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OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN
HIGH DIMENSION

BY QUENTIN BERTHET1 AND PHILIPPE RIGOLLET2

Princeton University

We perform a finite sample analysis of the detection levels for sparse
principal components of a high-dimensional covariance matrix. Our mini-
max optimal test is based on a sparse eigenvalue statistic. Alas, computing
this test is known to be NP-complete in general, and we describe a compu-
tationally efficient alternative test using convex relaxations. Our relaxation is
also proved to detect sparse principal components at near optimal detection
levels, and it performs well on simulated datasets. Moreover, using polyno-
mial time reductions from theoretical computer science, we bring significant
evidence that our results cannot be improved, thus revealing an inherent trade
off between statistical and computational performance.

1. Introduction. The sparsity assumption has become preponderant in mod-
ern, high-dimensional statistics. In the high dimension, low sample size setting,
where consistency seems to be hopeless, sparsity turns out to be the statistician’s
salvation. It formalizes the a priori belief that only a few parameters, among a large
number of them, are significant for the statistical task at hand. This paper explores a
specific high-dimensional problem, namely Principal Component Analysis (PCA).
Indeed, without further assumptions, classical PCA is known to produce inconsis-
tent estimators of the directions that explain the most variance [Johnstone and Lu
(2009), Nadler (2008), Paul (2007)]. For PCA, the spiked covariance model in-
troduced by Johnstone (2001) provides a natural setting for statistical problems.
Namely, this model relies on the assumption that there exists a small number of
directions that explain most of the variance. In this work, we assume that observa-
tions are drawn from a multivariate Gaussian distribution with mean zero and co-
variance matrix given by I + θvv�, where I is the identity matrix, v is a unit norm
sparse vector and θ > 0. Akin to other models, the sparsity assumption drives both
methods and analysis in a wide variety of applications ranging from signal pro-
cessing to biology; see Alon et al. (1999), Chen (2011), Jenatton, Obozinski and
Bach (2010), Wright et al. (2011) for a few examples. Most contributions to this
problem have focused on consistent estimation of the sparse principal component

Received December 2012; revised April 2013.
1Supported in part by a Gordon S. Wu fellowship.
2Supported in part by NSF Grants DMS-09-06424 and CAREER-DMS-1053987.
MSC2010 subject classifications. Primary 62H25; secondary 62F04, 90C22.
Key words and phrases. High-dimensional detection, sparse principal component analysis, spiked

covariance model, semidefinite relaxation, minimax lower bounds, planted clique.

1780

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/13-AOS1127
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS 1781

v under various performance measures; see, for example, Amini and Wainwright
(2009), Birnbaum et al. (2013), Cai, Ma and Wu (2012), Ma (2013), Shen, Shen
and Marron (2013), Vu and Lei (2012) and the above references.

What if there is no sparse component? In other words, what if θ = 0? From
a detection standpoint, one may ask the following question: How much variance
should a sparse principal component explain in order to be detectable by a sta-
tistical procedure? Answering this question consists of (i) constructing a test that
can detect this sparse principal component when the associated variance is above
a certain level and (ii) proving that no test can detect such a principal component
below a certain level.

Optimal detection levels in a high-dimensional setup have recently received a
lot of attention. Arias-Castro, Candès and Durand (2011), Arias-Castro, Candès
and Plan (2011), Donoho and Jin (2004), Ingster, Tsybakov and Verzelen (2010)
have studied the detection of a sparse vector corrupted by noise under various spar-
sity assumptions. More recently, this problem has been extended from vectors to
matrices by Butucea and Ingster (2013), Sun and Nobel (2008, 2013) who pro-
pose to detect a shifted sub-matrix planted in a Gaussian or binary random matrix.
While the notion of sub-matrix encodes a certain sparsity structure, these two pa-
pers focus on the elementwise properties of random matrices, unlike the blooming
random matrix theory that focuses on spectral aspects. Arias-Castro, Bubeck and
Lugosi (2012) studied a problem related to sparse PCA detection, but closer to
the shifted sub-matrix problem. Their goal is to detect a shifted off-diagonal sub-
matrix planted in a covariance matrix. Their methods are not spectral either.

We extend the current work on detection in two directions. First, we analyze
detection in the framework of sparse PCA, and more precisely, in the spiked co-
variance model. Second, we derive a finite sample analysis of minimax optimality
in this problem with results that hold with high-probability, unlike most of the liter-
ature on detection where an asymptotic framework is usually preferred. A notable
exception is the paper of Addario-Berry et al. (2010) where results are of the same
flavor as ours. Unlike the asymptotic analysis pioneered by Ingster (1982) and
recently extended to sparse linear regression in Donoho and Jin (2004), Ingster,
Tsybakov and Verzelen (2010), this finite sample analysis is not refined enough to
exhibit a qualitative difference between testing and estimation. Nevertheless, such
results shed light on the delicate interplay between the important parameters of the
problem: ambient dimension, sample size and sparsity.

The minimax optimal test statistic for our testing problem relies on the so-
called k-sparse largest eigenvalue of the empirical covariance matrix. It captures
the largest amount of empirical variance explained by any k of the original vari-
ables. It turns out that although this statistic can be used to construct an optimal
test, it raises computational difficulties and can even be proved to be NP-complete
in general. As a result, a large body of the optimization literature on this topic con-
sists of numerical methods to overcome this issue; see, for example, d’Aspremont,
Bach and El Ghaoui (2008), d’Aspremont et al. (2007), Journée et al. (2010), Lu
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and Zhang (2012), Ma (2011) and references therein. Nevertheless, while these
numerical methods do produce a solution, their statistical properties are rarely ad-
dressed for the estimation problem and never for the detection problem. One of
the approaches introduced by d’Aspremont et al. (2007) uses a convexification
technique called semidefinite programming (SDP). A major drawback of this tech-
nique is that it may not output a sparse direction v̂. Indeed, semidefinite programs
output matrices that are not rank-one in general, and an ad hoc post-processing
step is often required to turn this matrix back into a unit vector. However, in the
context of detection, our goal is not to estimate the eigenvector v but rather its
associated eigenvalue. This notable difference allows us to bypass SDP optimiza-
tion altogether, which is known to scale poorly in high dimension. Inspired by the
dual SDP formulation, we propose a simple test procedure based on the minimum
dual perturbation (MDP) that is easy to compute and for which we can derive
near optimal performance bounds for the detection problem. More importantly,
we bring supporting evidence to the tightness of the performance bounds that we
prove. Interestingly, this evidence builds upon a conjecture from theoretical com-
puter science. Indeed, a reduction to the planted clique problem shows that a better
performance would contradict a widely believed conjecture on the average-case
complexity of this problem.

Most of our analysis is performed in the model of sparse rank one perturbation
for the covariance matrix of Gaussian random vectors. Nevertheless, our results
are robust to variations around this model, and we devote Section 7 to discussing
various weaker assumptions under which our results still hold. In particular, our
results are more generally valid for sub-Gaussian observations and weaker notions
of sparsity. We also study the case where the distance between the estimated and
true covariance matrices is only controlled in sup-norm, with high probability. This
setup encompasses biased estimators or adversarial noise.

The rest of the paper is organized as follows. In Section 2, we introduce the
detection problem for sparse PCA. In Section 3, we discuss various links with
probabilistic results on random matrix theory and more precisely, the asymptotic
effect of a principal component on the spectrum of a Wishart matrix. Minimax
detection levels are derived in Section 4, where in particular, we introduce a test
based on spectral methods and derive the level at which it achieves detection of
sparse principal components with high probability. This level is proved to be opti-
mal in a minimax sense in Section 5. Unfortunately, this test cannot be computed
efficiently, and several relaxations are proposed in Section 6. For these convex
methods, we derive suboptimal levels that also hold under various weaker assump-
tions for which they sometimes become optimal (Section 7). Moreover, using ar-
guments from computational complexity, we argue in Section 8 that even under
the strongest assumptions of this paper, these suboptimal levels are likely to be
the best achievable by the efficient relaxations. Specifically, we show that proving
better bounds for these methods would lead to a contradiction of the hidden clique
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conjecture, which is widely believed to be true. The numerical performance of our
test and in particular its suboptimality, is illustrated in Section 9.

NOTATION. The space of d × d symmetric real matrices is denoted by Sd . We
write Z � 0 whenever Z is semidefinite positive.

The elements of a vector v ∈ Rd are denoted by v1, . . . , vd and similarly, a ma-
trix Z has element Zij on its ith row and j th column. For any q > 0, |v|q denotes
the �q “norm” of a vector v and is defined by |v|q = (

∑
j |vj |q)1/q . Moreover, we

denote by |v|0 its so-called �0 “norm,” that is, its number of nonzero elements.
Furthermore, by extension, for Z ∈ Sd , we denote by |Z|q the �q norm of the vec-
tor formed by the entries of Z. We also define for q ∈ [0,2) the set Bq(R) of unit
vectors within the �q -ball of radius R > 0

Bq(R) = {
v ∈ Rp : |v|2 = 1, |v|q ≤ R

}
.

The trace and rank functionals are denoted by Tr and rank, respectively, and
have their usual definition. The identity matrix in Rd is denoted by Id . For a fi-
nite set S, we denote by |S| its cardinality. We also write AS for the |S| × |S|
submatrix with elements (Aij )i,j∈S , and vS for the vector of R|S| with elements
vi for i ∈ S. Finally, for two real numbers a and b, we write a ∧ b = min(a, b),
a ∨ b = max(a, b) and a+ = a ∨ 0.

2. Statement of the hypothesis testing problem. Let X1, . . . ,Xn be n i.i.d.
copies of a random variable X in Rp . Our objective is to perform the following
test:

H0 :X ∼ N (0, Ip),

H1 :X ∼ N
(
0, Ip + θvv�)

, v ∈ B0(k),

where θ > 0, and we remind the reader that B0(k) is the set of k-sparse unit vectors.
Note that the model under H1 is an adaptation of the spiked covariance model since
it only allows v to be k-sparse on the unit Euclidean sphere. This is precisely the
model of sparse PCA introduced in Johnstone and Lu (2009). In particular, the
distribution of X under H1 is invariant under rotation of the k relevant variables.
We use this simplified model for reasons of clarity: to highlight the importance of
relative variance, only one direction v is used for signal, and only one parameter θ

is used to express the signal-to-noise ratio. Note that our upper and lower bounds
for optimal testing are valid for the general hypotheses

H0 :X ∼ N (0,�0), λk
max(�0) ≤ 1,

H1 :X ∼ N (0,�1), λk
max(�1) ≥ 1 + θ,

where λk
max, is the k-sparse eigenvalue defined in (4.1) below. In particular, the

model under H1 encompasses that of Amini and Wainwright (2009).
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Let � = E[XX�] denote the covariance matrix of the centered random vec-
tor X, and denote by �̂ the empirical covariance matrix defined by

�̂ = 1

n

n∑
i=1

XiX
�
i .(2.1)

We say that a test discriminates between H0 and H1 with probability 1 − δ if
both type I and type II errors have a probability smaller than δ. Our goal is therefore
to find a statistic ϕ(�̂) and quantiles τ0 < τ1, depending on (p,n, k, δ) such that

PH0

(
ϕ(�̂) > τ0

) ≤ δ, PH1

(
ϕ(�̂) < τ1

) ≤ δ.

For τ ∈ [τ0, τ1] define the test

ψ(�̂) = 1
{
ϕ(�̂) > τ

}
,

where 1{·} denotes the indicator function. As desired, this test discriminates be-
tween the two hypotheses with probability 1−δ. We assume that the user is testing
for a specific sparsity k. Nevertheless, using a Bonferroni correction, this test can
be performed for various values of k if needed.

Note that throughout the paper, we assume that all of the parameters (k, n,p)

are known so that τ0 and τ1 are easily determined.

3. Link with random matrix theory.

3.1. Spectral methods. It is not hard to see that, under H1, for any θ > 0, v is
an eigenvector associated to the largest eigenvalue of the population covariance
matrix �. Moreover, if �̂ is close to � in spectral norm, then its largest eigenvector
should be a good candidate to approximate v. It is therefore natural to consider
spectral methods for the spiked covariance model. Understanding the behavior of
our test statistic under both the null and the alternative is key in proving that it
discriminates between the hypotheses.

Spectral convergence of the empirical covariance matrix to the true covariance
matrix has received some attention recently [see, e.g., Bickel and Levina (2008),
Cai, Zhang and Zhou (2010), El Karoui (2008)] under various elementwise spar-
sity assumptions and using thresholding methods. However, since our assumption
allows for relevant variables to produce arbitrarily small entries under the alter-
native hypothesis, we cannot use such results. A natural statistic to discriminate
between the null and the alternative would be, for example, the largest eigenvalue
of the covariance matrix.

Spectral properties of random matrices have received a lot of attention from
both a statistical and probabilistic perspective. We devote the rest of this section
to reviewing some of the classical results from random matrix theory, and we ar-
gue that even in moderate dimension, the largest eigenvalue cannot discriminate
between the null and alternative hypotheses.
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It is easily seen that for any unit vector v,

λmax(Ip) = 1 and λmax
(
Ip + θvv�) = 1 + θ.(3.1)

If we could allow, for a fixed p, to let n go to infinity, the consistency of the es-
timator �̂ (for fixed p, entry by entry) and the continuity of the largest eigenvalue
as a function of the entries of a matrix would imply that the largest eigenvalue can
be used to discriminate between the two alternatives, at least asymptotically.

However, in a high-dimension setting, where p is typically much larger than n,
the behavior of λmax(�̂) under the null hypothesis is quite different. If p/n → α >

0, Geman (1980) showed that, in accordance with the Marcenko–Pastur distribu-
tion, we have

λmax(�̂) → (1 + √
α)2 > 1,

where the convergence holds almost surely see also Bai (1999), Johnstone (2001)
and references therein. Moreover, Yin, Bai and Krishnaiah (1988) established that
finite fourth moment is a necessary and sufficient condition for this almost sure
convergence to hold. Furthermore, since �̂ � 0, its number of positive eigenvalues
is equal to its rank (which is at most n), and we have

λmax(�̂) ≥ 1

rank(�̂)

p∑
i=1

λi(�̂) ≥ 1

n
Tr(�̂) = p

n

∑n
i=1 |Xi |22

np
.

Note that under H0, it holds
∑n

i=1 |Xi |22 ∼ χ2
np . Hence almost surely, for p/n →

∞, we have λmax(�̂) → ∞.
These two results hint at an intrinsic limitation of the largest eigenvalue statistic:

its fluctuations are too large to discriminate between the two hypotheses in a “large
p/small n” scenario unless the signal strength θ is very strong.

In the next subsection, we show that the above argument can be made formal
using spectral results in random matrix theory.

3.2. Finite rank perturbations of covariance matrices. In a moderate-dimen-
sional regime, where p/n → α ∈ (0,1), Baik, Ben Arous and Péché (2005) de-
scribe a phase transition for the spectral behavior of the sample covariance matrix
�̂ of complex Gaussian vectors between two different regimes. This phenomenon
is now widely known as the BBP transition for the name of the authors. The same
phenomenon, for real random variables, was subsequently established in Baik and
Silverstein (2006).

Qualitatively, there exists a critical value θ∗ such that if θ > θ∗, the spectrum
of �̂ exhibits an isolated eigenvalue significantly larger than the others, and such
that if θ < θ∗, the spectrum has a similar behavior under the two hypotheses. More
precisely, Theorem 1.1 of Baik and Silverstein (2006) implies that under H1, the
largest eigenvalue will either exhibit an important concentration around a deter-
ministic value strictly larger than 1 + θ if the perturbation is strong enough, or
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around the upper edge of the Marcenko–Pastur distribution, as if the perturbation
was nonexistent, when it is too weak. The critical level is θ∗ = √

α, and suggests a
minimum signal level of order

√
p/n which is high already when p is of the order

of n.
These results are even proved to hold for weakened assumptions on the distri-

bution of the vectors, in Féral and Péché (2009). On the statistical side, these are
coherent with the detection levels shown in Onatski, Moreira and Hallin (2013)
for testing of the sphericity hypothesis with no assumption on the alternative, by
spectral methods.

4. Sparse principal component detection. In sparse principal component
detection, we are testing the existence of a sparse direction v with a significantly
higher explained variance v��v than any other direction. To exploit the sparsity
assumption, we use the fact that only a small submatrix of the covariance is af-
fected by the perturbation. Let A be a p × p matrix and fix k < p. We define the
k-sparse largest3 eigenvalue by

λk
max(A) = max|S|=k

λmax(AS).(4.1)

It can be defined equivalently to (4.1) by

λk
max(A) = max

x∈B0(k)
x�Ax.(4.2)

Therefore, we study the behavior of the test statistic ϕ(�̂) = λk
max(�̂) under

both hypotheses.

4.1. Deviation bounds for the k-sparse eigenvalue. Optimal detection levels
are governed by the deviations of the test statistic λk

max(�̂) both under the null and
the alternative hypotheses. We begin with the following proposition, which guar-
antees that our test statistic remains large enough under the alternative hypothesis.

PROPOSITION 4.1. Under H1, we have with probability 1 − δ,

λk
max(�̂) ≥ 1 + θ − 2(1 + θ)

√
log(1/δ)

n
.

PROOF. Under H1, there exists a unit vector v with sparsity k, such that X ∼
N (0, Ip + θvv�). Therefore, we have

λk
max(�̂) ≥ v��̂v = 1

n

n∑
i=1

(
X�

i v
)2

3In the rest of the paper, we drop the qualification “largest” since we only refer to this one.
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by definition of �̂. Since X ∼ N (0, Ip + θvv�), we have X�v ∼ N (0,1 + θ).
Define the random variable

Y = 1

n

n∑
i=1

(
(X�

i v)2

1 + θ
− 1

)
.

Using Lemma A.1, we get for any t > 0, that

P(Y ≤ −2
√

t/n) ≤ e−t .

Hence, taking t = log(1/δ) yields the desired inequality. �

Note that our proof relies only on the existence of a sparse vector v associated
to the eigenvalue (1 + θ) of the population covariance matrix �. In particular, the
result of Proposition 4.1 extends to more general alternative hypotheses, as long as
they satisfy this condition.

Note that much more than detection can actually be achieved under this model.
Indeed, Amini and Wainwright (2009) prove optimal rates of support recovery
when θ is known and large enough, and for v taking only values in {0,±1/

√
k}.

We now study the behavior of the k-sparse eigenvalue under the null hypothesis,
that is, for a Wishart matrix with mean Ip . We adapt a technique from Vershynin
(2012) to obtain the desired deviation bounds.

PROPOSITION 4.2. Under H0, with probability 1 − δ

λk
max(�̂) ≤ 1 + 4

√
k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n
.

PROOF. Using a 1/4-net over the unit sphere of Rk , it can be easily shown
[see, e.g., Vershynin (2012)] that there exists a subset Nk of the unit sphere of Rk ,
with cardinality smaller than 9k , such that for any A � 0

λmax(A) ≤ 2 max
x∈Nk

x�Ax.(4.3)

Under H0, since �̂ is positive semidefinite, we have

λk
max(�̂) = 1 + max|S|=k

{
λmax(�̂S) − 1

}
.

For all u ∈ Rk, |u|2 = 1 and S ⊂ {1, . . . , p} such that |S| = k, let ũ ∈ Rp be the
vector with support in S such that ũS = u. We have

u��̂Su − 1 = ũ��̂ũ − 1 = 1

n

n∑
i=1

[(
ũ�Xi

)2 − 1
]
.
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Since |ũ|2 = |u|2 = 1, Lemma A.1 yields for any t > 0,

P

(
1

n

n∑
i=1

[(
ũ�Xi

)2 − 1
] ≥ 2

√
t

n
+ 2

t

n

)
≤ e−t .(4.4)

For any S ⊂ {1, . . . , p}, define RS to be the subset of Rp defined such that
x ∈ RS if and only if xj = 0,∀j /∈ S. Let Nk(S) be a subset of the unit sphere
of RS , with cardinality smaller than 9k such that for any A � 0, inequality (4.3)
holds with Nk = Nk(S). Fix t > 0 and define the event AS by

AS =
{
λmax(�̂S) − 1 ≥ 4

√
t

n
+ 4

t

n

}
.

Observe that a union bound over the elements of Nk(S) together with (4.4) yields
that for any t > 0,

P(AS) ≤ P

(
max

v∈Nk(S)

1

n

n∑
i=1

(
v�Xi

)2 − 1 ≥ 2

√
t

n
+ 2

t

n

)
≤ 9ke−t .

Let now A be the event defined by

A = ⋃
|S|=k

AS =
{

max|S|=k

{
λmax(�̂S) − 1

} ≥ 4

√
t

n
+ 4

t

n

}
.

Therefore, by a union bound on the
(p
k

)
subsets S of {1, . . . , p} that have cardinal-

ity k, we get

P
(
λk

max(�̂) ≥ 1 + 4

√
t

n
+ 4

t

n

)
= P(A) ≤

(
p

k

)
9ke−t .

To complete our proof, it is sufficient to use the standard inequality
(p
k

) ≤ (
ep
k

)k

and to take t = k log(9ep/k) + log(1/δ). �

4.2. Hypothesis testing with λk
max. Using these results, we have, with the no-

tation from Section 2,

PH0

(
λk

max(�̂) > τ0
) ≤ δ, PH1

(
λk

max(�̂) < τ1
) ≤ δ,

where τ0 and τ1 are given by

τ0 = 1 + 4

√
k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n
,

τ1 = 1 + θ − 2(1 + θ)

√
log(1/δ)

n
.
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Whenever τ1 > τ0, we take τ ∈ [τ0, τ1] and define the following test:

ψ(�̂) = 1
{
λk

max(�̂) > τ
}
.

It follows from the previous subsection that the test discriminates between H1 and
H0 with probability 1 − δ. It remains to find for which values of θ the condition
τ1 > τ0 holds. It corresponds to our minimum detection level.

THEOREM 4.1. Assume that k,p,n and δ are such that θ̄ ≤ 1, where

θ̄ := 4

√
k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n
(4.5)

+ 4

√
log(1/δ)

n
.

Then, for any θ > θ̄ and for any τ ∈ [τ0, τ1], the test ψ(�̂) = 1{λk
max(�̂) > τ }

discriminates between H0 and H1 with probability 1 − δ.

If we consider high-dimensional asymptotic regimes, for large p,n, k, taking
δ = p−β with β > 0, provides a sequence of tests ψn that discriminate between
H0 and H1 with probability converging to 1, for any fixed θ > 0, as soon as
k log(p)/n → 0.

5. Minimax lower bounds for detection. The goal of this section is to prove
that for any ν > 0, there exists ¯θν (5.1) of the same order as θ̄ (up to logarithmic
terms), and such that if θ < ¯θν , then no test can discriminate between H0 and H1
with probability greater than 1

2 + ν. Recall that Pn denotes the joint distribution of
n i.i.d. random variables with distribution P.

THEOREM 5.1. Fix ν > 0. There exists a constant Cν > 0 defined in (5.5)
such that if

θ < ¯θν :=
√

k log(Cνp/k2 + 1)

n
∧ 1√

2
,(5.1)

it holds

inf
ψ

{
Pn

0(ψ = 1) ∨ max
v∈B0(k)

Pn
v(ψ = 0)

}
≥ 1

2
− ν,

where the infimum is taken over all possible tests, that is, measurable functions of
the n observations, that take values in {0,1}.

In order to find lower bounds for the probability of error, we study the χ2 dis-
tance between probability measures; see, for example, Tsybakov (2009), Chap-
ter 2. For any v ∈ Rp such that |v|2 = 1, define the matrix �v = Ip + θvv�, and
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let Pv denote the distribution of a Gaussian random variable X ∼ N (0,�v). More-
over, let S = {S ⊂ {1, . . . , p} : |S| = k}, and for any S ∈ S , define u(S) ∈ Rp to be
the unit vector with j th coordinate equal to 1/

√
k if j ∈ S and 0 otherwise. Finally,

define the Gaussian mixture PS by

PS = 1

|S|
∑
S∈S

Pu(S).

We write for simplicity PS = Pu(S) when this leads to no confusion. Our proof
relies on the following lemma.

LEMMA 5.1. For any S,T ∈ S and any θ < 1, it holds

EP0

(
dPS

dP0

dPT

dP0

)
= (

1 − θ2(
u(S)�u(T )

)2)−1/2
.

PROOF. Fix S ∈ S , and observe that

dPS

dP0
(X) = det(Ip)1/2

det(�u(S))1/2

exp(−X��−1
u(S)X/2)

exp(−X�I−1
p X/2)

.

Furthermore, since det(Ip) = 1 and |u(S)|2 = 1, we get by Sylvester’s determinant
theorem that

det(�u(S)) = det
(
Ip + θu(S)u(S)�

) = det
(
I1 + θu(S)�u(S)

) = 1 + θ.

Moreover, the Sherman–Morrison formula yields

�−1
u(S) = (

Ip + θu(S)u(S)�
)−1 = Ip − θu(S)u(S)�

1 + θ
.

By substitution, the above three displays yield

dPS

dP0
(X) = 1√

1 + θ
exp

(
1

2

θ

1 + θ

(
X�u(S)

)2
)

and

dPS

dP0

dPT

dP0
(X) = 1

1 + θ
exp

(
X�MX

)
,(5.2)

where M is defined by

M := 1

2

θ

1 + θ

(
u(S)u(S)� + u(T )u(T )�

)
.

Note that M has at most two nonzero eigenvalues given by

λ1 = 1

2

θ

1 + θ

(
1 + u(S)�u(T )

)
<

1

2
and λ2 = 1

2

θ

1 + θ

(
1 − u(S)�u(T )

)
<

1

2
,
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and let � denote the diagonal matrix with elements (λ1, λ2,0, . . . ,0) ∈ Rp . To-
gether with (5.2), it yields

EP0

(
dPS

dP0

dPT

dP0

)
= 1

1 + θ
EP0

[
exp

(
X�MX

)]

= 1

1 + θ
EP0

[
exp

(
X��X

)]

= 1

1 + θ
EP0

[
exp

(
λ1X

2
1
)]

EP0

[
exp

(
λ2X

2
2
)]

= 1

1 + θ

[
(1 − 2λ1)(1 − 2λ2)

]−1/2
,

where, in the second equality, the substitution of M by � is valid by rotational
invariance of the distribution of X under P0. The last equation yields the desired
result. �

We now turn to the proof of Theorem 5.1.

PROOF OF THEOREM 5.1. Observe now that

χ2(PS ,P0) = EP0

[(
dPS
dP0

− 1
)2]

= 1

|S|2
∑

S,T ∈S
EP0

(
dPS

dP0

dPT

dP0

)
− 1.

Lemma 5.1 together with the fact u(S)�u(T ) = |S ∩ T |/k yield

χ2(PS ,P0) =
k∑

r=0

{ C(S, r)

|S|2
(

1 − θ2 r2

k2

)−1/2}
− 1,

where C(S, r) denotes the number of subsets S,T ∈ S such that |S ∩ T | = r . Let
S,T be chosen uniformly at random in S , and observe that P(|S ∩ T | = r) =
P(R = r), where R = |S ∩ {1, . . . , k}|. Jensen’s inequality yields

χ2(
Pn

S ,Pn
0
) =

n∏
i=1

(
1 + χ2(PS ,P0)

) − 1

≤ ES,T

{[
1 − θ2 |S ∩ T |2

k2

]−n/2}
− 1

= ER

{[
1 − θ2 R2

k2

]−n/2}
− 1,

where ES,T denotes the expectation with respect to the random subsets S,T and
ER the expectation with respect to R.
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Using now the convexity inequality (1 − t)−n/2 ≤ ent/(2(1−t)) ≤ ent valid for
1 − t ≥ 1/2, and noticing that R ≤ k, the above display leads to

χ2(
Pn

S ,Pn
0
) ≤ ER

[
exp

(
nθ2R

k

)]
− 1.(5.3)

Define μ2 = nθ2/k. We have, as in Addario-Berry et al. (2010), Arias-Castro,
Bubeck and Lugosi (2012), that

ER

[
eμ2R] = ES

[
k∏

i=1

exp
(
μ21{i ∈ S})

]

≤
k∏

i=1

ES

[
exp

(
μ21{i ∈ S})] ≤

((
eμ2 − 1

) k

p
+ 1

)k

.

The first inequality holds by the negative association [see, e.g., Addario-Berry et al.
(2010), Section 3] of negatively correlated dependent random variables. Assume
now that θ < ¯θν . It yields((

eμ2 − 1
) k

p
+ 1

)k

≤
((

Cνp

k2

)
k

p
+ 1

)k

≤
(

1 + Cν

k

)k

≤ eCν .

Together with (5.3), the previous two displays yield

χ2(
Pn

S ,Pn
0
) ≤ eCν − 1.(5.4)

We are now in a position to apply standard results from minimax theory. Define

Cν := log
[(

1 + 8ν2) ∧ log
(

e

2 − 4ν

)]
,(5.5)

and note that for all measurable tests ψ , we have

Pn
0(ψ = 1) ∨ max

v∈B0(k)
Pn

v(ψ = 0) ≥ Pn
0(ψ = 1) ∨ max

S∈S
Pn

u(S)(ψ = 0)

≥ Pn
0(ψ = 1) ∨ Pn

S (ψ = 0)

≥ e1−eCν

4
∨ 1 −

√
(eCν − 1)/2

2
= 1

2
− ν,

where the last inequality is a direct consequence of (5.4) and Tsybakov (2009),
Theorem 2.2, case (iii). �

We observe a gap between our upper and lower bounds, with a term in log(p/k)

in the upper bound, and one in log(p/k2) in the lower bound. This gap has been ob-
served in the detection literature before [see, e.g., Baraud (2002), Verzelen (2012),
for an explicit remark] and, to our knowledge, has never been addressed. How-
ever, if p ≥ k2+ε , ε > 0, upper and lower bounds match up to constants, and the
detection rate for the sparse eigenvalue is optimal in a minimax sense. Under this
assumption, detection becomes impossible if θ < C

√
(k/n) log(p/k) for a small

enough constant C > 0.
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6. Efficient methods for sparse principal component testing. Computing
the largest k-sparse eigenvalue λk

max of a symmetric matrix A is, in general, a hard
computational problem. To see this, consider the particular case where A is a p×p

symmetric matrix with values in {0,1} and Aii = 1 for all diagonal entries, so that
A corresponds to the adjacency matrix of an undirected graph. It is not hard to see
that λk

max(A) ≤ k, with equality if and only if the graph of A contains a clique of
size k. It is a well-known fact of computational complexity [Karp (1972)] that the
decision problem associated to finding whether a graph contains a clique of size k

is NP-complete.

6.1. Semidefinite relaxation for λk
max. Semidefinite programming (SDP) is

the matrix equivalent of linear programming. Define the scalar product in Sd by
〈A,B〉 = Tr(AB). A semidefinite program can be written in the canonical form:

SDP = max. Tr(CX)

subject to Tr(AiX) ≤ bi ∀i ∈ {1, . . . ,m},(6.1)

X � 0.

As convex problems, they are computationally efficient and can be solved using
interior point or first order methods; see, for example, Boyd and Vandenberghe
(2004), Nesterov and Nemirovskii (1987). Using SDP relaxations of problems
with nonconvex constraints such as integer programs is a common method to
find approximate solutions. Approximation bounds, up to a constant, can some-
times be proved as in the celebrated result of Goemans and Williamson (1995) for
the MAXCUT problem. A major breakthrough for sparse PCA was achieved by
d’Aspremont et al. (2007), who introduced a SDP relaxation for λk

max, but tight-
ness of this relaxation is, to this day, unknown. Our task is not as difficult though.
Indeed, we only need to prove that the SDP objective criterion has significantly
different behavior under H0 and H1.

Making the change of variables Z = xx� in (4.2) yields

λk
max(A) = max. Tr(AZ)

subject to Tr(Z) = 1, |Z|0 ≤ k2,

Z � 0, rank(Z) = 1.

Note that this problem contains two sources of nonconvexity: the �0 norm con-
straint and the rank constraint. We make two relaxations in order to have a convex
feasible set. First, for a semidefinite matrix Z, with trace 1, and sparsity k2, the
Cauchy–Schwarz inequality yields |Z|1 ≤ k, which is substituted to the cardinal-
ity constraint in this relaxation. Simply dropping the rank constraint leads to the
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following relaxation of our original problem:

SDPk(A) = max. Tr(AZ)

subject to Tr(Z) = 1, |Z|1 ≤ k,(6.2)

Z � 0.

Note that this optimization problem is convex since it consists in minimizing a
linear objective over a convex set. Moreover, it is a standard exercise to show that
it can be expressed in the canonical form (6.1). As such, it can be solved efficiently
using any of the aforementioned algorithms. This natural relaxation was originally
developed in d’Aspremont et al. (2007). Note that building on an earlier version of
this paper, d’Aspremont, Bach and Ghaoui (2012) proposed a new SDP relaxation
to the same problem and derive somewhat larger detection levels, at least for the
interesting case where k is small compared to p.

Let us now study the behavior of the objective value SDPk(�̂) under H1 and H0,
respectively. First, as a relaxation of the original problem, for any A � 0, it holds

λk
max(A) ≤ SDPk(A).(6.3)

Since we have proved in Section 4 that λk
max(�̂) takes large values under H1, this

inequality tells us that so does SDPk(�̂). It remains to show that it stays small
under H0. This can be achieved by using the dual formulation of the SDP.

LEMMA 6.1 [Bach, Ahipasaoglu and d’Aspremont (2010)]. For a given A �
0, we have by duality

SDPk(A) = min
U∈Sp

{
λmax(A + U) + k|U |∞}

.

Together with (6.3), Lemma 6.1 implies that for any z ≥ 0 and any matrix U ∈
Sp such that |U |∞ ≤ z, it holds

λk
max(A) ≤ SDPk(A) ≤ λmax(A + U) + kz.(6.4)

A direct consequence of (6.4) is that the functional λk
max is robust to small pertur-

bations in | · |∞-norm. Let A � 0 be such that its largest eigenvector is k sparse.
Then, for any matrix N , (6.4) yields

λk
max(A + N) ≤ λmax

(
(A + N) − N

) + k|N |∞ = λk
max(A) + k|N |∞.

6.2. High probability bounds for convex relaxation. We now study the prop-
erties of SDPk(�̂) and other computationally efficient variants as test statistics for
our detection problem. In view of (6.3), the following proposition follows directly
from Proposition 4.1.
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PROPOSITION 6.1. Under H1, we have, with probability 1 − δ

SDPk(�̂) ≥ 1 + θ − 2(1 + θ)

√
log(1/δ)

n
.

We now turn to the upper deviations under H0.

PROPOSITION 6.2. Under H0, we have, with probability 1 − δ,

SDPk(�̂) ≤ 1 + 2

√
k2 log(4p2/δ)

n
+ 2

k log(4p2/δ)

n

+ 2

√
log(2p/δ)

n
+ 2

log(2p/δ)

n
.

PROOF. Let stz(A) be the soft-threshold of A, with threshold z, defined by
(stz(A))ij = sign(Aij )(|Aij | − z)+. It follows from (6.4) that for any A � 0,

SDPk(A) ≤ λmax
(
stz(A)

) + kz.(6.5)

Let �̂ = diag(�̂) be the diagonal matrix with the same diagonal entries as �̂, and
�̂ = �̂ − �̂ the matrix of its off-diagonal entries, so that �̂ = �̂+ �̂ . Since �̂ and
�̂ have disjoint supports, it follows that

stz(�̂) = stz(�̂) + stz(�̂).(6.6)

We first control the largest off-diagonal element of �̂ by bounding |�̂|∞ with
high probability. For every i, j , we have

�̂ij = 1

2

[
1

n

n∑
k=1

[
1

2
(Xki + Xkj )

2 − 1
]

− 1

n

n∑
k=1

[
1

2
(Xki − Xkj )

2 − 1
]]

.

Under H0, we have X ∼ N (0, Ip), so by Lemma A.1, it holds for t > 0 that

P
(
|�̂ij | ≥ 2

√
t

n
+ 2

t

n

)
≤ 4e−t .

Hence, by union bound on the off-diagonal terms, we get

P
(

max
i<j

|�̂ij | ≥ 2

√
t

n
+ 2

t

n

)
≤ 2p2e−t .

Taking t = log(4p2/δ) yields that |�̂|∞ ≤ z, with probability 1 − δ/2, where

z = 2

√
log(4p2/δ)

n
+ 2

log(4p2/δ)

n
.(6.7)
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Note now that if we take z as in (6.7), then stz(�̂) = 0 on an event E of proba-
bility 1 − δ/2. Furthermore, since �̂ is a nonnegative diagonal matrix, then (6.6)
yields that on the event E , it holds

λmax
(
stz(�̂)

) = λmax
(
stz(�̂)

) ≤ λmax(�̂) = max
1≤i≤p

�̂ii .(6.8)

Next, we control the largest diagonal element of �̂ as follows. We have by
definition of �̂, for every i = 1, . . . , p

�̂ii = 1

n

n∑
j=1

X2
ji .

Applying Lemma A.1 and a union bound over the p diagonal terms, we get

P
(

max
1≤i≤p

�̂ii ≥ 1 + 2

√
t

n
+ 2

t

n

)
≤ pe−t .

Taking t = log(2p/δ) yields with probability 1 − δ/2,

max
1≤i≤p

�̂ii ≤ 1 + 2

√
log(2p/δ)

n
+ 2

log(2p/δ)

n
.(6.9)

To conclude the proof of Proposition 6.2, observe that (6.5) implies that for all
z ≥ 0, we have

SDPk(�̂) ≤ λmax
(
stz(�̂)

) + kz ≤ λmax
(
stz(�̂)

) + λmax
(
stz(�̂)

) + kz,

where we used (6.6) and the triangle inequality for the operator norm.
Putting together (6.8) and (6.9) completes the proof. �

6.3. Hypothesis testing with convex methods. Using the notation from Sec-
tion 2, the results of the previous subsection can be written as

PH0

(
SDPk(�̂) > τ̃0

) ≤ δ, PH1

(
SDPk(�̂) < τ̃1

) ≤ δ,

where τ̃0 and τ̃1 are given by

τ̃0 = 1 + 2

√
k2 log(4p2/δ)

n
+ 2

k log(4p2/δ)

n
+ 2

√
log(2p/δ)

n
+ 2

log(2p/δ)

n
,

τ̃1 = 1 + θ − 2(1 + θ)

√
log(1/δ)

n
.

Whenever τ̃1 > τ̃0, we take τ ∈ [τ̃0, τ̃1] and define the following computation-
ally efficient test ψ̃(�̂) = 1{SDPk(�̂) > τ }. It discriminates between H1 and H0
with probability 1 − δ.

It remains to find for which values of θ the condition τ̃1 > τ̃0 holds. It corre-
sponds to our minimum detection level.
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THEOREM 6.1. Assume that p,n, k and δ are such that θ̃ ≤ 1, where

θ̃ := 2

√
k2 log(4p2/δ)

n
+ 2

k log(4p2/δ)

n
+ 2

√
log(2p/δ)

n
(6.10)

+ 2
log(2p/δ)

n
+ 4

√
log(1/δ)

n
.

Then, for any θ > θ̃ , any τ ∈ [τ̃0, τ̃1], the test ψ̃(�̂) = 1{SDPk(�̂) > τ } discrimi-
nates between H0 and H1 with probability 1 − δ.

If we consider asymptotic regimes, for large p,n, k, taking δ = p−β with β > 0,
provides a sequence of tests ψ̃n that discriminate between H0 and H1 with proba-
bility converging to 1, for any fixed θ > 0, if k2 log(p)/n → 0.

Note that, compared to Theorem 4.1, the price to pay for using this convex
relaxation is to multiply the minimum detection level by a factor

√
k. Such a gap

is observed for these techniques in Amini and Wainwright (2009). Nevertheless,
in most examples, k remains small and so is this price. As we will see in Section
8, there is strong evidence that τ̃0, which dominates the detection rate, cannot be
made smaller and that therefore, our proof is tight.

6.4. Simple methods. While the SDP relaxation proposed in the previous sub-
section is provably computationally efficient, it is also known to scale poorly on
large problems. Simple heuristics such as the diagonal method of Johnstone and
Lu (2009) become more attractive for larger problems. A careful inspection of the
proofs in the previous subsection is quite informative. It indicates that our results
not only hold for the test ψ̃(�̂) but for a test based on a simpler statistic aris-
ing from the dual formulation (6.5). Indeed, to control the behavior of SDPk(�̂)

under H0, we showed that it was no larger than the minimum dual perturbation
MDPk(�̂) defined by

MDPk(�̂) = min
z≥0

{
λmax

(
stz(�̂)

) + kz
}
.(6.11)

Clearly MDPk(�̂) ≥ SDPk(�̂) ≥ λk
max(�̂) so that both Propositions 6.1 and 6.2

still hold for SDPk(�̂) replaced by MDPk(�̂). As a result, for any θ > θ̃ the
test ψ̂(�̂) = 1{MDPk(�̂) > τ } discriminates between H0 and H1 with probabil-
ity 1 − δ.

Actually, a detection level of the same order as θ̃ holds already for an even
simpler test statistic: the largest diagonal element of �̂. This method called John-
stone’s diagonal method was first proposed by Johnstone and Lu (2009) and later
studied by Amini and Wainwright (2009). For the problem of detection considered
here, it dictates one to employ the test statistic D(�̂) = max1≤i≤p �̂ii . Using even
simpler techniques than in Propositions 6.1 and 6.2, it is not hard to show that

PH0

(
D(�̂) > τd

0
) ≤ δ, PH1

(
D(�̂) < τd

1
) ≤ δ
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for quantiles τd
0 and τd

1 given by

τd
0 = 1 + 1

k
θ − 2

(
1 + 1

k
θ

)√
log(1/δ)

n
,

τ d
1 = 1 + 2

√
log(p/δ)

n
+ 2

log(p/δ)

n
.

However, as we shall see in Section 9, on simulated datasets, MDPk behaves much
better than D in practice. It was proved by Amini and Wainwright (2009) that if
the SDP (6.2) has a solution of rank one, then it is strictly better than Johnstone’s
diagonal method. While they study a support recovery problem different from the
detection problem considered here, it seems to indicate that the two methods are
qualitatively different. However, the assumption that the SDP (6.2) has a solution
of rank one is strong and unnecessary in our problem. Indeed, our results from
Section 8 indicate that, if detecting a planted clique in a random graph is compu-
tationally hard, then for large (p,n, k), the SDP method does not achieve better
rates than the ones we prove. In particular, this result is a good indication that with
high probability, the solution of the SDP is not rank-one for parameters in a range
around the minimax detection level.

7. Generalization with weakened assumptions. In this section we investi-
gate several extensions of our original problem. For simplicity, we denote by ∗DPk

any of the two functionals MDPk or SDPk .

7.1. Sparsity in terms of �q norm. Fix q ∈ (0,2), and recall that Bq(R) is
the set of unit vectors that are in an �q ball of radius R > 0. This relaxed notion
of sparsity allows for vectors v ∈ Rp to have ordered coordinates that decay fast
enough but never take value zero. Note that q = 2 corresponds to no sparsity and
requires different techniques. It is therefore excluded from this section. Consider
the following hypothesis testing problem:

H0 :X ∼ N (0, Ip),

H̃
q
1 :X ∼ N

(
0, Ip + θvv�)

, v ∈ Bq

(
k1/q−1/2)

.

The radius k1/q−1/2 is the smallest R > 0 such that B0(k) ⊂ Bq(R), making it the
most natural relaxation of the notion of k-sparse vectors. Below, we show that it
yields the same detection levels as for q = 0.

THEOREM 7.1. Fix ν > 0. There exists a constant Cν > 0 such that if

θ < ¯θν :=
√

k log(Cνp/k2 + 1)

n
∧ 1√

2
,(7.1)



OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS 1799

it holds, for q ∈ (0,2)

inf
ψ

{
Pn

0(ψ = 1) ∨ max
v∈Bq (k1/q−1/2)

Pn
v(ψ = 0)

}
≥ 1

2
− ν,(7.2)

where the infimum is taken over all possible tests.

PROOF. Let v ∈ Rp be a unit vector with sparsity k. It follows from Hölder’s
inequality that |v|q ≤ k1/q−1/2. Therefore, for any test ψ , we have

max
v∈Bq(k1/q−1/2)

Pn
v(ψ = 0) ≥ max

v∈B0(k)
Pn

v(ψ = 0),

and the result follows as a direct consequence of Theorem 5.1. �

To show a matching upper bound, we use the following lemma.

LEMMA 7.1. Let v ∈ Rp be a unit vector, |v|2 = 1. Then, for any r ≥ 1, there
exists a r-sparse unit vector x ∈ B0(r) such that

1 − r1−2/q |v|2q ≤ (
x�v

)2 ≤ 1.

PROOF. Assume without loss of generality that |v1| ≥ · · · ≥ |vp|. Define
x̃j = vj if j ≤ r , x̃j = 0 otherwise, and x = x̃/|x̃|2. We have (x�v)2 = x̃�v =∑r

j=1 |vj |2 = 1 − ∑p
j=r+1 |vj |2. Moreover, since |vr | ≤ r−1/q |v|q ,

p∑
j=r+1

|vj |2 ≤
p∑

j=r+1

|vr |2−q |vj |q ≤ |v|2−q
q r1−2/q

p∑
j=r+1

|vj |q

≤ r1−2/q |v|2q . �

Vectors in Bq(k1/q−1/2) can therefore be approximated by sparse unit vectors.
This property can be leveraged to show that for an appropriate choice of kq , a test

based on λ
kq
max(�̂) is optimal.

PROPOSITION 7.1. Under H̃
q
1 , let ε ∈ (0,1), and define kq to be the smallest

integer such that kq ≥ kε1/(1−2/q). Then with probability 1 − δ,

λ
kq
max(�̂) ≥ 1 + (1 − ε)θ − 2(1 + θ)

√
log(2/δ)

n
.

PROOF. Let x ∈ Rp be the kq -sparse unit norm approximation of v from
Lemma 7.1. It follows from the proof of Proposition 4.1 that

λ
kq
max(�̂) ≥ 1 + θ

(
v�x

)2 − 2
(
1 + θ

(
v�x

)2)√ log(2/δ)

n
.
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Lemma 7.1 with r = kq ≥ kε1/(1−2/q) yields 1 − ε ≤ (x�v)2 ≤ 1. �

Moreover, it follows from Proposition 4.2 that for any ε ∈ (0,1) and integer kq ,
with probability 1 − δ, it holds

λ
kq
max(�̂) ≤ 1 + 2

(
kq log(9ep/kq) + log(2/δ)

n
+

√
kq log(9ep/kq) + log(2/δ)

n

)
.

Since kq is only a constant factor away from k for all q ∈ (0,2) and ε ∈ (0,1),

the statistic λ
kq
max(�̂) achieves optimal rates of detection.

In an estimation context, Vu and Lei (2012) [see also Birnbaum et al. (2013),
Paul and Johnstone (2012) for related results using a different method] have ex-
amined the �q sparsity assumption for q ∈ (0,1]. Their estimation method consists
of maximizing the quadratic form x �→ x��̂x over Bq(R) for some given R > 0.
We argue that in light of Lemma 7.1, the estimation problem of Vu and Lei (2012)
can be solved by maximizing the quadratic form over B0(R

′) for some appropriate
choice of R′ that depends on k and q and extended to q ∈ [0,2). In particular, an
algorithm for �0-sparse PCA can be used for �q -sparse PCA.

Similar results hold for our convex relaxations. Following the same steps as in
the proof of Theorem 6.1, we find that there exists a constant Cq > 0 such that tests
based on ∗DPkq discriminate between H0 and H̃

q
1 with probability 1 − δ, for any

θ > Cqθ̃ , where θ̃ is defined in (6.10). In particular, a gap of size
√

k is observed
between these methods and the optimal ones.

7.2. Sub-Gaussian random variables. Our results can be extended to more
general assumptions, where the variables X1, . . . ,Xn ∈ Rp are sub-Gaussian in
the following sense.

DEFINITION 7.1. A real-valued random variable G is said to be standard sub-
Gaussian if E[exp(t (G − E[G]))] ≤ exp(t2/2) for all t ∈ R.

Let Z1, . . . ,Zn ∈ Rp be i.i.d. vectors with i.i.d. standard sub-Gaussian coeffi-
cients, such that for all i = 1, . . . , n it holds E[Zi] = 0,E[ZiZ

�
i ] = Ip .

Given a scatter matrix � � 0, for any i = 1, . . . , n, define Xi = �1/2Zi . Sub-
Gaussian random vectors were generated in the same way by Vu and Lei (2012).
Under this condition, we define the new detection problem with hypotheses H ′

0
and H ′

1, for θ > 0 by

H ′
0 :� = Ip,

H ′
1 :� = Ip + θvv�, v ∈ B0(k).

Replacing Lemma A.1 by Lemma A.2 in the proofs of Propositions 4.2 and 6.2,
we get, respectively, the two following results.
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PROPOSITION 7.2. Under H ′
1, for θ ≤ 1, it holds with probability 1 − δ

λk
max(�̂) ≥ 1 + θ − 6

(
64

log(2/δ)

n
+ 32

√
log(2/δ)

n

)
.

Moreover, under H ′
0, it holds with probability 1 − δ,

λk
max(�̂) ≤ 1 + 352

(
2
k log(9ep/k) + log(2/δ)

n
+

√
k log(9ep/k) + log(2/δ)

n

)
.

Similarly, for the ∗DPk statistic, we obtain the following bound.

PROPOSITION 7.3. Under H0, we have, with probability 1 − δ,

SDPk(�̂) ≤ MDPk(�̂) ≤ 1 + 6
(

64

√
k2 log(4p2/δ)

n
+ 128

k log(4p2/δ)

n

)
.

As a consequence, all the results from Sections 4 and 6 can be extended to the
present sub-Gaussian case. In particular, the same gap between the detection levels
of the two procedures is observed.

7.3. Adversarial noise. While our previous results rely heavily on the fact that
the Xi are sub-Gaussian random vectors, we can find much weaker assumptions
under which the results for detection using the ∗DP statistics are still valid. We
also describe an adversarial noise setting in which the detection level attained by
∗DPk is actually optimal. Assume that

�̂ = � + N.(7.3)

Here the only assumption on N is that |N |∞ ≤ √
log(p/δ)/n with probability

1 − δ. Up to constant factor, this is a generalization of our initial setting, and can
describe a situation where the data is censured, akin to the setting of Loh and
Wainwright (2012), but where the censured entries are not necessarily chosen at
random.

PROPOSITION 7.4. Under H1, we have with probability 1 − δ

∗DPk(�̂) ≥ λk
max(�̂) ≥ 1 + θ − k

√
log(p/δ)

n
.

PROOF. Recall that for any v such that |v|0 ≤ k, we have

∗DPk(�̂) ≥ λk
max(�̂) ≥ v��̂v ≥ v�(

Ip + θvv�)
v + v�Nv

≥ 1 + θ − |N |∞|v|21 ≥ 1 + θ − k|N |∞,

which yields the desired result. �
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PROPOSITION 7.5. Under H0, we have with probability 1 − δ

λk
max(�̂) ≤ ∗DPk(�̂) ≤ 1 + k

√
log(p/δ)

n
.

PROOF. It follows from (6.4) that λk
max(�̂) ≤ ∗DPk(�̂) ≤ λmax(Ip) + k|N |∞,

which yields the desired result. �

The following theorem follows from Propositions 7.4 and 7.5. We omit its proof.

THEOREM 7.2. Let ψadv be the test defined by

ψadv(�̂) = 1
{
∗DPk(�̂) > 1 + k

√
log(p/δ)

n

}
.

Then ψadv discriminates between H0 and H1 with probability 1 − δ if θ >

2k
√

log(p/δ)/n.

We now prove the corresponding lower bound. Let v = (v1, . . . , vp)� ∈ Rp be
such that vj = 1/

√
k if j ≤ k and vj = 0 otherwise. Define the random matrix N

that takes values ± θ
2vv�, each with probability 1/2.

THEOREM 7.3. There exists an adversarial model of the form (7.3) where
|N |∞ ≤ √

log(p)/n, such that if θ ≤ 2k
√

log(p)/n, then for any test ψ(�̂) ∈
{0,1} it holds

PH1

(
ψ(�̂) = 0

) ∨ PH0

(
ψ(�̂) = 1

) ≥ 1/2.

PROOF. Note first that |N |∞ = θ/(2k) ≤ √
(logp)/n so that

PH0

(
�̂ = Ip + θ

2
vv�

)
= 1

2
, PH1

(
�̂ = Ip + θ

2
vv�

)
= 1

2
.

Therefore, if ψ(Ip + θ
2vv�) = 1, then PH0(ψ(�̂) = 1) ≥ 1/2 and if ψ(Ip +

θ
2vv�) = 0, then PH1(ψ(�̂) = 0) ≥ 1/2. �

Note that the lower bound in Theorem 7.3 below is not minimax since there
exists one model under which all tests cannot discriminate between H0 and H1

with probability less than 1/2. It implies that tests based on either ∗DPk and λk
max

are optimal.
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8. Complexity theoretic lower bounds. The difference between the detec-
tion rates proved for the testing statistic λk

max and the convex optimization based
statistics SDPk and MDPk suggests a statistical cost for computational efficiency.
Such phenomena are hinted at by Chandrasekaran and Jordan (2013). While it is
not hard to see that our bounds are tight for the diagonal method, it is legitimate
to wonder if the observed gap for SDPk and MDPk comes from a proof artifact, or
an intrinsic limitation of the problem. The computational hardness of the related
RIP certification has recently attracted a lot of interest. By reductions to problems
with known complexity theoretic limitations, Bandeira et al. (2012) and Koiran and
Zouzias (2012) prove that it is in general impossible to approximate in polynomial
time the λk

max statistic up to an arbitrarily small constant. Clearly, a constant fac-
tor approximation of λk

max would suffice to achieve optimal detection rates. How-
ever, such results are not sufficient for two reasons. First they do not rule out the
existence of a polynomial time algorithm that approximates λk

max within a large
enough constant. Second, such results are in nature worst case, meaning that the
input matrix can be arbitrarily difficult for an algorithm. Rather, in our problem,
the entry matrix is an empirical covariance matrix constructed from i.i.d. random
vectors with Gaussian distribution. Hereafter, we develop a polynomial time re-
duction from another problem which is believed to be hard in average: the planted
clique problem.

8.1. Reduction to the planted clique problem. A careful inspection of the
proof of Corollary 6.1 and the results of Section 6.4 reveals that the only way
to obtain better detection levels for the SDP and MDP statistics is to prove a bet-
ter control of the statistics under the null hypothesis. We argue below that this is
unlikely.

Let X1, . . . ,Xn ∈ Rp be i.i.d. Gaussian vectors with distribution N (0, Ip) and
for any α ∈ [1,2], consider the following hypothetical bound:

SDPk(�̂) ≤ 1 + Cα

√
kα log(p/δ)

n
with probability 1 − δ,(Bα)

where Cα > 0. Our prior results hinge on proving that B2 holds. However, to
achieve minimax optimal detection rates, one would need to prove B1. Reasoning
by contradiction, we examine the consequences of Bα with α ∈ (1,2). In particu-
lar, such bounds would yield polynomial time algorithms to detect small planted
cliques in random graphs. Hereafter, we argue that the existence of such algorithms
is unlikely.

Fix an integer k ≥ 0, and let G(n,1/2, k) be the distribution over the set of
graphs on n vertices generated as follows. Pick k vertices at random, and place a
clique4 between them; then connect every other pair of vertices by an edge inde-
pendently with probability 1/2. Note that for k = 0, G(n,1/2,0) = G(n,1/2) is

4A clique is a subset of fully connected vertices.
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simply the distribution of an Erdős–Rényi random graph. In the decision version
of the planted clique problem, called Planted Clique, one is given a graph G on n

vertices and the goal is to test

HPC
0 :G ∼ G(n,1/2),

HPC
1 :G ∼ G(n,1/2, k)

for some given k ≥ 2 with probability of error at most δ > 0. The search version of
this problem consists of finding the clique planted under H1. The search problem
was introduced by Jerrum (1992) and Kučera (1995) while the decision version
is traditionally attributed to Saks; see Krivelevich and Vu (2002), Section 5. It is
known [see, e.g., Spencer (1994)] that if k > 2 log2 n, the planted clique under H1
is the only clique of size k in the graph, asymptotically almost surely. We consider
only such values of k hereafter.

For k = o(
√

n) there is no known polynomial time algorithm that solves this
problem. The first polynomial time algorithm for the case k = C

√
n was proposed

in Alon, Krivelevich and Sudakov (1998) and is based on spectral techniques.
Subsequent algorithms with similar performance appeared in Ames and Vavasis
(2011), Dekel, Gurel-Gurevich and Peres (2011), Feige and Krauthgamer (2000),
Feige and Ron (2010). It is widely believed that there is no polynomial time al-
gorithm that solves Planted Clique for any k of order nc for some fixed positive
c < 1/2, and it can even be proved that certain algorithmic techniques such as the
Metropolis process [Jerrum (1992)] and the Lovàsz–Schrijver hierarchy of relax-
ations [Feige and Krauthgamer (2003)] fail at this task. Moreover, Planted Clique
is provably hard in certain computational models, as seen in Rossman (2010),
Feldman et al. (2013) which brings more evidence toward its hardness. Note that
recent results by Brubaker and Vempala (2009), Frieze and Kannan (2008) based
on r-dimensional tensors, suggest an algorithmic approach capable of finding a
planted clique of size O(n1/r ), but currently this tensor-based approach is not
known to yield a polynomial time algorithm for r > 2. The confidence in the dif-
ficulty of this problem has led researchers to prove hardness results assuming that
the planted clique problem is indeed hard. Examples include cryptographic ap-
plications [Juels and Peinado (2000)], testing for k-wise dependence [Alon et al.
(2007)], approximating Nash equilibria [Hazan and Krauthgamer (2011)] and ap-
proximating solutions to the densest k-subgraph problem [Alon et al. (2011)].

Consider the following polynomial-time reduction from a graph instance to ran-
dom vectors, valid for the case p = n. Let A be the n × n adjacency matrix of a
random graph G, and let U be the n × n matrix defined for any 1 ≤ i ≤ j by

Uij =
{

2Aij − 1, if i < j ,
εij , otherwise,

where {εij }i,j is a sequence of i.i.d. Rademacher ±1 random variables. More-
over, let Z(1), . . . ,Z(n) ∈ Rn be n i.i.d. N (0, In) random vectors, and define
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Xij = |Z(i)
j |Uij . Finally define the n×n empirical covariance matrix �̂ associated

to the vectors Xi = (Xi1, . . . ,Xin)
� ∈ Rn as in (2.1). This construction clearly

takes polynomial time.
If G ∼ G(n,1/2), by construction, X1, . . . ,Xn ∈ Rn are i.i.d. centered standard

Gaussian vectors, where all the coefficients are independent. If G ∼ G(n,1/2, k),
it is no longer the case, and the ∗DPk statistic behaves in a qualitatively different
manner.

8.2. Computational theoretic lower bounds for SDP and MDP. In this sub-
section, we illustrate the intrinsic limitations of the SDP and MDP methods in the
detection problem using arguments borrowed from computational complexity. We
begin by showing that both statistics take large values on the problem reduced from
a graph with a planted clique.

LEMMA 8.1. Let G ∼ G(n,1/2, k), k ≥ 14 even, and X1, . . . ,Xn ∈ Rn be
constructed as above. It holds, with probability 1 − δ,

MDPk(�̂) ≥ SDPk(�̂) ≥ 1 + k2

4πn
− 3

√
k log(2/δ)

n
.

PROOF. Let S ⊂ {1, . . . , n} be the random subset of k vertices on which
the clique has been planted. By construction, there are subsets S1 and S2 of
S, of cardinality k/2, such that the random variables Xij , i ∈ S1, j ∈ S2 are all
positive almost surely. Assume without loss of generality that S = {1, . . . , k},
S1 = {k/2 + 1, . . . , k} and S2 = {1, . . . , k/2}. Let v = v(S2) be the unit vector
with j th coordinate equal to 2/

√
k if j ∈ S2 and 0 otherwise. It yields

MDPk(�̂) ≥ SDPk(�̂) ≥ v��̂v = 1

n

n∑
i=1

(
v�Xi

)2

≥ 1

n

∑
i∈S1

(
v�Xi

)2 + 1

n

∑
i /∈S

(
v�Xi

)2

= 1

n

∑
i∈S1

1

|S2|
( ∑

j∈S2

∣∣Z(i)
j

∣∣)2

+ n − k

n

1

n − k

∑
i /∈S

(
v�Xi

)2
.(8.1)

We begin by controlling the first term on the right-hand side of (8.1). For all i ∈ S1,
define the centered sub-Gaussian random variable

Yi = ∑
j∈S2

{∣∣Z(i)
j

∣∣ − √
2/π

}
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and observe that

1

n

∑
i∈S1

1

|S2|
( ∑

j∈S2

∣∣Z(i)
j

∣∣)2

= 1

n

∑
i∈S1

1

|S2|
(
Yi + |S2|

√
2/π

)2

≥ 2

π

|S1| · |S2|
n

+ 2

√
2

π

1

n

∑
i∈S1

Yi.

It follows from Lemma A.3 that with probability 1 − δ/2, we have∑
i∈S1

Yi ≥ −
√

2|S1| · |S2| log(2/δ).

Together, the previous two displays yield

1

n

∑
i∈S1

1

|S2|
( ∑

j∈S2

∣∣Z(i)
j

∣∣)2

≥ k2

2πn
− 2k√

πn

√
log(2/δ).(8.2)

To control the second term on the right-hand side of (8.1), we use Lemma A.1.
It holds with probability 1 − δ/2 that

1

n − k

∑
i /∈S

(
v�Xi

)2 = 1 + 1

n − k

∑
i /∈S

[(
v�Xi

)2 − 1
] ≥ 1 − 2

√
log(2/δ)

n − k
.(8.3)

Therefore, with probability 1 − δ, we get from (8.1), (8.2) and (8.3) that

SDPk(�̂) ≥ k2

2πn
− 2k√

πn

√
log(2/δ) + n − k

n

(
1 − 2

√
log(2/δ)

n − k

)

≥ 1 + k2

4πn
− 3

√
k log(2/δ)

n
,

where the last inequality holds for k ≥ 14. This yields the desired result. �

Next, we prove that improving substantially the bound of Proposition 6.2 (i.e.,
if Bα were to hold for some α ∈ [1,2)) would allow us to detect the presence of
cliques of size nc for some c < 1/2.

THEOREM 8.1. Let X1, . . . ,Xn ∈ Rn be i.i.d. N (0, In) random vector and let
�̂ be their corresponding empirical covariance matrix as defined in (2.1). If for
any α ∈ [1,2], (Bα) is valid for p = n, that is,

SDPk(�̂) ≤ 1 + Cα

√
kα log(n/δ)

n
with probability 1 − δ,(Bα)

where Cα > 0, then there exists a polynomial time algorithm that discrimi-
nates between G(n,1/2) and G(n,1/2, k) with probability 1 − δ, as soon as
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k ≥ [Cn log(n/δ)]1/(4−α) for some constant C > 0 that depends only on Cα . The
same holds if SDPk(�̂) is replaced by MDPk(�̂). In particular, for any fixed α < 2
and δ > 0, it allows one to detect the presence of cliques of size nc for some c < 1/2
with probability 1 − δ.

PROOF. Note first that since SDPk(�̂) ≤ MDPk(�̂), it suffices to prove the
result for SDPk(�̂).

Let G be a random graph from HPC
0 or HPC

1 . Our goal is to construct a test φ

that discriminates between the two hypotheses. Let X1, . . . ,Xn ∈ Rn be n random
vectors obtained by the polynomial time reduction described in the previous sub-
section, and denote by �̂ their associated empirical covariance matrix. We propose
the following test:

φ = φ(�̂) = 1
{

SDP(ε)
k (�̂) > 1 + Cα

√
kα log(n/δ)

n

}
,

where SDP(ε)
k (�̂) ≥ SDPk(�̂) − ε is an approximation of the SDP solution with

tolerance ε ≤ 1/
√

n. In particular, SDP(ε)
k (�̂) and thus φ can be computed in poly-

nomial time.
Recall that under H0 (no planted clique), the Xi’s are i.i.d. N (0, In) so that

φ = 0 with probability 1 − δ, which controls the type I error appropriately. More-
over, we know from Lemma 8.1 that under H1, we have φ = 1 with probability
1 − δ as soon as

1 + Cα

√
kα log(n/δ)

n
≤ 1 + k2

4πn
− 3

√
k log(2/δ)

n
.

Solving for k yields that it is sufficient to have k ≥ [Cn log(n/δ)]1/(4−α), for some
constant C > 0 that depends only on Cα . As a result, our test allows us to detect
the presence of cliques of size [Cn log(n/δ)]1/(4−α). �

The consequences of Theorem 8.1 can be taken two ways. If one believes that
detecting planted cliques of size at most O(nc), c < 1/2 is hard, then suboptimality
by a factor

√
k is intrinsic to the SDP relaxation. Otherwise, the SDPk statistic

allows to reach new detection levels for Planted Clique.
To conclude, observe that the above results apply to the specific tests based on

MDP and SDP only. An interesting question is to find whether this limitation is
intrinsic to all polynomial time computable tests. Currently, the main limitation of
the above proof is that SDPk(�̂) is well controlled under H1, but it may no longer
be the case for any other statistic.
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9. Numerical experiments. Computational cost is a crucial element in this
study. In Bach, Ahipasaoglu and d’Aspremont (2010), the SDP relaxation with
accuracy ε is shown to have a total complexity of O(kp3√log(p)/ε). This is
achieved by minimizing a smooth approximation of the dual function, using first
order methods from Nesterov (2003). However, this polynomial cost is already
prohibitive in a high-dimensional setting, and we study only tests based on the
MDPk statistic. The latter is the solution of a one-dimensional minimization prob-
lem, and is approximately solved by taking a uniform grid on the variable z. The
purpose of this section is to illustrate the empirical behavior of tests based on MDPk

and to compare it with the diagonal method.

9.1. Comparison of simple methods. We simulate N = 1000 samples of n in-
dependent random vectors X0

1, . . . ,X
0
n ∼ N (0, Ip) and X1

1, . . . ,X
1
n ∼ N (0, Ip +

θvv�), for random unit vectors v supported on S = {1, . . . , k}. The vector vS is
distributed uniformly on the unit sphere of dimension k.

It yields N empirical covariance matrices �̂0
1, . . . , �̂0

N under H0 and N of them,
�̂1

1, . . . , �̂1
N under H1. We compute the D and MDPk statistics for these samples

and compare their densities. We take θ = 4 and observe that the D statistic yields
two distributions under H0 and H1 that are hard to distinguish (Figure 1, left). In
particular, it is clear that the statistic D cannot discriminate between H0 and H1 for
θ = 4, with this set of parameters. However, the distributions of MDPk(�̂) under
H0 and H1 have almost disjoint support so that it can discriminate between the two
hypotheses with probability close to one.

9.2. Tightness of error bounds. In Section 6, we prove that both the D and
MDPk statistics discriminate between H0 and H1 with high probability as long as

FIG. 1. For p = 500, n = 200, k = 30, N = 1000, estimated densities for the two statistics, un-
der H0 (whole line) and under H1 (dashed line).
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θ ≥ Ck
√

log(p/k)/n. The previous subsection indicates that MDPk actually per-
forms better than D and it is pertinent to wonder if detections levels of order smaller
than θ ≥ Ck

√
log(p/k)/n can be achieved. In this subsection, we bring numerical

evidence that it is not the case and thus corroborate evidence from Section 8.
For MDPk to be considered a tight (up to constant factor) approximation of

λk
max, it needs to discriminate between H0 and H1 with high probability as soon

as θ is of the order
√

k log(p/k)/n, which is the minimax optimal detection level
that is also achieved by λk

max. This behavior can be illustrated by showing a phase
transition for the probability of error in the testing problem, as a function of θ , for
different choices of (p,n, k). More precisely, if MDPk were a tight approximation
of λk

max, there should exist a critical value θcrit and a constant Ccrit, such that θ >

θcrit = Ccrit
√

k log(p/k)/n, the probability of type II error is close to 0. Moreover,
Ccrit should not depend on (p,n, k). Our numerical results show that this is not the
case. Instead, as predicted by the analysis of Section 6, our experiments point to
θcrit of order k

√
log(p/k)/n.

In order to substantiate such effects, we use a reciprocal setting. For fixed θ = 1,
fixed probability of type I error (test level) and several choices of parameters (p, k),
we exhibit a phase transition for the probability of type II error PII(·) as a function
of the optimal and suboptimal scalings, defined respectively by

η∗ = k

n
log

(
p

k

)
and η◦ = k2

n
log

(
p

k

)
.

If η ∈ {η∗, η◦} is the correct scaling, there should exist a critical value ηcrit, inde-
pendent of (p,n, k), such that one of the following two scenarios hold. On the one
hand, if MDPk actually exhibits optimal rates, that is, if η∗ is the correct scaling,
then η∗ �→ PII(η

∗) should have a sharp transition from 0 to 1 around ηcrit for all
choices of parameters (p, k). On the other hand, if the correct scaling for MDPk

is η◦, then it is the function η◦ �→ PII(η
◦) that has a sharp transition around ηcrit

for all choices of parameters (p, k).
We simulate N = 1400 samples of n independent random variables X0

1, . . . ,

X0
n ∼ N (0, Ip). It yields �̂0

1, . . . , �̂0
N that are drawn under H0, and used to

estimate the quantiles q0.01, q0.05 at 1% and 5% for the MDPk statistic. The
same process is repeated under H1 to estimate the probability of type II error
PH1(MDPk(�̂) > qα). To that end, we simulate X1

1, . . . ,X
1
n ∼ N (0, Ip + θvv�),

for random unit vectors v supported on S = {1, . . . , k}. The restriction of v to
S is distributed uniformly on the unit sphere of dimension k. To display a one-
dimensional dependence, k is chosen equal to the integer part of

√
p.

Figure 2 compares the behavior of the functions η∗ �→ PII(η
∗) and η◦ �→

PII(η
◦). It clearly demonstrates the presence of a critical level ηcrit � 0.1 inde-

pendent of (p,n, k). The concomitance of the right curves for different choices of
(p,n, k) indicates that η◦ rather than η∗ is the correct scaling factor for the MDPk

statistic. This confirms the results of Section 8 and the existence of a statistical
price to pay for computational efficiency.
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FIG. 2. Probability of type II error PII(η) with scalings η = η∗ (left) and η = η◦ (right) for
p = {50,100,200,500}, k = �√p�, N = 1400. Test levels are α = 5% (top) and α = 1% (bottom).

APPENDIX: TECHNICAL LEMMAS

We gather in this Appendix various useful concentration inequalities. The first
Lemma is due to Laurent and Massart.

LEMMA A.1 [Laurent and Massart (2000), Lemma 1]. Let Z1, . . . ,Zn ∼
N (0,1) be i.i.d. ce random variables, and define Y = 1

n

∑n
i=1 Z2

i − 1. Then the
two following tail bounds hold for any t > 0:

P
(
Y ≤ −2

√
t

n

)
≤ e−t , P

(
Y ≥ 2

√
t

n
+ 2

t

n

)
≤ e−t .

This second lemma generalizes the previous one to sums of squares of sub-
Gaussian random variables.

LEMMA A.2. Let G1, . . . ,Gn be i.i.d. standard sub-Gaussian centered ran-
dom variables. It holds

P

(∣∣∣∣∣1

n

n∑
i=1

(
G2

i − E
[
G2

i

])∣∣∣∣∣ > 2e

(
64

t

n
+ 32

√
t

n

))
≤ 2e−t .
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PROOF. Using a Chernoff bound and integrating the tails yields that
E[|G|p]1/p ≤ 2

√
p, for any integer p ≥ 0. It follows from these bounds, by a

series expansion, that

E
[
et(G2−E[G2])] ≤ exp

(
512e2t2)

for 0 < t < 1/(32e).(A.1)

For any u ∈ Rn, define

Sn =
n∑

i=1

ui

(
G2

i − E
[
G2

i

])
.

By a Chernoff bound, using equation (A.1), it holds for all t > 0,

P(Sn ≥ t) ≤ exp
(
−min

(
t2

2048e2|u|22
,

t

64e|u|∞
))

.

This implies our final result. �

LEMMA A.3. Let Z1, . . . ,Zn be i.i.d. N (0,1) random variables and define
Y = ∑n

i=1 |Zi |. Then, for any t > 0, it holds

P(Y − EY < −t) ≤ e−t2/(2n).

PROOF. Using a Chernoff bound, observe first that for any s > 0, we have

P(Y − EY < −t) = P(EY − Y > t) ≤ e−st
E

[
es(EY−Y )]

= e−st
n∏

i=1

E
[
e−s(E|Zi |−|Zi |)].

Moreover,

E
[
e−s(E|Zi |−|Zi |)] ≤ 2e−sE|Zi |E

[
esZi

] = 2e−s
√

π/2es2/2.

The above two displays yield

P(Y − EY < −t) ≤ 2n inf
s>0

exp
(
−st − ns

√
π/2 + n

s2

2

)

= 2n exp
(
−(t + n

√
π/2)2

2n

)
≤ e−t2/(2n). �
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