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CONVERGENCE OF GAUSSIAN QUASI-LIKELIHOOD RANDOM
FIELDS FOR ERGODIC LÉVY DRIVEN SDE OBSERVED AT HIGH

FREQUENCY

BY HIROKI MASUDA1

Kyushu University

This paper investigates the Gaussian quasi-likelihood estimation of an
exponentially ergodic multidimensional Markov process, which is expressed
as a solution to a Lévy driven stochastic differential equation whose coeffi-
cients are known except for the finite-dimensional parameters to be estimated,
where the diffusion coefficient may be degenerate or even null. We suppose
that the process is discretely observed under the rapidly increasing experi-
mental design with step size hn. By means of the polynomial-type large de-
viation inequality, convergence of the corresponding statistical random fields
is derived in a mighty mode, which especially leads to the asymptotic nor-
mality at rate

√
nhn for all the target parameters, and also to the convergence

of their moments. As our Gaussian quasi-likelihood solely looks at the local-
mean and local-covariance structures, efficiency loss would be large in some
instances. Nevertheless, it has the practically important advantages: first, the
computation of estimates does not require any fine tuning, and hence it is
straightforward; second, the estimation procedure can be adopted without full
specification of the Lévy measure.

1. Introduction. Let X = (Xt)t∈R+ be a solution to the stochastic differential
equation (SDE)

dXt = a(Xt ,α) dt + b(Xt , β) dWt + c(Xt−, β) dJt ,(1.1)

where the ingredients involved are as follows:

• the finite-dimensional unknown parameter

θ = (α,β) ∈ �α × �β =: �,

where, for simplicity, the parameter spaces �α ⊂ Rpα and �β ⊂ Rpβ are sup-
posed to be bounded convex domains; the parameter α (resp., β) affects local
trend (resp., local dispersion);

• an r ′-dimensional standard Wiener process W and an r ′′-dimensional centered
pure-jump Lévy process J , whose Lévy measure is denoted by ν;
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• the initial variable X0 independent of (W,J ), with η := L(X0) possibly depend-
ing on θ ;

• the measurable functions a : Rd × �α → Rd , b : Rd × �β → Rd ⊗ Rr ′
, and

c : Rd × �β → Rd ⊗ Rr ′′
.

Incorporation of the jump part extends the continuous-path diffusion parametric
model, which are nowadays widely used in many application fields. We denote
by Pθ the image measure of a solution process X associated with θ ∈ � ⊂ Rp ,
where p := pα + pβ . Suppose that the true parameter θ0 = (α0, β0) ∈ � does
exist, with P0 denoting the shorthand for the true image measure Pθ0 , and that X

is not completely (continuously) observed but only discretely at high frequency
under the condition for the rapidly increasing experimental design: we are given a
sample (Xt0,Xt1, . . . ,Xtn), where tj = tnj = jhn for some hn > 0 such that

Tn := nhn → ∞ and nh2
n → 0(1.2)

for n → ∞. The main objective of this paper is to estimate θ0 under the exponen-
tial ergodicity of X; the equidistant sampling assumption can be weakened to some
extent as long as the long-term and high-frequency framework is concerned; how-
ever, it is just a technical extension making the presentation notationally messy,
and hence we do not deal with it in the main context to make the presentation
more clear.

It is common knowledge that the maximum likelihood estimation is generally
infeasible, since the transition probability is most often unavailable in a closed
form. This implies that the conventional statistical analyses based on the genuine
likelihood have no utility. For this reason, we have to resort to some other feasible
estimation procedure, which could be a lot of things. Among several possibilities,
we are concerned here with the Gaussian quasi-likelihood (GQL) function defined
as if the conditional distributions of Xtj given Xtj−1 are Gaussian with approximate
but explicit mean vector and covariance matrix; see (2.9) below.

The terminology “quasi-likelihood” has originated as the pioneering work of
Wedderburn [46], the concept of which formed a basis of the generalized linear
regression. The GQL-based estimation has been known to have the advantage of
computational simplicity and robustness for misspecification of the noise distri-
bution, and is well-established as a fundamental tool in estimating possibly non-
Gaussian and dependent statistical models. Just to be a little more precise, con-
sider a time-series Y1, . . . , Yn in R with a fixed Y0, and denote by mj−1(θ) ∈ R

and vj−1(θ) > 0 the conditional mean and conditional variance of Yj given
(Y0, . . . , Yj−1), where θ is an unknown parameter of interest. Then, the Gaus-
sian quasi maximum likelihood estimator (GQMLE) is defined to be a maximizer
of the function

θ 	→
n∑

j=1

log
{

1√
2πvj−1(θ)

exp
(
−(Yj − mj−1(θ))2

2vj−1(θ)

)}
.
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Namely, we compute the likelihood of (Y1, Y2, . . . , Yn) as if the conditional law of
Yj given (Y1, . . . , Yj−1) is Gaussian with mean mj−1(θ) and variance vj−1(θ), so
that only the structures of the conditional mean and variance do matter. Although
it is not asymptotically efficient in general, it can serve as a widely applicable
estimation procedure. One can consult Heyde [12] for an extensive and system-
atic account of statistical inference based on the GQL. The GQL has been a quite
popular tool for (semi)parametric estimation, and especially there exists a vast
amount of literature concerning asymptotics of the GQL for time series models
with possibly non-Gaussian error sequence; among others, we refer to Straumann
and Mikosch [41] for a class of conditionally heteroscedastic time series models,
and Bardet and Wintenburger [3] for multidimensional causal time series, as well
as the references therein.

Let us return to our framework. On one hand, for the diffusion case (where
c ≡ 0), the GQL-estimation issue has been solved under some regularity condi-
tions, especially the GQL, which leads to an asymptotically efficient estimator,
where the crucial point is that the optimal rates of convergence for estimating α

and β are different and given by
√

Tn and
√

n, respectively; see Gobet [11] for the
local asymptotic normality of the corresponding statistical experiments. For how
to construct an explicit contrast function, we refer to Yoshida [47] and Kessler [18]
as well as the references therein; specifically, they employed a discretized version
of the continuous-observation likelihood process, and a higher order local-Gauss
approximation of the transition density, respectively. Sørensen [40] includes an
extensive bibliography of many existing results, including explicit martingale es-
timating functions for discretely observed diffusions (not necessarily at high fre-
quency). On the other hand, the issue has not been addressed enough in the pres-
ence of jumps (possibly of infinite variation). The question we should then ask is
what will occur when one adopts the GQL function. In this paper, we will pro-
vide sufficient conditions under which the GQL random field associated with our
statistical experiments converges in a mighty mode; see Section 3. We will apply
Yoshida [48] to derive the mighty convergence with the limit being shifted Gaus-
sian. As results, we will obtain an asymptotically normally distributed estimator
at rate

√
Tn for both α and β and also, very importantly, the convergence of their

moments to the corresponding ones of the limit centered Gaussian distribution.
Different from the diffusion case, the GQL does not lead to an asymptotically ef-
ficient estimator in the presence of jumps, and is not even rate-efficient for β: for
instance, in the case where X is a diffusion with compound-Poisson jumps, the
information loss in the GQMLE of α can be large if the jump part is much larger
than the diffusion part; see Section 2.3.2. That is to say, the performance of our
GQMLE may strongly depend on the structure of the jump part and its relation to
the possibly nondegenerate diffusion one, which may be considered as a possible
major drawback of our estimation procedure. Nevertheless, it has the practically
important advantages: first, the computation of estimates does not require any fine
tuning, hence is straightforward; second, the estimation procedure can be adopted
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without full specification of the Lévy measure ν. Further, our numerical experi-
ments in Section 2.4 reveal that, when the diffusion part is absent, it can happen
that the finite-sample performance of θ̂n becomes as good as the diffusion case if J

“distributionally” close to the Wiener process.
We should mention that the convergence of moments especially serves as a fun-

damental tool when analyzing asymptotic behavior of the expectations of statistics
depending on the estimator, for example, asymptotic bias and mean squared pre-
diction error, model-selection devices (information criteria) and remainder estima-
tion in higher-order inference. In the past, several authors have investigated such a
strong mode of convergence of estimators; see Bhansali and Papangelou [5], Chan
and Ing [6], Findley and Wei [8], Inagaki and Ogata [14], Jeganathan [16, 17],
Ogata and Inagaki [35], Sieders and Dzhaparidze [39] and Uchida [42], as well
as Ibragimov and Has’minski [13], Kutoyants [22, 23] and Yoshida [48]. See also
the recent paper Uchida and Yoshida [43] for an adaptive parametric estimation
of diffusions with moment convergence of estimators under the sampling design
nhk

n → 0 for arbitrary integer k ≥ 2.
The rest of this paper is organized as follows. Section 2 introduces our GQL

random field and presents its asymptotic behavior, together with a small numer-
ical example for observing finite-sample performance of the GQMLE. Section 3
provides a somewhat general result concerning the mighty convergence, based on
which we prove our main result in Section 4. In Section 5, we prove a fairly simple
criterion for the exponential ergodicity assumption in dimension one, only in terms
of the coefficient (a, b, c) and the Lévy measure ν(dz).

Throughout this paper, asymptotics are taken for n → ∞ unless otherwise men-
tioned, and the following notation is used:

• Ir denotes the r × r-identity matrix;
• given a multilinear form M = {M(i1i2···iK) : ik = 1, . . . , dk;k = 1, . . . ,K} ∈

Rd1 ⊗ · · · ⊗ RdK and variables uk = {u(i)
k }i≤dk

∈ Rdk , we write

M[u1, . . . , uK ] =
d1∑

i1=1

· · ·
dK∑

iK=1

M(i1i2···iK)u
(i1)
1 · · ·u(iK)

K .

The correspondences of indices of M and uk will be clear from each context.
Some of uk may be missing in “M[u1, . . . , uK ]” so that the resulting form again
defines a multilinear form, for example, M[u3, . . . , uK ] ∈ Rd1 ⊗ Rd2 . In partic-
ular, given two multilinear forms M(j) = {M(i1i2···iK(j))}, j = 1,2, we often use
the notation M(1) ⊗ M(2) for the tensor product(

M(1) ⊗ M(2))[u1, . . . , uK(1), v1, . . . , vK(2)]
:= (

M(1)[u1, . . . , uK(1)])(M(2)[v1, . . . , vK(2)]).
When K ≤ 2, identifying M as a vector or matrix, we write M⊗2 = MM with
 denoting the transpose; furthermore, |M| denotes either, depending on the
context, det(M) when d1 = d2, or any matrix norm of M .
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• ∂m
a stands for the bundled mth partial differential operator with respect to a =

{a(i)}.
• C denotes generic positive constant possibly varying from line to line, and we

write xn � yn if xn ≤ Cyn a.s. for every n large enough.

2. Gaussian quasi-likelihood estimation. We denote by (
, F ,F =
(Ft )t∈R+,P ) a complete filtered probability space on which the process X given
by (1.1) is defined: the initial variable X0 being F0-measurable, and (W,J ) being
F-adapted.

2.1. Assumptions.

ASSUMPTION 2.1 (Moments). E[J1] = 0, E[J⊗2
1 ] = Ir ′′ , and E[|J1|q] < ∞

for all q > 0.

We introduce the function V : Rd × �β → Rd ⊗ Rd by

V = b⊗2 + c⊗2.

For each θ , the function x 	→ V (x,β) can be viewed as an approximate local
covariance matrix of the law of h

−1/2
n (Xhn − x) under Pθ [·|X0 = x].

Let � denote the closure of �.

ASSUMPTION 2.2 (Smoothness). (a) The coefficient (a, b, c) has the exten-
sion in C(Rd ×�), and has partial derivatives such that (∂αa, ∂βb, ∂βc) admits the
extension in C(Rd × �), that

sup
(x,θ)∈Rd×�

{∣∣∂xa(x,α)
∣∣+ ∣∣∂xb(x,β)

∣∣+ ∣∣∂xc(x,β)
∣∣} < ∞,

and that, for each k ∈ {0,1,2} and l ∈ {0,1, . . . ,5}, there exists a constant
C(k, l) ≥ 0 for which

sup
(x,θ)∈Rd×�

(
1 + |x|)−C(k,l){∣∣∂k

x ∂l
αa(x,α)

∣∣+ ∣∣∂k
x ∂l

βb(x,β)
∣∣+ ∣∣∂k

x ∂l
βc(x,β)

∣∣} < ∞.

(b) V (x,β) is invertible for each (x,β), and there exists a constant C(V ) ≥ 0
such that

sup
(x,β)∈Rd×�β

(
1 + |x|)−C(V )∣∣V −1(x,β)

∣∣ < ∞.

When considering large-time asymptotics, the stability property of X much af-
fects the statistical analysis in essential ways. A typical situation to be considered
is that X is ergodic. We impose here a stronger stability condition. Let (Pt ) de-
note the transition semigroup of X. Given a function ρ : Rd → R+ and a signed
measure m on the d-dimensional Borel space, we define

‖m‖ρ = sup
{∣∣m(f )

∣∣ : f is R-valued and measurable, and fulfils that |f | ≤ ρ
}
.
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ASSUMPTION 2.3 (Stability). (a) There exists a probability measure π0 such
that for every q > 0 we can find a constant a > 0 for which

sup
t∈R+

eat
∥∥Pt(x, ·) − π0(·)

∥∥
g � g(x), x ∈ Rd,(2.1)

where g(x) := 1 + |x|q .

(b) For every q > 0,

sup
t∈R+

E0
[|Xt |q] < ∞.(2.2)

Here and in the sequel, E0 denotes the expectation operator with respect to P0.
Condition (2.1) with g replaced by the constant 1 is the exponential ergodicity,
which in particular entails the ergodic theorem: the limit π0 is a unique invariant
distribution such that, for every f ∈ L1(π0),

1

Tn

∫ Tn

0
f (Xt) dt →p

∫
f (x)π0(dx),(2.3)

where →p stands for the convergence in P0-probability; we see that

1

n

n∑
j=1

f (Xtj−1) →p
∫

f (x)π0(dx)

for continuously differentiable f with ∂f at most polynomial order, since

E0

[∣∣∣∣∣ 1

Tn

∫ Tn

0
f (Xt) dt − 1

n

n∑
j=1

f (Xtj−1)

∣∣∣∣∣
]

(2.4)

� 1

n

n∑
j=1

sup
tj−1≤s≤tj

√
E0

[|Xs − Xtj−1 |2
] → 0.

We also note that Assumption 2.3 entails the exponential absolute regularity, also
referred to as the exponential β-mixing property. This means that βX(t) = O(e−at )

as t → ∞ for some a > 0, where βX denotes the β-mixing coefficient

βX(t) := sup
s∈R+

∫ ∥∥Pt(x, ·) − ηPs+t (·)
∥∥ηPs(dx),

where ηPt := L(Xt) and ‖m‖ := ‖m‖1. Let us recall that the exponential absolute
regularity implies the exponential strong-mixing property, which plays an essential
role in Yoshida [48], Lemma 4, which we will apply in the proof of Theorem 2.7.

Several sufficient conditions for Assumption 2.3 are known; for diffusion pro-
cesses, see the references of Masuda [28, 29] for some details. In the presence of
the jump component, verification of (2.1) can become much more involved. Espe-
cially if the coefficients are nonlinear and the Lévy process J is of infinite varia-
tion, the verification may be far from being a trivial matter. We refer to Kulik [19,
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20], Maruyama and Tanaka [26], Menaldi and Robin [33], Meyn and Tweedie [34]
and Wang [45] as well as Masuda [28, 29] for some general results concerning the
(exponential) ergodicity. For the sake of convenience, focusing on the univariate
case and setting ease of verification above generality, we will provide in Propo-
sition 5.4 sufficient conditions for Assumption 2.3, in a form enabling us to deal
with cases of nonlinear coefficients and infinite-variation J ; see also Remark 5.6.

Define G∞(θ) = (Gα∞(θ),G
β∞(β)) ∈ Rp by

Gα∞(θ) =
∫

∂αa(x,α)
[
V −1(x,β)

[
a(x,α0) − a(x,α)

]]
π0(dx),(2.5)

Gβ∞(β) =
∫ {

V −1(∂βV )V −1(x,β)
}[

V (x,β0) − V (x,β)
]
π0(dx).(2.6)

[In (2.6), we regarded “V −1(∂βV )V −1(x,β)” as a bilinear form with dimensions

of indices being pβ and d2.] Further, let G′∞(θ0) := diag{G′α∞(θ0),G
′β∞(θ0)} ∈

Rp ⊗ Rp , where, for each v′
1, v

′
2 ∈ Rpα and v′′

1 , v′′
2 ∈ Rpβ ,

G′α∞(θ0)
[
v′

1, v
′
2
]

(2.7)
= −

∫
V −1(x,β0)

[
∂αa(x,α0)

[
v′

1
]
, ∂αa(x,α0)

[
v′

2
]]

π0(dx),

G′β∞(θ0)
[
v′′

1 , v′′
2
]

(2.8)
= −

∫
trace

[{(
V −1∂βV

)⊗ (
V −1∂βV

)}
(x,β0)

[
v′′

1 , v′′
2
]]

π0(dx).

ASSUMPTION 2.4 (Identifiability). There exist positive constants χα =
χα(θ0) and χβ = χβ(θ0) such that |Gα∞(θ)|2 ≥ χα|α − α0|2 and |Gβ∞(β)|2 ≥
χβ |β − β0|2 for every θ ∈ �.

ASSUMPTION 2.5 (Nondegeneracy). Both G′α∞(θ0) and G
′β∞(θ0) are invert-

ible.

Assumptions 2.4 and 2.5 are quite typical in statistical estimation. In Lemma 2.6
below, both assumptions are implied by a kind of uniform nonsingularity. Define
two bilinear forms Ā(α′, α′′, β ′) and B̄(β ′, β ′′) by, just like (2.7) and (2.8),

Ā
(
α′, α′′, β ′)[v′

1, v
′
2
] =

∫
V −1(x,β ′)[∂αa

(
x,α′)[v′

1
]
, ∂αa

(
x,α′′)[v′

2
]]

π0(dx),

B̄
(
β ′, β ′′)[v′′

1 , v′′
2
]

=
∫

trace
[{(

V −1(∂βV )V −1)(x,β ′)⊗ ∂βV
(
x,β ′′)[v′′

1 , v′′
2
]}]

π0(dx).

LEMMA 2.6. Suppose that Ā(α′, α′′, β ′) and B̄(β ′, β ′′) are nonsingular uni-
formly in α′, α′′ ∈ �α and β ′, β ′′ ∈ �β . Then both Assumptions 2.4 and 2.5 hold
true.
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PROOF. It is obvious that Assumption 2.5 follows. The mean-value theorem
applied to (2.5) and (2.6) leads to Gα∞(θ) = Ā(α, α̃, β)[α0 − α] for some α̃ ly-
ing the segment connecting α and α0, with a similar form for G

β∞(β); recall that
�α and �β are presupposed to be convex. Since infα′,α′′,β ′ ‖Ā(α′, α′′, β ′)‖ > 0
and infβ ′,β ′′ ‖B̄(β ′, β ′′)‖ > 0 under the assumption, the matrices Ā⊗2 and B̄⊗2 are
uniformly positive definite, hence Assumption 2.4 follows. �

2.2. Asymptotics: Main results. In what follows, we write

jY = Ytj − Ytj−1

for any process Y , and

fj−1(a) = f (Xtj−1, a)

for a variable a in some set A and a measurable function f on Rd × A. The Euler
approximation for SDE (1.1) is formally

Xtj ≈ Xtj−1 + aj−1(α)hn + bj−1(β)jW + cj−1(β)jJ

under Pθ , which leads us to consider the local-Gauss distribution approximation

L(Xtj |Xtj−1) ≈ Nd

(
Xtj−1 + aj−1(α)hn,hnVj−1(β)

)
.(2.9)

Put

χj (α) = jX − hnaj−1(α).

Based on (2.9), we define our GQL by

Qn(θ) = −
n∑

j=1

{
log

∣∣Vj−1(β)
∣∣+ 1

hn

V −1
j−1(β)

[
χj (α)⊗2]},(2.10)

and the corresponding GQMLE by any element

θ̂n = (α̂n, β̂n) ∈ argmax
θ∈�

Qn(θ).

Under Assumption 2.1 we have
∫

z(k)z(l)ν(dz) = δkl for k, l ∈ {1, . . . , r ′′}. We
need some further notation in this direction. For i1, . . . , im ∈ {1, . . . , r ′′} with
m ≥ 3, we write ν(m) for the mth mixed moments of ν,

ν(m) = {
νi1···im(m)

}
i1,...,im

:=
{∫

z(i1) · · · z(im)ν(dz)

}
i1,...,im

.

Let c(·k)(x,β) ∈ Rd denote the kth column of c(x,β). We introduce the matrix

V(θ0) :=
(

G′α∞(θ0) Vαβ

V
αβ Vββ

)
,(2.11)
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where, for each v′ ∈ Rpα and v′′
1 , v′′

2 ∈ Rpβ ,

Vαβ

[
v′, v′′

1
] := −

∫ ∑
k′,l′,s′

νk′l′s′(3)V −1(x,β0)
[
∂αa(x,α0)

[
v′], c(·s′)(x, β0)

]

× {
∂βV −1(x,β0)

}[
v′′

1 , c(·k′)(x, β0), c
(·l′)(x, β0)

]
π0(dx),

Vββ

[
v′′

1 , v′′
2
] :=

∫ ∑
s,t,s′,t ′

νsts′t ′(4)
{
∂βV −1(x,β0)

[
v′′

1 , c(·s)(x, β0), c
(·t)(x, β0)

]}

× {
∂βV −1(x,β0)

[
v′′

2 , c(·s′)(x, β0), c
(·t ′)(x, β0)

]}
π0(dx).

Finally, put

�0 =
((−G′α∞

)−1
(θ0)

{(
G′α∞

)−1
Vαβ

(
G

′β∞
)−1}

(θ0)

Sym.
{(

G
′β∞
)−1

Vββ

(
G

′β∞
)−1}

(θ0)

)
.

Now we can state our main result, the proof of which is deferred to Section 4.1.

THEOREM 2.7. Suppose Conditions 2.1, 2.2, 2.3, 2.4 and 2.5. Then we have

E0
[
f
(√

Tn(θ̂n − θ0)
)] →

∫
f (u)φ(u;0,�0) du, n → ∞

for every continuous function f : Rp → R of at most polynomial growth, where
φ(·;0,�0) denotes the centered Gaussian density with covariance matrix �0.

The following two remarks are immediate:

• The estimators α̂n and β̂n are asymptotically independent if ν(3) = 0, implying
that α̂n and β̂n may not be asymptotically independent if ν is skewed. If c ≡ 0
so that X is a diffusion, then ν(4) = 0, so that Vββ = 0 and

√
Tn(β̂n − β0) is

asymptotically degenerate at 0. This is in accordance with the case of diffusion,
where the GQMLE of β is

√
n-consistent. See Section 2.3.2 for a discussion on

the efficiency issue.
• The revealed convergence rate

√
Tn of the GQMLE β̂n alerts us to take precau-

tions against the presence of jumps. For instance, suppose that one has adopted
the parametric diffusion model [i.e., (1.1) with c ≡ 0] although there actually
does exist a nonnull jump part. Then one takes

√
n for the convergence rate

of β̂n, although the true one is
√

Tn, which may lead to a seriously inappropriate
confidence zone. This point can be sufficient grounds for importance of testing
the presence of jumps. In case of one-dimensional X, Masuda [31], Section 4,
constructed an analogue to Jarque–Bera normality test and studied its asymp-
totic behavior. See Masuda [32] for a multivariate extension.

In order to construct confidence regions for θ0 as well as to perform statistical
tests, we need a consistent estimator of the asymptotic covariance matrix �0. Al-
though �0 contains unknown third and fourth mixed moments of ν, it turns out to
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be possible to provide a consistent estimator of �0 without any specific knowledge
of ν other than Assumption 2.1. Let

�̂n =
((−Ĝ′α

n

)−1 (
Ĝ′α

n

)−1
V̂αβ,n

(
Ĝ

′β
n

)−1

Sym.
(
Ĝ

′β
n

)−1
V̂ββ,n

(
Ĝ

′β
n

)−1

)
,

where, for each v′
1, v

′
2 ∈ Rpα and v′′

1 , v′′
2 ∈ Rpβ ,

Ĝ′α
n

[
v′

1, v
′
2
] := −1

n

n∑
j=1

V −1
j−1(β̂n)

[
∂αaj−1(α̂n)

[
v′

1
]
, ∂αaj−1(α̂n)

[
v′

2
]]

,

Ĝ′β
n

[
v′′

1 , v′′
2
] := −1

n

n∑
j=1

trace
{(

V −1
j−1∂βVj−1

)⊗ (
V −1

j−1 ∂βVj−1
)
)(β̂n)

[
v′′

1 , v′′
2
]}

,

V̂αβ,n

[
v′

1, v
′′
1
]

:= −
n∑

j=1

1

Tn

(
V −1

j−1 ⊗ ∂βV −1
j−1

)
(β̂n)

× [(
∂αaj−1(α̂n)

[
v′

1
]
, χj (α̂n)

)
,
(
v′′

1 , χj (α̂n)
⊗2)],

V̂ββ,n

[
v′′

1 , v′′
2
]

:=
n∑

j=1

1

Tn

(
∂βV −1

j−1 ⊗ ∂βV −1
j−1

)
(β̂n)

[(
v′′

1 , χj (α̂n)
⊗2), (v′′

2 , χj (α̂n)
⊗2)].

We will denote by →L the weak convergence under P0.

COROLLARY 2.8. Under the conditions of Theorem 2.7, we have �̂n →p �0,
and hence

�̂−1/2
n

√
Tn(θ̂n − θ0) →L Np(0, Ip)(2.12)

holds true.

The proof of Corollary 2.8 is given in Section 4.2.
The primary objective of this paper is to derive the Lq(P0)-boundedness of√
Tn(θ̂n − θ0) for every q > 0, for which the moment conditions [Assumptions 2.1

plus 2.3(b)] seem indispensable. Nevertheless, as pointed out by the anonymous
referee, the existence of the moments of all orders is too much to ask in Corol-
lary 2.8. Let us discuss a possibility of relaxing the moment condition in some
detail; to make the exposition more clear, we here do not seek the greatest gener-
ality.

Clearly, the really necessary order (of J , hence X too) partly depends on the
growth of the coefficients (a, b, c) and its partial derivatives with respect to θ . We
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will show that the consistency and asymptotic normality of θ̂n follow on some
weaker moment and stability assumptions than the corresponding ones imposed
in Theorem 2.7. We impose the following three conditions instead of Assump-
tions 2.2, 2.1 and 2.3:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
k∈{0,1,2}

l∈{0,1,...,5}
sup

(x,θ)∈Rd×�

{∣∣∂k
x ∂l

αa(x,α)
∣∣+ ∣∣∂k

x ∂l
βb(x,β)

∣∣
+ ∣∣∂k

x ∂l
βc(x,β)

∣∣} < ∞,

sup
(x,θ)∈Rd×�

∣∣V −1(x,β)
∣∣ < ∞;

(2.13)

E[J1] = 0, E
[
J⊗2

1

] = Ir ′′ and
(2.14)

E
[|J1|q] < ∞ for some q > (p ∨ 4);

X admits a unique invariant distribution π0 such that (2.3) holds
true for every f ∈ L1(π0).

(2.15)

It is possible to deal with unbounded coefficients, but then we inevitably need
the uniform boundedness of moments as in (2.2), where the minimal value of the
index q must be determined according to the growth orders of all the coefficients
as well as their partial derivatives, leading to a somewhat messy description.

We then derive the asymptotic normality result as follows, proof of which is
given in Section 4.3.

THEOREM 2.9. Suppose (2.13), (2.14), (2.15) and Assumptions 2.4 and 2.5.
Then we have

√
Tn(θ̂n − θ0) →L Np(0,�0).

In particular, we then do not need the exponential mixing property in Assump-
tion 2.3, and the ergodic theorem (2.3) is enough. This is of great advantage, as the
exponential ergodicity is much stronger than (2.3) to hold; see also Remark 5.6.
Finally, it also should be noted that it is possible to derive the Studentized ver-
sion (2.12) under the assumptions in Theorem 2.9 with “q > (p ∨ 4)” in (2.14)
strengthened to “q > (p ∨ 8).” Indeed, it is clear from the proof of Corollary 2.8
why we require that q > (p ∨ 8), and we omit the details.

We end this section with some remarks on the model setup.

• Although we are considering “ergodic” X, it is obvious that we can target Lévy
processes as well, according to the built-in independence of the increments
(jX)j≤n.

• A general form of the martingale estimating functions is

θ 	→
n∑

j=1

Wj−1(θ)
{
g(Xtj−1,Xtj ; θ) − Eθ

[
g(Xtj−1,Xtj ; θ)|Ftj−1

]}
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for some W ∈ Rp ⊗ Rm and Rm-valued function g on Rd × Rd × �. We would
have a wide choice of W and g. When the conditional expectations involved do
not admit closed forms, then the leading-term approximation of them via the
Itô–Taylor expansion can be used. In view of this, as in Kessler [18], it would be
formally possible to relax the condition nh2

n → 0 in (1.2) by gaining the order of
the Itô–Taylor expansions of the conditional mean and conditional covariance,

Eθ [Xtj |Ftj−1] = Xtj−1 + aj−1(α)hn + · · · ,
Vθ [Xtj |Ftj−1] = Vj−1(β)hn + · · · ,

which we have implicitly used up to the hn-order terms to build Qn of (2.10).
However, we then need specific moment structures of ν, which appear in the
higher orders of the above Itô–Taylor expansion. Moreover, we should note that
the convergence rate

√
Tn can never be improved for both α and β , even if

Eθ [Xtj |Ftj−1] and Vθ [Xtj |Ftj−1] have closed forms, such as the case of linear
drifts, so that the rate of hn → 0 may not matter as long as Tn → ∞. See also
Remark 4.1.

• As was mentioned in the Introduction, the sampling points t1, . . . , tn may be
irregularly spaced to some extent. Let 0 ≡ t0 < t1 < · · · < tn =: Tn, and put
j t := tj − tj−1. We claim that it is possible to remove the equidistance con-
dition, while retaining that hn := max1≤j≤n j t → 0. We need the additional
condition about asymptotic behavior of the spacing

1

hn

min
1≤j≤n

j t → 1,(2.16)

which obviously entails that Tn ∼ nhn (the ratio of both sides tends to 1). Then
the same statements as in Theorem 2.7, Corollary 2.8 and Theorem 2.9 remain
valid under (2.16). For this point, we only note that estimate (2.4) remains true
even under (2.16): noting that

kn := max
j≤n

∣∣∣∣
(

1

nj t
− 1

Tn

)
nj t

∣∣∣∣
≤

(
1 − 1

hn

min
j≤n

j t

)
+
(

nhn

Tn

− 1
)

= o(1),

we have, for any f such that both f and ∂f are of at most polynomial growth,

δn :=
∣∣∣∣∣ 1

Tn

∫ Tn

0
f (Xt) dt − 1

n

n∑
j=1

f (Xtj−1)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

1

Tn

∫ tj

tj−1

f (Xt) dt −
n∑

j=1

1

nj t

∫ tj

tj−1

f (Xtj−1) dt

∣∣∣∣∣
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≤ kn

1

n

n∑
j=1

1

j t

∫ tj

tj−1

∣∣f (Xt)
∣∣dt

+ 1

n

n∑
j=1

1

j t

∫ tj

tj−1

∣∣f (Xt) − f (Xtj−1)
∣∣dt

� kn

1

n

n∑
j=1

1

j t

∫ tj

tj−1

(
1 + |Xt |)C dt

+ 1

n

n∑
j=1

1

j t

∫ tj

tj−1

(
1 + |Xt |)C |Xt − Xtj−1 |dt

for some C > 0. Therefore, Schwarz’s inequality together with Lemma 4.5
leads to the estimate E0[δn] � kn + √

hn = o(1), enabling us to use n−1 ×∑n
j=1 f (Xtj−1) →p

∫
f (x)π0(dx) as in the case of the equally-spaced sam-

ple. With this in mind, we can deduce the same estimates and limit results in
the proofs given in Sections 4.2 to 4.3 in an entirely analogous way, the details
being omitted.

2.3. Discussion.

2.3.1. On the identifiability of the dispersion parameter. Suppose that the co-
efficients b(x,β) and c(x,β) depend on β only through β1 and β2, respectively,
where β = (β1, β2). On the one hand, it should be theoretically possible to iden-
tify β1 and β2 individually by the (intractable) likelihood function; for example,
see Aït-Sahalia and Jacod [2] for the precise asymptotic behavior of the Fisher
information matrix for β in case of univariate Lévy processes. We also refer to
Aït-Sahalia and Jacod [1] for how to construct an asymptotically efficient estima-
tor of β1 through the use of a truncated power-variation statistics, regarding β2 as a
nuisance parameter. To perform individual estimation for more general diffusions
with jumps, it is unadvised to resort to the likelihood based estimation. Instead, we
may adopt a threshold-type estimator utilizing only relatively small (resp., large)
increments of X for estimating β1 (resp., β2), which makes it possible to extract
information of the diffusion and jump parts separately, in compensation for a non-
trivial fine tuning of the threshold; see Shimizu and Yoshida [38] and Ogihara and
Yoshida [36] in case of compound-Poisson jumps and Shimizu [37] in the presence
of infinitely many small jumps of finite variation.

On the other hand, our identifiability condition on β in Assumption 2.4 can
be unfortunately stringent in the simultaneous presence of nondegenerate diffu-
sion and jump components. Let us look at the assumption in the multiplicative-
parameter case b(x,β) = β1b0(x) and c(x,β) = β2c0(x), where b0 and c0 are



1606 H. MASUDA

known positive functions and where we set d = r ′ = r ′′ = pβ = 1 for sim-
plicity; we implicitly suppose that the function equals 1 if it is constant be-
cause the constant then can be absorbed into β . Further, we here suppose that
�β ⊂ (0,∞) × (0,∞), so that X admits both nonnull diffusion and jump parts.

Then direct computation gives G
β∞(β) = M(β)[β0 − β], where

M(β) :=
(

2β1(β10 + β1)Ibb 2β1(β20 + β2)Ibc

2β2(β10 + β1)Ibc 2β2(β20 + β2)Icc

)

with Ibb := ∫
b4

0(x)V −2(x,β)π0(dx), Ibc := ∫
b2

0(x)c2
0(x)V −2(x,β)π0(dx), and

Icc := ∫
c4

0(x)V −2(x,β)π0(dx). We have |M(β)| = C(β)|IbbIcc − Ibc| for some
constant C(β) depending on β such that infβ C(β) > 0, so that the identifiability
condition on β is satisfied if |IbbIcc − Ibc| > 0. In view of Schwarz’s inequality,
we always have IbbIcc − Ibc ≥ 0, the equality holding only when there exists an
r ∈ R such that b0(x) = rc0(x) for every x ∈ R. That is, the GQMLE fails to be
consistent as soon as b0 and c0 are proportional to each other; especially if both b0
and c0 are constant (hence 1, as was presupposed), then the GQMLE indeed cannot
identify β1 and β2 individually, for there do exist infinitely many β = (β1, β2) such
that

V (x,β) − V (x,β0) = (
β2

1 + β2
2
)− (

β2
10 + β2

20
) = 0

for every x. This seems to be unavoidable as our contrast function Mn is con-
structed solely based on fitting local conditional mean and covariance matrix. Al-
though our estimation procedure cannot in general separate information of diffu-
sion and jump variances, it should be noted that, when both b0 and c0 are constant,
we may instead consistently estimate the “local variance” β2

1 + β2
2 .

Finally, we remark that the identifiability condition “|Gβ∞(β)|2 ≥ χβ |β − β0|2”
becomes much simpler when we know that b(·, ·) ≡ 0 from the very beginning;
then, in view of expression (2.6) and Assumption 2.2(b), it would suffice to have
|∂βc2(x,β)| > 0 over a domain.

2.3.2. On the asymptotic efficiency. The efficiency issue for model (1.1) based
on high-frequency sampling is a difficult problem and has been left unsolved over
the years, which hinders us to do quantitative study on how much information loss
occurs on our GQMLE; as a matter of fact, we do not know any Hajék bound on
the asymptotic covariances especially when J is of infinite activity. This general
issue is beyond the scope of this paper, but instead we give some remarks in this
direction.

• Overall, the amount of efficiency loss in using our GQMLE may strongly de-
pend on the structure of the jump part and on its relation to the possibly nonde-
generate diffusion part; this would be a major drawback of our GQMLE. We do
know the theoretical minimal asymptotic covariance matrix when X is a diffu-
sion with compound-Poisson jumps with nondegenerate diffusion part, where,
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in particular, the optimal rate of convergence in estimating α is
√

Tn, achieved
by our GQMLE α̂n; for details, see Shimizu and Yoshida [38] and Ogihara and
Yoshida [36], as well as the references therein. In order to observe the effect of
the jump part in estimation of α in a concise way, let us look at the univariate X

given by

dXt = a(Xt ,α) dt + b(Xt) dWt + c(Xt−) dJt ,

where α ∈ R, infx b(x) ∧ infx c(x) > 0, and J is a centered compound-Poisson
process. The asymptotic variance of α̂n is then given by the inverse of

−G′α∞(θ0) =
∫ {

b2(x) + c2(x)
}−1{

∂αa(x,α0)
}2

π0(dx),

while the minimal asymptotic variance of the asymptotically efficient estimator
is the inverse of A∗

0 := ∫
b−2(x){∂αa(x,α0)}2π0(dx). Hence, it would be natural

to measure amount of efficiency loss in using α̂n by the quantity

A∗
0 − {−G′α∞(θ0)

} =
∫ {∂αa(x,α0)}2

b2(x)

(
c2(x)

b2(x) + c2(x)

)
π0(dx).

From this expression, we may expect that the efficiency loss may be large (resp.,
not so significant) when the jump part is much larger (resp., smaller) compared
with the diffusion part. This point comes into focus by looking at the Ornstein–
Uhlenbeck process

dXt = −α0Xt dt + β1 dWt + β2 dJt ,

where α0, β1, β2 > 0. In this case, by means of the special relation mα0κ(m) =
κZ(m) for m ∈ N, where κ(m) and κZ(m), respectively, denote the mth cumu-
lants of π0 and L(β1W1 + β2J1) (cf. Barndorff-Niesen and Shephard [4]), we
have

A∗
0 − {−G′α∞(θ0)

} = β2
2

β2
1 (β2

1 + β2
2 )

∫
x2π0(dx) = 1

2α0

(
β2

β1

)2

,

which becomes larger (resp., smaller) with increasing (resp., decreasing) β2
2/β2

1 ,
the ratio of the jump-part variance to the diffusion-part one.

Furthermore, if X is supposed to be of pure-jump driven type (i.e., b ≡ 0)
from the very beginning, the optimal rate of convergence in estimating α may
be faster than

√
Tn. For example, if X is the Ornstein–Uhlenbeck-type pro-

cess dXt = −αXt dt + dJt and if L(h−1/γ Jh) for small h behaves like the
non-Gaussian γ -stable distribution [γ ∈ (0,2)], then the least absolute devia-
tion (LAD)-type estimator has asymptotic normality at rate

√
nh

1−1/γ
n , which

is faster than
√

Tn = √
nhn; see Masuda [30] for details. Unfortunately, it is not

clear whether or not it is possible to generalize the LAD-type estimation method
to deal with X of (1.1) with nonlinear coefficients.
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• Let us consider

dXt = a(Xt ,α) dt + c(Xt−, β) dJt ,(2.17)

where J is a centered pure-jump Lévy process of infinite activity [i.e., ν(R) =
∞] such that E[J 2

1 ] = 1. Sometimes, a pure-jump Lévy process J can be ap-
proximated by a standard Wiener process if the parameter contained in the Lévy
measure ν(dz) behaves suitably; for instance, L(J1) → N1(0,1) as δ → ∞
if L(J1) obeys the symmetric centered normal inverse-Gaussian distribution
NIG(δ,0, δ,0). Although the rate of convergence

√
Tn of our GQMLE β̂n can

be never improved as long as we have a nonnull jump part, it is expected, in gen-
eral, that if L(J1) in (2.17) gets “closer” to the normal distribution [i.e., if both
|ν(3)| and ν(4) become small], our GQMLE will exhibit better performance;
see Table 1 in Section 2.4 for some simulation results in this setting. As a matter
of fact, Theorem 2.7 verifies that

sup
n∈N

V0
[√

Tn(β̂n − β0)
]
� ν(4).

[Recall that Vββ depends on ν(4) linearly.] It is worth mentioning that, even
though β̂n is here

√
Tn-consistent,

√
n(β̂n −β0) behaves like a tight sequence if

κn := ν(4) gets smaller as κn = O(hn).

2.4. A numerical example. For simulation purposes, we consider the follow-
ing concrete model:

dXt = −αXt√
1 + X2

t

dt +√
β dJt , X0 = 0,(2.18)

where the true value is (α0, β0) = (1,1), the driving process is the normal in-
verse Gaussian Lévy process such that L(Jt ) = NIG(δ,0, δt,0), where δ = 1,10
or 20. It holds that E[Jt ] = 0, E[J 2

1 ] = t , and L(Jt ) → N (0, t) in total variation
as δ → ∞, and that ν(3) = 0 and ν(4) = 3/δ2. Model (2.18) is a normal-inverse
Gaussian counterpart to the hyperbolic diffusion, for which J is replaced by a
standard Wiener process. For this X, we can verify all the assumptions; see Propo-
sition 5.4 for the verification of the stability conditions.

We simulated 1000 independent paths by Euler scheme with sufficiently fine
step size to obtain 1000 independent estimates θ̂n = (α̂n, α̂n), and then computed
their empirical mean and standard deviations.

Figure 1 shows typical sample paths of X for δ = 1,10, and 20, with a diffu-
sion corresponding to X with J replaced with a standard Wiener process, just for
comparison.

Table 1 reports the results; just for comparison, we included the case of diffu-
sion, where J is a standard Wiener process. From the table, we can observe the
following:

• the performance of α̂n are rather similar for all the three cases;
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FIG. 1. Plots of sample paths of X of (2.18) for δ = 1,10 and 20, with a diffusion corresponding
to X with J replaced by a standard Wiener process.

• the performance of β̂n gets better for larger δ, which can be expected from the
fact that the asymptotic variance of β̂n is a constant multiple of ν(4) = 3δ−2; we
have Vββ → 0 as δ → ∞.

3. Mighty convergence of a class of continuous random fields. In this sec-
tion, we prove a fundamental result concerning the “single-norming” mighty con-

TABLE 1
Finite sample performance of θ̂n concerning the model (2.18); just for comparison, the case of

diffusion is also included. In each case, the sample mean is given with the sample standard
deviation in parenthesis

Diffusion δ = 1 δ = 10 δ = 20

Tn hn α β α β α β α β

10 0.05 1.16 0.96 1.15 0.98 1.18 0.97 1.18 0.96
(0.63) (0.10) (0.62) (0.58) (0.65) (0.11) (0.65) (0.10)

0.01 1.19 0.99 1.17 0.97 1.21 0.99 1.19 0.99
(0.67) (0.04) (0.64) (0.48) (0.66) (0.07) (0.68) (0.05)

100 0.05 1.00 0.97 1.00 0.98 1.00 0.97 1.01 0.97
(0.18) (0.03) (0.19) (0.17) (0.18) (0.04) (0.17) (0.03)

0.01 1.02 0.99 1.02 1.00 1.02 0.99 1.03 1.00
(0.18) (0.01) (0.19) (0.17) (0.18) (0.02) (0.19) (0.02)
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vergence of a continuous statistical random fields associated with general vector-
valued estimating functions; here, the “single-norming” means that the rates of
convergence are the same for all the arguments of the corresponding estimator.
Theorem 3.5 below will serve as a fundamental tool in the proof of Theorem 2.7;
the content of this section can be read independently of the main body.

To proceed, we need some notation. Denote by {Xn, An, (Pθ )θ∈�}n∈N under-
lying statistical experiments, where � ⊂ Rp is a bounded convex domain. Let
θ0 ∈ �, and write P0 = Pθ0 . Let Gn = (Gj,n)

p
j=1 : Xn × � → Rp be vector-valued

random functions; as usual, we will simply write Gn(θ), dropping the argument
of Xn. Our target “contrast” function is

Mn(θ) := − 1

Tn

∣∣Gn(θ)
∣∣2,(3.1)

where (Tn) is a nonrandom positive real sequence such that Tn → ∞. The cor-
responding “M-estimator” is defined to be any measurable mapping θ̂n : Xn → �

such that

θ̂n ∈ argmax
θ∈�

Mn(θ).

Due to the compactness of � and the continuity of Mn imposed later on, we can
always find such a θ̂n. The estimate θ̂n can be any root of Gn(θ) = 0 as soon as it
exists.

Set Un(θ0) := {u ∈ Rp : θ0 + T
−1/2
n u ∈ �} and define random fields Zn :

Un(θ0) → (0,∞) by

Zn(u) = Zn(u; θ0) := exp
{
Mn

(
θ0 + T −1/2

n u
)− Mn(θ0)

}
.(3.2)

Obviously, it holds that

ûn := √
Tn(θ̂n − θ0) ∈ argmax

θ∈�

Zn(θ).

We consider the following two conditions for the random fields Zn.

• [Polynomial type Large Deviation Inequality (PLDI)]. For every M > 0, we
have

sup
r>0

{
rM sup

n∈N

P0

[
sup
|u|>r

Zn(u) ≥ e−r
]}

< ∞.(3.3)

• (Weak convergence on compact sets). There exists a random field Z0(·) =
Z0(·; θ0) such that Zn →L Z0 in C(B(R)) for each R > 0, where B(R) := {u ∈
Rp; |u| ≤ R}.

Under these conditions, the mode of convergence of Zn(·) is mighty enough to de-
duce that the maximum-point sequence (ûn)n is Lq(P0)-bounded for every q > 0,
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which especially implies that (ûn)n is tight: indeed, if (3.3) is in force,

sup
n∈N

P0
[|ûn| > r

] ≤ sup
n∈N

P0

[
sup
|u|>r

Zn(u) ≥ Zn(0)
]

= sup
n∈N

P0

[
sup
|u|>r

Zn(u) ≥ 1
]
� 1

rM

for every r > 0, so that

sup
n∈N

E0
[|ûn|q] =

∫ ∞
0

sup
n∈N

P0
[|ûn| > s1/q]ds � 1 +

∫ ∞
1

s−M/q ds < ∞.

If u 	→ Z0(u) is a.s. maximized at a unique point û∞, then it follows from the
tightness of (ûn)n∈N that ûn →L û∞; let us remind the reader that the weak con-
vergence on any compact set alone is not enough to deduce the weak convergence
of ûn, since Un(θ0) ↑ Rp and we have no guarantee that (ûn) is tight. Moreover,
owing to the PLDI, the moment of f (ûn) converges to that of f (û∞) for every
continuous function f on Rp of at most polynomial growth. In our framework,
log Z0 admits a quadratic structure with a normally distributed linear term and a
nonrandom positive definite quadratic term, so that û∞ is asymptotically normally
distributed.

We now introduce regularity conditions.

ASSUMPTION 3.1 (Smoothness). The functions θ 	→ Gn(θ) are continuously
extended to the boundary of �, and belong to C 3(�), P0-a.s.

ASSUMPTION 3.2 (Bounded moments). For every K > 0,

sup
n∈N

E0

[∣∣∣∣ 1√
Tn

Gn(θ0)

∣∣∣∣
K]

+ max
k∈{0,1,2,3} sup

n∈N

E0

[
sup
θ∈�

∣∣∣∣ 1

Tn

∂k
θ Gn(θ)

∣∣∣∣
K]

< ∞.

Let M > 0 be a given constant.

ASSUMPTION 3.3 (Limits). (a) There exist a nonrandom function G∞ :� →
Rp and positive constants χ = χ(θ0) and ε such that: G∞(θ0) = 0;
supθ |G∞(θ)| < ∞; |G∞(θ)|2 ≥ χ |θ − θ0|2 for every θ ∈ �; and

sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣√Tn

(
1

Tn

Gn(θ) − G∞(θ)

)∣∣∣∣
M+ε]

< ∞.

(b) There exists a nonrandom G′∞(θ0) ∈ Rp ⊗ Rp of rank p such that

sup
n∈N

E0

[∣∣∣∣√Tn

(
1

Tn

∂θGn(θ0) − G′∞(θ0)

)∣∣∣∣
M]

< ∞.
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ASSUMPTION 3.4 (Weak convergence). T
−1/2
n Gn(θ0) →L Np(0,V(θ0)) for

some positive definite V(θ0) ∈ Rp ⊗ Rp .

Let �(θ0) := (G′∞)−1V(G′∞)−1(θ0). The main claim of this section is the
following.

THEOREM 3.5. Let M > 0.

(a) Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then the PLDI (3.3) holds
true.

(b) If Assumption 3.4 is additionally met, then

E0
[
f (ûn)

] →
∫

f (u)φ
(
u;0,�(θ0)

)
du

for every continuous function f : Rp → R satisfying that lim sup|u|→∞ |u|−q ×
|f (u)| < ∞ for some q ∈ (0,M).

PROOF. Applying Taylor’s expansion to (3.2), we get

log Zn(u) = n(θ0)[u] − 1
2�(θ0)[u,u] + ξn(u),(3.4)

where n(θ0) := T
−1/2
n ∂θMn(θ0), �n(θ0) := −T −1

n ∂2
θ Mn(θ0), �(θ0) :=

2G′∞(θ0)
G′∞(θ0) and

ξn(u) := 1

2

{
�(θ0) − �n(θ0)

}[u,u]
(3.5)

−
∫ 1

0
(1 − s)

∫
∂θ�n

(
θ0 + stT −1/2

n u
)[

sT −1/2
n u,u⊗2]dt ds.

We will prove (a) by making use of Yoshida [48], Theorem 3(c). The task is
then to verify conditions [A1′′], [A4′], [A6], [B1] and [B2] of that paper. For con-
venience and clarity, we will list them in a reduced form with our notation. First
we look at [B1] and [B2]:

[B1] the matrix �(θ0) is positive definite;
[B2] there exists a constant χ > 0 such that Y(θ) ≤ −χ2|θ − θ0|2 for each

θ ∈ �.

Here Y(θ) := −|G∞(θ)|2, where G∞(θ) is the one appearing in Assumption 3.3.
Obviously, Assumption 3.3 assures [B1] and [B2] (the identifiability); in particular,
we have the convergence T −1

n Mn(θ) →p −|G∞(θ)|2 for each θ ∈ �, so that

Yn(θ) := 1

Tn

{
Mn(θ) − Mn(θ0)

} = 1

Tn

log Zn

(√
Tn(θ − θ0)

) →p Y(θ).

Next, given constants M > 0 [the number in (3.3)] and α ∈ (0,1), conditions [A6],
[A1′′] and [A4′] read as follows:
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[A6] (i) supn E0[|n(θ0)|M1] < ∞ for M1 := M/(1 − ρ1).
(ii) supn E0[supθ |T 1/2−β2

n (Yn(θ) − Y(θ))|M2] < ∞, for M2 := M/(1 −
2β2 − ρ2).

[A1′′] (i) supn E0[supθ |T −1
n ∂3

θ Mn(θ)|M3] < ∞ for M3 := M/{α/(1 − α) − ρ1}.
(ii) supn E0[|T β1

n (�n(θ0) − �(θ0)|M4] < ∞ for M4 := M/{2β1/(1 − α) −
ρ1}.

[A4′] The parameters α, β1, β2, ρ1 and ρ2 fulfil the inequalities

0 < β1 < 1/2, 0 < ρ1 < min
(

1,
α

1 − α
,

2β1

1 − α

)
,

2α < ρ2, β2 ≥ 0, 1 − 2β2 − ρ2 > 0.

These conditions involve several “moment-index” parameters to be controlled,
which do not seem straightforward to handle. Nevertheless, under our assumptions
we can provide a rather simplified version. Instead of “[A1′′], [A4′] and [A6]” we
will verify the following “[A1′′�] and [A6�]”:

[A1′′�] (i) supn E0[supθ |T −1
n ∂3

θ Mn(θ)|K ] < ∞ for every K > 0.
(ii) supn E0[|√Tn(�n(θ0) − �(θ0)|M−ε1] < ∞ for every ε1 > 0 small

enough.
[A6�] (i) supn E0[|n(θ0)|K ] < ∞ for every K > 0.

(ii) supn E0[supθ |√Tn(Yn(θ) − Y(θ))|M+ε/2] < ∞, for ε given in As-
sumption 3.3.

Let us show that “[A1′′�] and [A6�]” imply “[A1′′], [A4′] and [A6].” First, by
[A1′′�](i) and [A6�](i), the numbers M1 and M3 can be arbitrarily large, so that
we may in particular take α and ρ1 arbitrarily small (i.e., nearly zero). Then we
have [A1′′](i) and [A6](i). Next, we note that in [A1′′�](ii) the exponent of “Tn” is
1/2, hence we may let β2 be sufficiently close to 1/2. Then, taking α and ρ1 small
enough with ρ1 < α/(1−α), we can obtain the first two inequalities in [A4′]. Next,
in view of [A6�](ii), we can take β2 = 0 and ρ2 small enough to make [A6](ii) and
the last three ones in [A4′] valid. Finally, as for M4, we note that a suitable control
of (α,ρ1, β1) leads to

2β1

1 − α
− ρ1 = 1 +

(
α

1 − α
− ρ1

)
+ 2β1 − 1

1 − α
> 1,

so that [A1′′](ii) follows. In sum, under “[A1′′�] and [A6�],” we can pick
ρ1, ρ2, α ≈ 0 and β2 = 0, and then β1 ≈ 1/2, in order to make all of “[A1′′],
[A4′] and [A6]” valid. Thus we are left to proving [A1′′�] and [A6�] above.

We begin with [A1′′�]. Since |T −1
n ∂3

θ Mn(θ)| � |T −1
n Gn(θ)‖T −1

n ∂3
θ Gn(θ)| +

|T −1
n ∂θGn(θ)‖T −1

n ∂2
θ Gn(θ)|, we have for every K > 0,

sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣ 1

Tn

∂3
θ Mn(θ)

∣∣∣∣
K]

< ∞.
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Noting that ∂θi
∂θj

Mn = −2T −1
n {∂θi

∂θj
Gn[Gn] + ∂θi

Gn[∂θj
Gn]}, we also have√

Tn

∣∣�n(θ0) − �(θ0)
∣∣

�
∣∣∣∣ 1√

Tn

Gn(θ0)

∣∣∣∣
∣∣∣∣ 1

Tn

∂2
θ Gn(θ0)

∣∣∣∣
+
(∣∣�(θ0)

∣∣+ ∣∣∣∣ 1

Tn

∂θGn(θ0)

∣∣∣∣
)∣∣∣∣√Tn

(
1

Tn

∂θGn(θ0) − G′∞(θ0)

)∣∣∣∣.
Therefore, Assumptions 3.2 and 3.3 combined with Hölder’s inequality yield that
for ε1 ∈ (0,M),

sup
n∈N

E0
[∣∣√Tn(�n(θ0) − �(θ0)

∣∣M−ε1
]

� 1 +
{

sup
n∈N

E0

[∣∣∣∣√Tn

(
1

Tn

∂θGn(θ0) − G′∞(θ0)

)∣∣∣∣
M]}(M−ε1)/M

< ∞.

Thus [A1′′�] follows.
Next we prove [A6�]. Statement (i) is obvious from Assumption 3.2,

sup
n∈N

E0
[∣∣n(θ0)

∣∣K ]
� sup

n∈N

E0

[∣∣∣∣ 1

Tn

∂θGn(θ0)

∣∣∣∣
K ∣∣∣∣ 1√

Tn

Gn(θ0)

∣∣∣∣
K]

< ∞.(3.6)

Using the estimate∣∣√Tn

(
Yn(θ) − Y(θ)

)∣∣
≤ 1√

Tn

∣∣∣∣ 1√
Tn

Gn(θ0)

∣∣∣∣
2

+
(∣∣G∞(θ)

∣∣+ ∣∣∣∣ 1

Tn

Gn(θ)

∣∣∣∣
)∣∣∣∣√Tn

(
1

Tn

Gn(θ) − G∞(θ)

)∣∣∣∣,
it follows under Assumptions 3.2 and 3.3 that

sup
n∈N

E0

[
sup
θ∈�

∣∣√Tn

(
Yn(θ) − Y(θ)

)∣∣M+ε/2
]

� 1 + sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣√Tn

(
1

Tn

Gn(θ) − G∞(θ)

)∣∣∣∣
M+ε](M+ε/2)/(M+ε)

< ∞.

Thus [A6�] is ensured, and the proof of (a) is complete.
We now turn to the proof of (b). Fix any R > 0. Since we know that the sequence

(ûn) is Lq(P0)-bounded for each q ∈ (0,M) and that the set argmaxu log Z∞(u)

a.s. consists of the only point

û∞ := �(θ0)
−1∞(θ0) ∼ Np

(
0,�(θ0)

)
,
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it suffices to show that log Zn →L log Z∞ in C(B(R)), where

log Z∞(u) := ∞(θ0)[u] − 1
2�(θ0)[u,u],

∞(θ0) ∼ Np

(
0,4G′∞(θ0)

V(θ0)G
′∞(θ0)

)
(e.g., Yoshida [48], Theorem 5). We have T −1

n ∂θGn(θ0) →p G′∞(θ0) from As-
sumption 3.3, hence Slutsky’s lemma and Assumption 3.4 imply that

n(θ0) = − 2

Tn

∂θGn(θ0)

[
1√
Tn

Gn(θ0)

]
→L ∞(θ0).

Also, we have

∣∣ξn(u)
∣∣ � |u|2∣∣�n(θ0) − �(θ0)

∣∣+ |u|3√
Tn

sup
θ∈�

∣∣∣∣ 1

Tn

∂3
θ Mn(θ)

∣∣∣∣ = op(1)(3.7)

for every u ∈ B(R). Thus, recalling expression (3.4), we get log Zn(u) →L

log Z0(u) for every u ∈ B(R), and moreover, due to the linearity in u of
the weak convergence term n(θ0)[u], the Cramér–Wold device ensures the
finite-dimensional convergence. Therefore, it remains to check the tightness of
{log Zn(u)}u∈B(R). In view of the classical Kolmogorov tightness criterion for
continuous random fields (e.g., Kunita [21], Theorem 1.4.7), it suffices to show
that there exists a constant γ > p(= dim�) such that

sup
|u|≤R

sup
n∈N

E0
[∣∣log Zn(u)

∣∣γ ]+ sup
n∈N

E0

[
sup

|u|≤R

∣∣∂u log Zn(u)
∣∣γ ] < ∞.(3.8)

In view of the estimates in (3.6) and (3.7) as well as the expressions (3.4) and (3.5),

sup
u∈B(R)

sup
n∈N

E0
[∣∣log Zn(u)

∣∣γ ]

� sup
n∈N

E0
[∣∣n(θ0)

∣∣γ ]+ 1 + sup
u∈B(R)

sup
n∈N

E0
[∣∣ξn(u)

∣∣γ ]

� 1 + E0
[∣∣�n(θ0) − �(θ0)

∣∣γ ]+ sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣ 1

Tn

∂3
θ Mn(θ)

∣∣∣∣
γ ]

< ∞.

Furthermore, since

∂u log Zn(u) = ∂u

{
Mn

(
θ0 + 1√

Tn

u

)
− Mn(θ0)

}

= 1√
Tn

∂θMn

(
θ0 + 1√

Tn

u

)

= 1√
Tn

{
∂θMn(θ0) + 1√

Tn

∫ 1

0
∂2
θ Mn

(
θ0 + s√

Tn

u

)
[u]ds

}
,
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the finiteness of supn E0[sup|u|≤R |∂u log Zn(u)|γ ] follows on applying Assump-
tion 3.2 to the estimate

sup
|u|≤R

∣∣∂u log Zn(u)
∣∣

�
∣∣∣∣ 1√

Tn

Gn(θ0)

∣∣∣∣
∣∣∣∣ 1

Tn

∂θGn(θ0)

∣∣∣∣+ sup
θ∈�

∣∣∣∣ 1

Tn

∂2
θ Mn(θ)

∣∣∣∣
�

∣∣∣∣ 1√
Tn

Gn(θ0)

∣∣∣∣
∣∣∣∣ 1

Tn

∂θGn(θ0)

∣∣∣∣
+ sup

θ∈�

{∣∣∣∣ 1

Tn

Gn(θ)

∣∣∣∣
∣∣∣∣ 1

Tn

∂2
θ Gn(θ)

∣∣∣∣+
∣∣∣∣ 1

Tn

∂θGn(θ)

∣∣∣∣
2}

.

Thus we have obtained (3.8), thereby achieving the proof of (b). �

REMARK 3.6. We have confined ourselves to the “single-norming (i.e., scalar-
Tn)” case for the squared quasi-score function. Nevertheless, as in the original
formulation of Yoshida [48], Theorem 1, it would be also possible to deal with
“multi-norming” cases where elements of θ̂n possibly converge at different rates,
that is, cases of a matrix norming instead of the scalar norming

√
Tn. This would

require somewhat more complicated arguments, but we do not need such an exten-
sion in this paper.

4. Proofs of Theorem 2.7 and Corollary 2.8.

4.1. Proof of Theorem 2.7. The proof of Theorem 2.7 is achieved by applying
Theorem 3.5. When we have a reasonable estimating function θ 	→ Gn(θ) with
which an estimator of θ is defined by a random root of the estimating equation
Gn(θ) = 0, it may be unclear what is the “single” associated contrast function to
be maximized or minimized; for example, it would be often the case when Gn

is constructed via a kind of (conditional-) moment fittings. The setup (4.3) below
provides a way of converting the situation from Z-estimation to M-estimation.

4.1.1. Introductory remarks. At first glance, it seems that, in order to inves-
tigate the asymptotic behavior of θ̂n, we may proceed as in the case of diffu-
sions, expanding the GQL Qn of (2.10) and then investigating asymptotic behav-
iors of the derivatives ∂k

θ Qn; see Yoshida [48], Section 6, for details. Following
this route, however, leads to an inconvenience, essentially due to the fact that
(h

−1/2
n jX)j≤n is not Lq(P0)-bounded for q > 2. To see this more precisely, let

us take a brief look at the simple one-dimensional Lévy process Xt = αt + √
βJt ,

with θ = (α,β) ∈ R × (0,∞) and L(J1) admitting finite moments. In this case,
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Qn(θ) = −∑
j {(logβ) + (βhn)

−1(jX − αhn)
2},

∂αQn(θ) =
n∑

j=1

2

β
(jX − αhn),

∂βQn(θ) =
n∑

j=1

1

β2hn

{
(jX − αhn)

2 − βhn

}
,

∂2
αQn(θ) = −2Tn

β
, ∂α ∂βQn(θ) = −

n∑
j=1

2

β2 (jX − αhn),

∂2
βQn(θ) = −

n∑
j=1

2

β3hn

{
(jX − αhn)

2 − βhn

2

}
.

We can deduce the convergences

1

Tn

∂2
αQn(θ0) →p −2β−1

0 ,
1√

n
√

Tn

∂α ∂βQn(θ0) →p 0,

1

n
∂2
βQn(θ0) →p −β−2

0 ,

so that the normalized quasi observed-information matrix −D−1
n ∂2

θ Qn(θ0)D
−1
n →p

diag(2β−1
0 , β−2

0 ), where Dn := diag(
√

Tn,
√

n). In view of the classical Cramér-
type method for M-estimation, we should then have a central limit theorem for
the normalized quasi-score {T −1/2

n ∂αQn(θ0), n
−1/2∂βQn(θ0)} for an asymptotic

normality at rate Dn to be valid for the M-estimator associated with Qn. However,
different from the drifted Wiener process, the sequence {n−1/2∂βQn(θ0)} does not

converge because (h
−1/2
n jX)j≤n cannot be Lq -bounded for large q > 2 as can

be seen from the moment structure of Lévy processes; see Luschgy and Pagès [24]
for general moment estimates in small time with several concrete examples. Al-
though we only mentioned the Lévy process with diagonal norming, the situation
remains the same even when X is actually an ergodic solution to (1.1).

The observation made in the last paragraph says that the situation is different
from the case of diffusions, when developing asymptotic theory concerning the
Gaussian quasi-likelihood for model (1.1) under high-frequency sampling frame-
work; it is also different from the case of time series models, where the usual√

n-consistency holds in most cases (see the references cited in the Introduction).
Earlier attempts to tackle this point have been made by Mancini [25], Shimizu and
Yoshida [38], Ogihara and Yoshida [36], where they incorporated jump-detection
filters in defining a contrast function. The filter approach has its own advantage
such as

√
n-rate estimation of the diffusion parameter, even in the presence of

jumps; however, we should have in mind that its implementation involves fine-
tuning parameters, thereby possibly preventing us from a straightforward use of
the approach.
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In order to prove Theorem 2.7, we will look at not θ 	→ Qn(θ), but

θ 	→ Gn(θ) = {
Gα

n(θ),Gβ
n(θ)

}
,

where Gα
n :� → Rpα and G

β
n :� → Rpβ are defined by

Gα
n(θ) =

n∑
j=1

∂αaj−1(α)
[
V −1

j−1(β)
[
χj (α)

]]
,(4.1)

Gβ
n(θ) =

n∑
j=1

({−∂βV −1
j−1(β)

}[
χj (α)⊗2]− hn

∂β |Vj−1(β)|
|Vj−1(β)|

)
.(4.2)

Our contrast function Mn(θ) is then defined to be the “squared quasi-score” as
in (3.1),

Mn(θ) = − 1

Tn

∣∣Gn(θ)
∣∣2.(4.3)

Trivially, Gn :� → Rp fulfil that Gn(θ) = {(1/2)∂αQn(θ), hn ∂βQn(θ)}. The dif-
ference is that we put the factor “hn” in front of ∂βQn(θ); our estimating pro-
cedure is formally not the usual M-estimation based on the Taylor expansion of
θ 	→ Qn(θ) around θ0, but rather a kind of minimum distance estimation con-
cerning the Gaussian quasi-score function. The optimization with respect to θ is
asymptotically the same for both of Qn and Mn: if there is no root θ ∈ � for
Gn(θ) = 0, then we may assign any value (e.g., any element of �) to θ̂n, uphold-
ing the claim of Theorem 2.7.

REMARK 4.1. More general cases than (4.1) and (4.2) can be treated, such as

Gα
n(θ) =

n∑
j=1

W̄α
j−1(θ)

{
Xtj − mj−1(θ)

}
,

Gβ
n(θ) =

n∑
j=1

(
W̄

β,1
j−1(θ)

[{
Xtj − mj−1(θ)

}⊗2]− hnW̄
β,2
j−1(θ)

)

for some measurable m : Rd × � → Rd , W̄α : Rd × � → Rpα ⊗ Rd , W̄β,1 : Rd ×
� → Rpβ ⊗ (Rd ⊗Rd) and W̄β,2 : Rd ×� → Rpβ . This may be called a GQMLE
as well, for we are still solely fitting the local mean vectors and covariance matri-
ces. This setting allows us to deal with, for example, the parametric model

dXt = a(Xt , θ) dt + b(Xt , θ) dWt + c(Xt−, θ) dJt

with possibly degenerate b and c, the resulting GQMLE θ̂n still being asymp-
totically normal at rate

√
Tn under suitable conditions. To avoid unnecessarily

messy notation and regularity conditions without losing essence, we have decided
to treat (1.1) in this paper.
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For later use, we here introduce some convention and recall a couple of basic
facts that we will make use often without notice:

• We will often suppress “(θ0)” from the notation: χj := χj (α0), aj−1 :=
aj−1(α0), Gα

n = Gα
n(θ0), and so forth.

• ∫
j denotes a shorthand for

∫ tj
tj−1

.

• M ′
j−1(θ) := ∂αaj−1(α)V −1

j−1(β) ∈ Rpα ⊗ Rd .

• M ′′
j−1(β) := −∂βV −1

j−1(β) = {V −1
j−1(∂βVj−1)V

−1
j−1}(β) ∈ Rpβ ⊗ Rd ⊗ Rd .

• dj−1(β) := |Vj−1(β)|−1∂β |Vj−1(β)| ∈ Rpβ .
• Given real sequence an and random variables Yn possibly depending on θ , we

write Yn = O∗
p(an) if supn,θ E0[|a−1

n Yn|K ] < ∞ for every K > 0.

• E
j−1
0 [·] := E0[·|Ftj−1].

• R denotes a generic function on Rd , possibly depending on n and θ , for which
there exists a constant C ≥ 0 such that supn,θ |R(x)| ≤ C(1 + |x|)C for every
x ∈ Rd .

• Burkholder’s inequality: for a martingale difference array (ζnj )j≤n and every
q ≥ 2,

E0

[
max
k≤n

∣∣∣∣∑
j≤k

1√
n
ζnj

∣∣∣∣
q]

� E0

[(
1

n

∑
j≤n

ζ 2
nj

)q/2]
� 1

n

∑
i≤n

E
[|ζnj |q].

Moreover, if b· and c· are sufficiently integrable adapted processes, then

E0

[∣∣∣∣
∫ T

0
bs− dWs

∣∣∣∣
q]

� T q/2−1
∫ T

0
E0

[|bs |q]ds,

E0

[∣∣∣∣
∫ T

0
cs− dJs

∣∣∣∣
q]

� (1 ∨ T )q/2−1
∫ T

0
E0

[|cs |q]ds

for every T > 0 and q ≥ 2 such that E[|J1|q] < ∞.
• Sobolev’s inequality (e.g., Friedman [10], Section 10.2),

E0

[
sup
θ∈�

∣∣u(θ)
∣∣q] � sup

θ∈�

{
E0

[∣∣u(θ)
∣∣q]+ E0

[∣∣∂θu(θ)
∣∣q]}

for q > p and a random field u ∈ C 1(�); recall that p denotes the dimension
of θ and that we are presupposing the boundedness and convexity of �. We
will make use of this type of inequality to derive some uniform-in-θ moment
estimates for martingale terms.

We now turn to the proof of Theorem 2.7 by verifying the conditions of Theo-
rem 3.5.
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4.1.2. Verification of the conditions on Gn. We rewrite Gn as follows:

Gα
n(θ) =

n∑
j=1

M ′
j−1(θ)[χj ] − hn

n∑
j=1

M ′
j−1(θ)

[
aj−1(α) − aj−1

]
,(4.4)

Gβ
n(θ) =

n∑
j=1

{
M ′′

j−1(β)
[
χ⊗2

j

]− hn dj−1(β)
}

+ 2hn

n∑
j=1

M ′′
j−1(β)

[
χj , aj−1 − aj−1(α)

]
(4.5)

+ h2
n

n∑
j=1

M ′′
j−1(β)

[{
aj−1 − aj−1(α)

}⊗2]
.

We have

χj = ζj + rj ,(4.6)

where

ζj :=
∫
j
ãj−1(s) ds +

∫
j
b(Xs,β0) dWs +

∫
j
c(Xs−, β0) dJs,(4.7)

rj :=
∫
j

{
E

j−1
0

[
a(Xs,α0)

]− aj−1
}
ds,(4.8)

with ãj−1(s) := a(Xs,α0) − E
j−1
0 [a(Xs,α0)]. Obviously, (ζj )j≤n forms a mar-

tingale difference array with respect to the discrete-time filtration (Ftj )j≤n.
Itô’s formula and the present integrability condition lead to

E
j−1
0

[
a(Xs,α0)

]− aj−1 =
∫
j
E

j−1
0

[
Aa(Xu,α0)

]
du = hnRj−1,(4.9)

where A denotes the (extended) generator associated with X under P0, that is, for
f ∈ C 2(Rd)

Af (x) = ∂f (x)
[
a(x,α0)

]+ 1

2
∂2f (x)

[
b(x,β0)

⊗2]
+
∫ {

f
(
x + c(x,β0)z

)− f (x) − ∂f (x)
[
c(x,β0)z

]}
ν(dz).

Putting (4.8) and (4.9) together gives rj = h2
nRj−1, therefore

χj = ζj + h2
nRj−1.(4.10)

Assumption 3.1 obviously holds under the present differentiability conditions.
We begin with verifying Assumption 3.2.
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LEMMA 4.2. For every K > 0, we have

sup
n∈N

E0

[∣∣∣∣ 1√
Tn

Gn(θ0)

∣∣∣∣
K]

+ sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣ 1

Tn

Gn(θ)

∣∣∣∣
K]

< ∞.

PROOF. By substituting (4.10) in (4.4) and (4.5) and then rearranging the re-
sulting terms, we have

Gα
n(θ) =

n∑
j=1

M ′
j−1(θ)ζj + hn

n∑
j=1

M ′
j−1(θ)

{
aj−1 − aj−1(α)

}
(4.11)

+ h2
n

n∑
j=1

M ′
j−1(θ)Rj−1,

Gβ
n(θ) =

n∑
j=1

{
M ′′

j−1(β)
[
ζ⊗2
j

]− hndj−1(β)
}

(4.12)

+ 2hn

n∑
j=1

M ′′
j−1(β)

[
ζj , aj−1 − aj−1(α)

]+ h2
n

n∑
j=1

Rj−1.

To achieve the proof, we will separately look at T
−1/2
n Gα

n , T
−1/2
n G

β
n , T −1

n Gα
n(θ)

and T −1
n G

β
n(θ). Fix any integer K > (2 ∨ p) in the sequel.

First we prove T
−1/2
n Gα

n = O∗
p(1). Observe that

1√
Tn

Gα
n =

n∑
j=1

1√
Tn

M ′
j−1ζj +

√
Tnh2

n

1

n

n∑
j=1

M ′
j−1Rj−1

=
n∑

j=1

1√
Tn

M ′
j−1ζj + O∗

p

(√
Tnh2

n

)
.

By (4.7),
n∑

j=1

1√
Tn

M ′
j−1ζj =

n∑
j=1

1√
n

(
M ′

j−1
1√
hn

∫
j
b(Xs,β0) dWs

)

+√
hn

n∑
j=1

1√
n

(
M ′

j−1
1

hn

∫
j
ãj−1(s) ds

)
(4.13)

+
n∑

j=1

1√
Tn

M ′
j−1

∫
j
c(Xs−, β0) dJs.

Burkholder’s inequality implies that the first and second term on the right-hand
side are O∗

p(1) and O∗
p(

√
hn), respectively. As for the last term, by writing
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1j : (0,∞) → {0,1} for the identity function of the interval (tj−1, tj ],

E0

[∣∣∣∣∣
n∑

j=1

1√
Tn

M ′
j−1

∫
j
c(Xs−, β0) dJs

∣∣∣∣∣
K]

� T −K/2
n E0

[∣∣∣∣∣
∫ Tn

0

n∑
j=1

1j (s)M
′
j−1c(Xs−, β0) dJs

∣∣∣∣∣
K]

� T −K/2
n T K/2−1

n

∫ Tn

0
E0

[(
n∑

j=1

1j (s)
∣∣M ′

j−1c(Xs−, β0)
∣∣)K]

ds(4.14)

= 1

Tn

∫ Tn

0

n∑
j=1

1j (s)E0
[∣∣M ′

j−1c(Xs−, β0)
∣∣K ]

ds

� 1

Tn

n∑
j=1

∫
j

ds = 1,

and hence we are done.
We now prove T

−1/2
n G

β
n = O∗

p(1). In the sequel, we may and do suppose that
d = pβ = r ′ = r ′′ = 1: this reduction is possible because of the polarization iden-
tity

[
S′, S′′] = 1

4

([
S′ + S′′]− [

S′ − S′′]),
which is valid for any two semimartingales S′ and S′′. By (4.10) and (4.5),

1√
Tn

Gβ
n =

n∑
j=1

1√
Tn

(
M ′′

j−1ζ
2
j − hndj−1

)+ O∗
p

(√
Tnh2

n

)
,

so that it remains to verify
n∑

j=1

1√
Tn

M ′′
j−1

(
ζ 2
j − hnVj−1

) = O∗
p(1).(4.15)

Define ζj (t) for t ∈ (tj−1, tj ] by

ζj (t) =
∫ t

tj−1

ãj−1(s) ds +
∫ t

tj−1

b(Xs,β0) dWs

+
∫ t

tj−1

c(Xs−, β0) dJs.

Let N(ds, dz) denote the Poisson random measure associated with J , and Ñ its
compensated version [i.e., Jt = ∫ t

0
∫

zÑ(ds, dz)]. The quadratic variation at time t
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is then given as follows (cf. Jacod and Shiryaev [15], I.4.49(d), I.4.55(b)):[
ζj (·)]t =

∫ t

tj−1

b2(Xs−, β0) ds +
∫ t

tj−1

∫
c2(Xs−, β0)z

2N(ds, dz)

= (t − tj−1)Vj−1 +
∫ t

tj−1

∫
c2(Xs−, β0)Ñ(ds, dz) +

∫ t

tj−1

gj−1(s) ds,

where we used the assumption
∫

z2ν(dz) = 1 (with the temporary assumption
r ′′ = 1) and gj−1(s) := b2(Xs,β0) − b2

j−1 + c2(Xs−, β0) − c2
j−1. Applying the

integration-by-parts formula, we get

ζ 2
j − hnVj−1 =

{
2
∫
j
ζj (s−) dζj (s) +

∫
j

∫
c2(Xs−, β0)z

2Ñ(ds, dz)

+
∫
j

(
gj−1(s) − E

j−1
0

[
gj−1(s)

])
ds

}

+
∫
j
E

j−1
0

[
gj−1(s)

]
ds

=: ζ (0)
j + ζ

(1)
j say.

We can deduce that
∑n

j=1 T
−1/2
n M ′′

j−1ζ
(0)
j = O∗

p(1), as is the case in the proof

of
∑n

j=1 T
−1/2
n M ′

j−1ζj = O∗
p(1) via the expression (4.13). Moreover, we can

apply Itô’s formula to get ζ
(1)
j = h2

nRj−1 under the C 2 property of x 	→
(b(x,β0), c(x,β0)), from which it follows that supn E0[|∑n

j=1 T
−1/2
n M ′′

j−1 ×
ζ

(1)
j |K ] � supn(Tnh

2
n)

K/2 < ∞. We thus get (4.15).

Let us turn to prove supθ |T −1
n Gα

n(θ)| = O∗
p(1). In the same way as in the proof

of T
−1/2
n Gα

n = O∗
p(1), we can prove

∑n
j=1 T

−1/2
n M ′

j−1(θ)ζj = O∗
p(T

−1/2
n ) for

each θ ∈ �, since the explicit dependence on θ is only through the predictable
parts M ′

j−1(θ); similar arguments will apply in some places below. Therefore, it
follows from (4.11) that, for each θ ∈ �,

1

Tn

Gα
n(θ) = 1√

Tn

(
n∑

j=1

1√
Tn

M ′
j−1(θ)ζj

)
+ hn

(
1

n

n∑
j=1

M ′
j−1(θ)Rj−1

)

+ 1

n

n∑
j=1

M ′
j−1(θ)

{
aj−1 − aj−1(α)

}
(4.16)

= O∗
p

(
1√
Tn

∨ hn

)
+ 1

n

n∑
j=1

M ′
j−1(θ)

{
aj−1 − aj−1(α)

}

= O∗
p

(
1√
Tn

)
+ 1

n

n∑
j=1

M ′
j−1(θ)

{
aj−1 − aj−1(α)

}
,
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so that T −1
n Gα

n(θ) = O∗
p(1). In a quite similar manner, we obtain [see (4.32)

and (4.33) below]

1

Tn

∂θGα
n(θ)

(4.17)

= O∗
p

(
1√
Tn

)
+ 1

n

n∑
j=1

∂θ

[
M ′

j−1(θ)
{
aj−1 − aj−1(α)

}] = O∗
p(1).

Therefore, we arrive at supθ |T −1
n Gα

n(θ)| = O∗
p(1) by means of the Sobolev in-

equality.
It remains to prove supθ |T −1

n G
β
n(θ)| = O∗

p(1); we remind the reader that we
are supposing that d = pβ = r ′ = r ′′ = 1. As in the proof of (4.15), we can prove

n∑
j=1

1√
Tn

∂k
θ M ′′

j−1(β)
(
ζ 2
j − hnVj−1

) = O∗
p(1)

for each k = 0,1 and β , so that the Sobolev inequality gives
∑n

j=1 T
−1/2
n ×

M ′′
j−1(β)(ζ 2

j − hnVj−1) = O∗
p(1). Therefore, it follows from (4.12) and simple

manipulation that

1

Tn

Gβ
n(θ) = 1√

Tn

(
n∑

j=1

1√
Tn

M ′′
j−1(β)

(
ζ 2
j − hnVj−1

))

+ 2
√

Tn

n

n∑
j=1

1√
Tn

M ′′
j−1(β)

{
aj−1 − aj−1(α)

}
ζj

+ hn

n

n∑
j=1

Rj−1 + 1

n

n∑
j=1

M ′′
j−1(β)

{
Vj−1 − Vj−1(β)

}
(4.18)

= O∗
p

(
1√
Tn

∨
√

Tn

n
∨ hn

)
+ 1

n

n∑
j=1

M ′′
j−1(β)

{
Vj−1 − Vj−1(β)

}

= O∗
p

(
1√
Tn

)
+ 1

n

n∑
j=1

M ′′
j−1(β)

{
Vj−1 − Vj−1(β)

}
.

Thus T −1
n G

β
n(θ) = O∗

p(1). Quite similarly, we get T −1
n ∂θG

β
n(θ) = O∗

p(1),

1

Tn

∂θGβ
n(θ)

(4.19)

= O∗
p

(
1√
Tn

)
+ 1

n

n∑
j=1

∂θ

[
M ′′

j−1(β)
{
Vj−1 − Vj−1(β)

}] = O∗
p(1),
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completing the proof. �

Next we turn to verifying the uniform moment estimates in Assumptions 3.3.
To this end, we prove a preliminary lemma.

LEMMA 4.3. Suppose the following conditions:

• the measurable function f : Rd × � → R fulfils that θ 	→ f (x, θ) is differen-
tiable for each x and that

g(x) := sup
θ∈�

{∣∣f (x, θ)
∣∣∨ ∣∣∂θf (x, θ)

∣∣}
is of at most polynomial growth;

• there exist a probability measure π0 and a constant a > 0 such that ‖Pt(x, ·) −
π0(·)‖g � e−atg(x);

• supt E0[|Xt |q] < ∞ for every q > 0.

Then, for every K > 0 we have

sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣∣
√

Tn

(
1

n

n∑
j=1

fj−1(θ) −
∫

f (x, θ)π0(dx)

)∣∣∣∣∣
K]

< ∞.

PROOF. Put n−1 ∑n
j=1 fj−1(θ) − ∫

f (x, θ)π0(dx) = �′
n(f ; θ) + �′′

n(f ; θ),

where �′
n(f ; θ) := n−1 ∑n

j=1{fj−1(θ) − E0[fj−1(θ)]} and �′′
n(f ; θ) := n−1 ×∑n

j=1{E0[fj−1(θ)] − ∫
f (x, θ)π0(dx)}. Under the present assumptions, we can

apply Yoshida [48], Lemma 4, to get E0[|∂k
θ �′

n(f ; θ)|K ] � T
−K/2
n + T 1−K

n �
T

−K/2
n for k ∈ {0,1} and K ≥ 2, yielding that maxk=0,1 supθ supn E0[|√Tn∂

k
θ ×

�′
n(f ; θ)|K ] < ∞. The Sobolev inequality then gives

sup
n∈N

E0

[
sup
θ∈�

∣∣√Tn�
′
n(f ; θ)

∣∣K]
< ∞.

As for �′′
n(f ; θ), we have for k ∈ {0,1},∣∣√Tn∂

k
θ �′′

n(f ; θ)
∣∣

=
∣∣∣∣∣
√

Tn

n

n∑
j=1

(∫∫
∂k
θ f (y, θ)Ptj−1(x, dy)η(dx)

−
∫∫

∂k
θ f (y, θ)π0(dy)η(dx)

)∣∣∣∣∣
=

∣∣∣∣∣
√

Tn

n

n∑
j=1

∫ (∫
∂k
θ f (y, θ)

{
Ptj−1(x, dy) − π0(dx)

})
η(dx)

∣∣∣∣∣
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≤
√

Tn

n

n∑
j=1

∫ ∥∥Ptj−1(x, ·) − π0(·)
∥∥
gη(dx)

�
√

Tn

n

n∑
j=1

exp(−atj−1) � 1√
Tn

.

This completes the proof. �

COROLLARY 4.4. Assumption 3.3(a) holds true.

PROOF. Again we may and do suppose that d = pβ = r ′ = r ′′ = 1. Re-
calling (4.16), (4.17), (4.18) and (4.19), we apply Lemma 4.3 with f (x, θ) =
M ′(x, θ){a(x,α0) − a(x,α)} and f (x, θ) = M ′′(x,β){V (x,β0) − V (x,β)} to
conclude

sup
n∈N

E0

[
sup
θ∈�

∣∣∣∣√Tn

(
1

Tn

Gn(θ) − G∞(θ)

)∣∣∣∣
K]

< ∞

for every K > 0, where G∞(θ) := (Gα∞(θ),G
β∞(θ)) are given by (2.5) and (2.6),

the integrals in which are finite by the assumptions. Trivially G∞(θ0) = 0, and
Assumption 3.3(a) is verified with χ = χα ∧ χβ . �

Let us mention the fundamental fact concerning conditional size of X’s incre-
ments. For the convenience of reference we include a sketch of the proof.

LEMMA 4.5. Let g(x) := |a(x,α0)|∨|b(x,β0)|∨|c(x,β0)|, and fix any q ≥ 2
such that E[|Jt |q] < ∞. Then

E
j−1
0

[
sup

s∈[tj−1,tj ]
|Xs − Xtj−1 |q

]
�

{
h

q/2
n gq(Xtj−1), if c ≡ 0,

hng
q(Xtj−1), otherwise.

In particular, the left-hand side is essentially bounded if so is g.

PROOF. Let c �≡ 0. Given a constant M > 0, we let τj−1,M := inf{s ≥
tj−1 : |Xs | ≥ M} and ξj−1,M(s) := E

j−1
0 [sup{|Xu − Xtj−1 |q :u ∈ [tj−1,

s ∧ τj−1,M ]}]. We can make use of the Lipschitz property of the coefficients

and Masuda [27], Lemma E.1, to derive ξj−1,M(tj ) �
∫ tj
tj−1

ξj−1,M(s) ds +
hng

q(Xtj−1), the upper bound being P0-a.s. finite according to the definition of
τj−1,M . Hence the claim follows on applying Gronwall’s inequality and then let-
ting M ↑ ∞. The case of c ≡ 0 is similar. �

We now prove the central limit theorem required in Assumption 3.4.
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LEMMA 4.6. We have
1√
Tn

Gn(θ0) →L Np

(
0,V(θ0)

)
,(4.20)

where V(θ0) is given by (2.11).

PROOF. We begin with extracting the leading martingale terms of the se-
quences T

−1/2
n Gα

n and T
−1/2
n G

β
n ; recall the expressions (4.11) and (4.12). Let us

rewrite (4.7) as

ζj = mj + r ′
j ,(4.21)

where

mj := bj−1jW + cj−1jJ,

r ′
j :=

∫
j
ãj−1(s) ds +

∫
j

(
b(Xs,β0) − bj−1

)
dWs +

∫
j

(
c(Xs−, β0) − cj−1

)
dJs.

We claim that it suffices to prove that
n∑

j=1

1√
Tn

(
γ̃ α
j

γ̃
β
j

)
→L Np

(
0,V(θ0)

)
,(4.22)

where γ̃ α
j := M ′

j−1mj and γ̃
β
j := M ′′

j−1[m⊗2
j ] − hndj−1, both of which form mar-

tingale difference arrays with respect to (Ftj )j≤n; we can verify that

E
j−1
0 [γ̃ β

j [u]] = 0 for each u ∈ Rpβ , making use of the identity trace{A(x)−1∂x ×
A(x)} = ∂x |A(x)|/|A(x)| for a differentiable square-matrix function A. In fact,
recalling what we have seen in the proof of Lemma 4.2, we observe the following:

• We have
1√
Tn

Gα
n =

n∑
j=1

1√
Tn

M ′
j−1

(∫
j
b(Xs,β0) dWs +

∫
j
c(Xs−, β0) dJs

)
+ op(1)

=
n∑

j=1

1√
Tn

γ̃ α
j +

n∑
j=1

1√
Tn

M ′
j−1

∫
j

(
b(Xs,β0) − bj−1

)
dWs

+
n∑

j=1

1√
Tn

M ′
j−1

∫
j

(
c(Xs−, β0) − cj−1

)
dJs + op(1).

By means of Burkholder’s inequality and Lemma 4.5 combined with the condi-
tioning argument,

E0

[∣∣∣∣∣
n∑

j=1

1√
Tn

M ′
j−1

∫
j

(
b(Xs,β0) − bj−1

)
dWs

∣∣∣∣∣
2]

� E0

[
n∑

j=1

1

Tn

∣∣M ′
j−1

∣∣2|Rj−1|
∫
j
hn ds

]
� hn.
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Following the same line as in (4.14), we also get

E0

[∣∣∣∣∣
n∑

j=1

T −1/2
n M ′

j−1

∫
j

(
c(Xs,β0) − cj−1

)
dJs

∣∣∣∣∣
2]

� hn.

Therefore, it follows that

1√
Tn

Gα
n =

n∑
j=1

1√
Tn

γ̃ α
j + op(1).(4.23)

• Put B ′
n = 2

∑n
j=1 T

−1/2
n M ′′

j−1[mj, r
′
j ] and B ′′

n = ∑n
j=1 T

−1/2
n M ′′

j−1[r ′
j , r

′
j ], then

1√
Tn

Gβ
n =

n∑
j=1

1√
Tn

(
M ′′

j−1
[
ζ⊗2
j

]− hndj−1
)+ op(1)

=
n∑

j=1

1√
Tn

γ̃
β
j + B ′

n + B ′′
n + op(1).

Since supj≤n E0[|r ′
j |q] � h2

n for every q ≥ 2 and E
j−1
0 [|mj |2] � |Rj−1|2hn, the

Cauchy–Schwarz inequality leads to

E0
[∣∣B ′

n

∣∣] � 1

n

n∑
j=1

√
n

hn

E0
[|Rj−1|2Ej−1

0

[|mj |2]]1/2
E0

[∣∣r ′
j

∣∣2]1/2

�
√

nh2
n → 0.

Moreover, for any ε ∈ (0,1/3), Hölder’s inequality gives

E0
[∣∣B ′′

n

∣∣] � 1

n

n∑
j=1

√
n

hn

E0
[|Rj−1|

∣∣r ′
j

∣∣2]

� 1

n

n∑
j=1

√
n

hn

E0
[|Rj−1|(1+ε)/ε]ε/(1+ε)

E0
[∣∣r ′

j

∣∣2(1+ε)]1/(1+ε)

� 1

n

n∑
j=1

√
n

hn

E0
[∣∣r ′

j

∣∣2(1+ε)]1/(1+ε) �
√

nh
4/(1+ε)−1
n

�
√

nh2
n → 0.

Hence we have derived

1√
Tn

Gβ
n =

n∑
j=1

1√
Tn

γ̃
β
j + op(1).(4.24)
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Having (4.23) and (4.24) in hand, it remains to verify (4.22). We are going to apply
the classical martingale central limit theorem (e.g., Dvoretzky [7]).

Put γ̃j = (γ̃ α
j , γ̃

β
j ). It is easy to verify the Lyapunov condition: in fact, we

have E
j−1
0 [|γ̃j |K ] � hn|Rj−1| for any K > 2, so that

∑n
j=1 E0[|T −1/2

n γ̃j |K ] �
T

1−K/2
n → 0. It remains to compute the convergence of the quadratic characteris-

tics:
∑n

j=1 E
j−1
0 [γ̃ ⊗2

j ] →p V(θ0). By means of the Cramér–Wold device, it suf-
fices to prove that for each v′

1, v
′
2 ∈ Rpα and v′′

1 , v′′
2 ∈ Rpβ ,

n∑
j=1

1

Tn

E
j−1
0

[(
γ̃ α
j

)⊗2][
v′

1, v
′
2
] →p G′α∞

[
v′

1, v
′
2
]
,(4.25)

Vαβ,n

[
v′

1, v
′′
1
] :=

n∑
j=1

1

Tn

E
j−1
0

[
γ̃ α
j ⊗ γ̃

β
j

][
v′

1, v
′′
1
] →p Vαβ

[
v′

1, v
′′
1
]
,(4.26)

Vββ,n

[
v′′

1 , v′′
2
] :=

n∑
j=1

1

Tn

E
j−1
0

[(
γ̃

β
j

)⊗2][
v′′

1 , v′′
2
] →p Vββ

[
v′′

1 , v′′
2
]
.(4.27)

First, (4.25) readily follows by noting E
j−1
0 [m⊗2

j ] = hnVj−1 and applying the er-
godic theorem (2.3). Next,

Vαβ,n

[
v′

1, v
′′
1
]

= 1

n

n∑
j=1

1

hn

E
j−1
0

[
M ′

j−1[mj ] ⊗ M ′′
j−1

[
m⊗2

j

]][
v′

1, v
′′
1
]

(4.28)

= 1

n

n∑
j=1

1

hn

∑
k,l,s

E
j−1
0

[
m

(k)
j m

(l)
j m

(s)
j

]{
M

′(·s)
j−1 ⊗ M

′′(·kl)
j−1

}[
v′

1, v
′′
1
]
.

For later use, we here note that, as h → 0,

E
[
J

(i1)
h · · ·J (im)

h

] =
{

hνi1i2i3(3), m = 3,

hνi1i2i3i4(4) + O
(
h2), m = 4;

this can be easily seen through the relation between the mixed moments and cu-
mulants of Jh, where the latter can be computed as the values at 0 of the partial
derivatives of the cumulant function u 	→ logE[exp(iJh[u])] = h

∫ {exp(iu[z]) −
1 − iu[z]}ν(dz). In view of the expression

m
(k)
j = ∑

k′
b

(kk′)
j−1 jw

(k′) +∑
k′′

c
(kk′′)
j−1 jJ

(k′′)
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together with the orthogonalities between the increments of w and J , we get

E
j−1
0

[
m

(k)
j m

(l)
j m

(s)
j

] = ∑
k′,l′,s′

c
(kk′)
j−1 c

(ll′)
j−1c

(ss′)
j−1 E

[
jJ

(k′)jJ
(l′)jJ

(s′)]

= ∑
k′,l′,s′

c
(kk′)
j−1 c

(ll′)
j−1c

(ss′)
j−1 E

[
J

(k′)
hn

J
(l′)
hn

J
(s′)
hn

]
(4.29)

= hn

∑
k′,l′,s′

c
(kk′)
j−1 c

(ll′)
j−1c

(ss′)
j−1 νk′l′s′(3).

(Since E[J1] = 0, the 3rd mixed cumulants and the 3rd mixed moments of Jhn

coincides.) Substituting (4.29) in (4.28), we get (4.26)

Vαβ,n

[
v′

1, v
′′
1
]

= 1

n

n∑
j=1

∑
k,l,s

∑
k′,l′,s′

c
(kk′)
j−1 c

(ll′)
j−1c

(ss′)
j−1 νk′l′s′(3)

{
M

′(·s)
j−1 ⊗ M

′′(·kl)
j−1

}[
v′

1, v
′′
1
]

= 1

n

n∑
j=1

∑
k′,l′,s′

νk′l′s′(3)
{
M ′

j−1
[
v′

1, c
(·s′)
j−1

]}{
M ′′

j−1
[
v′′

1 , c
(·k′)
j−1, c

(·l′)
j−1

]}

→p Vαβ

[
v′

1, v
′′
1
]
.

Finally, we look at Vββ,n. Direct computation gives

Vββ,n

[
v′′

1 , v′′
2
]

= 1

n

n∑
j=1

1

hn

E
j−1
0

[(
M ′′

j−1 ⊗ M ′′
j−1

)[(
v′′

1 ,m⊗2
j

)
,
(
v′′

2 ,m⊗2
j

)]]

− 1

n

n∑
j=1

E
j−1
0

[(
dj−1 ⊗ M ′′

j−1
)[

v′′
1 ,
(
v′′

2 ,m⊗2
j

)]]

− 1

n

n∑
j=1

E
j−1
0

[(
dj−1 ⊗ M ′′

j−1
)[

v′′
2 ,
(
v′′

1 ,m⊗2
j

)]]
(4.30)

+ hn

(
1

n

n∑
j=1

d⊗2
j−1

[
v′′

1 , v′′
2
])

= 1

n

n∑
j=1

1

hn

E
j−1
0

[{
M ′′

j−1
[
v′′

1 ,m⊗2
j

]}{
M ′′

j−1
[
v′′

2 ,m⊗2
j

]}]+ Op(hn)

= 1

n

n∑
j=1

1

hn

∑
k,l,k′,l′

M
′′(·kl)
j−1

[
v′′

1
]
M

′′(·k′l′)
j−1

[
v′′

2
]
E

j−1
0

[
m

(k)
j m

(l)
j m

(k′)
j m

(l′)
j

]

+ Op(hn).
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Using the orthogonality as before and noting the fact that E[|whn |4] = O(h2
n), we

get

E
j−1
0

[
m

(k)
j m

(l)
j m

(k′)
j m

(l′)
j

]
= ∑

s,t,s′,t ′
c
(ks)
j−1c

(lt)
j−1c

(k′s′)
j−1 c

(l′t ′)
j−1 E

[
J

(s)
hn

J
(t)
hn

J
(s′)
hn

J
(t ′)
hn

]+ Rj−1h
2
n

(4.31)
= hn

∑
s,t,s′,t ′

c
(ks)
j−1c

(lt)
j−1c

(k′s′)
j−1 c

(l′t ′)
j−1

{
νsts′t ′(4) + O(hn)

}+ Rj−1h
2
n

= hn

∑
s,t,s′,t ′

c
(ks)
j−1c

(lt)
j−1c

(k′s′)
j−1 c

(l′t ′)
j−1 νsts′t ′(4) + Rj−1h

2
n.

By putting (4.30) and (4.31) together, we get (4.27)

Vββ,n

[
v′′

1 , v′′
2
]

= 1

n

n∑
j=1

∑
s,t,s′,t ′

νsts′t ′(4)
{
M ′′

j−1
[
v′′

1 , c
(·s)
j−1, c

(·t)
j−1

]}{
M ′′

j−1
[
v′′

2 , c
(·s′)
j−1, c

(·t ′)
j−1

]}

+ Op(hn)

→p Vββ

[
v′′

1 , v′′
2
]
.

The proof is thus complete. �

4.1.3. Verification of the conditions on the derivatives of Gn. Based on (4.4)
and (4.5), we derive the following bilinear forms:

∂αGα
n(θ) =

n∑
j=1

∂αM ′
j−1(θ)[χj ] − hn

n∑
j=1

∂αM ′
j−1(θ)

[
aj−1(α) − aj−1

]
(4.32)

− hn

n∑
j=1

M ′
j−1(θ)∂αaj−1(α),

∂βGα
n(θ) =

n∑
j=1

∂βM ′
j−1(θ)[χj ]

(4.33)

− hn

n∑
j=1

∂βM ′
j−1(θ)

[
aj−1(α) − aj−1

]
,

∂αGβ
n(θ) = −2hn

n∑
j=1

{
M ′′

j−1(β)∂αaj−1(α)
}

(4.34)
× [

χj − hn

{
aj−1(α) − aj−1

}]
,
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∂βGβ
n(θ) =

n∑
j=1

{
∂βM ′′

j−1(β)
[
χ⊗2

j

]− hn∂βdj−1(β)
}

− 2hn

n∑
j=1

∂βM ′′
j−1(β)

[
χj , aj−1(α) − aj−1

]
(4.35)

+ h2
n

n∑
j=1

∂βM ′′
j−1(β)

[{
aj−1(α) − aj−1

}⊗2]
.

We can prove the following lemma in a similar way to the proof of Lemma 4.2.

LEMMA 4.7. For every K > 0,

sup
n

E0

[
sup
θ

∣∣∣∣ 1

Tn

∂k
θ Gn(θ)

∣∣∣∣
K]

< ∞, k = 1,2,3.

Recall that the matrix G′∞(θ0) = diag{G′α∞(θ0),G
′β∞(θ0)} is given by (2.7)

and (2.8).

LEMMA 4.8. For every K > 0,

sup
n∈N

E0

[∣∣∣∣√Tn

(
1

Tn

∂θGn(θ0) − G′∞(θ0)

)∣∣∣∣K
]

< ∞.

PROOF. First, concerning the off-diagonal parts, we have

1

Tn

∂βGα
n = 1√

Tn

n∑
j=1

1√
Tn

∂βM ′
j−1[χj ] = O∗

p

(
1√
Tn

)
,

1

Tn

∂αGβ
n = −2

hn√
Tn

n∑
j=1

1√
Tn

M ′′
j−1[∂αaj−1, χj ] = O∗

p

(
hn√
Tn

)
,

where the moment estimates for the martingale terms will be proved in an analo-
gous way to the proof of Lemma 4.2. Next, we observe

1

Tn

∂αGα
n − G′α∞ = 1√

Tn

n∑
j=1

1√
Tn

∂αM ′
j−1[χj ] − 1

n

n∑
j=1

M ′
j−1∂αaj−1 − G′α∞(θ0)

= O∗
p

(
1√
Tn

)
+ 1√

Tn

{√
Tn

(
−1

n

n∑
j=1

M ′
j−1∂αaj−1 − G′α∞(θ0)

)}

= O∗
p

(
1√
Tn

)
,
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where we used Lemma 4.3 for the last equality. It remains to look at T −1
n ∂βG

β
n .

Plugging in the identity χj = mj + r ′
j + h2

nRj−1 and making use of what we have
seen in the first half of the proof of Lemma 4.6, we proceed as follows:

1

Tn

∂βGβ
n

= 1

Tn

n∑
j=1

(
∂βM ′′

j−1
[(

mj + r ′
j

)⊗2]− hn∂βdj−1
)+ O∗

p(hn)

= 1

Tn

n∑
j=1

(
∂βM ′′

j−1
[
m⊗2

j

]− hn∂βdj−1
)+ O∗

p(
√

hn)

= 1√
Tn

{
n∑

j=1

1√
Tn

(
∂βM ′′

j−1
[
m⊗2

j

]− E
j−1
0

[
∂βM ′′

j−1
[
m⊗2

j

]])}

(4.36)

+ 1

Tn

n∑
j=1

(
E

j−1
0

[
∂βM ′′

j−1
[
m⊗2

j

]]− hn∂βdj−1
)+ O∗

p(
√

hn)

= 1

Tn

n∑
j=1

(
E

j−1
0

[
∂βM ′′

j−1
[
m⊗2

j

]]− hn∂βdj−1
)+ O∗

p

(
1√
Tn

)

= 1

n

n∑
j=1

[
trace

{(−∂βl
∂βl′ V

−1
j−1

)
Vj−1

}− ∂βl
∂βl′ log |Vj−1|]pβ

l,l′=1

+ O∗
p

(
1√
Tn

)
.

The (l, l′)th component of the first term in (4.36) tends in probability to
∫ [

trace
{−∂βl

∂βl′ V
−1V (x,β0)

}− ∂βl
∂βl′ log |V |(x,β0)

]
π0(dx)

= −
∫

trace
{(

V −1(∂βl
V )V −1(∂βl′ V )

)
(x,β0)

}
π0(dx).

Accordingly, a reduced version of Lemma 4.3 with � = {θ0} applies to conclude
that T −1

n ∂βG
β
n(θ0) − G

′β∞(θ0) = O∗
p(T

−1/2
n ). The proof is complete. �

4.2. Proof of Corollary 2.8. By Theorem 2.7, we know that
√

Tn(α̂n − α0) =
Op(1) and

√
Tn(β̂n − β0) = Op(1). It is easy to see from Taylor expansion that

Ĝ′α
n →p G′α∞(θ0) and Ĝ

′β
n →p G

′β∞(θ0). Turning to V̂αβ,n and V̂ββ,n, we plug the
expression χj (α̂n) = χj + √

hn/nRj−1[√Tn(α̂n − α0)] into their definitions and
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then apply Taylor expansion with respect to θ̂n around θ0 as before, to obtain

V̂αβ,n

[
v′

1, v
′′
1
] = −

n∑
j=1

1

Tn

(
V −1

j−1 ⊗ ∂βV −1
j−1

)[(
∂αaj−1

[
v′

1
]
, χj

)
,
(
v′′

1 , χ⊗2
j

)]

+ Op

(
1√
Tn

)
,

(4.37)

V̂ββ,n

[
v′′

1 , v′′
2
] =

n∑
j=1

1

Tn

(
∂βV −1

j−1 ⊗ ∂βV −1
j−1

)[(
v′′

1 , χ⊗2
j

)
,
(
v′′

2 , χ⊗2
j

)]

+ Op

(
1√
Tn

)
.

We only show that V̂αβ,n[v′
1, v

′′
2 ] →p Vαβ[v′

1, v
′′
1 ], for the case of V̂ββ,n is similar.

Write
∑n

j=1 ηj for the first term in the right-hand side of (4.37). We can show
that

n∑
j=1

E
j−1
0 [ηj ] →p Vαβ

[
v′

1, v
′′
1
]

in a similar manner to show the convergence of the quadratic characteristics in the
proof of Lemma 4.6. Noting that E

j−1
0 [|χj |q] ≤ hnRj−1 for every q ≥ 2, we also

have
n∑

j=1

E0
[(

ηj − E
j−1
0 [ηj ])2] �

n∑
j=1

E0
[
η2

j

]
� 1

Tn

→ 0.

Applying the Lenglart domination property for the martingale
∑n

j=1(ηj −
E

j−1
0 [ηj ]) (cf. Jacod and Shiryaev [15], I.3.30), we conclude that

∑n
j=1 ηj →p

Vαβ[v′
1, v

′′
1 ], hence V̂αβ,n[v′

1, v
′′
1 ] →p Vαβ [v′

1, v
′′
1 ].

4.3. Proof of Theorem 2.9. First, we mention an auxiliary estimate. Re-
call (4.6) and (4.21): χj := jX − hnaj−1(α0) = mj + (rj + r ′

j ). Using
Birkholder’s inequality and then the Lipschitz continuity of the coefficients, we
see that

E0
[∣∣rj + r ′

j

∣∣q ′]
�

∫
j
E0

[|Xs − Xtj−1 |q
′]

ds � h2
n‖g‖q ′

∞ � h2
n

for q ′ ∈ [2, q], where g is the one given in Lemma 4.5. In this proof, R denotes a
generic essentially bounded function on Rd possibly depending on n and θ .

By means of the classical M-estimation theory (e.g., van der Vaart [44], Chap-
ter 5), it is crucial to have the uniform convergence

sup
θ∈�

∣∣∣∣ 1

Tn

Gn(θ) − G∞(θ)

∣∣∣∣+ sup
θ∈�

∣∣∣∣ 1

Tn

∂θGn(θ) − G′∞(θ)

∣∣∣∣ →p 0.(4.38)
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Most key materials to prove this have been obtained in the proof of Theorem 2.7,
so we only give a sketch.

Note that the variables M ′
j−1(θ) and M ′′

j−1(β) are now essentially bounded

uniformly in θ . Substituting χj = mj + h2
nRj−1 in the expressions (4.4) and (4.5)

about Gn, and also (4.32), (4.33), (4.34) and (4.35) about ∂θGn, it is not difficult
to deduce (4.38); as was in the proof of Theorem 2.7, for the estimate to be valid
uniformly in θ we applied Sobolev inequality in part, where it was needed that
E[|J1|q] < ∞ for some q > p.

Now, the consistency of θ̂n follows from (4.38): θ̂n →p θ0. Since P [ω :
Gn(θ̂n(ω)) = 0] → 1, we may and do suppose that Gn(θ̂n) = 0. In view of (4.38)
and the Taylor expansion 0 = T

−1/2
n Gn(θ0)+T −1

n ∂θGn(θ̃n)[√Tn(θ̂n −θ0)], where
the point θ̃n lies on the segment connecting θ̂n and θ0, it suffices to have the central
limit theorem (4.20). By close inspection of the proof of Lemma 4.6, we note that
the present assumption [especially q > (4 ∨p) about the moment order] is enough
to conclude (4.20). The proof is complete.

5. A criterion for the exponential ergodicity in dimension one. In this sec-
tion, we set d = r ′ = r ′′ = 1 and suppress dependence on the parameter from the
notation

dXt = a(Xt) dt + b(Xt) dWt + c(Xt−) dJt .(5.1)

We here forget Assumptions 2.1 to 2.5, and instead introduce the following set of
conditions.

ASSUMPTION 5.1. (a, b, c) is of class C 1(R) and globally Lipschitz, and
(b, c) is bounded.

ASSUMPTION 5.2. Either one of the following conditions holds true:

(i) b(x′) �= 0 for some x′, c(x′′) �= 0 for every x′′, and there exists a constant
ε > 0 such that ν(−ε,0) ∧ ν(0, ε) > 0 for every ε ∈ (0, ε);

(ii) b ≡ 0, c(x′′) �= 0 for every x′′, and we have the decomposition

ν = ν� + ν�

for two Lévy measures ν� and ν�, where the restriction of ν� to some open set of
the form (−ε,0) ∪ (0, ε) admits a continuously differentiable positive density g�.

ASSUMPTION 5.3.

(i) E[J1] = 0 and
∫
|z|>1 |z|qν(dz) < ∞ for some q ≥ 1, and

lim sup
|x|→∞

a(x)

x
< 0.
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(ii) E[J1] = 0 and
∫
|z|>1 exp(q|z|)ν(dz) < ∞ for some q > 0, and

lim sup
|x|→∞

sgn(x)a(x) < 0.

The next proposition gives a pretty simple criterion for Assumption 2.3.

PROPOSITION 5.4. The following holds true:

(a) Suppose conditions 5.1, 5.2, 5.3(i), and that E[|X0|q] < ∞. Then, there
exist a probability measure π and a constant a > 0 such that (2.1) holds true for a
C 2-function g satisfying that g(x) = 1+|x|q outside a neighborhood of the origin.
Further, (2.2) holds true for the q given in 5.3(i).

(b) Suppose 5.1, 5.2, 5.3(ii), and that E[exp(q|X0|)] < ∞. Then, there exist
a probability measure π and constants a, ε > 0 such that (2.1) holds true for a
C 2-function g satisfying that g(x) = 1 + exp(ε|x|) outside a neighborhood of the
origin. Further, (2.2) holds true for arbitrary q > 0.

PROOF. The Lipschitz continuity implies that the SDE (5.1) admits a unique
strong solution. We consider the following conditions:

(I) there exists a constant  > 0 for which every compact sets are petite for
the Markov chain (Xj)j∈Z+ ;

(II) the exponential Lyapunov-drift criterion

Aϕ ≤ −cϕ + d(5.2)

holds true for some constants c, d > 0 and some ϕ : R → R+ belonging to the do-
main of A such that lim|x|→∞ ϕ(x) = ∞, where A denotes the extended generator
of X.

As in the proof of Masuda [28], the proof of Theorem 2.2, in each of (a) and (b) the
exponential ergodicity (2.1) follows from (I) and (II), and the moment bound (2.2)
from (II) alone. In order to prove (I), we will first verify the Local Doeblin (LD)
condition (see Kulik [19] for details); we note that the LD condition implies (I) for
any  > 0. Then we will verify the drift condition (II) with different choices of ϕ

under Assumptions 5.3(i) and 5.3(ii).
Verification of (I): the LD condition.
First, we verify the LD condition under Assumption 5.2(i). Let �x(A) := ν({z ∈

R : c(x)z ∈ A}), and refer to Kulik’s condition (S) in the reduced form

∀x ∈ R ∀v ∈ {−1,1} ∃ρ ∈ (−1,1) ∀δ > 0 :
(S)

�x

({
y ∈ R :yv ≥ ρ|y|}∩ {

y ∈ R : |y| ≤ δ
})

> 0.

Under Assumption 5.2(i), it follows form Kulik [19], Theorem 1.3, Proposition A.2
and Proposition 4.7, that the condition (S) above implies the LD condition. Simple
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manipulation shows that the last condition is equivalent to the following:

∀x ∈ R ∀δ > 0 :

ν
({

z ∈ R : 0 ≤ c(x)z ≤ δ
})∧ ν

({
z ∈ R :−δ ≤ c(x)z ≤ 0

})
> 0.

Since ν(R) > 0, it suffices to look at x such that c(x) �= 0. However, for such x,
the condition obviously holds true under Assumption 5.2(i).

Next we verify the LD condition under Assumption 5.2(ii). If c is constant, then
we can apply Kulik [19], Proposition 0.1, to verify the LD condition. Therefore,
we suppose that ∂xc �≡ 0 in what follows. We smoothly truncate the support of ν�

as follows: pick any ε ∈ (0, ε), let ψ : R → [0,1] be given by2

ψ(z) :=
{

exp
{−(z − ε)−1 − (ε − z)−1}, (ε < z < ε),

0, (otherwise)

and set

ν1(dz) := {
ψ(z) + ψ(−z)

}
ν�(dz) = {

ψ(z) + ψ(−z)
}
g�(z) dz.

Then we have the decomposition ν = ν1 + ν2, where ν2(dz) := [1 − {ψ(z) +
ψ(−z)}]ν�(dz) + ν�(dz) defines a Lévy measure. The function z 	→ {ψ(z) +
ψ(−z)}g�(z) is smooth and supported by [−ε,−ε]∪ [ε, ε]. With this truncation in
hand, we can apply Kulik [19], Proposition A.1, which states that, when the diffu-
sion part is absent, the LD condition is implied by the conditions (S) plus (N̂),

∃x′′ ∈ R ∃t ′′ > 0 :Px′′ [Ŝt ′′ = R] > 0,(N̂)

where Ŝt := {uE t
τ c(Xτ−);u ∈ R, τ ∈ D1 ∩ (0, t)}, with D1 and (E t

s )0≤s≤t , respec-
tively, denoting the domain of the point process N1 associated with ν1 and a right-
continuous solution to

E t
s = 1 +

∫ t

s
∂xa(Xu)E u

s du +
∫ t

s
∂xc(Xu−)E u−

s dJu.

As (S) has been already verified in the previous paragraph, it remains to prove (N̂);
obviously, if ν fulfils Assumption 5.2(ii), then it does Assumption 5.2(i) too. The
stochastic-exponential formula leads to

E t
s = exp(Yt − Ys)

∏
s<u≤t

(1 + Yu) exp(−Yu), s ≤ t,

where Yu := ∫ u
0 ∂xa(Xv) dv + ∫ u

0 ∂xc(Xv−) dJv . We now introduce the two auxil-
iary sets

A′(t) := {
ω ∈ 
 : D1 ∩ (0, t) �= ∅

}
,

A′′(t) := {
ω ∈ 
 :N

(
(0, t], {z ∈ R; |z| ≥ ‖∂xc‖−1∞

}) = 0
}
,

2The author owes Professor A. M. Kulik for this clear-cut choice of ψ .
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where N(dt, dz) denotes the Poisson random measure associated with J . Accord-
ing to the implications

{|Ju| < ‖∂xc‖−1∞ , u ∈ (0, t]} ⊂ {∣∣∂xc(Xu−)Ju

∣∣ < 1, u ∈ (0, t]}
= {|Yu| < 1, u ∈ (0, t]}
⊂ {

E t
s �= 0, s ∈ [0, t]},

the process (E t
s )0≤s≤t stays positive a.s. on A′′(t). Since P [A′(t) ∩ A′′(t)] > 0 for

every t > 0 and c is nonvanishing on R, we observe that for every x ∈ R and t > 0

Px[Ŝt = R] ≥ Px

[{Ŝt = R} ∩ A′(t) ∩ A′′(t)
]

≥ Px

[{
E t

s c(Xs−) �= 0 for some s ∈ (0, t)
}∩ A′(t) ∩ A′′(t)

]
= Px

[{
c(Xs−) �= 0 for some s ∈ (0, t)

}∩ A′(t) ∩ A′′(t)
]

= Px

[
A′(t) ∩ A′′(t)

]
> 0,

hence the LD condition.
Verification of (II): the drift condition. Now we turn to the verification of (5.2).

For verification under Assumption 5.3(i), one can refer to Kulik [19] and Masuda
[28, 29]; in this case, we may set ϕ(x) = |x|q outside a sufficiently large neighbor-
hood of the origin. We are left to showing (5.2) under Assumption 5.3(ii), where,
compared with Assumption 5.3(i), we impose a weaker condition on the drift func-
tion a while a stronger moment condition on ν. We will achieve the proof in a
somewhat similar manner to the proof of Masuda [29], Theorem 1.2.

Fix any ε ∈ (0, q‖c‖−1∞ ∧ 1) and pick a ϕ = ϕε ∈ C 2(R) fulfilling:

• ϕ(x) = exp(ε|x|) for |x| ≥ ε−1;
• ϕ(x) ≤ exp(ε|x|) for every x;
• |∂2

xϕ(x)| ≤ Cε2ϕ(x) for every x.

We can write Aϕ = Gϕ + J ϕ, where

Gϕ(x) := ∂xϕ(x)a(x) + 1

2
∂2
xϕ(x)b2(x),

J ϕ(x) :=
∫ {

ϕ
(
x + c(x)z

)− ϕ(x) − ∂xϕ(x)c(x)z
}
ν(dz).

According to the local boundedness of x 	→ Aϕ(x), we may and do concentrate
on x with |x| large enough. Direct algebra gives

Gϕ(x) ≤ εϕ(x)
{
sgn(x)a(x) + Cε

}
.(5.3)
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Further, by means of Taylor’s theorem and the property of ϕ,

∣∣J ϕ(x)
∣∣ � ∣∣c(x)

∣∣2 ∫ |z|2
(

sup
0≤s≤1

∣∣∂2
xϕ

(
x + sc(x)z

)∣∣)ν(dz)

� ε2 exp
(
ε|x|) ∫ |z|2 exp

(
ε‖c‖∞|z|)ν(dz)(5.4)

� ε2ϕ(x).

By putting (5.3) and (5.4) together and by taking ε small enough, we can find a
constant c0 > 0 for which Aϕ(x) ≤ −c0ϕ(x) for every |x| large enough. The proof
of Proposition 5.4 is complete. �

REMARK 5.5. If the condition on ν in Assumption 5.2(i) fails to hold, then J

is necessarily a compound-Poisson process. In this case, we can utilize the criteria
given in Masuda [29].

REMARK 5.6. By combining the results of the LD-condition argument
and general stability theory for Markov processes, it is possible to formulate
subexponential- and polynomial-ergodicity versions, as well as the ergodicity ver-
sion (without rate specification); see, for example, Meyn and Tweedie [34] and
Fort and Roberts [9]. Especially, as in Masuda [29], the conditions on (a, b, c)

in Proposition 5.4 can be considerably relaxed in case of the ergodicity version,
because the Lyapunov condition required then becomes much weaker.
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