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GROUPS ACTING ON GAUSSIAN GRAPHICAL MODELS

BY JAN DRAISMA1, SONJA KUHNT AND PIOTR ZWIERNIK1

TU Eindhoven, TU Dortmund University and CWI Amsterdam

Gaussian graphical models have become a well-recognized tool for the
analysis of conditional independencies within a set of continuous random
variables. From an inferential point of view, it is important to realize that
they are composite exponential transformation families. We reveal this struc-
ture by explicitly describing, for any undirected graph, the (maximal) matrix
group acting on the space of concentration matrices in the model. The contin-
uous part of this group is captured by a poset naturally associated to the graph,
while automorphisms of the graph account for the discrete part of the group.
We compute the dimension of the space of orbits of this group on concentra-
tion matrices, in terms of the combinatorics of the graph; and for dimension
zero we recover the characterization by Letac and Massam of models that
are transformation families. Furthermore, we describe the maximal invariant
of this group on the sample space, and we give a sharp lower bound on the
sample size needed for the existence of equivariant estimators of the concen-
tration matrix. Finally, we address the issue of robustness of these estimators
by computing upper bounds on finite sample breakdown points.

1. Introduction and results. Gaussian graphical models are popular tools
for modelling complex associations in the multivariate continuous case. If the
graph with vertex set [m] := {1, . . . ,m} is complete, then the general linear group
GLm(R), consisting of all invertible m × m-matrices, acts on the space of con-
centration matrices in the model, as well as on the sample space. The maximum
likelihood estimator (MLE) of the concentration matrix is equivariant with respect
to this group action, but many other equivariant estimators have been proposed, for
example, by Anderson (2003), Donoho (1982), James and Stein (1961), Lopuhaä
and Rousseeuw (1991), Stahel (1981). For smaller graphs, only some proper sub-
group of GLm(R) will act on the set of compatible concentration matrices. In this
paper, we describe that subgroup explicitly, and pave the way for its use in design-
ing invariant tests, (robust) equivariant estimators and improved inference proce-
dures.

Having an explicit group acting on a statistical model has numerous advantages.
This was first pointed out by Fisher (1934) in the context of the location and scale
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models, which then led to the notion of a transformation family, that is, a statis-
tical model on which a group acts transitively. Group actions give rise, for exam-
ple, to the study of model invariants and distributional aspects of the maximum
likelihood estimator (MLE) or other equivariant estimators [see Barndorff-Nielsen
(1983), Barndorff-Nielsen et al. (1982), Eaton (1989), Fisher (1934), Lehmann
and Romano (2005), Reid (1995)]. When a group acts on a model in a nontransi-
tive manner, the model is sometimes called a composite transformation family [see
Barndorff-Nielsen et al. (1982)]. In this case, the model can be decomposed into
a family of transformation models each corresponding to a fixed value of some
parameter.

To set the stage, let G = ([m],E) be an undirected graph with set of vertices
[m] and set of edges E ⊆ ([m]

2

)
. Denote by Sm the set of symmetric matrices in

R
m×m and by S +

m ⊆ Sm the cone of positive definite matrices. Let S G ⊆ Sm denote
the linear space of symmetric matrices whose (i, j) off-diagonal entry is zero if
{i, j} /∈ E, and by S +

G the cone of all positive definite matrices in S G . As a running

example in this Introduction, we take G to be the path P3 :
2• − 1• − 3•. So SP3

consists of all symmetric matrices of the form⎡
⎣∗ ∗ ∗

∗ ∗ 0
∗ 0 ∗

⎤
⎦ .

Let X = (Xi)i∈[m] be a random vector with multivariate normal distribution
N (0,�). The Gaussian graphical model is the statistical model for X given by

M(G) := {
N (0,�) | �−1 ∈ S +

G
};

so S +
G is the space of concentration matrices compatible with the model [see

Lauritzen (1996)].
The group GLm(R) acts on R

m by matrix-vector multiplication, and this induces
an action on Sm and S +

m given by g ·K := g−T Kg−1—indeed, note that this is the
concentration matrix of gX if K is the concentration matrix of X.

A leading role in this paper is played by the group

G := {
g ∈ GLm(R) | g · S +

G ⊆ S +
G

}
.

This is a closed subgroup of the Lie group GLm(R) (see Section 2). For example,
if G is the complete graph, then G is all of GLm(R). For any graph G , the group G

contains the invertible diagonal matrices, which correspond to scaling the compo-
nents of X. Furthermore, G contains elements coming from graph automorphisms
of G . Specifically, if π : [m] → [m] is such an automorphism, then the permutation
matrix g with ones on the positions (i, π(i)), i ∈ [m] lies in G, since its action on
Sm stabilizes the zero pattern prescribed by G . For our running example P3, the
permutation matrix ⎡

⎣ 1 0 0
0 0 1
0 1 0

⎤
⎦
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lies in G.

1.1. The group G. Our first result is an explicit description of G in terms of G ,
and requires the pre-order on [m] defined by

i � j if and only if N(j) ∪ {j} ⊆ N(i) ∪ {i},
where N(i) = {j ∈ [m] : {i, j} ∈ E} denotes the set of neighbors of i in G . So in our
running example P3 we have 1 � 2,3. Consider the closed subset G0 of GLm(R)

defined by

G0 = {
g ∈ GLm(R) | gij = 0 for all j �� i

}
.

We show in Section 2 that this set is a subgroup of GLm(R). For G = P3, it consists
of all invertible matrices of the form⎡

⎣∗ 0 0
∗ ∗ 0
∗ 0 ∗

⎤
⎦ .

THEOREM 1.1. For any undirected graph G = ([m],E), the group G is gen-
erated by the group G0 and the permutation matrices corresponding to the auto-
morphism group of the graph G .

For P3, this theorem says that G is the group of all matrices of the form above,
together with all matrices of the form⎡

⎣∗ 0 0
∗ 0 ∗
∗ ∗ 0

⎤
⎦ .

The two subgroups of G in Theorem 1.1 can have a nontrivial intersection. For
instance, when G is the complete graph, the automorphism group of G is contained
in G0. In Section 2, we state and prove a more refined statement that gets rid of
that intersection.

1.2. Existence and robustness of equivariant estimators. Now that we know
explicitly which matrix group G acts on our graphical model M(G), we can use
this group to develop classical notions of multivariate statistics in the general con-
text of graphical models. One of these notions is that of an equivariant estimator
[see, e.g., Eaton (1989), Schervish (1995)]. Let X denote the m × n matrix, whose
columns correspond to n independent copies of the vector X. Then an equivari-
ant estimator for the concentration matrix is a map T : (Rm)n = R

m×n → S +
G , that

is, a map from the space of n-samples X to the parameter space of the model,
that satisfies T (gx) = gT (x) for all realisations x of X. The standard example is
the maximum likelihood estimator (MLE). Indeed, the likelihood of concentra-
tion matrix K given an n-sample x equals the likelihood of g · K given gx, for
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any g ∈ G, and this implies that the MLE is G-equivariant. Other equivariant es-
timators of the concentration matrix for some special graphical models have been
proposed in Sun and Sun (2005).

For decomposable graphs, the MLE exists with probability one if and only if n

is at least the size of the maximal clique of the given graph. However, in general,
whether the MLE exists, with probability one, for a given sample size n and a given
graph G is a subtle matter; see the recent paper by Uhler (2012) and the references
therein. By contrast, the question whether for a given sample size any equivariant
estimator exists, turns out to have a remarkably elegant answer for any graph G .
To state it, define the down set ↓i of an element i ∈ [m] to be the set of all j ∈ [m]
with j � i.

THEOREM 1.2. Let G = ([m],E) be an undirected graph. There exists a G-
equivariant estimator T : Rm×n → S +

G if and only if n ≥ maxi∈[m] |↓i|.
To be precise, when n is at least the bound in the theorem, a G-equivariant T ex-

ists that is defined outside some measure-zero set (in fact, an algebraic subvariety
of positive codimension), while if n is smaller than that bound, then not even any
partially defined equivariant map T exists. For our running example P3, we have
↓1 = {1} and ↓2 = {1,2} and ↓3 = {1,3}, so Theorem 1.2 says that an equivariant
estimator exists with probability one if and only if the sample size is at least 2,
which in this case coincides with the condition for existence of the MLE.

Theorem 1.2 will be proved in Section 3, where we also establish upper bounds
on the robustness of equivariant estimators, based on general theory from Davies
and Gather (2005).

1.3. The maximal invariant. Another classical notion related to a group action
on a statistical model is that of invariants on the sample space. In our case, these
are maps τ defined on R

m×n, possibly outside some measure-zero set, that are
constant on G-orbits, that is, that satisfy τ(gX) = τ(X) for all g ∈ G. An invariant
τ is called maximal if it distinguishes all G-orbits. In formulas this means that for
n-samples x,y ∈ R

m×n, outside some set of measure zero, the equality τ(x) = τ(y)

implies that there exists a g ∈ G such that gx = y. Any invariant map is then a
function of τ .

The relevance of maximal invariants in statistics lies in the fact that they facili-
tate inference for the maximum likelihood estimator in the case of transformation
families [see Barndorff-Nielsen (1983), Reid (1995)]. In this case the maximal in-
variant is an ancillary statistics that one may chose to condition on. These ideas
can be used also in the case of composite transformation families, where the infer-
ence for the index parameter κ is based on the marginal distribution of the maximal
invariant statistics [Barndorff-Nielsen (1983), Section 5].

Another important application of the maximal invariant is in the construction
of invariant tests [see Eaton (1989), Lehmann and Romano (2005)]. Suppose, for
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instance, that we want to test the hypothesis that the distribution of the multivariate
Gaussian random vector X lies in M(G) against the alternative that it does not, and
suppose that for the n-sample X = x the test would accept the hypothesis. Then,
since M(G) is stable under the action of any g ∈ G, it is natural to require that our
test also accepts the hypothesis on observing gx. Thus, the test itself would have
to be G-invariant.

Our result on maximal invariants uses the equivalence relation ∼ on [m] defined
by i ∼ j if and only if both i � j and j � i, that is, if and only if N(i) ∪ {i} =
N(j) ∪ {j}. We write ī for the equivalence class of i ∈ [m] and [m]/ ∼ for the set
of all equivalence classes.

THEOREM 1.3. Let G = ([m],E) be an undirected graph. Suppose that n ≥
maxi |↓i|. Then the map τ : Rm×n → ∏

ī∈[m]/∼ R
n×n given by

x �→ (
x[↓i]T (

x[↓i]x[↓i]T )−1x[↓i])ī∈[m]/∼,

where x[↓i] ∈ R
|↓i|×n is the submatrix of x given by all rows indexed by ↓i, is a

maximal G0-invariant.

The lower bound on n in the theorem ensures that the | ↓i| × | ↓i|-matrices
x[↓i]x[↓i]T are invertible for generic x, and in particular for x outside a set
of measure zero. For the complete graph, Theorem 1.3 reduces to the known
statement that x �→ xT (xxT )−1x is a maximal invariant, see Example 6.2.3 in
Lehmann and Romano (2005), while for our running example P3 it says that
the rank-one matrix x[1]T (x[1]x[1]T )−1x[1] (recording only the direction of the
first row of x) and the rank-two matrices x[1,2]T (x[1,2]x[1,2]T )−1x[1,2] and
x[1,3]T (x[1,3]x[1,3]T )−1x[1,3] together form a maximal invariant for G0.

We stress that Theorem 1.3 gives a maximal invariant under the subgroup G0,
rather than under all of G. The proof of this theorem can be found in Section 4.

1.4. Orbits of G on S +
G . Our final results concern the space S +

G /G of G-orbits
in S +

G . When M(G) is a transformation family, this space consists of a single point
and hence has dimension zero. Conversely, it turns out that when the dimension of
S +

G /G is zero, M(G) is a transformation family. By work of Letac and Massam
(2007), it is known exactly for which graphs this happens. Our result on S +

G /G is a
combinatorial expression for its dimension. Rather than capturing that expression
in a formula, which we will do in Section 6, we now describe it in terms of a
combinatorial procedure.

Let G = ([m],E) be an undirected graph. Color an edge {i, j} ∈ E red if i ∼ j ,
green if i � j or j � i but not both, and blue otherwise. Next delete all green edges
from G , while retaining their vertices. Then delete the blue edges sequentially, in
each step not only deleting a blue edge but also its two vertices together with all
further blue and red edges incident to those two vertices. Continue this process
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FIG. 1. An example where the orbit space S +
G /G has dimension 1.

until no blue edges are left. Call the resulting graph G′; it consists of red edges
only. See Figure 1 for an example. One can show that, up to isomorphism, G′
is independent of the order in which the blue edges with incident vertices were
removed—though in general it is larger than the graph obtained by deleting all
blue edges, their vertices, and their incident edges at once.

THEOREM 1.4. The dimension of S +
G /G equals the number of blue edges

in the original graph G minus the number of red edges in G plus the number of
remaining red edges in G′.

In other words, that dimension equals the number of blue edges in G minus the
number of red edges deleted in the process going from G to G′. This number is non-
negative: indeed, if in some step a blue edge {i, j} is being deleted together with its
vertices, then for each red edge {i, k} being deleted along with i there is also a blue
edge {k, j} being deleted, and for each red edge {j, l} being deleted along with j

also a blue edge {i, l} is deleted. This shows, in particular, that dim S +
G /G is zero

if and only if G has no blue edges, that is, if all edges run between vertices that are
comparable in the pre-order. This is equivalent to the condition found in Letac and
Massam (2007) for M(G) to be a transformation family; see Theorem 5.1 below.

For our running example P3, the model is a transformation family and similarly
for complete graphs. For an example where S +

G /G has dimension 1, see Figure 1.
The proof of Theorem 1.4 can be found in Section 6 and in supplementary materi-
als [Draisma, Kuhnt and Zwiernik (2013)].

Organization of the paper. The remainder of the paper closely follows the
structure of this introduction. First, in Section 2 we use structure theory of real
algebraic groups to determine G. In Section 3, we derive necessary and suffi-
cient conditions for the existence, with probability one, of equivariant estimators
of the concentration (or covariance) matrix, and we give an upper bound on the
robustness of those estimators, measured by the finite sample breakdown point for
generic samples. In Section 4, we derive the maximal invariant of Theorem 1.3.
In Section 5, we discuss in some detail the case where G acts transitively on S +

G
providing general formula for an equivariant estimator, after which Section 6 is
devoted to our combinatorial formula for the orbit space dimension in the general
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case. We conclude the paper with a short discussion. In the supplementary materi-
als [Draisma, Kuhnt and Zwiernik (2013)], we provide the proof of Theorem 1.4.
We also discuss further results on the combinatorial structure of the problem that
link our work to Andersson and Perlman (1993).

2. The group G. Throughout this paper, we fix an undirected graph G =
([m],E) and define the group G as in the Introduction:

G := {
g ∈ GLm(R) | g · S +

G ⊆ S +
G

}
.

Note that G is, indeed, a subgroup of GLm(R): first, if g,h ∈ G, then (gh) · S +
G ⊆

g · S +
G ⊆ S +

G ; and second, if g ∈ G, then since S +
G linearly spans S G , the (linear)

action of g must map the linear space S G into itself. Since g is invertible, we then
have g · S G = S G (which implies that g · S +

G = S +
G holds instead of the apparently

weaker defining inclusion). But then also g−1 · S G = S G . Finally, the action by g−1

preserves positive definiteness, so that g−1 · S +
G = S +

G , as claimed.
The general linear group GLm(R) has two natural topologies: the Euclidean

topology, and the weaker Zariski topology in which closed sets are defined by
polynomial equations in the matrix entries. The subgroup G is closed in both
topologies. Indeed, by the above, its elements g are characterized by the condi-
tion that gT Kg ∈ S G for all K ∈ S G , and this translates into quadratic equations
in the entries of g. As a Zariski-closed subgroup of GLm(R), the group G is a
real algebraic matrix group, and in particular a real Lie group. For basic struc-
ture theory of algebraic groups, we refer to Borel (1991). In algebraic groups, the
Zariski-connected component containing the identity is always a normal subgroup,
the quotient by which is finite. We first determine the identity component and then
the quotient.

2.1. The identity component. Observe that the group

Tm := (
GL1(R)

)m ⊆ GLm(R)

of all invertible diagonal matrices is contained entirely in G—indeed, it just
rescales the components of the random vector X and therefore preserves the orig-
inal conditional independence statements defining M(G). The group Tm has 2m

components in the Euclidean topology, corresponding to the possible sign patterns
of the diagonal entries, but it is connected in the Zariski topology. For this reason,
the Zariski topology is slightly more convenient to work with, and in what follows
our topological terminology refers to it.

We will use that the connected component of G containing the identity (the
identity component, for short) is determined uniquely by its Lie algebra g. The
following lemma helps us determine that Lie algebra; we use the standard notation
Eij for the matrix that has zeroes everywhere except for a one at position (i, j).
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LEMMA 2.1. Let H ⊆ GLm(R) be a real algebraic matrix group containing
the group Tm. Then the Lie algebra of H has a basis consisting of matrices Eij

with (i, j) running through some subset I of [m] × [m]. Moreover, the set I de-
fines a pre-order on [m] in the sense that (i, i) lies in I for all i ∈ [m] and that
(i, j), (j, k) ∈ I ⇒ (i, k) ∈ I . Conversely, the Eij with (i, j) running through any
set I ⊆ [m] × [m] defining a pre-order on [m] span the Lie algebra of a unique
closed connected subgroup of GLm(R) containing Tm, namely, the group of all
g ∈ GLm(R) with gij = 0 unless (i, j) ∈ I .

This lemma is well known, so we only sketch the key arguments. The commu-
tative group Tm acts by conjugation on the Lie algebra of H , which therefore must
be a direct sum of simultaneous eigenspaces of the elements of Tm in their con-
jugation action on the space of m × m-matrices. These simultaneous eigenspaces
are the one-dimensional subspaces spanned by the Eij , so the Lie algebra of H

is spanned by some of these matrices. For this argument, see [Borel (1991), Sec-
tion 8.17]. The inclusion Tm ⊆ H implies that the Eii are all in the Lie algebra, and
for Eij ,Ejk in the Lie algebra with i �= k, also the commutator [Eij ,Ejk] = Eik

lies in the Lie algebra. The earliest relation to pre-orders that we could find is the
paper Malyšev (1977).

Next, we determine which Eij lie in g.

PROPOSITION 2.2. For i, j ∈ [m], the matrix Eij lies in g if and only if j � i.
As a consequence, the identity component of G is the group G0 = {g ∈ GLm(R) |
gij = 0 if j �� i} from the Introduction.

PROOF. The element Eij with i �= j lies in g if and only if the one-parameter
group (I + tEij ), t ∈ R lies in G, that is, maps S G into itself. Pick K ∈ S G with
nonzero entries on the diagonal and at all positions corresponding to edges of G .
We have (I + tEij ) · K = (I − tEji)K(I − tEij )—this takes into account the
inverses and the transpose in the definition of the action. This action has the effect
of subtracting t times the ith row of K from the j th row and subtracting t times the
ith column from the j th column. For suitable t this will create zeroes at positions
corresponding to nonedges of G unless the positions of the nonzeroes in the ith
row are among the positions of the nonzeroes in the j th row. This shows that
N(i)∪{i} ⊆ N(j)∪{j} is necessary for Eij to lie in g; and repeating the argument
for general K shows that it is also sufficient. The second statement now follows
from Lemma 2.1. �

Recall the running example P3 :
2• − 1• − 3• from the Introduction. By Proposi-

tion 2.2, the Lie algebra g is spanned by E11,E22,E33 together with E21 and E31.
The element E21 lies in g0 because N(2) ∪ {2} = {1,2} ⊆ N(1) ∪ {1} = {1,2,3}.



1952 J. DRAISMA, S. KUHNT AND P. ZWIERNIK

FIG. 2. Three graphs and Hasse diagrams of the corresponding posets PC .

The inverse containment does not hold, so E12 does not lie in g0. The group G0

consists of invertible matrices of the form⎡
⎣∗ 0 0

∗ ∗ 0
∗ 0 ∗

⎤
⎦ ,

where the asterisk denotes an element which can be nonzero.
It is useful in the remainder of the paper to have a thorough understanding of

the pre-order �. It can also be described in terms of the collection C of maximal
cliques in the graph G , as follows: j � i if and only if every C ∈ C containing
j also contains i. Recall that � determines an equivalence relation ∼ on [m]. It
also determines a partial order on [m]/ ∼, still denoted �, defined by ī � j̄ if
i � j . We denote the poset ([m]/ ∼,�) by PC ; it was first introduced in Letac and
Massam (2007) but appeared also in other related contexts in Andersson and Klein
(2010), Drton and Richardson (2008). In Figure 2, we show three graphs and the
Hasse diagrams of the corresponding posets PC . We note in passing that not all
posets arise as PC for some G . Two counterexamples are given in Figure 3. A more
detailed study of the structure of PC is provided in the supplementary materials
[Draisma, Kuhnt and Zwiernik (2013)].



GROUPS ACTING ON GAUSSIAN GRAPHICAL MODELS 1953

FIG. 3. Two posets that do not arise as PC for any G with collection C of maximal cliques.

REMARK 2.3. Imagine relabeling the vertices of G by [m] in such a way that
the equivalence classes of ∼ are consecutive intervals and such that an inequal-
ity j̄ ≺ ī between equivalence classes implies that the interval corresponding to j̄

contains smaller integers than the interval corresponding to ī. Then the matrices in
G0 are block lower triangular with square blocks along the diagonal correspond-
ing to the equivalence classes. From this it is easy to see that G0 is connected in
the Zariski topology, but not in the ordinary Euclidean topology. Its number of Eu-
clidean components is 2|[m]/∼|, corresponding to sign patterns of the determinants
of the diagonal blocks.

REMARK 2.4. The analogue of G0 has been studied for other Gaussian mod-
els. For lattice conditional independence models this group was named the group
of generalized block-triangular matrices with lattice structure [see Andersson and
Perlman (1993), Section 2.4]. The link between lattice conditional independence
models and certain Gaussian graphical models is discussed in Andersson et al.
(1995) and in the supplementary materials [Draisma, Kuhnt and Zwiernik (2013)].

2.2. The component group. Now that we have determined the identity compo-
nent G0 of G, we set out to describe the quotient G/G0, known as the component
group. In the Introduction we observed that for our running example P3 the per-
mutation matrix ⎡

⎣ 1 0 0
0 0 1
0 1 0

⎤
⎦ ,

lies in G but not in G0. The key to generalizing this observation is the following.

PROPOSITION 2.5. Every element g ∈ G can be written as g = σg0, where
g0 ∈ G0 and σ is a permutation matrix contained in G.

PROOF. The subgroup H := g−1Tmg is a maximal (real, split) torus in the
real algebraic group G0. By a standard result in the theory of algebraic groups [see,
e.g., Borel (1991), Theorem 15.14], maximal tori are conjugate under G0. Hence,
there exists a g0 ∈ G such that Tm = g−1

0 Hg0. Then Tm = (gg0)
−1Tm(gg0), that

is, gg0 normalizes Tm. But the normalizer of Tm in GLm(R) consists of mono-
mial matrices, that is, gg0 equals σ t with t ∈ Tm and σ some permutation matrix.
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Hence, g = σ(tg−1
0 ). Here the second factor is an element of G0, so that σ is a

permutation matrix contained in G. �

We can now prove Theorem 1.1.

PROOF OF THEOREM 1.1. By Proposition 2.5 every element of G can be
written as σg0 with g0 an element of G0 and σ a permutation matrix belonging
to G, that is, preserving the zero pattern of matrices in S G . The only such per-
mutation matrices are those coming from automorphisms of G . This proves that
G = Aut(G)G0, where we identify the automorphism group Aut(G) with the group
of corresponding permutation matrices. This proves the theorem. �

As explained in the Introduction, the expression G = Aut(G)G0 is not minimal
in the sense that Aut(G) and G0 may intersect. To get rid of that intersection, we
define G̃ to be the graph with vertex set [m]/ ∼ and an edge between ī and j̄ if
there is an edge between i and j in G . Define c : [m]/ ∼→ N, ī �→ |ī| and view c as
a coloring of the vertices of G̃ by natural numbers. Let Aut(G̃, c) denote the group
of automorphisms of G̃ preserving the coloring. There is a lifting � : Aut(G̃, c) →
Aut(G) defined as follows: the element τ ∈ Aut(G̃, c) is mapped to the unique
bijection �(τ ) : [m] → [m] that maps each equivalence class ī to the equivalence
class τ(ī) by sending the kth smallest element of ī (in the natural linear order on
[m]) to the kth smallest element of τ(ī), for k = 1, . . . , |ī|.

THEOREM 2.6. The group G equals �(Aut(G̃, c))G0, and the intersection
�(Aut(G̃, c)) ∩ G0 is trivial, so G is the semidirect product �(Aut(G̃, c)) � G0.

PROOF. By the proof of Theorem 1.1, any g ∈ G can be written as σg0 with
σ ∈ Aut(G) and g0 ∈ G0. Since ∼ is defined entirely in terms of the graph G , the
graph automorphism σ satisfies i ∼ j ⇔ σ(i) ∼ σ(j). This implies that σ deter-
mines an automorphism τ ∈ Aut(G̃, c) mapping ī to σ(i). Now σ equals �(τ )σ ′
where σ ′ ∈ Aut(G) maps each equivalence class ī into itself. But then σ ′ lies in G0

and hence g equals �(τ ) times an element σ ′g0 of G0. This proves the first state-
ment. As for the second statement, observe that a permutation matrix can have
the zero pattern prescribed by G0 only if the permutation maps each equivalence
class into itself. The only element of �(Aut(G̃, c)) with this property is the identity
matrix. �

EXAMPLE 2.7. As an example, we consider a special small graph—the bull
graph—which is a graph on five vertices depicted in Figure 4. The continuous part
of G is given by the poset PC depicted on the right. There is only one nontrivial
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FIG. 4. The bull graph and the corresponding PC on the right.

automorphism of G . It permutes 4 with 5 and 1 with 2. Hence, the group G ⊆
GL5(R) consists of matrices of the following two types:⎡

⎢⎢⎢⎢⎢⎣

∗ 0 0 0 0
0 ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ 0 0 ∗ 0
0 ∗ 0 0 ∗

⎤
⎥⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

∗ 0 0 0 0
0 ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ 0 0 ∗ 0
0 ∗ 0 0 ∗

⎤
⎥⎥⎥⎥⎥⎦

To see Theorems 1.1 and 2.6 in some further examples, see Section 7.

REMARK 2.8. To the coloured graph (G̃, c) we can associate a Gaussian
graphical model M(G, c) with multivariate nodes, where node ī is associated to
a Gaussian vector of dimension cī . This model coincides with M(G). This also
shows, conversely, that our framework extends to general Gaussian graphical mod-
els with multivariate nodes.

3. Existence and robustness of equivariant estimators. Suppose that in the
inference of the unknown concentration matrix K ∈ S +

G the observed n-sample
x ∈ R

m×n leads to the estimate T (x). Then it is reasonable to require that the
sample gx leads to the estimate gT (x). Such a map T : Rm×n → S +

G , possibly
defined only outside some (typically G-stable) measure-zero set and satisfying
T (gX) = gT (X) for all g ∈ G there, is called a (G-)equivariant estimator. In this
section we determine a sharp lower bound on n for an equivariant estimator to
exist, and then, building on theory from Davies and Gather (2005), we determine
a bound on the robustness of such estimators.

The MLE, when it exists, is automatically G-equivariant, since the likelihood
function is G-invariant. A necessary condition for the MLE to exist with probabil-
ity 1 is that the sample size n be at least the largest clique size q = maxC∈C |C|.
A sufficient condition is that n be at least the maximal clique size q∗ in a decom-
posable cover of G , that is, a graph G∗ = ([m],E∗) with E∗ ⊇ E that does not have
induced k-cycles for k ≥ 4. The exact minimal value of n for which MLE exists is
not known explicitly in general, but interesting classes of graphs were analyzed in
Barrett, Johnson and Loewy (1996), Buhl (1993) and Uhler (2012).
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FIG. 5. For this graph a G-equivariant map exists as soon as n ≥ 2. However, the MLE exists only
when n ≥ 3.

Our Theorem 1.2 states that equivariant estimators of the concentration matrix
(or, equivalently by taking inverses, of the covariance matrix) exist if and only if
n ≥ maxi∈[m] | ↓i|. Note that this is weaker than the necessary condition n ≥ q

for the existence of MLE. Indeed, any down set ↓i is in fact a clique, because
j, k ∈↓i implies that j ∈ N(i) ∪ {i} ⊆ N(k) ∪ {k}, that is, j and k are either equal
or connected by an edge. The inequality maxi∈[m] |↓i| ≤ maxC∈C |C| can be strict.
For example, in the graph of Figure 5 the biggest maximal clique has cardinality 3,
while maxi∈[m] |↓i| = 2. In consequence, our result does not shed new light on the
existence of MLE; however, it does provide necessary and sufficient conditions in
the search for other equivariant estimators.

3.1. Existence of equivariant estimators. We now prepare the proof of Theo-
rem 1.2. In our arguing, we borrow some terminology from algebraic geometry:
we say that some property holds for generic n-tuples x ∈ R

m×n if it holds for x
outside the zero set of some nonzero polynomial. Note that if a property holds for
generic n-tuples, then it holds with probability one for the random sample X drawn
from any nondegenerate probability distribution with continuous density function
on R

m×n.

THEOREM 3.1. The minimal number n for which the stabilizer in G0 of a
generic n-sample x ∈ R

m×n consists entirely of determinant-(±1) matrices equals
n = maxi∈[m] | ↓i|. For that value of n the stabilizer of a generic n-sample is, in
fact, the trivial group {I }.

PROOF. The condition that g ∈ G0 fixes one vector x = (x1, . . . , xm)T ∈ R
m

translates into m linear conditions on the entries of g, namely:∑
j�i

gij xj = xi for i = 1, . . . ,m.

The ith condition concerns only the entries in the ith row of g. We therefore con-
centrate on that single row of g, and regard the entries gij , j � i as variables to
be solved from the linear equations above as x ranges through the given n-tuple
x of vectors. Since the given n-tuple is generic, those equations are linearly inde-
pendent as long as n is at most the cardinality of ↓i. Hence, they determine the ith
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row uniquely as soon as n is at least that number. Hence, as soon as n is at least
the maximal cardinality of the sets ↓i over all i the stabilizer of a generic sample
x will be trivial.

What remains to be checked, is that for smaller n the stabilizer of a generic
x ∈ R

m×n does not consist entirely of determinant-(±1) matrices. This is most
easily seen by considering the Lie algebra of that stabilizer, which is the set of
matrices A in the Lie algebra of G0 satisfying the linear conditions Ax = 0. Let i

be a row index for which ↓i has more than n elements. Then the linear conditions
on A do not fix the ith row of A uniquely. Moreover, by genericity, they do not
fix the diagonal entry Aii uniquely, either. As a consequence, they do not deter-
mine the trace of A uniquely. This shows that the Lie algebra of the stabilizer is
not contained in the Lie algebra of trace-zero matrices. But then the stabilizer is
not contained in the Lie group of determinant-one matrices (whose Lie algebra
consists of the trace-zero matrices). �

PROOF OF THEOREM 1.2, NECESSITY OF n ≥ maxi |↓i|. Assume that there
exists a G-equivariant estimator T : Rm×n → S +

G , possibly defined outside some
measure-zero set. In particular, the G0-equivariance of T implies that the G0-
stabilizer of a generic sample x is contained in the G0-stabilizer of T (x):

G0
x ≤ G0

T (x).

Now since T (x) ∈ S +
G , the stabilizer on the right-hand side is a generalized orthog-

onal group, and hence in particular compact in the Eculidean topology. Hence, the
stabilizer on the left-hand side must be compact, as well. However, by (the proof
of) Theorem 3.1, that stabilizer is the intersection of GLm(R) with an affine sub-
space of R

m×m. Such a set is not compact in the Euclidean topology unless it
consists of a single matrix, and this happens only when n ≥ maxi∈[m] |↓i|. �

To prove that n ≥ maxi |↓i| is also sufficient for the existence of a G-equivariant
estimator, we introduce the following construction. Fix a natural number n ≥
maxi | ↓i| and construct a function f : [m] → [n] by induction, as follows: if f

has been defined on all elements of ↓i \ ī, then define f on elements of ī to be the
increasing bijection from ī (with the natural linear order coming from [m]) to the
|ī| smallest elements of the set [n] \f (↓i \ ī). This automatically guarantees that f

is injective on any down set↓i and that f ◦g = f for all g ∈ �(Aut(G̃, c)). Now let
L ⊆ R

m×n be affine space of all matrices x with the property that first, the matrix
x[ī, f (ī)] obtained by taking the rows labeled by ī and the columns labeled by
f (ī) is an identity matrix for each ī ∈ [m]/ ∼, and second, the matrices x[j̄ , f (ī)]
are zero for all j̄ ≺ ī.

In our running example P3, if the sample size n is at least 2, then f maps 1 to 1
and 2,3 both to 2. The affine space L then consists of all matrices of the form⎡

⎣ 1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 1 ∗ · · · ∗

⎤
⎦ .
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LEMMA 3.2. For generic x ∈ R
m×n, there exists a unique g ∈ G0 such that

gx ∈ L.

The geometric content of this lemma is that L is a slice transverse to (most of)
the orbits of G0 on R

m×n. In our running example P3, one goes from a generic
sample to a sample in L by first multiplying the first row by x−1

11 so as to create
a one at position (1,1); then subtracting a multiple of the (new) first row from
the second to create a zero at position (2,1) and multiplying the second row by a
constant to create a one at position (2,2); and then similarly (and independently)
for the third row. All of these operations are realized by elements of G0. The
following proof in the general case is a straightforward generalization of this.

PROOF OF LEMMA 3.2. For the existence of such a g, proceed by induction.
Assume that the submatrix x[↓i \ ī, f (↓i \ ī)] already has the required shape, and
decompose x[↓i, f (↓i)] into blocks as follows:[

x
[↓i \ ī, f (↓i \ ī)

]
x
[↓i \ ī, f (ī)

]
x
[
ī, f (↓i \ ī)

]
x
[
ī, f (ī)

] ]
.

Then take the block matrix g ∈ G0 which is the identity outside the blocks labeled
by ↓i×↓i, and which in those blocks looks like[

I 0
g[ī,↓i \ ī] g[ī, ī]

]
.

Now straightforward linear algebra shows that, under the condition that both
x[↓i, f (↓i)] and x[↓i \ ī, f (↓i \ ī)] are full rank, there are unique choices for
the as yet unspecified components of g such that (gx)[ī, f (↓i \ ī)] = 0 and
(gx)[ī, f (ī)] = I . This shows the existence of g such that gx ∈ L. Uniqueness
can be proved by a similar induction. �

PROOF OF THEOREM 1.2, SUFFICIENCY OF n ≥ maxi | ↓i|. Now we show
that n ≥ maxi∈[m] | ↓i| is also a sufficient condition for the existence of an equiv-
ariant map T : Rm×n → S +

G , defined for generic samples x. Indeed, by construc-
tion, the space L is stable under �(Aut(G̃, c)). Fix any �(Aut(G̃, c))-equivariant
map T :L → S +

G . Such maps exist and can be found as follows: take T ′ :L → S +
G

any map, and then define

T (X) := 1

|Aut(G̃, c)|
∑

g∈�(Aut(G̃,c))

g · T ′(g−1X
)
,

an average over the finite group Aut(G̃, c).
We claim that T extends to a unique G-equivariant map R

m×n → S +
G defined

almost everywhere. Indeed, this extension is defined as follows: given a generic
sample x, find the unique g0 ∈ G0 such that g0x ∈ L, and set T (x) := g−1

0 ·T (g0x).
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Checking that the map T thus defined (almost) everywhere is both Aut(G̃, c)-
equivariant and G0-equivariant is straightforward. This proves the existence part
of Theorem 1.2. �

REMARK 3.3. We stress that, apart from giving necessary and sufficient con-
ditions for the existence of a G-equivariant estimator, the proof of Theorem 1.2
actually yields the general structure of any such estimator. Of course, the useful-
ness (bias, robustness, etc.) of an equivariant estimator thus constructed depends
on the (free) choice of T ′, that is, on the restriction of T to the slice L. We do not
know at present good conditions on T ′ that ensure usefulness of T .

REMARK 3.4. Note that the maps T : Rm×n → S +
G constructed in the proof

of Theorem 1.2 are merely G-equivariant, and not necessarily invariant under
permutation of the sample points. It is easy to see, though, that the lower bound
n ≥ maxi | ↓i| also implies the existence of G-equivariant estimators that are in-
variant under permutations of the sample points. Indeed, simply replace T by its
group average X �→ 1

n!
∑

σ∈Sn
T (Xσ ).

3.2. Robustness. An important notion for the robustness of parameter estima-
tors is that of breakdown points [Donoho and Huber (1983), Hampel (1971)]. In
a simple univariate situation, if the estimator is given by the sample mean, then a
(large) change made to one of the observations leads to an arbitrarily large change
in the value of the estimator. On the other hand, if the estimator is the sample me-
dian, then changing one observation in a sample of size larger than two cannot
lead to arbitrarily large changes in the estimator. This feature makes the median
more robust to outliers in the sample. The (finite sample) breakdown point of an
estimator T at an n-sample X = x is the minimal number of components of x that
need to be altered to force arbitrarily large changes in the value of the estimator;
this quantity is usually normalized by the sample size n. For example, the sample
mean above has breakdown point 1/n while the sample median has breakdown
point roughly 1/2 (in fact, both independently of x). So when it comes to robust-
ness, the estimator with the highest breakdown point is preferred.

In the multivariate Gaussian setting, when estimating the concentration matrix
(or the covariance matrix), the change in the estimator value is often measured by
means of the pseudo-metric D on S +

m [see, e.g., Davies and Gather (2005)]

D(K1,K2) = ∣∣log det
(
K1K

−1
2

)∣∣.
For graphical models, robustness issues have been rarely looked at so far, although
it has been known for some time that the classical estimators and model selec-
tion procedures are vulnerable to contaminated data [Gottard and Pacillo (2006),
Kuhnt and Becker (2003)]. First, approaches toward robust covariance estimators
for undirected Gaussian graphical models can be found in Becker (2005), Gottard
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and Pacillo (2010). These papers suggest to replace the sample covariance ma-
trix by the reweighted minimum covariance determinant (MCD) estimator. The
paper Miyamura and Kano (2006) proposes an M-type estimator instead. Both
in Finegold and Drton (2011) and in Vogel and Fried (2011) the assumption of
normality is discarded, and replaced by the t-distribution or the general elliptical
distribution, respectively, to model heavy tails.

Our modest contribution to robustness issues is an upper bound on the finite
sample breakdown point for G-equivariant estimators of the concentration ma-
trix for the graphical model M(G). To this end, we specialize one of the key ideas
from Davies and Gather (2005, 2007) to our setting. Suppose we have an n-sample
x ∈ R

m×n and an equivariant estimator T : Rm×n → S +
G of the concentration ma-

trix. Assume that there exists an element g ∈ G with |detg| �= 1 that fixes (at least)
k of the n sample points x1, . . . ,xk of the sample x. Define d = �n−k

2 � and let

y = (
x1, . . . ,xk, . . . ,xn−d, glxn−d+1, . . . , g

lxn

)
.

Since k + d ≥ n − d , for each natural number l both y and g−ly contain at
least n − d points of the original sample x. By the triangle inequality, we have
D(T (y), T (g−ly)) ≤ D(T (x), T (y)) + D(T (x), T (g−ly)) and on the other hand

D
(
T (y), T

(
g−ly

)) = D
(
T (y),

(
gT )l

T (y)gl)
= ∣∣log det

((
gT )l

T (y)glT (y)−1)∣∣ = l
∣∣log

(
detg2)∣∣,

which is unbounded as l → ∞. Hence, changing not more than d = �n−k
2 � of

the sample points in x can already lead to arbitrarily large changes in the estimated
concentration matrix, so that the finite sample breakdown point of T at x is at most
d/n. We now state and prove our upper bound on the robustness of equivariant
estimators at generic samples.

PROPOSITION 3.5. Assume that n ≥ maxi | ↓i|. Then for any G-equivariant
estimator T : Rm×n → S +

G the finite sample breakdown point at a generic sample
x is at most �(n − maxi |↓i| + 1)/2�/n.

PROOF. By Theorem 3.1, there exist matrices g ∈ G0 with determinant �= ±1
that fix the first k = maxi | ↓i| − 1 sample points. Now the proposition follows
from the discussion preceding it. �

REMARK 3.6. Writing q := maxi | ↓i|, note that q ≤ m with equality if and
only if G is the complete graph, and that q ≥ 1, with equality if and only if for
each edge {i, j} ∈ E the vertex i has neighbors that are not connected to j (and
vice versa). Examples of such graphs are m-cycles with m ≥ 4. Trees with m ≥ 3
vertices are examples of graphs with q = 2.

Note that for graphs with small q the upper bound in Proposition 3.5 is close
to 1/2, even for relatively small sample sizes n. On the other hand, the MLE, as
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pointed out for example in Maronna, Martin and Yohai (2006), is typically the
least robust with respect to potential outliers in the sample space. Although we do
not know whether the upper bound in the proposition is attained for any sensible
estimator, our results do suggests the quest for more robust estimators, especially
for graphs with small q .

4. The maximal invariant. In this section, we discuss a G0-invariant map τ

on the space R
m×n of n-samples, defined almost everywhere, and prove that it is

maximal in the sense that for two samples x,y in the domain of definition of τ the
equality τ(x) = τ(y) implies that x,y are in the same G0-orbit.

Recall from the Introduction that τ is defined as

τ : x �→ (
x[↓i]T (

x[↓i]x[↓i]T )−1x[↓i])ī∈[m]/∼,

where we assume from now on that n is at least | ↓i|, and where τ is defined on
n-samples where x[↓i] has full rank for all i. Before we proceed, we recall the
following known lemma.

LEMMA 4.1. Let k ≤ n be natural numbers, and consider the action of
GLk(R) on R

k×n. Let U be the open subset of the latter space consisting of ma-
trices of full rank k. Then the map ϕ :U �→ R

n×n mapping x to xT (xxT )−1x is a
maximal invariant for the action of GLk(R) on U .

PROOF. First, to see that ϕ is GLk(R)-invariant, compute

ϕ(gx) = xT gT (
gxxT gT )−1

gx = ϕ(x).

Second, to see that ϕ is maximal, note that the row space of x ∈ U is also the row
space of ϕ(x). Hence, if ϕ(y) = ϕ(x) for a second y ∈ U , then y has the same row
space as x. But this means that there exists a g ∈ GLk(R) with gx = y. �

The proof of the lemma shows that ϕ(x) determines the row space of x (and
is determined by that!). Now we can prove Theorem 1.3, which states that τ is a
maximal G0-invariant. This generalizes Example 6.2.3 in Lehmann and Romano
(2005), which deals with the case of complete graphs.

PROOF OF THEOREM 1.3. The G0-invariance of each of the components of τ

follows from the observation that (gx)[↓i] = g[↓i]x[↓i], together with the compu-
tation in the proof of the preceding lemma.

For maximality, assume that τ(x) = τ(y). This means that the row space of
x[↓i] equals that of y[↓i], for all i. If, by induction, we have replaced x by an
element in its orbit and achieved that x[↓i \ ī] = y[↓i \ ī], then it follows that
y[ī] = h1x[ī] + h2x[↓i \ ī] for a suitable invertible ī × ī-matrix h1 and a suitable
full-rank ī × (↓i \ ī)-matrix h2. These matrices h1, h2 can be assembled into a
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block matrix g0 ∈ G0 (as in the proof of Lemma 3.2) such that (g0x) coincides
with x outside the ī-labeled rows and with y in the ī-labeled rows. Doing this for
all equivalence classes ī from the bottom to the top of PC , we move x to y by an
element of G0. �

Since every invariant test depends on x only through the value of the maximal
invariant [Lehmann and Romano (2005), Section 6.2], Theorem 1.3 paves the way
for G0-invariant tests, for example, for testing the hypothesis that the distribution
of X lies in M(G) against the null-hypothesis that it does not. A more general
question involves testing two alternative (typically nested) graphical models cor-
responding to graphs G1, G2 on [m]. For this, it is natural to develop tests that are
invariant with respect to matrices stabilizing both models. The identity compo-
nent of the group of such matrices consists of all g with gij = 0 unless j � i in
both pre-orders coming from G1, G2. The same construction as above, now applied
to the intersection of the pre-orders, gives the maximal invariant for this group.
A simple example of a G0-invariant test is the deviance test [see, e.g., Lauritzen
(1996), Section 5.2.2].

5. Equivariance in the transitive case. When G acts transitively on S +
G then

M(G) forms an exponential transformation family [see Barndorff-Nielsen et al.
(1982)], which gives very efficient tools for dealing with the ancillary statistics in
the hypothesis testing and inference. In particular the p∗-formula of Barndorff-
Nielsen (1983), which gives an approximation for the density of the maximum
likelihood estimator given the ancillary statistics is exact and the ancillary statistics
is given by the maximal invariant τ(X).

The following result tells us when the graphical Gaussian model M(G) is an
exponential transformation family under the group G (cf. Theorem 1.4).

THEOREM 5.1 [Theorem 2.2, Letac and Massam (2007)]. Let G = ([m],E)

be an undirected graph. Then G acts transitively on M(G) if and only if one of the
following equivalent conditions holds:

• for any two neighbors i, j ∈ [m] we have either i � j or j � i;
• G is decomposable and does not contain a 4-chain • − • − • − • as an induced

subgraph;
• the Hasse diagram of PC is a tree with a unique minimum.

As we show in the supplementary materials [Draisma, Kuhnt and Zwiernik
(2013)], the transitive case is precisely the case when M(G) corresponds to a lattice
conditional independence model. We also prove there the following lemma.

LEMMA 5.2. If G satisfies the conditions of Theorem 5.1, then maxi | ↓i| is
equal to the size of the biggest maximal clique of G . In particular a G-equivariant
estimator exists with probability one if and only is the MLE estimator exists with
probability one.
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In the transitive case construction of a G-equivariant estimator is particularly
straightforward [Eaton (1989), Chapter 6, Example 6.2]. This generalizes the case
of a star-shape graph analyzed in Sun and Sun (2005). Let �̂ be the MLE of the
covariance matrix and define S(X) = n�̂. Because S(X) is a sufficient statistic,
without loss we can assume that every estimator based on the full sample sat-
isfies T (X) = T (S(X)). Since S(X)−1 ∈ S +

G , there exists h : Rm×n → G0 such
that S−1(X) = h(X)T h(X). The construction of h follows by the fact that in the
transitive case there exists a well defined map φ : S +

G → G/GI , where GI is the
stabiliser of the identity matrix. This map is the inverse of the canonical map from
G/GI to S +

G . Then h is just a composition of S−1(X) : Rm×n → S +
G followed by

φ. By G-equivariance,

T (X) = T
(
S(X)

) = T
(
h(X)T h(X)

) = h(X)T T (I )h(X),

where T (I) ∈ S +
G . We have just shown the following result.

PROPOSITION 5.3. Let G be a decomposable graph without induced 4-chains.
Define S(X) = n�̂ as above. Then every G-equivariant estimator of the concen-
tration matrix is of the form

T (X) = (
h0h(X)

)T
h0h(X),

where h0 ∈ G0 is a constant matrix and h : Rm×n → G0 is such that S(X) =
h(X)T h(X).

Since the function h is uniquely identified the only way to obtain different
equivariant estimators is by varying the constant matrix h0. This can be done with
different optimality criteria in mind. An interesting problem is to find h0 such that
T −1 is an unbiased estimator of the concentration matrix. Another motivation is
that the MLE for lattice conditional independence models (and hence for M(G) in
the transitive case by the theorem in the supplementary materials [Draisma, Kuhnt
and Zwiernik (2013)]) is not admissible [see Konno (2001)]. A relevant question
is to analyse equivariant estimators minimizing risk related to certain loss func-
tions. This analysis has been already done for star-shaped models by Sun and Sun
(2005).

6. Orbits of G on S+
G . Given an undirected graph G = ([m],E), we have

determined the group G ⊆ GLm(R) of all invertible linear maps R
m → R

m sta-
bilizing the cone S +

G . Theorem 5.1 characterizes when M(G) is a transformation
family, that is, when G has a single orbit on S +

G . For general G , the orbit space
S +

G /G—like many quotients of manifolds by group actions—can conceivably be
very complicated. In this section, we compute its first natural invariant, namely, its
dimension. In the zero-dimensional case, we recover the class from Theorem 5.1.
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Basic Lie group theory tells us that dim S +
G /G equals

dim S +
G − dimG + dimGK,

where GK is the stabilizer of a generic concentration matrix in S +
G . In this ex-

pression, the first term equals m + |E| and the second term equals dimG0 =∑
ī∈[m]/∼ |ī| · | ↓i|, so it suffices to determine the generic stabilizer dimension.

Note that for the dimension it does not matter whether we consider the stabilizer
in G or in G0. The following theorem makes use of the colored quotient graph
(G̃, c) from Section 2.

PROPOSITION 6.1. The dimension of the stabilizer G0
K in G0 of a generic

matrix in S +
G equals

∑
ī∈[m]/∼

(nī
2

)
, where nī is defined by

nī := max
{

0, |ī| −
( ∑

j̄∈N(ī),ī ��j̄ ��ī

|j̄ |
)}

,

where the sum ranges over all neighbors j̄ of ī in G̃ that are not comparable to ī

in the partial order �.

In words: starting from G̃ , one deletes all edges between vertices that are com-
parable in the partial order �, and one subtracts from |ī| the sum of the |j̄ | for all
neighboring j̄ in the new graph. If the result is positive, then this is nī ; otherwise,
nī is zero.

The expression above suggests that the identity component of G0
K is a product

of special orthogonal groups of spaces of dimensions ni , which is indeed what the
proof of this proposition, given in the supplementary materials [Draisma, Kuhnt
and Zwiernik (2013)], will show. We now use the proposition to explain the com-
binatorial procedure in the Introduction.

PROOF OF THEOREM 1.4. By Proposition 6.1, we need to compute

(
m + |E|) − ∑

ī∈[m]/∼
|ī||↓i| + ∑

ī∈[m]/∼

(
nī

2

)
.

The term m cancels against the diagonal entries in G0 in the second term. Recall
that in Theorem 1.4 we colored an edge {i, j} in G blue, green or red according
to whether zero, one, or two of the statements i � j and j � i hold. The term |E|
counts blue plus green plus red. What remains of the second term after cancelling
the diagonal entries against m counts green edges once and red edges twice. Thus,
the first two terms count blue edges minus red edges. Finally, the last term counts
the number of red edges that survive when blue edges are deleted one by one. �

We conclude with few examples of the use of Proposition 6.1.
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EXAMPLE 6.2. Let G̃ be the bull graph in Figure 4, with each vertex rep-
resenting an equivalence class in [m]/ ∼ with cardinality ci for i = 1, . . . ,5. In
this case the only pair of connected but not comparable vertices is (1,2). With the
convention that

(m
2

) = 0 if m ≤ 0, Proposition 6.1 shows that the dimension of the
stabilizer of a generic matrix in S +

G is(
c1 − c2

2

)
+

(
c2 − c1

2

)
+

(
c3
2

)
+

(
c4
2

)
+

(
c5
2

)
.

EXAMPLE 6.3. Let G̃ be a tree, where each vertex v represents an equivalence
class with cardinality cv . In this case, the dimension of the stabilizer of a generic
matrix in S +

G is

∑
(u,v)∈inner

((
cu − cv

2

)
+

(
cv − cu

2

))
+ ∑

i∈leaves

(
ci

2

)
,

where the first sum is over all the inner vertices of G̃ and the second sum is over
all the leaves (vertices of valency 1) of G̃ . In particular, if for some c we have that
ci = c for all i ∈ C then this formula degenerates to l

(c
2

)
, where l is the number of

leaves.

7. Small examples. Let Sm denote the symmetric group on [m], Dm the dihe-
dral group of graph isomorphisms of an m-cycle. Also recall that Tk � (GL1(R))k

denotes the group of all diagonal invertible k × k matrices. In Table 1, we provide
the full description of G for all undirected graphs on m = 2,3,4 vertices.

8. What’s next. In this paper, we presented the complete description of the
maximal subgroup of GLm(R) that stabilizes the Gaussian graphical model M(G)

for any given graph G . The main motivation for this study was to put Gaus-
sian graphical models into the framework of (composite) transformation families.
Group invariance is a classical topic in multivariate statistics and there are many
ways that statistical inference can be improved when the group action is better un-
derstood. While we have constructed the maximal invariant under this group on
sample space, we have not yet used this invariant to develop explicit tests, for ex-
ample, for model selection; and while we have given theoretical bounds on when
equivariant estimators for the concentration matrix exist, and how robust they can
be, we have not yet constructed such new estimators. We regard our work as a
step toward achieving these goals for general graphs, laying down the theoretical
framework. On the other hand, in the case where G acts transitively on the model,
we already have a much better understanding. For instance, it seems feasible to ex-
tend the work of Sun and Sun (2005) from star-shaped models to general models
in the transitive case. Once these transitive models are completely understood, it
seems natural to move on to those where the orbit space of G on the model is one-
dimensional. Here we expect beautiful mathematics and statistics to go hand in
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TABLE 1
Small undirected graphs G , corresponding groups G0 and Aut(G̃, c) up to isomorphism

G PC G0 Aut( ˜G, c)

GL2(R) {id}

T2 S2

GL3(R) {id}
⎡
⎣∗ ∗ 0

0 ∗ 0

0 ∗ ∗

⎤
⎦ S2

GL2(R) × T1 {id}

T3 S3

GL4(R) {id}⎡
⎢⎢⎣

∗ 0 ∗ 0

∗ ∗ ∗ 0

∗ 0 ∗ 0

∗ 0 ∗ ∗

⎤
⎥⎥⎦ S2

T4 D4

⎡
⎣∗ 0 0 0

∗ ∗ ∗ 0

∗ 0 0 ∗

⎤
⎦ {id}

GL3(R) × T1 {id}⎡
⎢⎢⎣

∗ 0 0 0

∗ ∗ 0 0

0 0 ∗ ∗
0 0 0 ∗

⎤
⎥⎥⎦ S2

GL2(R) × GL2(R) S2
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TABLE 1
(Continued)

G PC G0 Aut( ˜G, c)

⎡
⎢⎢⎣

∗ ∗ 0 0

0 ∗ 0 0

0 ∗ ∗ 0

0 0 0 ∗

⎤
⎥⎥⎦ S2

GL2(R) × T2 S2

T4 S4

hand: combinatorics for characterizing which graphs lead to such models, geom-
etry for a better understanding of the one-dimensional orbit space, and statistical
inference tailored to the geometry of that space.

Acknowledgments. S. Kuhnt thanks the Deutsche Forschungsgemeinschaft
(SFB 823, project B1) for funding.

SUPPLEMENTARY MATERIAL

Proofs and more on the structure of PC (DOI: 10.1214/13-AOS1130SUPP;
.pdf). We provide the proof of Proposition 6.1 and more results on the structure of
the poset PC that link our work to Andersson and Perlman (1993).
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