣∣εT X
(
θ − θ ′)∣∣/n ≥ CR

√
2k0 logp

n
+ R

√
2u

n

∣∣∣∣X
)

≤ exp[−u].

Substituting u = v2k0 logp gives that for all v > 0,

P

(
sup

θ ′∈GR(θ)

∣∣εT X
(
θ − θ ′)∣∣/n ≥ (C + v)R

√
2k0 logp

n

∣∣∣∣X
)

≤ exp
[−v2k0 logp

]
,
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which implies that for all v ≥ 1,

P

(
sup

θ ′∈GR(θ)

∣∣εT X
(
θ − θ ′)∣∣/n ≥ 2vCR

√
2k0 logp

n

∣∣∣∣X
)

≤ exp
[−v2k0 logp

]
.

Now insert the peeling device [see Alexander (1985), the terminology coming from
van de Geer (2000), Section 5.3]. Let Rt := 8Ct

√
2k0 logp/n. We then have

P

(
sup

θ ′∈B0(k0),‖X(θ−θ ′)‖n>Rt

|εT X(θ − θ ′)|/n

‖X(θ − θ ′)‖2
n

≥ δ

∣∣∣∣X
)

≤
∞∑

s=1

P
(

sup
θ ′∈G2sRt

(θ)

∣∣εT X
(
θ − θ ′)∣∣/n ≥ δ22(s−1)R2

t

∣∣∣X)

=
∞∑

s=1

P

(
sup

θ ′∈G2sRt
(θ)

∣∣εT X
(
θ − θ ′)∣∣/n ≥ 2sRt × 2C

(
2s tδ

)√2k0 logp

n

∣∣∣∣X
)

≤
∞∑

s=1

exp
[−22s t2δ2k0 logp

] ≤ C1 exp
[
− t2δ2k0 logp

C2

]

for some universal constants C1 and C2, completing the proof. �

3.3.2. A ratio-bound for θ ′ �→ L
(1)
n (θ ′) ≡ 〈(EθX

T X − XT X)θ, θ − θ ′〉.

LEMMA 3. We have, for every δ > 0, Rt = tD1
√

k0 logp/n, t ≥ 1, some pos-
itive constants D1,D2,D3,D4,D5 depending on δ, that

sup
θ∈Br(M)

Pθ

(
sup

θ ′∈B0(k0) : ‖θ−θ ′‖>Rt

|L(1)
n (θ ′)|

‖θ − θ ′‖2 > δ

)
≤ B(t,p,n),

where B(t,p,n) = D2e
−D3t

2δ2k0 logp under the assumptions of Theorem 5(B),
r = 1, and B(t,p,n) = D4e

−D5tδ
√

n logp/k1 under the assumptions of Theo-
rem 5(B), r = 2.

PROOF. The process in question is of the form

L(1)
n : θ ′ �→ 1

n

n∑
i=1

p∑
j=1

(Zij − EZij )
(
θj − θ ′

j

)
, Zij =

p∑
m=1

θmXimXij .(26)

Since the Xij are uniformly bounded by b, we conclude that the summands in i of
this process are uniformly bounded by

2b2
p∑

j=1

∣∣θj − θ ′
j

∣∣ p∑
m=1

|θm|(27)
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and the weak variances nVarθ (L
(1)
n (θ ′)) equal, for δmj the Kronecker delta,

E
∑
j,l

(Zij − EZij )(Zil − EZil)
(
θj − θ ′

j

)(
θl − θ ′

l

)

= E
∑

j,l,m,m′
(XimXij − δmj )(Xim′Xil − δm′l)θmθm′

(
θj − θ ′

j

)(
θl − θ ′

l

)
(28)

= ∑
j,l,m,m′

Dmjm′lθmθm′
(
θj − θ ′

j

)(
θl − θ ′

l

) ≤ c‖θ‖2
2
∥∥θ − θ ′∥∥2

2,

where we have used, by the design assumptions, that Dmjm′l ≤ 1 whenever the
indices m,j,m′, l match exactly to two distinct values, Dmjm′l ≤ EX4

11 if m =
l = j = m′, and Dmjm′l = 0 in all other cases, as well as the Cauchy–Schwarz

inequality. So L
(1)
n is a uniformly bounded empirical process {(Pn −P)(fθ ′)}θ ′∈H0

given by

1

n

n∑
i=1

(
fθ ′(Zi) − Efθ ′(Zi)

)
, fθ ′(Zi) =

p∑
j=1

p∑
m=1

θmXimXij

(
θj − θ ′

j

)

with variables Zi = (Xi1, . . . ,Xip)T ∈ R
p . Define Fs ≡ {f = fθ ′ : θ ′ ∈ H0,‖θ ′ −

θ‖2 ≤ 2s+1}. We know Rt < ‖θ − θ ′‖ ≤ √
C so the first probability in (23) can be

bounded, for c′ > 0 a small constant, by

Pθ

(
max

s∈Z : c′R2
t ≤2s≤C

sup
θ ′∈H0,2s<‖θ−θ ′‖2≤2s+1

|L(1)
n (θ ′)|

‖θ − θ ′‖2 > δ

)

≤ ∑
s∈Z : c′R2

t ≤2s≤C

Pθ

(
sup

θ ′∈H0,‖θ−θ ′‖2≤2s+1

∣∣L(1)
n

(
θ ′)∣∣ > 2sδ

)
,

∑
s∈Z : c′R2

t ≤2s≤C

Pθ

(‖Pn − P‖Fs − E‖Pn − P‖Fs > 2sδ − E‖Pn − P‖Fs

)
.

Moreover, Fs varies in a linear space of measurable functions of dimension k0, so
we have, from log

(p
k0

) ≤ k0 logp and from Theorem 2.6.7 and Lemma 2.6.15 in
van der Vaart and Wellner (1996), that

H
(
u,Fs,L

2(Q)
)
� k0 log(AU/u) + k0 logp, 0 < u < UA

for some universal constant A and envelope bound U of Fs . Using (27), if θ, θ ′
are bounded in �1 by M , we can take U a large enough fixed constant depending
on M,b only, and if k0 is constant, we can take U = max(k1

√
2s,1) since ‖θ −

θ ′‖1 ≤ √
k1‖θ − θ ′‖2. A standard moment bound for empirical processes under

a uniform entropy condition [e.g., Proposition 3 in Giné and Nickl (2009)] then
gives, using (28),

E‖Pn − P‖Fs �
√

2sk0

n
logp + Uk0 logp

n
,(29)
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which is, under the maintained hypotheses, of smaller order than 2sδ precisely for
those s such that R2

t � (k0/n) logp � 2s . The last sum of probabilities can thus be
bounded, for D1 large enough and c0 some positive constant, by∑

s∈Z : c′R2
t ≤2s≤C

Pθ

(
n‖Pn − P‖Fs − nE‖Pn − P‖Fs > c0n2sδ

)
,

to which we can apply Talagrand’s inequality [Talagrand (1996)] [as at the end of
the proof of Proposition 1 in Bull and Nickl (2013)], to obtain the bound

∑
s∈Z : c′R2

t ≤2s≤C

exp
{
−δ2 c2

0n
2(2s)2

n2s+1 + nUE‖Pn − P‖Fs + Uc0n2sδ

}
.

Using (29), this gives the desired bound D2e
−D3t

2δ2k0 logp when the envelope U is
constant, and the bound B(t,p,n) = D4e

−D5tδ(n logp)1/2/k1 when the envelope is
U = max(k1

√
2s,1) (with k0 constant), completing the proof. �

3.3.3. Tail inequalities for sparse estimators. Recall that Sϑ := {j :ϑj �= 0}.
Let kϑ := |Sϑ |. For λ > 0, take the estimator

θ̃ := arg min
ϑ

{‖Y − Xϑ‖2
2/n + λ2kϑ

}
.(30)

LEMMA 4. Let ε ∼ N (0, I ) be independent of X. Take λ2 = C3 logp/n,
where C3 is an appropriate universal constant. Let t ≥ 1 be arbitrary and Rt :=√

t/n. Then for some universal constants C4 and C5,

sup
θ∈B0(k0)

Pθ

(∥∥X(θ̃ − θ)
∥∥2
n + λ2kθ̃ > 2λ2k0 + R2

t |X
) ≤ C4 exp

[
−nR2

t

C5

]
.

PROOF. The result follows from an oracle inequality for least squares estima-
tors with general penalties as given in van de Geer (2001). For completeness, we
present a full proof. Define

τ 2(ϑ; θ) := ∥∥X(ϑ − θ)
∥∥2
n + λ2kϑ and GR(θ) := {

ϑ : τ 2(ϑ) ≤ R
}
.

If τ 2(θ̃; θ) ≤ 2λ2kθ , we are done. So suppose τ 2(θ̃; θ) > 2λ2kθ . We then have
(2/n)εT X(θ̃ − θ) ≥ τ 2(θ̃ , θ) − λ2kθ ≥ τ 2(θ̃ , θ)/2. Now again apply the peeling
device:

P

(
sup

τ(ϑ;θ)>Rt

εT X(ϑ − θ)/n

τ 2(ϑ, θ)
≥ 1

4

∣∣∣∣X
)

≤
∞∑

s=1

P

(
sup

ϑ∈G2sRt
(θ)

εT X(ϑ − θ)/n

τ 2(ϑ, θ)
≥ 1

16
22sR2

t

∣∣∣∣X
)
.
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But if ϑ ∈ GR(θ), we know that ‖X(ϑ − θ)‖n ≤ R and that kϑ ≤ R2/λ2. Hence,
as in the proof of Lemma 2, we know that

P

(
sup

ϑ∈GR(θ)

εT X(ϑ − θ)/n ≥ 2CR

√
2R2 logp

nλ2

∣∣∣∣X
)

≤ exp
[
−C2R2 logp

λ2

]
.

As λ = 32C
√

2 logp/n, we get

P

(
sup

ϑ∈GR(θ)

εT X(ϑ − θ)/n ≥ R2

16

∣∣∣∣X
)

≤ exp
[
− nR2

2 × (32)2

]
.

We therefore have

P

(
sup

τ(ϑ;θ)>Rt

εT X(ϑ − θ)/n

τ 2(ϑ, θ)
≥ 1

4

∣∣∣∣X
)

≤
∞∑

s=1

exp
[
− n22sR2

t

2 × (32)2

]
≤ C4 exp

[
−nR2

t

C5

]

for some universal constants C4 and C5. �

COROLLARY 2. Assume Condition 2 and let ε ∼ N (0, I ) be independent
of X. Let θ̃ be as in (30) with λ2 = (C3 logp)/n, where C3 is as in Lemma 4,
and let k0 = o(n/ logp). Then for some universal constants C6,C7,C8, c, every
C ≥ C6 and every n large enough,

sup
θ∈B0(k0)

Pθ

(
‖θ̃ − θ‖2 > C

k0 logp

n

)
≤ C7 exp

[
−k0 logp

C8

]
.

PROOF. By Lemma 4 with Rτ , τ equal to a suitable constant times k0 logp,
we see first kθ̃ � 3k0 on the event on which the exponential inequality holds.
Then from Corollary 1 with k = 3k0, on an event of sufficiently large probabil-
ity, ‖θ̃ − θ‖2

2 ≤ C(
min)‖X(θ̃ − θ)‖2
n for n large enough, so that the result follows

from applying Lemma 4 again [this time to ‖X(θ̃ − θ)‖2
n] and from combining the

bounds. �

3.3.4. Proof of Theorem 1 under Condition 2. For p,n fixed, the random vec-
tors (Yi,Xi1, . . . ,Xip)ni=1 are i.i.d., and if we split the n points into two subsam-
ples, each of size of order n, then we have two independent replicates Y (s) =
X(s)θ + ε(s), 
̂(s) = (X(s))T X(s)/n, s = 1,2, of the model. In abuse of notation,
denote throughout this proof by θ̃ ≡ θ̃ (1) the estimator from (30) based on the sub-
sample s = 1, with λ chosen as in Lemma 4, and by (Y,X, ε) ≡ (Y (2),X(2), ε(2))

the variables from the second subsample. Define

R̂n = 1

n
(Y − Xθ̃)T (Y − Xθ̃) − 1

= (θ − θ̃ )T 
̂(2)(θ − θ̃ ) + 2

n
εT X(θ − θ̃ ) + 1

n
εT ε − 1.
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By independence, and conditional on (Y (1),X(1)), we have E
(2)
θ (εT X(θ − θ̃ ))2 =

n(θ̃ − θ)T 
(θ̃ − θ) and so, using Markov’s inequality,

2

n
εT X(θ − θ̃ ) = OP

(√
(θ̃ − θ)T 
(θ̃ − θ)

n

)
.(31)

By Lemma 4, we have ‖X(1)(θ̃ − θ)‖2
n = OP ((k logp)/n) and kθ̃ = O(k1) and,

hence, by Lemma 1, also (θ̃ − θ)T 
(θ̃ − θ) = OP ((k logp)/n) = o(1). Thus,
the bound in (31) is oP (1/

√
n) uniformly in B0(k1), and this will be used in the

following estimate. Let uα be suitable quantile constants to be chosen below. Take
as confidence set

Cn =
{
θ ∈R

p :‖θ − θ̃‖2 ≤ 2
−2
min

(
R̂n + uα√

n

)}
.

Uniformly in θ ∈ B0(k1) with k1 = o(n/ logp), we have again by Lemma 4 that
θ̃ ∈ B0(2k1) on events of probability approaching one, so that, using Corollary 1
on these events,

Pθ(θ /∈ Cn) = Pθ

(
‖θ − θ̃‖2 > 2
−2

min

(
R̂n + uα√

n

))

≤ Pθ

(
(θ − θ̃ )T 
̂(2)(θ − θ̃ ) > R̂n + uα√

n

)
+ o(1)

= Pθ

(
−1

n
εT ε + 1 >

uα√
n

+ 2

n
εT X(θ − θ̃ )

)
+ o(1)

= Pθ

(−1√
n

n∑
i=1

(
ε2
i − 1

)
>

(
1 + o(1)

)
uα

)
+ o(1) ≤ α + o(1)

for a fixed constant uα . Moreover, from the previous arguments and Corollary 2,
we see that, for θ ∈ B0(k), the diameter R̂n = OP (‖θ̃ − θ‖2 + n−1/2) is of order
OP (

k logp
n

+ n−1/2).
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