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OPTIMAL CROSSOVER DESIGNS FOR
THE PROPORTIONAL MODEL

BY WEI ZHENG

Indiana University-Purdue University Indianapolis

In crossover design experiments, the proportional model, where the car-
ryover effects are proportional to their direct treatment effects, has draw at-
tentions in recent years. We discover that the universally optimal design un-
der the traditional model is E-optimal design under the proportional model.
Moreover, we establish equivalence theorems of Kiefer–Wolfowitz’s type for
four popular optimality criteria, namely A, D, E and T (trace).

1. Introduction. Let �p,t,n be the collection of all crossover designs with p

periods, t treatments, and n subjects. In an experiment based on design d ∈ �p,t,n,
the response from subject u ∈ {1,2, . . . , n} in period k ∈ {1,2, . . . , p}, to which
treatment d(k,u) ∈ {1,2, . . . , t} was assigned by design d , is traditionally modeled
as

Ydku = μ + αk + βu + τd(k,u) + γd(k−1,u) + εku.(1)

Here, μ is the general mean, αk is the kth period effect, βu is the uth subject ef-
fect, τd(k,u) is the (direct) effect of treatment d(k,u), and γd(k−1,u) is the carryover
effect of treatment d(k − 1, u) that subject u received in the previous period (by
convention γd(0,u) = 0). A central problem in the area of crossover design is to
find the best design among �p,t,n for estimating the direct, and sometimes also
carryover, treatment effects. Since Hedayat and Afsarinejad (1975, 1978) the opti-
mal design problems have been mainly studied under model (1). Examples include
Cheng and Wu (1980), Kunert (1984), Stufken (1991), Hedayat and Yang (2003,
2004) and Hedayat and Zheng (2010) among others. For approximate design so-
lutions, see Kushner (1997, 1998), Kunert and Martin (2000), Kunert and Stufken
(2002), and Zheng (2013a) among others.

Many variants of model (1) have been proposed in literature. The main focus
is on different modelings of carryover effects, such as no carryover effects model,
mixed carryover effects model [Kunert and Stufken (2002)] and the full interaction
model [Park et al. (2011)]. The choice of model should be based on practical back-
ground and it is the responsibility of design theorists to provide recipes of optimal
or efficient designs for each of these models. Here we consider model (2) below
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because usually (i) it is essential to choose a parsimonious but reasonable model;
(ii) The treatment having the larger direct effect in magnitude usually yields the
larger carryover effect:

Ydku = μ + αk + βu + τd(k,u) + λτd(k−1,u) + εku.(2)

Throughout the paper, we call this model as the proportional model. Kempton,
Ferris and David (2001) proposed this model and some theoretical results are later
derived by Bailey and Kunert (2006) and Bose and Stufken (2007). The main dif-
ficulty is due to the nonlinear term λτd(k−1,u) in the model. In this paper, we show
that universally optimal designs for estimating treatment effects under the tradi-
tional model is E-optimal under the proportional model regardless the value of λ.
Unlike the traditional model, the proportional model do not yield universally opti-
mal designs in general. Instead, we derive equivalence theorems for four popular
optimality criteria, namely A, D, E and T. Besides, we derive optimal designs for
estimating λ.

The rest of this paper is organized as follows. Section 2 briefly introduces the
universal optimality of Kushner’s design under the traditional linear model as well
as some necessary notation to be used for the rest of this paper. Section 3 studies
the optimal design problem for the proportional model. Finally, Section 4 gives
some examples of optimal designs under different values of p and t .

2. Some notation and Kushner’s design. Let G be a temporary object whose
meaning differs from context to context. For a square matrix G, we define G′, G−
and tr(G) to represent the transpose, g-inverse and trace of G, respectively. The
projection operator pr⊥ is defined as pr⊥ G = I − G(G′G)−G′. For two square
matrices of equal size, G1 and G2, G1 ≤ G2 means that G2 − G1 is nonnegative
definite. For a set G, the number of elements in the set is represented by |G|.
Besides, Ik is the k × k identity matrix and 1k is the vector of length k with all its
entries as 1. We further define Jk = 1k1′

k and Bk = Ik −Jk/k. Finally, ⊗ represents
the Kronecker product of two matrices.

Let Yd = (Yd11, Yd21, . . . , Ydp1, Yd12, . . . , Ydpn)
′ be the np × 1 response vector,

then model (1) has the matrix form

Yd = 1npμ + Zα + Uβ + Tdτ + Fdγ + ε,(3)

where α = (α1, . . . , αp)′, β = (β1, . . . , βn)
′, τ = (τ1, . . . , τt )

′, γ = (ρ1, . . . , ρt )
′,

Z = 1n ⊗ Ip , U = In ⊗ 1p , and Td and Fd denote the treatment/subject and carry-
over/subject incidence matrices. Here we assume E(ε) = 0 and Var(ε) = In ⊗ 
,
where 
 is a nonsingular within subject covariance matrix. Define 
−1/2 to
be the matrix such that 
−1 = 
−1/2
−1/2. Let T̃d = In ⊗ 
−1/2Td , F̃d =
In ⊗ 
−1/2Fd , Z̃ = In ⊗ 
−1/2Z and Ũ = In ⊗ 
−1/2U . The information ma-
trix for the direct treatment effect τ under model (3) is

Cd = T̃ ′
d pr⊥

(
Z̃|Ũ |F̃d

)
T̃d

= Cd11 − Cd12C
−
d22Cd21,
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where Cdij = G′
i pr⊥(Z̃|Ũ )Gj ,1 ≤ i, j ≤ 2 with G1 = T̃d and G2 = F̃d . De-

fine B̃ = 
−1 − 
−1Jp
−1/1′
p
−11p , and note that 
 = Ip implies B̃ = Bp .

Straightforward calculations show that Cdij = G′
i(Bn ⊗ B̃)Gj ,1 ≤ i, j ≤ 2 with

G1 = Td and G2 = Fd . A design is said to be universally optimal [Kiefer (1975)]
if it maximizes �(Cd) for any � satisfying:

(C.1) � is concave.
(C.2) �(S′CS) = �(C) for any permutation matrix S.
(C.3) �(bC) is nondecreasing in the scalar b > 0.

In approximate design theory, a design d ∈ �p,t,n is considered as the result
of selecting n elements with replacement from S , the collection of all possible tp

treatment sequences. Now define the treatment sequence proportion ps = ns/n,
where ns is the number of replications of sequence s in the design. A design in
approximate design theory is then identified by the vector Pd = (ps, s ∈ S) with
the restrictions of

∑
s∈S ps = 1 and ps ≥ 0.

Let Ts (resp., Fs) be the p × t matrix Td (resp., Fd ) when d consists of a sin-
gle sequence s. For sequence s ∈ S define Ĉsij = BtG

′
i B̃GjBt ,1 ≤ i, j ≤ 2 with

G1 = Ts and G2 = Fs . By direct calculations, we have

Cdij = Ĉdij − nG′
i B̃Gj , 1 ≤ i, j ≤ 2,(4)

where Ĉdij = n
∑

s∈S psĈsij ,1 ≤ i, j ≤ 2 with G1 = ∑
s∈S psTsBt and G2 =∑

s∈S psFsBt . Further, we define csij = tr(Ĉsij ), cdij = tr(Ĉdij ) = n
∑

s∈S pscsij ,
the quadratic function qs(x) = cs11 + 2cs12x + cs22x

2, q(x) = maxs qs(x), y∗ =
min−∞<x<∞ q(x), x∗ to be the unique solution of q(x) = y∗ and Q = {s ∈
S|qs(x

∗) = y∗}. Kushner (1997) derived the following theorem.

THEOREM 1 [Kushner (1997)]. A design d is universally optimal under
model (3) if and only if

∑
s∈Q

ps

[
Ĉs11 + x∗Ĉs12

] = y∗

t − 1
Bt,(5)

∑
s∈Q

ps

[
Ĉs21 + x∗Ĉs22

] = 0,(6)

∑
s∈Q

psB̃
(
Ts + x∗Fs

)
Bt = 0,(7)

∑
s∈Q

ps = 1,(8)

ps = 0 if s /∈ Q.(9)

Let σ be a permutation of the symbols {1,2, . . . , t}. For a sequence s =
(t1, . . . , tp), we define σs = (σ (t1), . . . , σ (tp)). Note that qs(x) is invariant to
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treatment permutations, that is,

qs(x) = qσs(x), σ ∈ P .(10)

Define the design σd by Pσd = (pσ−1s, s ∈ S). A design d is said to be symmetric
if Pd = Pσd . Also we define symmetric blocks as 〈s〉 = {σs, σ ∈ P} where P is
the collection of all possible t ! permutations. For a symmetric design, we have
ps̃ = p〈s〉/|〈s〉| for any s̃ ∈ 〈s〉, where p〈s〉 = ∑

s̃∈〈s〉 ps̃ . Given p, t, n, a symmetric
design d is uniquely determined by (p〈s〉, s〈∈〉S), where s〈∈〉S means that s runs
through all distinct symmetric blocks contained in S . Equation (10) is essential for
the following theorem.

THEOREM 2 [Kushner (1997)]. A symmetric design is universally optimal un-
der model (3) if ∑

s∈Q
psq

′
s

(
x∗) = 0,(11)

∑
s∈Q

ps = 1,(12)

ps = 0, if s /∈ Q,(13)

where q ′
s(x) is the derivative of qs(x) with respective to x.

3. Proportional model.

3.1. Problem formulation and literature review. We are interested in
model (2), which could be rewritten in the matrix form

Yd = 1npμ + Tdτ + λFdτ + Zα + Uβ + ε.(14)

Here we assume ε ∼ N(0, In ⊗ 
). Fisher’s information matrix for τ is

Cd,τ0,λ0(τ ) = (T̃d + λ0F̃d)′ pr⊥
(
Z̃|Ũ |F̃dτ0

)
(T̃d + λ0F̃d)

= Cd11 + λ0(Cd12 + Cd21) + λ2
0Cd22(15)

−(Cd12 + λ0Cd22)τ0
(
τ ′

0Cd22τ0
)−1

τ ′
0(Cd21 + λ0Cd22).

Unlike model (3), model (14) is nonlinear, and therefore the choice of optimal
designs depends on the unknown parameters λ0 and τ0; see (15). The nonlinear-
ity of the model imposes the major difficulty on the problem. For this, Bose and
Stufken (2007) assumes that λ0 is a known parameter at the stage of data analysis,
in which case the (Fisher’s) information matrix does not depend on τ0 and hence
the same for the choice of optimal designs. But such strategy inevitably yields
significant bias in the analysis stage when one do not have sufficient knowledge
about λ0.
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Note that Kempton, Ferris and David (2001) and Bailey and Kunert (2006) also
worked on Cd,τ0,λ0(τ ) even though they derived it from the aspect of model ap-
proximation [Fedorov and Hackl (1997), page 18] without normality assumption.
For unknown τ0 and λ0, they adopted the following Bayesian type of criteria:

φg,λ0(d) =
∫

�
(
Cd,τ0,λ0(τ )

)
g(τ0) d(τ0)

(16)
= Eg

(
�

(
Cd,τ0,λ0(τ )

))
,

where g is the prior distribution of τ0. Note that they only considered the spe-
cial case of 
 = Ip and � being the A-criterion function. Particularly, Kempton,
Ferris and David (2001) gave a search algorithm for A-efficient designs when
g is the density function of a special multivariate normal distribution. Bailey
and Kunert (2006) proved the optimality of totally balanced design [Kunert and
Stufken (2002)] when 
 = Ip , 3 ≤ p ≤ t , the distribution g is exchangeable, and
−1 ≤ λ0 < λ∗ with

λ∗ = 1

p − 1
− pt − t − 1

(p − 1)(t − 2)(pt − t − 1 − t/p)2 .(17)

Note that 0 < λ∗ < 1/(p − 1). Hence the results of Bailey and Kunert (2006)
will not be applicable when p ≥ t or the carryover effects is positively proportional
to the direct treatment effects with a moderate or even larger magnitude. Here, we
develop tools for finding optimal designs for any value of λ0 and 
 and for four
popular criteria, namely A, D, E and T. For E-criterion, the optimal design does
not depend on the value of λ0.

3.2. Preliminary results. Recall that the design σd is defined by Pσd =
(pσ−1s, s ∈ S). Let Sσ be the unique permutation matrix such that Tσd = TdSσ

and Fσd = FdSσ for any design d . Also define

στ0 = Sσ τ0.

Let δτ0 be the probability measure which puts equal mass to each element in
{στ0|σ ∈ P}. We shall focus on the special case of g = δτ0 and then extend the
results to any arbitrary exchangeable distribution g. By definition we have

φδτ0 ,λ0(d) = 1

t !
∑
σ

�
(
Cd,στ0,λ0(τ )

)
,

where the summation runs through all t ! permutations. Now we have:

THEOREM 3. In approximate design theory, given any values of the real num-
ber λ0 and the vector τ0, for any design d there exists a symmetric design, say d∗,
such that

φδτ0 ,λ0(d) ≤ φδτ0 ,λ0

(
d∗)

.(18)
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PROOF. First, we observe that

Cσd,τ0,λ0(τ ) = S′
σCd,στ0,λ0(τ )Sσ .(19)

For any given permutation σ0, by (19) we have

φδτ0 ,λ0(σ0d) = 1

t !
∑
σ

�
(
Cσ0d,στ0,λ0(τ )

)

= 1

t !
∑
σ

�
(
S′

σ0
Cd,σ0στ0,λ0(τ )Sσ0

)
(20)

= 1

t !
∑
σ

�
(
Cd,σ0στ0,λ0(τ )

)
= φδτ0 ,λ0(d).

By direct calculations, we have

Cd,τ0,λ0(τ, λ,α) = (
T̃d + λ0F̃d |F̃dτ0|Z̃)′ pr⊥(Ũ)

(
T̃d + λ0F̃d |F̃dτ0|Z̃)

(21)
= n

∑
s

ps

(
Ts + λ0Fs |Fsτ0|Ip

)′
B̃

(
Ts + λ0Fs |Fsτ0|Ip

)
.

Define d∗ to be the design such that

Pd∗ = 1

t !
∑
σ

Pσd.

It is easy to show that d∗ is a symmetric design and

Cd∗,τ0,λ0(τ, λ,α) = 1

t !
∑
σ

Cσd,τ0,λ0(τ, λ,α),(22)

in view of (21). By Lemma 3.1 of Kushner (1997) and (22), we have

1

t !
∑
σ

Cσd,τ0,λ0(τ ) ≤ Cd∗,τ0,λ0(τ ).(23)

By (20) and (23), we have

φδτ0 ,λ0(d) = 1

t !
∑
σ

φδτ0 ,λ0(σd)

= 1

(t !)2

∑
σ

∑
σ̃

�
(
Cσd,σ̃ τ0,λ0(τ )

)

= 1

(t !)2

∑
σ̃

∑
σ

�
(
Cσd,σ̃ τ0,λ0(τ )

)

≤ 1

t !
∑
σ̃

�
(
Cd∗,σ̃ τ0,λ0(τ )

)

= φδτ0 ,λ0

(
d∗)

. �
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REMARK 1. In proving Theorem 3 we use the same approach in the proof of
Theorem 3.2 of Kushner (1997) to derive (23). However, the proof of the latter
theorem is not rigorous since (3.6) therein does not hold in general. Actually the
gap can be filled by using (22) in replacement of (3.6) therein.

COROLLARY 1. In approximate design theory, given any value the number λ0
and the prior distribution g of τ0 as long as the latter is exchangeable, for any
design d there exists a symmetric design, say d∗, such that

φg,λ0(d) ≤ φg,λ0

(
d∗)

.

PROOF. It is enough to notice that inequality (18) holds for any τ0. �

By Corollary 1, there always exists a symmetric design which is optimal among
�p,t,n. We define a design d to be pseudo symmetric if all treatments in d are
equally replicated on each period and Cdij ,1 ≤ i, j ≤ 2 are completely symmet-
ric. A symmetric design is pseudo symmetric and thus an optimal design in the
subclass of pseudo symmetric designs is automatically optimal among �p,t,n.

PROPOSITION 1. Regardless the value of τ0, Fisher’s information matrix
Cd,τ0,λ0(τ ) of a symmetric design d has eigenvalues of 0, (t − 1)−1(cd11 −
c2
d12/cd22) and (t − 1)−1(cd11 + 2λ0cd12 + λ2

0cd22) with multiplicities 1,1 and
t − 2, respectively.

PROOF. For a symmetric design d , we have
∑

s∈S psTsBt = 0 =∑
s∈S psFsBt and hence

Cdij = Ĉdij , 1 ≤ i, j ≤ 2,(24)

in view of (44). Moreover, these matrices are all completely symmetric and have
row and column sum as zero, which together with (24) yields Cdij = cdijBt/(t −
1). Due to 1′τ0 = 0 and hence Btτ0 = τ0, we have

(t − 1)Cd,τ0,λ0(τ ) = (
cd11 + 2λ0cd12 + λ2

0cd22
)
Bt − (cd12 + λ0cd22)

2

cd22

τ0τ
′
0

τ ′
0τ0

.

Let {x1, . . . , xt−2} be the orthogonal basis which is orthogonal to both 1 and τ0.
Then {x1, . . . , xt−2, τ0,1} forms the eigenvectors for the above matrix. Hence, the
lemma is concluded. �

REMARK 2. Since csij is the same for sequences in the same symmetric block
〈s〉, we have cdij = ∑

s〈∈〉S p〈s〉csij . In view of Corollary 1 and Proposition 1, one
can derive an optimal design in two steps. First, we find the optimum value of
p〈s〉 for all distinct symmetric blocks. Within each symmetric block with positive
p〈s〉, we construct a pseudo symmetric design, and then assemble these designs
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according to the desired value of p〈s〉. For step one, see equivalence theorems in
Section 3.4. For step two, one can utilize some combinatory structures such as
type I orthogonal arrays, for the latter see Design 6 of Bailey and Kunert (2006),
for example. For E-criterion, more general optimal designs could be derived. See
Section 3.3 for details.

REMARK 3. The application of Corollary 1 and Proposition 1 for A-criterion
leads to Proposition 1 of Bailey and Kunert (2006).

3.3. E-optimality. Let Eg,λ0(d) be the criterion φg,λ0(d) when � therein is
evaluated by the second smallest eigenvalue of the information matrix. We call a
design to be Eg,λ0 -optimal if it maximizes Eg,λ0(d).

PROPOSITION 2. In approximate design theory, regardless the value of λ0
and the prior distribution g as long as the latter is exchangeable, a design d is
Eg,λ0-optimal if and only if Eg,λ0(d) = ny∗/(t − 1) with y∗ as defined right before
Theorem 1.

PROOF. First, it is easy to verify that

cd11 − c2
d12/cd22 ≤ cd11 + 2λ0cd12 + λ2

0cd22

for any λ0. By Theorem 4.5 of Kushner (1997), we have

y∗ = min−∞<x<∞
∑
s∈S

psqs(x)

= n−1 max
d

(
cd11 − c2

d12/cd22
)
.

Hence, the proposition is proved in view of Corollary 1 and Proposition 1. �

THEOREM 4. In approximate design theory, regardless of the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a design is Eg,λ0-
optimal if there exists a real number x such that

∑
s∈Q

ps[Ĉs11 + xĈs12] = y∗

t − 1
Bt,(25)

∑
s∈Q

ps[Ĉs21 + xĈs22] = 0,(26)

∑
s∈Q

psB̃(Ts + xFs)Bt = 0,(27)

∑
s∈Q

ps = 1,(28)

ps = 0 if s /∈ Q.(29)
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PROOF. Since Cd,τ0,λ0(τ ) have column and row sums as zero, we have

Eg,λ0(d) = Eg

[
min

�′1t=0,�′�=1
�′Cd,τ0,λ0(τ )�

]
.(30)

For a design satisfying (25)–(29) we have

Cd11 + xCd12 = ny∗

t − 1
Bt,(31)

Cd21 + xCd22 = 0,(32)

in view of (44). Since Cd22 is symmetric, (32) implies the symmetry of Cd21 and
hence C12 = C21. Then by (15), (31) and (32), we have

Cd,τ0,λ0(τ ) = ny∗

t − 1
Bt + (λ0 − x)2Cd22 − (λ0 − x)2

τ ′
0Cd22τ0

Cd22τ0τ
′
0Cd22.(33)

Let {0, a1, . . . , at−1} be the eigenvalues of Cd22 with corresponding normalized
eigenvectors {1t , �1, . . . , �t−1}, then we have Cd22 = ∑t−1

i=1 ai�i�
′
i . Since τ ′

01t = 0,
we have the representation τ0 = ∑t−1

i=1 ci�i . For any vector � with �′1t = 0 and
�′� = 1, we have the expression of � = ∑t−1

i=1 bi�i with the restriction
∑t−1

i=1 b2
i = 1,

the equation �′Bt� = 1, and hence by (33)

�′Cd,τ0,λ0(τ )� = ny∗

t − 1
+ (λ0 − x)2

t−1∑
i=1

aib
2
i − (λ0 − x)2∑t−1

i=1 aic
2
i

(
t−1∑
i=1

aibici

)2

= ny∗

t − 1
+ (λ0 − x)2∑t−1

i=1 aic
2
i

[(
t−1∑
i=1

aib
2
i

)(
t−1∑
i=1

aic
2
i

)
−

(
t−1∑
i=1

aibici

)2]
(34)

≥ ny∗

t − 1
,

the equality holds if and only if � = τ0/‖τ0‖. The theorem is concluded in view of
Proposition 2, (30) and (34). �

REMARK 4. The advantage of Theorem 4 is that the design therein is optimal
for any λ0 while the A-optimality of totally balanced design [Bailey and Kunert
(2006)] requires the condition of −1 ≤ λ0 ≤ λ∗.

As a direct result of Theorems 1 and 4, we have the following corollary.

COROLLARY 2. In approximate design theory, regardless the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a universally optimal
design for model (3) is also Eg,λ0-optimal for model (14).

THEOREM 5. The variable x in (25)–(29) takes the unique value of x∗, which
is defined right above Theorem 1.
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PROOF. Given (25)–(29), we have by (31) and (32) that

Cd11 − Cd12(Cd22)
−Cd21 = Cd11 + xCd12(Cd22)

−Cd22

= Cd11 + xCd12

= ny∗

t − 1
Bt,

which indicates that d is universally optimal for model (3) in view of Theorem 1.
Hence, we have x = x∗ by Theorem 1. �

As a direct result of Theorem 2, Corollary 2 and Remark 2, we have Corollary 3.

COROLLARY 3. In approximate design theory, regardless of the value of λ0
and the prior distribution g as long as the latter is exchangeable, a pseudo sym-
metric design is Eg,λ0-optimal if it satisfies (11)–(13).

3.4. Equivalence theorems. In order to introduce the following results, we de-
fine xd = −cd12/cd22 and qd(x) = ∑

s∈S psqs(x). Then we have

nqd(xd) = cd11 − c2
d12/cd22,

nqd(λ0) = cd11 + 2λ0cd12 + λ2
0cd22.

For a t × t matrix C with eigenvalues 0 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ at−1, define the
criterion functions

�A(C) = (t − 1)

(
t−1∑
i=1

a−1
i

)−1

,

�D(C) =
(

t−1∏
i=1

ai

)1/(t−1)

,

�T (C) = (t − 1)−1
t−1∑
i=1

ai.

Let Ag,λ0(d), Dg,λ0(d) and Tg,λ0(d) be the criterion φg,λ0(d) when � therein is
evaluated by �A, �D and �T , respectively. We call a design to be Ag,λ0 -optimal
if it maximizes Ag,λ0(d). Definitions for optimality of Dg,λ0 and Tg,λ0 are similar.

THEOREM 6. In approximate design theory, regardless of the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a pseudo symmetric
design d is Dg,λ0-optimal if and only if

max
s∈S

(
1

t − 1

qs(xd)

qd(xd)
+ t − 2

t − 1

qs(λ0)

qd(λ0)

)
= 1.(35)

Moreover, the sequences in design d attain the maximum in (35).
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PROOF. For a real number x, let η(ξ1, ξ2, x) = qξ2(x)/qξ1(x) with ξ1 and
ξ2 being either a design or a sequence. Also define ψ(Pd) = log((cd11 −
c2
d12/cd22)) + (t − 2) log(cd11 + 2λ0cd12 + λ2

0cd22). By Theorem 2, Corollary 2,
Remark 2 and the concavity of D-criterion, a pseudo symmetric design d∗ is Dg,λ0 -
optimal if and only if for any other design d we have

0 ≥ lim
δ→0

ψ((1 − δ)Pd∗ + δPd) − ψ(Pd∗)

δ
(36)

= η
(
d∗, d, xd∗

) + (t − 2)η
(
d∗, d, λ0

) − (t − 1).

Take d in (37) to be a design consist of a single sequence s, we have

max
s∈S

(
1

t − 1
η
(
d∗, s, xd∗

) + t − 2

t − 1
η
(
d∗, s, λ0

)) ≤ 1.(37)

Observe that

η(d, d, xd) = 1 = η(d, d,λ0),(38)

then we have

max
s∈S

(
1

t − 1
η(d, s, xd) + t − 2

t − 1
η(d, s, λ0)

)
≥ 1.(39)

The theorem is completed in view of (37), (38) and (39). �

THEOREM 7. In approximate design theory, regardless of the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a pseudo symmetric
design d is Ag,λ0-optimal if and only if

max
s∈S

(
πd

qs(xd)

qd(xd)
+ (1 − πd)

qs(λ0)

qd(λ0)

)
= 1,(40)

where πd = qd(λ0)/(qd(λ0) + (t − 2)qd(xd)). Moreover, the sequences in design
d attain the maximum in (40).

REMARK 5. Theorem 7 is essentially a generalization of the result of Bailey
and Kunert (2006).

THEOREM 8. In approximate design theory, regardless of the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a pseudo symmetric
design d is Eg,λ0-optimal if and only if

max
s∈S

qs(xd)

qd(xd)
= 1.(41)

Moreover, the sequences in design d attain the maximum in (41).

REMARK 6. In fact, (41) is equivalent to (11)–(13).
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THEOREM 9. In approximate design theory, regardless of the value of λ0 and
the prior distribution g as long as the latter is exchangeable, a pseudo symmetric
design d is Tg,λ0-optimal if and only if

max
s∈S

qs(xd) + (t − 2)qs(λ0)

qd(xd) + (t − 2)qd(λ0)
= 1.(42)

Moreover, the sequences in design d attain the maximum in (42).

3.5. Estimation of λ0. By the Cramér–Rao inequality, the variance of an un-
biased estimator of λ0 is bounded by the reciprocal of

Cd,τ0,λ0(λ) = τ ′
0F̃

′
d pr⊥

(
T̃d + λ0F̃d |Z̃|Ũ )

F̃dτ0,(43)

achievable by MLE asymptotically. Define Ad11 = F ′
d(Bn ⊗ B̃)Fd , Ad11 =

F ′
d(Bn ⊗ B̃)(Td + λ0Fd), Ad21 = A′

d12 and Ad22 = (Td + λ0Fd)′(Bn ⊗ B̃)(Td +
λ0Fd). Straightforward calculations show that Cd,τ0,λ0(λ) = τ ′

0Adτ0 where Ad =
Ad11 − Ad12(Ad22)

−A21.
As in (16) we define ϕg,λ0(d) = Egτ

′
0Adτ0, where the expectation is taken with

respect to the prior distribution measure g. Then we have ϕδτ0 ,λ0(d) = τ ′
0Ādτ0

where Ād = 1
t !

∑
σ S′

σAdSσ .

For each sequence s, define Âsij = BtG
′
i B̃GjBt ,1 ≤ i, j ≤ 2 with G1 = Fs and

G2 = Ts + λ0Fs . By direct calculations, we have

Adij = Âdij − nG′
i B̃Gj , 1 ≤ i, j ≤ 2,(44)

where Âdij = n
∑

s∈S psÂsij ,1 ≤ i, j ≤ 2, G1 = ∑
s∈S psFsBt and G2 =∑

s∈S ps(Ts + λ0Fs)Bt .
Further define hsij = tr(Âsij ), hdij = tr(Âdij ) = n

∑
s∈S pshsij , the quadratic

function rs(x) = hs11 + 2hs12x + hs22x
2, r(x) = maxs rs(x), y0 =

min−∞<x<∞ r(x), x0 to be the unique solution of r(x) = y0 and R = {s ∈
S|rs(x0) = y0}. Now we have the following theorem.

THEOREM 10. Given any −∞ < λ0 < ∞, a design maximizes ϕδτ0 ,λ0(d) for
any τ0 if ∑

s∈R
ps[Âs11 + x0Âs12] = y0

t − 1
Bt,(45)

∑
s∈R

ps[Âs21 + x0Âs22] = 0,(46)

∑
s∈R

psB̃
[
F̂s + x0(T̂s + λ0F̂s)

] = 0,(47)

∑
s∈R

ps = 1,(48)

ps = 0 if s /∈ R.(49)
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PROOF. Note that for any design d , there exists a symmetric design d∗ with
Ād ≤ Ad∗ by the same argument as for (23). For a symmetric design, we have
Ad = (t − 1)−1(hd11 − h2

d12/hd22)Bt . By similar arguments as in proof of The-
orem 4.4 of Kushner (1997), we have maxd(hd11 − h2

d12/hd22) = ny0. By direct
calculations, we know that (45)–(49) implies Ad = ny0Bt/(t − 1) and hence the
theorem is proved. �

COROLLARY 4. Given any value of the real number λ0, a design maximizes
ϕg,λ0(d) for any exchangeable prior distribution g if it satisfies (45)–(49).

PROOF. The necessity is immediate. For sufficiency, it is enough to note that
the design satisfying (45)–(49) does not depend on τ0. �

COROLLARY 5. Given any value of the real number λ0, a design maximizes
ϕg,λ0(d) for any exchangeable prior distribution g if it is a symmetric design with∑

s〈∈〉R
p〈s〉r ′

s(x0) = 0,(50)

∑
s〈∈〉R

p〈s〉 = 1,(51)

ps = 0 if s /∈ R,(52)

where r ′
s(x) is the derivative of rs(x) with respect to x.

PROOF. It is enough to show that (50)–(52) implies (45)–(49). The proof of
the latter is analogous to that of Theorem 2. �

A general necessary and sufficient optimality condition is given by the follow-
ing.

THEOREM 11. Given any value of the real number λ0, a design maximizes
ϕg,λ0(d) for any exchangeable prior distribution g if and only if tr(Ad) = ny0.

PROOF. Note that Ād = tr(Ad)Bt/(t − 1), hence we have ϕδτ0 ,λ0(d) =
τ ′

0τ0 tr(Ad)/(t − 1) and hence

ϕg,λ0(d) = Eg(τ
′
0τ0)

t − 1
tr(Ad).(53)

Through the proof of Theorem 10, we know that maxd tr(Ad) = ny0, which to-
gether with (53) proves the theorem. �
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4. Examples. In the spirit of Theorems 6–9 and Remark 2, we consider ex-
amples of optimal designs in the format of pseudo symmetric designs, even though
a more general format could be proposed for E-optimality due to Theorem 4. Let
m to be the total number of distinct symmetric blocks and suppose s1, s2, . . . , sm
are the representative sequences for each of the symmetric blocks. For a design d ,
define the vector P〈d〉 = (p〈s1〉,p〈s2〉, . . . , p〈sm〉). Then two pseudo symmetric de-
signs with the same P〈d〉 will have the same φg,λ0(d) for any φ,g,λ0 as long as g

is exchangeable. In particular, they are equivalent in terms of Ag,λ0 -, Dg,λ0 -, Eg,λ0 -
and Tg,λ0 -optimality. In the sequel, we will mainly focus on the determination of
P〈d〉 based on the equivalence theorems 6–9. A general algorithm could be found
in the supplemental article [Zheng (2013)].

For the following examples, we consider first order autocorrelation for within
subject covariance matrix, namely 
 = (ρI|i−j |=1 + Ii=j )1≤,i,j≤p , where I is the
indicator function. Hence, ρ = 0 implies 
 = Ip . Following Kushner (1998), we
define two special symmetric blocks. The symmetry block 〈di〉 consists of all se-
quences having distinct treatments in the p periods. The symmetry block 〈re〉 con-
sists of all sequences having distinct treatments in the first p − 1 periods, with
the treatment in period p − 1 repeating in period p. All examples given below
are pseudo symmetric designs except otherwise specified. For ease of illustration
by examples, we only consider (ρ,λ0) ∈ {−1/2,0,1/2} × [−1,1], even though
other values of (ρ,λ0) does not cause extra difficulty. Throughout this section, g

is exchangeable unless otherwise specified.
Case of (p, t) = (3,3): Let d1 be a design with p〈re〉 = 1/6 and p〈di〉 = 5/6.

See, for instance, Example 1 of Kushner (1998) with n = 36 subjects. Define d2
to be a design with p〈di〉 = 1, which requires n to be a multiple of 6 as an exact
design. When ρ = 0, Theorem 8 shows the Eg,λ0 -optimality of d1 for any λ0 and
Bailey and Kunert (2006) shows the Ag,λ0 -optimality of d2 when −1 ≤ λ0 ≤ λ∗ =
0.34375. In fact, one can verify by Theorems 7, 6 and 9 that d2 is even Ag,λ0 -,
Dg,λ0 - and Tg,λ0 -optimal when −1 ≤ λ0 ≤ 0.394. At λ0 = 0.5, d1 is optimal under
all four criteria. When we tune ρ to be 1/2, d2 is optimal under all four criteria for
−0.75 ≤ λ0 ≤ 1. When we tune ρ to be −1/2, d2 is still Ag,λ0 -, Dg,λ0 - and Tg,λ0 -
optimal for small and negative values of λ0, while the design with p〈re〉 = 2/9 and
p〈di〉 = 7/9 is Eg,λ0 -optimal. For moderate positive λ0, designs for four criteria are
all different, but they all consists of small portion of 〈re〉 and large portion of 〈di〉.
All these designs are highly efficient for all criteria; see Table 1, for example.

Without surprise, φg,λ0 -optimal design for exchangeable g is not necessarily
optimal when g is not exchangeable. We consider the prior distribution of g = g1
which puts all its mass on the single point τ0 = (0,1,−1)′. When n = 36, derive
d1′ from d1 by replacing one sequence of 123 therein by 323, it turns out that d1′
is 1.66% more Eg1,0-efficient when λ0 = ρ = 0. However, in practice, one does
not have accurate information of τ0. Exchangeable prior distribution of τ0 actu-
ally accounts for the case when nothing is known about τ0. A further justification
is that symmetry is usually a nice feature. If we search among pseudo symmetric
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TABLE 1
Efficiency of d1 and d2 under Ag,λ0 , Dg,λ0 , Eg,λ0 , and

Tg,λ0 -criteria for the case of (p, t) = (3,3) when ρ = λ0 = 0

Design A D E T

d1 0.9782 0.9752 1 0.9722
d2 1 1 0.9931 1

designs, the designs as proposed in this paper would be optimal under the corre-
sponding criterion for any arbitrary g, which is not necessarily exchangeable. To
see this, note that Cdij ’s are all completely symmetric for a pseudo symmetric de-
sign. Hence, it is easily seen, by examining the proof of Proposition 1, that the
value of φg,λ0(d) is independent of the distribution g for both d1 and d2 regardless
the value of λ0 as well as the criterion function �.

Case of (p, t) = (3,4): Let d3 be a design with p〈re〉 = 1/8 and p〈di〉 = 7/8.
Define d4 to be a design with p〈di〉 = 1, which requires n to be a multiple of 12 as
an exact design. When ρ = 0, Theorem 8 shows the Eg,λ0 -optimality of d3 for any
λ0 and Bailey and Kunert (2006) shows the Ag,λ0 -optimality of d4 when −1 ≤
λ0 ≤ λ∗ = 0.4455. In fact, one can verify by Theorems 6, 7 and 9 that d4 is even
Ag,λ0 -, Dg,λ0 - and Tg,λ0 -optimal when −1 ≤ λ0 ≤ 0.463. Similarly at λ0 = 0.5, d3
is optimal under all four criteria. When we tune ρ to be 1/2, d4 is optimal under
all four criteria for −0.35 ≤ λ0 ≤ 1. It is still Ag,λ0 -, Dg,λ0 - and Eg,λ0 -optimal and
highly Tg,λ0 -efficient for −1 ≤ λ0 < −0.35. When ρ = −0.5, similar phonomania
as for the case of (p, t) = (3,4) is observed.

Case of (p, t) = (3,5): We have similar observations as for case of (p, t) =
(3,4), except that the portion of 〈re〉 becomes further smaller. This trend projects
to larger values of t .

Case of (p, t) = (4,3): When ρ = 0, the design with p〈re〉 = 1 is optimal under
all four criteria for 0 ≤ λ0 ≤ 1. For negative λ0, designs are different for different
criteria. However, they typically consist of symmetric blocks of 〈1232〉 and 〈re〉.
Table 2 shows the performance of these designs for λ0 = −0.5. Designs therein
are identified by p〈re〉 = 1 − p〈1232〉. When ρ is nonzero, symmetric blocks of
〈1123〉, 〈1231〉,〈1232〉 and 〈re〉 will appear in different optimal designs. Note that
Bailey and Kunert’s (2006) result does not apply to this case since they deal with
3 ≤ p ≤ t .

Case of (p, t) = (4,4): When ρ = 0, the design with p〈re〉 = 1/12 and p〈di〉 =
11/12 is Eg,λ0 -optimal for all λ0, while the design with p〈di〉 = 1 is Ag,λ0 -, Dg,λ0 -
and Tg,λ0 -optimal for any λ0 between −1 and 0.318 (> λ∗). Interestingly, the
design with p〈re〉 = 1 is Ag,λ0 -, Dg,λ0 - and Tg,λ0 -optimal for 0.625 ≤ λ0 ≤ 1. For
0.318 < λ < 0.625, the optimal designs consist of 〈re〉 and 〈di〉 with the proportion
depending on different criteria. When ρ = 0.5, the design with p〈di〉 = 1 is optimal
under all the four criteria for 0.368 ≤ λ0 ≤ 1 and Eg,λ0 -optimal for all λ0. When
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TABLE 2
Efficiency of designs under Ag,λ0 , Dg,λ0 , Eg,λ0 , and Tg,λ0 -criteria

for the case of (p, t) = (4,3) when ρ = 0 and λ0 = −0.5

p〈1232〉 A D E T

0.4729 1 0.9964 0.9553 0.9768
0.6330 0.9952 1 0.9199 0.9888
0 0.9636 0.9475 1 0.9167
1 0.9422 0.9785 0.8000 1

ρ = −0.5, the design with p〈1123〉 = 1 (resp., p〈re〉 = 1) is Eg,λ0 -optimal for all λ0
and also optimal under the other three criteria for λ0 close to zero (reps. 0.3). For
moderate negative value of λ0, the design with p〈di〉 = 1 is optimal under these
three criteria.

Case of (p, t) = (4,5): Similar observation as the case of (p, t) = (4,4) except
that the symmetric metric 〈1122〉 appears as small proportion in optimal designs
when ρ = −0.5 and λ0 takes a positive moderate value.

Case of (p, t) = (5,3): When ρ = 0, the design with p〈12233〉 = 2/5 and
p〈12332〉 = 3/5 is Eg,λ0 -optimal for all λ0 and also optimal under the other three
criteria when λ0 is in a neighborhood of zero. For other values of ρ and λ0, there
is no specific symmetric block which will dominate, but we observe that all se-
quences in the optimal designs contain all three treatments.

Case of (p, t) = (6,2): It is well known that t = 2 indicates the equivalence of
all optimality criteria for the classical model. For proportional model, this is also
true. To see this, Proposition 1 shows that the information matrix Cd,τ0,λ0(τ ) only
has one positive eigenvalue (t −1)−1(cd11 −c2

d12/cd22) with multiplicity 1. Hence,
the optimal design will be irrelevant of optimality criteria as well as the value of
λ0. When ρ = 0, the design with p〈111222〉 = 5/8 and p〈121212〉 = 3/8 is optimal
under all the four criteria for any λ0. An exact design with 16 runs is given as

1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2
1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1
1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2
2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1
2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2
2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1

When ρ = 0.5, the design with p〈122121〉 = 1 is optimal. When ρ = −0.5, the de-
sign with p〈111222〉 = 2/11 and p〈122211〉 = 9/11 is optimal. Based on Corollary 6,
these designs are also universally optimal for the classical model.

COROLLARY 6. For any 
, a pseudo symmetric design which is Eg,λ0-optimal
for the proportional model is also universally optimal for the classical model.
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SUPPLEMENTARY MATERIAL

Appendix for optimal crossover designs for the proportional model (DOI:
10.1214/13-AOS1148SUPP; .pdf). This document is to provide a general algo-
rithm to derive optimal P〈d〉 for arbitrary values of λ0 and 
 based on the equiva-
lence theorems.
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