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NONPARAMETRIC INFERENCE ON LÉVY MEASURES AND
COPULAS1

BY AXEL BÜCHER AND MATHIAS VETTER

Ruhr-Universität Bochum

In this paper nonparametric methods to assess the multivariate Lévy mea-
sure are introduced. Starting from high-frequency observations of a Lévy
process X, we construct estimators for its tail integrals and the Pareto–Lévy
copula and prove weak convergence of these estimators in certain function
spaces. Given n observations of increments over intervals of length �n, the

rate of convergence is k
−1/2
n for kn = n�n which is natural concerning in-

ference on the Lévy measure. Besides extensions to nonequidistant sampling
schemes analytic properties of the Pareto–Lévy copula which, to the best of
our knowledge, have not been mentioned before in the literature are provided
as well. We conclude with a short simulation study on the performance of our
estimators and apply them to real data.

1. Introduction. The modeling and estimation of dependencies is attracting
an increasing attention over the last decades in various fields of science like math-
ematical finance, actuarial science or hydrology, among others.

In discrete time models, one of the most popular approaches is the concept
of copulas which allows one to separate the effects of dependence of a random
vector from its univariate marginal behavior. In the bivariate case, the copula of
a continuous random vector (X,Y ) is the unique function C : [0,1]2 → [0,1] for
which the identity

P[X ≤ x,Y ≤ y] = C
(
P[X ≤ x],P[Y ≤ y])

holds for all (x, y) ∈ R2. This formula, known as Sklar’s theorem, is usually in-
terpreted in the way that the copula completely characterizes the stochastic de-
pendence between X and Y and hence represents the primary object of interest
for investigating dependencies. For introductions to the concept of copulas in the
aforementioned fields of science see McNeil, Frey and Embrechts (2005), Frees
and Valdez (1998), Genest and Favre (2007) and references therein. The books of
Joe (1997) and Nelsen (2006) provide compendiums on the mathematical back-
ground and on various parametric models. The huge amount of applications gave

Received February 2013.
1Supported by the collaborative research center “Statistical modeling of nonlinear dynamic pro-

cesses” (SFB 823) of the German Research Foundation (DFG).
MSC2010 subject classifications. Primary 60F05, 60G51, 62H10; secondary 62G32, 62M09.
Key words and phrases. Copula, Lévy copula, Lévy measure, Lévy process, nonparametric statis-

tics, Pareto–Lévy copula, weak convergence.

1485

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/13-AOS1116
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1486 A. BÜCHER AND M. VETTER

rise to a great demand for statistical methods, of which semi- and nonparametric
estimation in discrete time i.i.d. models has been investigated in Genest, Ghoudi
and Rivest (1995), Fermanian, Radulović and Wegkamp (2004) and Segers (2012),
among others.

On the other hand, a huge number of models in applied stochastics relies on an
underlying process which is defined in continuous time. A basic tool in this frame-
work is the class of (multidimensional) Lévy processes which provides a flexible
way to model empirically observed behavior and includes prime examples such as
Brownian motion and the (compound) Poisson process. Statistical methods in this
context (including the somewhat more involved one of Itô semimartingales) de-
pend on the nature of the observation schemes which are usually classified as high-
frequency and low-frequency setups. In both areas the literature on nonparametrics
has grown considerably over the last decade. General overviews on high-frequency
statistics can be found in Jacod and Protter (2012) and Mykland and Zhang (2012).
To mention only a few approaches in detail which are close to our focus on jump
processes we refer to Jacod (2007), Figueroa-López (2009), Aït-Sahalia and Jacod
(2009), Bollerslev and Todorov (2011) and Todorov and Tauchen (2011). Seminal
papers in the low frequency setting are, for instance, due to Neumann and Reiß
(2009) and recently to Nickl and Reiß (2012).

Our aim in this work is to combine both strands of the literature and to pro-
vide nonparametric methods to estimate the dependence structure of a multivariate
Lévy process. For the sake of brevity we will concentrate on the bivariate case
solely, but extensions to the general d-dimensional setting are straightforward to
obtain as well. Thus, let X = (X(1),X(2)) be a two-dimensional Lévy process with
Lévy–Itô decomposition

Xt = at + Bt +
∫ t

0

∫
‖u‖≤1

u(μ − μ̄)(ds, du) +
∫ t

0

∫
‖u‖>1

uμ(ds, du),(1.1)

where a ∈ R2 is a drift vector, B is a bivariate Brownian motion with some co-
variance matrix � and μ and μ̄ are the jump measure of the Lévy process and its
compensator, respectively. It is well-known that the compensator takes the form
μ̄(ds, du) = ds ν(du), where ν is the so-called Lévy measure of X. Given the
choice of the truncation function h(u) = 1{‖u‖>1}, the law of X is uniquely deter-
mined by the Lévy triplet (a,�, ν).

As noted above, in the framework of statistics for stochastic processes it is in-
evitable to lose some words on the underlying observation scheme. We decide to
work in a high-frequency setting which means in the simplest case that at stage n

one is able to observe one realization of the process X at the equidistant times
i�n, i = 0, . . . , n, for a mesh �n → 0. A more general setup including irregu-
larly spaced data and asynchronous observations will be provided as well. Within
the class of high-frequency settings a further distinction regards the nature of the
covered time horizon. Usually, we have either n�n = T , corresponding to a finite
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time horizon (a trading day, say), whereas n�n → ∞ means that the process is
eventually observed on the entire time span [0,∞).

Due to the independence of the continuous part and the jump part of a Lévy
process, the analysis of the stochastic nature of X canonically splits into inference
on the covariance matrix � and inference on the jump measure ν. However, esti-
mation of the characteristics of the Brownian part of X with or without additional
jumps is well understood in the high-frequency setup [among others, see Jacod
(2008) for a thorough theory on the behavior of more general Itô semimartingales],
so our focus in this paper will be on the jump dependence of the two components.
In analogy to standard copulas for random vectors we will employ a concept of
a Lévy copula to capture the dependence structure within ν which dates back to
Cont and Tankov (2004) and Kallsen and Tankov (2006). We will follow a slightly
different approach due to Klüppelberg and Resnick (2008) and Eder and Klüppel-
berg (2012), however, and focus on nonparametric methods to assess the closely
related Pareto–Lévy copula. Consult also Bollerslev, Todorov and Li (2013) for
related work on jump dependence using extreme value theory.

Besides parametric approaches to infer the (Pareto) Lévy copula such as
Esmaeili and Klüppelberg (2011), nonparametric methods in this area are hardly
available. To the best of our knowledge, the only concept is due to the unpublished
work of Laeven (2011) who constructs an estimator for the Lévy copula based on
a limit representation involving ordinary copulas. Some asymptotic properties are
provided, but no explicit proof is available. On the other hand, since the (Pareto)
Lévy copula captures the tendency of the process to have joint (largely negative)
jumps, the need for reliable nonparametric estimators is evident from practice, par-
ticularly with a view on finance. See, for instance, Böcker and Klüppelberg (2009)
who model operational risk via Pareto–Lévy copulas. This convinces us that there
is a clear gap in the literature which we aim to fill in this work.

In contrast to Laeven’s method, our approach will be based directly on the defin-
ing relation of the Pareto–Lévy copula � which involves tail integrals of both the
Lévy measure and its marginals. For simplicity, we will focus on the spectrally
positive case only, that is, we assume that X has only positive jumps in both direc-
tions. Equivalently, the Lévy measure ν has support on [0,∞)2 \ {(0,0)}, and �

will then naturally be a function on the same space. In the case where all marginal
tail integrals have full range [0,∞], we obtain a representation of � as a func-
tional of those, and we propose to estimate � by using appropriate estimators for
the tail integrals. It turns out that in order to do so, we are forced to work in the
high-frequency setting with infinite time horizon, that is, n�n → ∞. Under some
rather mild assumptions we are then able to prove weak convergence of a suitably
standardized version of �̂ − � in a certain function space, which will be our main
result. As a by-product, we obtain a Donsker theorem for the bivariate Lévy mea-
sure as well; a result which is similar in spirit to the recent work of Nickl and Reiß
(2012), but in a high-frequency setting rather than a low-frequency world.



1488 A. BÜCHER AND M. VETTER

The paper is organized as follows: Section 2 is devoted to a brief discussion
on jump dependence of bivariate Lévy processes. We summarize the concept of
Pareto–Lévy copulas and derive some of their analytical properties. In Section 3
we define estimators for bivariate tail integrals, as well as for their associated
Pareto–Lévy copulas. Weak convergence of these estimators is discussed in Sec-
tion 4, while Section 5 is devoted to deviations from the ideal sampling scheme.
A brief discussion of our results, a small simulation study and a real data exam-
ple are provided in Section 6, whereas some conclusions are given in Section 7.
Finally, the main steps of the proofs are postponed to Section 7, while more tech-
nical details are treated in a supplementary Appendix.

2. Jump dependence and the Pareto–Lévy copula. Suppose that we are
given a bivariate Lévy process X of the form (1.1) where ν denotes its Lévy
measure. As already stated in the Introduction, one assumption will be that ν has
support on [0,∞)2 \ {(0,0)}, which means that both components of X only have
positive jumps. This condition is for notational convenience in first place, as we
will see later that one can follow a similar approach in order to estimate the jump
dependence in the other three quadrants as well.

Let us review some recent concepts of jump dependence. The basic quantity
in this framework is the bivariate tail integral U associated with ν, which, for the
moment, will be defined as a function from [0,∞]2 \ {(0,0)} to R by

U(x) = ν
([x1,∞] × [x2,∞]), x = (x1, x2).

From the theory of Lévy processes it is well known that this quantity gives the
average amount of jumps of X which fall into the interval [x1,∞]×[x2,∞] during
a time period of length one. Since X has càdlàg paths, U(x) is necessarily finite.
In the same way, we are able to introduce marginal tail integrals. Precisely, let
Ui : [0,∞] → [0,∞], i = 1,2, be defined via

U1(x1) = ν
([x1,∞] × R

)
and U2(x2) = ν

(
R × [x2,∞]).

Again, Ui(xi) is finite for xi > 0, but in the infinite activity case we may have
Ui(0) = ∞, i = 1,2.

It is obvious that the entire information about ν is contained in the tail inte-
gral U . Therefore, just as for regular copulas, one might be interested in splitting U

into several functions which are related to the jump behavior of X in the marginals
(naturally given by the univariate tail integrals Ui ) and a Lévy copula C which
captures the specific tendency of X to have joint jumps. Having this intuition in
mind, Cont and Tankov (2004) provided the following definition.

DEFINITION 2.1. A bivariate Lévy copula for Lévy processes with positive
jumps is a function C : [0,∞]2 \ {(∞,∞)} → [0,∞) which:

(i) is grounded, that is, C(x,0) = C(0, x) = 0 for all x ∈ [0,∞];
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(ii) has uniform margins, so C(x,∞) = C(∞, x) = x for all x ∈ [0,∞);
(iii) is 2-increasing, that is, C(x1, x2) − C(x1, y2) − C(y1, x2) + C(y1, y2) ≥ 0

for all x1 ≤ y1 and x2 ≤ y2.

The main result on Lévy copulas is a version of Sklar’s famous theorem which
states that for each tail integral U with marginals U1 and U2 there exists a Lévy
copula C such that

U(x) = C
(
U1(x1),U2(x2)

)
, x = (x1, x2) ∈ [0,∞]2 \ {

(0,0)
}
,

holds. Similarly to the usual copula, C is uniquely defined on ranU1 × ranU2 and,
in particular, C is globally unique if ranUi = [0,∞] for i = 1,2. This becomes
our second main assumption. In that case, we obtain a representation of C via

C(u) = U
(
U−

1 (u1),U
−
2 (u2)

)
, u = (u1, u2) ∈ [0,∞]2 \ {

(∞,∞)
}
,

where, for any f : (0,∞] → [0,∞) which is nonincreasing, left-continuous and
satisfies f (∞) = 0, f − : (0,∞] → [0,∞) denotes the generalized inverse func-
tion

f −(z) = inf
{
x > 0 :f (x) ≤ z

}
(2.1)

and where we use the convention f −(0) = ∞.
The inverse statement of Sklar’s theorem is true as well: knowledge of the

marginals Ui and the Lévy copula C completely determines U and thus in turn ν.
A drawback of the approach of Cont and Tankov (2004) is, however, that C is not a
tail integral itself. This is in contrast to the regular copula of a random vector which
couples marginal distribution functions and is a bivariate distribution function on
its own. This circumstance makes the interpretation of a Lévy copula quite diffi-
cult, and for that reason it appears to be natural to focus on an alternative notion of
copula in this setting.

DEFINITION 2.2. A bivariate Pareto–Lévy copula for Lévy processes with
positive jumps is a function � : [0,∞]2 \ {(0,0)} → [0,∞) which:

(i) is grounded, that is, �(u,∞) = �(∞, u) = 0 for all u ∈ (0,∞];
(ii) has Pareto margins, so �(u,0) = �(0, u) = 1/u for all u ∈ (0,∞];

(iii) is 2-increasing.

As usual, we set 1/∞ = 0 and vice versa. Following Eder and Klüppelberg
(2012), Sklar’s theorem now reads as follows: given U and its marginals, we have

U(x) = �
(
1/U1(x1),1/U2(x2)

)
, x = (x1, x2) ∈ [0,∞]2 \ {

(0,0)
}

for some unique Pareto–Lévy copula �, and we obtain the relation

�(u) = U
(
U−

1 (1/u1),U
−
2 (1/u2)

)
, u = (u1, u2) ∈ [0,∞]2 \ {

(0,0)
}
.(2.2)
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The difference to the approach of Cont and Tankov (2004) is that the marginals
of � correspond to Pareto tails, which are the tail integrals of a 1-stable Lévy pro-
cess on the positive half line. Since � is 2-increasing as well, it is a simple task to
deduce that it satisfies the properties of a tail integral of a spectrally positive Lévy
process as claimed. Thus the Pareto–Lévy copula allows for the interpretation that
the marginals of ν are standardized to the Lévy measures of a 1-stable Lévy pro-
cess, which is similar in spirit to the ordinary copula concept where marginals are
standardized to uniform distributions.

Finally, we collect some basic properties of Pareto–Lévy copulas, some of
which already have been stated in Cont and Tankov (2004) and Kallsen and Tankov
(2006) in the context of Lévy copulas.

PROPOSITION 2.3. Every Pareto Lévy copula � has the following properties:

(i) (Lipschitz continuity). |�(u) − �(v)| ≤ | 1
u1

− 1
v1

| + | 1
u2

− 1
v2

|.
(ii) (Monotonicity). � is 2-increasing and the functions �(u, ·) and �(·, u) are

nonincreasing for each fixed u ≥ 0.
(iii) (Fréchet-Hoeffding bounds). �⊥ ≤ � ≤ �‖, where �‖(u) = (u1 ∨ u2)

−1

and �⊥(u) = u−1
1 1{u2=0} + u−1

2 1{u1=0} denote the Pareto Lévy copulas corre-
sponding to perfect positive dependence and to independence, respectively.

(iv) (Partial derivatives). �̇1(u1,0) = −u−2
1 and �̇1(u1,∞) = 0. For fixed u2 ∈

(0,∞), the partial derivative �̇1(u1, u2) exists for almost all u1 ∈ (0,∞), and for
such u1 and u2 we have

0 ≥ �̇1(u1, u2) ≥ −u−2
1 .

Furthermore, the mapping u2 
→ �̇1(u1, u2) is defined and nondecreasing almost
everywhere. Analogous results hold for the partial derivative with respect to u2.

3. Estimation of bivariate tail integrals and Pareto–Lévy copulas. In the
following we are interested in the construction of an estimator �̂n for � which is
based on relation (2.2) and empirical versions of the tail integrals U , U1 and U2.
Such estimators have, for instance, been discussed in Figueroa-López (2008) in
the univariate setting, and we will transfer them naturally to the bivariate case.

Before we introduce these empirical versions, it turns out to be convenient to
slightly change the domain of U . Since by assumption no negative jumps are in-
volved, we have ν([x1,∞] × [0,∞]) = ν([x1,∞] × [−∞,∞]) for each x1 > 0,
and similarly for the second component. Therefore it is equally well possible to
define U in the same way as before, but as a function U : H → R, where

H = (0,∞]2 ∪ ({−∞} × (0,∞]) ∪ (
(0,∞] × {−∞}).

Note that, on the stripes through −∞, U corresponds to the marginal tail integrals
U1 and U2, respectively.
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Our estimator for the function U will be defined on H as well. We set

Un(x) = 1

kn

n∑
j=1

1{�n
j X(1)≥x1,�

n
j X(2)≥x2}, x = (x1, x2),(3.1)

where kn = n�n and �n
jX

(i) = X
(i)
j�n

− X
(i)
(j−1)�n

denotes the j th increment of

X(i), i = 1,2. Having the role of the stripes through −∞ in mind, we obtain em-
pirical versions of the univariate tail integrals through

Un,1(x1) = Un(x1,−∞) = 1

kn

n∑
j=1

1{�n
j X(1)≥x1}, x1 ∈ (0,∞],(3.2)

and analogously for Un,2. Weak convergence of Un in an appropriate function
space is established in Theorem 4.2 below.

The underlying idea behind Un is rather natural, given the interpretation of U as
the average number of jumps of a certain size during the unit interval. Stationarity
and indepedence of increments of a Lévy process ensure that the same behavior
is to be expected over intervals of arbitrary size, as long as U is standardized
accordingly. Therefore, a canonical idea is to count joint large increments of X(1)

and X(2), as they indicate joint large jumps over the corresponding time interval.
This is precisely what Un does.

REMARK 3.1. Several comments regarding the conditions on the underlying
sampling scheme are in order.

(i) In order for Un to be consistent, it is necessary to be in the high-frequency
setting with infinite time horizon, that is, kn → ∞. If we restrict ourselves to ob-
servations from a fixed time interval [0, T ], there are only finitely many jumps
larger than a given size, which is clearly not sufficient to draw inference on the
entire distribution of the jumps.

(ii) In reality, one usually neither sees both components of X at the same time
nor has a regular sampling scheme of observations with distance �n. Therefore,
the methods proposed in this section need to be sharpened when dealing with a
more general setup including irregularly spaced data and asynchronous observa-
tions which is done in Section 5 below. The same comment applies concerning
microstructure noise issues, in which case the distribution of the increments de-
pends heavily on the distribution of the noise variables added.

(iii) The method of counting large increments in order to identify jumps is a
feature of observation schemes at high frequency. In a low frequency world, with
�n = � being fixed, one rather observes a superposition of jumps and increments
of the continuous part and needs deconvolution techniques to distinguish between
both effects.

In order to construct an empirical version of (2.2) recall the definition of a gen-
eralized inverse function in (2.1).
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DEFINITION 3.2. Let U be the tail integral of a bivariate Lévy process with
positive jumps and U1, U2 be its marginal tail integrals. Using their empirical
versions (3.1) and (3.2) we define, for any u = (u1, u2) ∈ [0,∞]2 \ {(0,0)}, the
empirical Pareto–Lévy copula as

�̂n(u) = Un

(
U−

n,1(1/u1),U
−
n,2(1/u2)

)
,(3.3)

where U−
n,i is the generalized inverse function of Un,i as defined in (2.1), with the

convention that U−
n,i(1/∞) = U−

n,i(0) = ∞ and where a = a1{a>0} − ∞1{a=0} for
some a ∈ [0,∞]. Finally, we set Un(−∞,−∞) = n/kn.

REMARK 3.3. In order to understand why a is introduced, suppose that we are
interested in estimating �(u1,0) even though it is known to take the value 1/u1.
Our estimator becomes Un(U

−
n,1(1/u1),−∞) then, which is in general close to

1/u1 due to the definition of Un,1. On the other hand, if we forget about a, we
obtain Un(U

−
n,1(1/u1),0) which only counts those increments of X where the first

component exceeds U−
n,1(1/u1) and the second one is nonnegative. Due to the

existence of a Brownian part in X, however, we cannot expect these two estimators
to be close, since a nonnegligible number of increments in the second component
is indeed negative, and thus this estimator is considerably smaller than �̂(u1,0).

REMARK 3.4. In the general case of arbitrary jumps, a similar construction
allows for the estimation of � in the interior of each of the four quadrants sepa-
rately. Indeed, Eder and Klüppelberg (2012) give a general notion of tail integrals
and Pareto–Lévy copulas in their Definition 4, and from Sklar’s theorem in this
context (which is their Theorem 1) we know that the same relation as (2.2) holds
for u ∈ (R \ {0})2 and determines � uniquely. For the sake of brevity we dispense
with the entire theory in this setting.

4. Results on weak convergence. Our aim in this section is to prove results
on weak convergence of both estimators, and we begin with such a claim for Un,
as this theorem is used later to show weak convergence of �̂n. Before we come to
the main theorems, let us briefly resume our assumptions on ν which mostly have
already been given in the previous paragraphs.

ASSUMPTION 4.1. Let X be a bivariate Lévy process with the representa-
tion (1.1). The following assumptions on ν are in order:

(i) ν has support [0,∞)2 \ {(0,0)}.
(ii) On this set it takes the form ν(du) = s(u) du for a positive Lévy density s

which satisfies

sup
u∈Mη

(∣∣s(u)
∣∣ + ∥∥∇s(u)

∥∥)
< ∞
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for any η ∈ (0,∞)2, where

Mη = (η,∞)2 ∪ ({0} × (η,∞)
) ∪ (

(η,∞) × {0}),
and ∇s denotes the gradient of s on (η,∞)2 and the univariate derivative on the
stripes through 0, respectively.

(iii) ν has infinite activity, that is, ν([0,∞) × [0,∞)) = ∞.

Assumption 4.1(ii) had not been stated previously. It is used to prove a second
order condition regarding the difference between U and the expectation of Un, for
which we generalize a result due to Figueroa-López and Houdré (2009) from the
univariate setting to the multidimensional case. Continuity and (strict) monotonic-
ity of the marginal tail integrals as claimed before are obvious consequences of
it.

We begin with a result on weak convergence of Un, and to this end we have
to define the function space on which the asymptotics take place. Let B∞(H) be
the space of all functions f : H → R which are bounded on any subset of H that is
bounded away from the origin and from the points (−∞,0) and (0,−∞). We con-
sider the metric inducing the topology of uniform convergence on those subsets,
defined by

d(f, g) =
∞∑

k=1

2−k(‖f − g‖Tk
∧ 1

)
,

where Tk = [1/k,∞]2 ∪ ({−∞} × [1/k,∞]) ∪ ([1/k,∞] × {−∞}) and ‖f ‖Tk
=

supu∈Tk
|f (u)|. This space is a complete metric space, and a sequence converges

in B∞(H), if and only if it converges uniformly on each Tk .

THEOREM 4.2. Assume that X is a Lévy process satisfying (i) and (ii) of As-
sumption 4.1. If the observation scheme meets the conditions

�n → 0, kn → ∞,
√

kn�n → 0,(4.1)

then we have

γn(x) = √
kn

{
Un(x) − U(x)

} w−→ B(x)

in (B∞(H), d), where B is a tight, centered Gaussian process with covariance

E
[
B(x)B(y)

] = U(x ∨ y) = U(x1 ∨ y1, x1 ∨ y2).

The sample paths of B are uniformly continuous on each Tk with respect to the
pseudo distance

ρ(x,y) = E
[(

B(x) − B(y)
)2]1/2 = ∣∣U(x) − U(y)

∣∣1/2
.
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For the proof of Theorem 4.2 the following lemma is extremely useful. Its uni-
variate version is a special case of a more general result in Figueroa-López and
Houdré (2009).

LEMMA 4.3. Suppose that (i) and (ii) of Assumption 4.1 hold and let δ > 0
be fixed. Then there exist constants K = K(δ) and t0 = t0(δ) such that the uniform
bound ∣∣P(

X
(1)
t ≥ x1,X

(2)
t ≥ x2

) − tν
([x1,∞) × [x2,∞)

)∣∣ < Kt2

holds for all x = (x1, x2) ∈ [δ,∞]2 ∪ ({−∞} × [δ,∞]) ∪ ([δ,∞] × {−∞}) and
0 < t < t0.

REMARK 4.4. Lemma 4.3 is used in the proof of Theorem 4.2 to show that
the bias of Un is of order �n. It is this result which is responsible for the condition√

kn�n → 0 in (4.1) as the latter secures that this bias term is negligible in the
asymptotics. If one has

√
kn�n → c > 0, instead, together with a stronger condi-

tion on differentiability of s(u), a bias term will appear in Theorem 4.2. Precisely,
generalizing a result from Figueroa-López and Houdré (2009) again, we obtain

P
(
X

(1)
t ≥ x1,X

(2)
t ≥ x2

) = tν
([x1,∞) × [x2,∞)

) + t2d2(x)/2 + O
(
t3)

,

uniformly in the same sense as above, with

d2(x) = 2
(∫ ∞

x2

s(x1,w2) dw2a
1
ε +

∫ ∞
x1

s(w1, x2) dw1a
2
ε

)

−
(∫ ∞

x2

s1(x1,w2) dw2�11 +
∫ ∞
x1

s2(w1, x2) dw1�22 − 2s(x1, x2)�12

)

− 2
∫ ∫ 1

0
(1 − β)

(∫ ∞
x2−βu2

s1(x1 − βu1,w2) dw2u
2
1

+
∫ ∞
x1−βu1

s2(w1, x2 − βu2) dw1u
2
2

− 2s(x1 − βu1, x2 − βu2)u1u2

)
dβνε(du)

+
∫ ∫

s(z)c̄ε(z)s(w)c̄ε(w)1{w+z≥x} dzdw − 2λεν
([x,∞)

)
.

Here, ε > 0 denotes an auxiliary variable used to simplify the expression, and for
all unexplained notation we refer to the proof of Lemma 4.3. Under the condition√

kn�n → c > 0 above, it can be shown that the asymptotic bias in Theorem 4.2
takes the form cd2(x)/2. Note that it is possible to derive a representation for d2(x)

independently of ε, which takes an even more complicated form. This expression is
given explicitly in the supplementary material, alongside with a sketch of a proof.
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Before we come to the result on �̂n, let us introduce an oracle estimator for �.
We set, for any u = (u1, u2) ∈ [0,∞]2 \ {(0,0)},

�̃n(u) = Un

(
U−

1 (1/u1),U
−
2 (1/u2)

)
,

which means that we replace the inverses of the empirical marginal tail inte-
grals by the unobservable true ones. Thanks to Theorem 4.2 we obtain weak
convergence of a restricted version of this intermediate estimator in the space
B∞((0,∞]2) of all real functions on (0,∞]2 that are bounded on sets which are
bounded away from the origin. In a similar sprit as before, we equip this space with
the metric d(f, g) = ∑∞

k=1 2−k(‖f − g‖Tk
∧ 1), where Tk = [1/k,∞]2. Setting

x = (U−
1 (1/u1),U

−
2 (1/u2)) and observing that U−

i (k) ≥ k′ > 0, the continuous
mapping theorem immediately yields the following result.

COROLLARY 4.5. Under the conditions of Theorem 4.2 we have

α̃n(u) = √
kn

(
�̃n(u) − �(u)

) w−→ B
(
U−

1 (1/u1),U
−
2 (1/u2)

)
in (B∞((0,∞]2), d), with B as defined in Theorem 4.2.

From a statistical point of view, there is no loss in information when estimating
�(u) on (0,∞]2 instead of the entire domain [0,∞]2 \ {(0,0)}, since a Pareto–
Lévy copula is grounded by definition and thus known on stripes through 0. This
remark remains valid for the final result of this section as well, which is on weak
convergence of the estimator �̂n(u).

THEOREM 4.6. Assume that X is a Lévy process satisfying Assumption 4.1.
If (4.1) holds, then we have

αn(u) = √
kn

(
�̂n(u) − �(u)

) w−→ G(u)

in (B∞((0,∞]2), d). Here, the process G is defined as

G(u) = G̃(u) + u2
1�̇1(u)G̃(u1,−∞) + u2

2�̇2(u)G̃(−∞, u2),(4.2)

where G̃ denotes a tight centered Gaussian field on H with covariance structure

E
[
G̃(u)G̃(v)

] = �(u ∨ v) = �(u1 ∨ v1, u2 ∨ v2)

using the convention �(u,−∞) = �(−∞, u) = 1/u. The sample paths of G̃ are
uniformly continuous on each Tk with respect to the pseudo distance

ρ(u,v) = E
[(

G̃(u) − G̃(v)
)2]1/2 = ∣∣�(u) − �(v)

∣∣1/2
.

If both coordinates of u are distinct from ∞, then �̇i(u) exists as a consequence
of (2.2) and Assumption 4.1, and G(u) is well-defined. On the other hand, if one of
the components equals ∞, we have G̃(u) = 0 almost surely; and also �̇1(u1,∞) =
0 and �̇2(∞, u2) = 0 from Proposition 2.3. Hence, the right-hand side of (4.2) is
well defined as well, and we have G(u) = 0 almost surely in this case.
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5. Deviations from the regular setting. Up to now, the results in this paper
have been shown in the ideal setting of observing a Lévy process at equidistant
and synchronous times. With a view to applications, it is obvious that these as-
sumptions are not realistic in practice. For example, due to the stylized facts of
financial time series, pure Lévy processes possessing independent increments are
too restrictive for the modeling of financial time series. Also, multiple stock prices
are usually traded at different time points, contradicting our assumed observation
scheme. Ways to overcome the latter problem have so far only been discussed in
the context of volatility estimation [a remarkable exception is Comte and Genon-
Catalot (2010)], and it is known that limit theorems usually differ from the ones
for regular observation times and are obtained under quite restrictive assumptions
only, particularly when the time points are asynchronous. See, for example, Aït-
Sahalia and Mykland (2003, 2004), Hayashi and Yoshida (2005, 2008), Mykland
and Zhang (2009) or Hayashi, Jacod and Yoshida (2011).

Our aim in this section is to develop a concise theory which allows for a consis-
tent estimation of the Lévy measure also in case of irregular observations or when
one observes a model with time-varying drift and diffusion part. We will focus in
particular on inference on the distribution function U(x), since weak convergence
of the empirical Pareto–Lévy copula process carries over using the same results
on Hadamard differentiability as in the proof of Theorem 4.6. Furthermore, we
will indicate how results change in case of microstructure noise and why standard
methods for diffusions do not carry over to our setting.

5.1. Nonequidistant sampling schemes. The first generalization regards the
assumption of an equidistant sampling scheme which we no longer assume to hold.
Instead, suppose from now on that the observation times are given by determinis-
tic tnj , j = 1, . . . ,mn, where we set kn = tnmn

as before. The results carry over to the
case of random sampling as well, at least if the observations times are independent
of X.

Still, the most natural estimator appears to be given by counting joint large
increments, which results in setting

Vn(x) = 1

kn

mn∑
j=1

1{�n
j X(1)≥x1,�

n
j X(2)≥x2},(5.1)

where we have defined �n
jX

(i) = X
(i)

tnj
− X

(i)

tnj−1
(with tn0 = 0) in the same spirit as

before. Finally, let πn = maxj=1,...,mn(t
n
j − tnj−1).

THEOREM 5.1. Assume that X is a Lévy process satisfying (i) and (ii) of As-
sumption 4.1. If furthermore the observation scheme meets the conditions

kn → ∞, πn → 0,
1√
kn

mn∑
j=1

(
tnj − tnj−1

)2 → 0,(5.2)
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then we have
√

kn{Vn(x) − U(x)} w−→ B(x) in (B∞(H), d), where B is the same
Gaussian process as in Theorem 4.2.

REMARK 5.2. Even though the assumption πn → 0 ensures that we remain in
a genuine high-frequency setting, it is not necessary in general and only used here
to simplify the proofs. Suppose, for example, that we have tn1 = 1 for all n, whence
it is obviously not possible to infer the Lévy measure consistently over the interval
[0,1]. This, however, does not affect the validity of Theorem 5.1 per se, since a
single increment of X contributes with either 1/kn or zero to Vn, so its influence is
negligible in the asymptotics, and as kn → ∞ holds, one can equally well use the
observations over [1, kn] to estimate the function U .

5.2. Asynchronous sampling schemes. Suppose now that both components
of X are observed at different time stamps. We call rn

j , j = 1, . . . ,m1
n, the series

of observations times connected with the process X(1), whereas sn
� , � = 1, . . . ,m2

n,
belongs to the second component X(2). For simplicity only, we assume that the
endpoints coincide, that is rm1

n
= sm2

n
= kn. As before, we denote with πi

n the mesh
of the ith time series.

In this situation it is less obvious how to count the number of joint large jumps,
as increments over X(1) and X(2) are in general never computed over the same time
intervals. In spirit of Hayashi and Yoshida (2005), however, it appears reasonable
to construct a naïve estimator from counting those pairs of large increments which
are computed over at least overlapping intervals. Of course, in this case it may
happen that jumps at different times (but close nearby) are treated as joint ones.
For this reason it is important to assume additional properties of the jump measures
which make such an event unlikely.

ASSUMPTION 5.3. Let νi(dx) be the univariate Lévy measures for i = 1,2.
We assume that νi(dx) = νi

1(dx) + νi
2(dx) for mutually singular measures νi

1
and νi

2, given by

νi
1(dx) = ai

1 + |x|γi fi(x)

|x|1+βi
1{0<x≤1} dx

with 0 ≤ fi(x) ≤ K , γi ≥ 0, ai ≥ 0 and νi
2 such that νi

2(dx) = si(x) dx for some
Lévy density si such that

∫
(|x|β ′

i ∧ 1)si(x) dx < ∞, where 0 ≤ β ′
i < βi < 2.

This condition means basically that the behavior of small jumps in both compo-
nents is similar to the one of βi -stable processes. Such assumptions are often used
in high-frequency statistics for jump processes; cf., for example, Aït-Sahalia and
Jacod (2009) and related work. Our estimator for U(x) now reads as follows:

Wn(x) = 1

kn

m1
n∑

j=1

m2
n∑

�=1

1{�n
j X(1)≥x1,�

n
�X(2)≥x2}1{(rn

j−1,r
n
j ]∩(sn

�−1,s
n
� ]�=∅}.(5.3)
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Under slightly more restrictive conditions on the sampling scheme than before, we
obtain the following result on weak convergence.

THEOREM 5.4. Let X be a Lévy process satisfying Assumptions 4.1(i) and (ii)
and Assumption 5.3. Setting β = max(β1, β2) assume further that the sampling
scheme satisfies max(π1

n,π2
n) → 0 as well as

1√
kn

m1
n∑

j=1

(
rn
j − rn

j−1
)(β+2)/(β+1) → 0 if β > 1

and

1√
kn

m1
n∑

j=1

(
rn
j − rn

j−1
)3/2−δ → 0 if β ≤ 1

for some δ ∈ (0,1/2), and similarly for the increments involving sn
� . Then we have√

kn{Wn(x)−U(x)} w−→ B(x) in (B∞(H), d), where B is the same Gaussian pro-
cess as in Theorem 4.2.

REMARK 5.5. It is remarkable that even though methods similar to the case
of volatility estimation work for inference on U as well, the results look quite
different in this setting: in case of irregular observations, only very few additional
assumptions on the observation scheme are necessary, which is in contrast to the
restrictive conditions of Hayashi and Yoshida (2008) regarding covolatility. This
happens, however, at the cost of additional assumptions on the structure of the
underlying Lévy process. When dealing with irregular sampling times, we obtain
the same central limit theorem as for equidistant ones. This has again no direct
connection to volatility estimation, as the corresponding result in Mykland and
Zhang (2009) comes with a different variance.

REMARK 5.6. There is a variety of models which satisfy Assumptions 4.1
and 5.3. Among the simplest are stable processes in both components, coupled by
some Lévy copula which is twice continuously differentiable away from the origin
(e.g., the Clayton one).

5.3. Observing semimartingales. In this section we discuss briefly deviations
from assumption (1.1) on the observed process. Suppose that the underlying pro-
cess is an Itô semimartingale with the representation

Xt =
∫ t

0
as ds +

∫ t

0
σs dBs

+
∫ t

0

∫
‖u‖≤1

u(μ − μ̄)(ds, du) +
∫ t

0

∫
‖u‖>1

uμ(ds, du)
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instead, where a ∈ R2 and σ ∈ R2×2 are bounded and left-continuous processes.
Recall that all central limit theorems proposed before deal with sums of large incre-
ments of X, interpreted as coming from large jumps over the same time intervals.
This intuition is based on the fact that the probability of the continuous Lévy part
to become large over small time intervals is exponentially small, and therefore it
is likely that these claims remain valid under weaker conditions on X as well. The
following theorem states that this is indeed the case, if we assume that all sampling
schemes satisfy similar growth conditions as in Theorem 5.4.

THEOREM 5.7. Let X be an Itô semimartingale as above, and assume that the
respective assumptions on the sampling schemes from Theorems 4.6, 5.1 and 5.4
are satisfied. Assume further that the sampling schemes satisfy

√
kn�

1/2−δ
n → 0 or

1√
kn

mn∑
j=1

(
tnj − tnj−1

)3/2−δ → 0

for Theorems 4.6 or 5.1, respectively, and for some δ ∈ (0,1/2). Then, the weak
convergence results of the respective theorems hold.

The proof relies on replacing increments of X by corresponding increments of
a pure jump Lévy process in order to apply theorems on weak convergence based
on sums of independent observations. At this stage, the additional conditions on
the sampling scheme come into play. Weaker conditions might be sufficient here,
if one was able to prove weak convergence based on some type of conditional
independence instead, then using different approximations for increments of X.

5.4. Microstructure noise. An important issue regarding high-frequency data
is the presence of microstructure noise, in which case one does not observe the
plain Lévy process, but

Z
(j)
i�n

= X
(j)
i�n

+ V
(j)
i�n

,

where the V
(j)
i�n

, i = 1, . . . , n, j = 1,2, are i.i.d. processes, independent of X,

which satisfy E[V (j)
i�n

] = 0 and have moments of all order. In this case, our estima-
tor for the Lévy measure does not work anymore. To see this, let us for simplicity
stick to the univariate setting. We have

Un(x) = 1

kn

n∑
i=1

1{�n
i Z≥x}

now, and if there is a positive probability of P(�n
i V ≥ x), then Un(x) will behave

like �−1
n P (�n

i V ≥ x) which diverges to infinity. On the other hand, if P(�n
i V ≥

x) = 0, then Un(x) is still bounded, but will rather estimate a convolution of jumps
and noise than the plain jump measure.
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Microstructure noise issues are well understood in the context of diffusions.
However, it appears that none of the standard methods for diffusion processes [let
us mention the multiscale approach by Zhang, Mykland and Aït-Sahalia (2005)
and the kernel-based one due to Barndorff-Nielsen et al. (2008)] can directly be
applied in our context. Even the pre-averaging approach by Jacod et al. (2009),
which provides a general concept for diminishing the influence of the noise by
retaining information about increments of X, fails when one is interested in the
Lévy measure. In the following, we will briefly discuss these issues.

For an auxiliary sequence ln and some piecewise differentiable function g on
[0,1] with g(0) = g(1) = 0, Jacod et al. (2009) discuss Z̃n

i = X̃n
i + Ṽ n

i , where, for
an arbitrary Y and i = 0, . . . , n − ln,

Ỹ n
i =

ln∑
j=1

g(j/ ln)�
n
i+jY.

While X̃n
i can be seen as some kind of generalized increment which still bears

similar information as the plain �n
i X, we have

Ṽ n
i = −g(1/ln)Vi�n +

ln−1∑
j=1

(
g(j/ ln) − g

(
(j + 1)/ ln

))
V(i+j)�n = Op

(
l−1/2
n

)
.

Here we use both piecewise differentiability of g and the assumptions concerning
g on the boundary of [0,1]. Therefore the larger ln becomes, the less important is
the contamination by noise.

For this reason, estimation based on pre-averaging usually works in the way that
one proceeds as usual, but replaces the standard estimators by ones based on Z̃n

i .
If ln is rather large compared with n, it is reasonable to replace Z̃n

i with X̃n
i in the

asymptotics and thus to recover full information of X. In our setting this would
lead to an estimator of the form

Ũn(x) = 1

kn

�n/ln�−1∑
i=0

1{Z̃n
iln

≥x},

where the Z̃n
iln

are computed over nonoverlapping intervals to retain i.i.d. terms in
the sum. As noted above, for large ln it is equally well possible to discuss ŨX

n (x)

which is defined similarly to Ũn(x) above, but using X̃n
iln

instead of Z̃n
iln

. This pro-
cedure, however, does not result in an estimator for the Lévy distribution function
U(y). The reason is that the leading term in an expansion of P(X̃n

0 ≥ y) is due to
a single large jump within [0, ln�n]. In this case, its contribution to X̃n

0 depends
on its exact position within the interval, as it has to be standardized by g(j/ ln) ac-
cordingly. For example, if the jump occurs in the small interval [(j − 1)�n, j�n],
it is not important whether the jump is larger than y, but whether it is larger than
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y/g(j/ ln). Since the jump time is uniformly distributed, one can show formally
that

P
(
X̃n

iln
≥ y

) = �n

ln∑
j=1

U
(
y/g(j/ ln)

) + O
(
l2
n�

2
n

)

= ln�n

∫ 1

0
U

(
y/g(x)

)
dx + o(ln�n),

which proves that ŨX
n (y) converges to

∫ 1
0 U(y/g(x)) dx and is therefore not con-

sistent for U(y). Construction of a consistent estimator for the Lévy measure in
case of microstructure noise thus seems to be a challenging topic for future re-
search.

6. Discussion, simulations and an illustration.

6.1. An asymptotic comparison. Suppose a statistician has knowledge of the
marginal tail integrals. In this case, the results in Section 4 provide two competitive
asymptotically unbiased estimators for the Pareto–Lévy copula, namely the oracle
estimator �̃n exploiting knowledge of the marginals and the empirical Pareto–Lévy
copula �̂n ignoring this additional information. The following proposition gives a
partial answer to the question of which estimator is (asymptotically) preferable.
Perhaps surprisingly, ignoring the additional knowledge decreases the asymptotic
variance under certain growth conditions on �. A similar observation has recently
been made in the context of copula estimation; see Genest and Segers (2010).

PROPOSITION 6.1. Suppose that the Pareto–Lévy copula � has continuous
first-order partial derivatives and that the functions

u1 
→ u1�(u1, u2) = �(u1, u2)

�(u1,0)
, u2 
→ u2�(u1, u2) = �(u1, u2)

�(0, u2)
(6.1)

are nondecreasing for fixed u2 ∈ (0,∞] and u1 ∈ (0,∞], respectively. Then the
Gaussian fields G and G̃ satisfy the inequality

Cov
{
G(u),G(v)

} ≤ Cov
{
G̃(u), G̃(v)

}
for all u,v ∈ (0,∞]2. Particularly, Var{G(u)} ≤ Var{G̃(u)}.

Under the assumptions of Proposition 6.1 the condition in (6.1) is equivalent to

u1�̇1(u) + �(u) ≥ 0, u2�̇2(u) + �(u) ≥ 0

for each u = (u1, u2) ∈ (0,∞]2, which is easily accessible for most parametric
classes of Pareto–Lévy copulas. For instance, for the Clayton Pareto–Lévy copula
given by

�(u) = (
uθ

1 + uθ
2
)−1/θ



1502 A. BÜCHER AND M. VETTER

FIG. 1. The graph of the asymptotic relative efficiency of �̃n to �̂n for the Clayton Pareto–Lévy
copula with θ = 0.5.

we have

u1�̇1(u)+�(u) = (
uθ

1 +uθ
2
)−1/θ−1

uθ
2, u2�̇2(u)+�(u) = (

uθ
1 +uθ

2
)−1/θ−1

uθ
1,

which is readily seen to be nonnegative. In Figure 1 we depict the graph of the
asymptotic relative efficiency

[0,2]2 → [0,∞), u 
→ Var
{
G(u)

}
/Var

{
G̃(u)

}
of the oracle estimator �̃n to the empirical Pareto–Lévy copula �̂n for u ∈ [0,2]2.
The Clayton parameter is chosen as θ = 0.5. Close to the axis the relative efficiency
decreases to 0, while the maximal relative efficiency is attained on the diagonal
with a value of 21/32 ≈ 0.656. Even in this best case, the difference is seen to be
substantial.

6.2. Simulation study. In order to obtain an impression on the performance of
the asymptotic results stated in the previous section we will discuss some finite
sample properties concerning Theorems 4.2 and 4.6. In both cases, the setting is
as follows: we simulate (essentially) two 1/2 stable subordinators, that is, both
tail integrals are given by Ui(x) = (πx)−1/2, which are coupled by a Clayton–
Pareto–Lévy copula with θ = 1/2. Sometimes, we add two independent Brownian
motions with variance 1/2 each, and sometimes, we assume to observe the pure
jump processes only.

Recall that the rate of convergence is k
−1/2
n [which, in light of the results in

Figueroa-López and Houdré (2009), appears to be natural in the context of esti-
mating the Lévy measure]. Hence, a larger kn suggests a better approximation by
the limiting Gaussian process, whereas Remark 4.4 indicates that the magnitude
of the bias grows with kn as well. Both intuitive properties are visible from the
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TABLE 1
Empirical bias and (co)variances of

√
kn(Un(x) − U(x)) for various choices of kn. Upper five

lines: pure subordinator; lower five lines: subordinator + Brownian motion

x,y 2,2 1,1 0.5,0.5 2, 0.5 2, 1 1, 0.5

kn bias var bias var bias var cov cov cov

50 −0.0106 0.1007 −0.0077 0.1400 0.0023 0.1915 0.0988 0.0978 0.1376
75 −0.0330 0.0972 −0.0229 0.1453 −0.0395 0.1956 0.1015 0.1001 0.1435

100 0.0168 0.1021 0.0223 0.1375 0.0341 0.1893 0.0996 0.0927 0.1300
150 0.0037 0.1061 0.0154 0.1480 0.0470 0.2180 0.1073 0.1106 0.1531
250 0.0282 0.0931 0.0547 0.1269 0.0951 0.1845 0.0900 0.0865 0.1245

50 −0.0281 0.0893 −0.0120 0.1208 −0.0042 0.1863 0.0840 0.0854 0.1233
75 0.0252 0.0949 0.0115 0.1187 0.0226 0.1861 0.0861 0.0894 0.1216

100 0.0126 0.0922 0.0043 0.1320 0.0401 0.1940 0.0933 0.0932 0.1323
150 −0.0085 0.0929 −0.0127 0.1337 0.0277 0.1991 0.0931 0.0962 0.1371
250 0.0128 0.1101 0.0236 0.1395 0.0765 0.1938 0.1049 0.1044 0.1369

simulation study provided in the following and from additional results which we
do not show for the sake of brevity.

We begin with a thorough simulation study for a fixed number of observations
n = 22,500, where we run the simulation 500 times each. We have decided to keep
the size of the data set fixed in order to work out the effects that different choices
of kn, or, equivalently, of �n, have on the finite sample performance of our estima-
tors. Otherwise, if one fixes kn or �n and investigates increasing sample sizes, it
will in general be hard to tell whether a possible gain in the MSE (say) is due to a
more reasonable trade-off between bias and variance or just to more observations.
We briefly discuss these issues at the end of this section in an additional simulation
study with a fixed number of days kn.

Despite the fact that we have proven weak convergence of our estimators in
certain function spaces, we restrict ourselves to an analysis of the finite dimen-
sional properties of our estimators. Let us begin with the asympotics in The-
orem 4.2 for which we estimate U(x, x) for x = 2,1,0.5. Note that we have
Cov(B(x),B(y)) = (32π)−1/2 ≈ 0.0997 whenever x or y equals (2,2), whereas
Cov(B(x),B(y)) = (16π)−1/2 ≈ 0.1410 if the “larger” vector is (1,1) and finally
Var(B(x)) = (8π)−1/2 ≈ 0.1995 for x = (0.5,0.5). Table 1 gives estimated bias
and (co)variance for various choices of the number of trading days, kn. These val-
ues are picked in such a way that they belong to reasonable scenarios in practice.
The smallest one, kn = 50, corresponds to �−1

n = 450 or sampling frequencies of
about a minute, for which microstructure noise already become an issue. On the
other hand, the largest choice of kn = 250 necessitates data from a process whose
jump behavior is homogeneous for quite a long period of time, namely about one
year.
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FIG. 2. QQ-plots of the empirical quantiles of
√

kn(Un(x) − U(x)) divided by their sample stan-
dard deviation vs. the theoretical quantiles of the standard normal distribution. Upper three pictures:
pure subordinator; lower three pictures: subordinator + Brownian motion.

Generally, the theoretical (co)variances are well reproduced in both situations,
even though the results look probably a bit better in the first five lines. This is of
course no surprise, since additional Brownian increments make it harder to infer
on the jump measure. In order to assess how well the normal approximation works
apart from bias and variance, Figure 2 gives QQ-plots for the medium choice of
kn = 75. These plots confirm that the finite sample properties are indeed satisfying,
despite the discrete nature of the test statistic which simply counts exceedances of
certain levels and is rescaled afterward.

Let us come to the estimation of the Pareto–Lévy copula. We proceed in the
same way as before and discuss convergence of the finite dimensional distributions
only. For simplicity, we estimate �(x, x) for x = 2,1,0.5 again, but these are of
course different quantities now. In this case, the variances compute to Var(G(x)) =
21/(128x), which becomes approximately 0.0820 for x = 2, 0.1641 for x = 1,
and 0.3281 for x = 0.5. Also, for x > y we have Cov(G(x),G(y)) = 7/32(1/x −
�(x, y)). Therefore Cov(G(2),G(0.5)) ≈ 0.0608, Cov(G(2),G(1)) ≈ 0.0718,
and Cov(G(1),G(0.5)) ≈ 0.1437. We state their empirical versions in Table 2.

In this case the growth in bias for larger kn is clearly visible, and we also have a
larger bias when estimating �(0.5,0.5). Overall, however, the results are satisfying
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TABLE 2
Empirical bias and (co)variances of

√
k(�̂n(x) − �(x)) for various choices of kn. Upper five lines:

pure subordinator; lower five lines: subordinator + Brownian motion

x,y 2,2 1,1 0.5,0.5 2, 0.5 2, 1 1, 0.5

kn bias var bias var bias var cov cov cov

50 0.0141 0.0827 0.0455 0.1740 0.0863 0.3520 0.0777 0.0668 0.1599
75 −0.0082 0.0874 0.0173 0.1653 0.1252 0.3428 0.0740 0.0690 0.1459

100 0.0502 0.0783 0.0894 0.1708 0.1748 0.3400 0.0685 0.0508 0.1547
150 0.0356 0.0862 0.1182 0.1646 0.3176 0.3324 0.0744 0.0698 0.1421
250 0.0505 0.0732 0.1493 0.1605 0.5625 0.313 0.0678 0.0568 0.1390

50 0.0345 0.0790 0.0560 0.1637 0.1021 0.3263 0.0699 0.0639 0.1389
75 0.0091 0.0886 0.0753 0.1760 0.1522 0.3508 0.0832 0.0729 0.1522

100 0.0312 0.0745 0.0776 0.1530 0.1480 0.3033 0.0610 0.0558 0.1305
150 0.0284 0.0866 0.0988 0.1694 0.2074 0.3337 0.0746 0.0725 0.1486
250 0.0602 0.0762 0.1515 0.1528 0.3012 0.3452 0.0675 0.0545 0.1455

again, and we see from the QQ-plot in Figure 3 that the normal approximation
works very well for kn = 75, no matter if a Brownian motion is added or not.

Finally, let us briefly discuss the performance of our estimators in case of a fixed
number kn and for increasing sampling frequencies �−1

n . We restrict ourselves to
the case of estimating U for a pure subordinator, as other settings lead to similar
results. For kn fixed, one would expect that choosing a rather low frequency yields
the worst results since in this case the bias is the largest, or, equivalently, the jumps
are most difficult to detect. On the other hand, for growing �−1

n this bias becomes
smaller, but otherwise not much is to be gained, as the sampling frequency does
not affect the rate of convergence. The results in Table 3, where we consider all
possible combinations of kn,�

−1
n ∈ {50,100,150,200}, support these findings.

For financial applications this means that, provided sufficient data is available,
a trade-off has to be made: on the one hand, one should choose the frequency as
high as possible; but on the other hand, due to microstructure noise issues, care is
needed regarding a possibly oversized frequency.

6.3. Illustration. In the present section we are going to apply the estimation
techniques developed in the previous sections to infer on the jump dependence of
some specific financial data set.

More precisely, we consider the logarithm of one-minute Nasdaq stock prices of
Apple Inc. and Microsoft Corporation in the third quarter of 2012, which consists
of 62 trading days. After some cleaning of the corresponding time series we obtain
a two-dimensional data sample of increments (log returns) of size n = 21,864.
From the simulation results in Section 6.2 we know that the choice kn = 62 yields
a reasonable trade-off between bias and variance.
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FIG. 3. QQ-plots of the empirical quantiles of
√

kn(�̂n(x)−�(x)) divided by their sample standard
deviation vs. the theoretical quantiles of the standard normal distribution. Upper three pictures: pure
subordinator; lower three pictures: subordinator + Brownian motion.

Due to missing observations or errors in data, we formally apply the procedure
from Section 5.2, though the observations are in principle quite close to a regular
sampling scheme. We have chosen a frequency of one minute returns in order to
have a large amount of data while not being too much affected by microstructure
effects which our method does not correct for; see Section 5.4. Note that the re-
sults in this paper are stated for observations of a bivariate semimartingale with a
constant Lévy measure which is probably a too simple model for a bivariate price
process. What might be less restrictive, is to assume a time-homogeneous Pareto–
Lévy copula, if one is only interested in the dependence structure of the assets.

For this reason, we are interested in margin-free estimates of the jump depen-
dence only, which means that we restrict ourselves to the estimation of the Pareto–
Lévy copula �. There are four possible types of jump dependence: positive jumps
in both components (+/+), positive jumps in the log-returns of Apple may be
associated with negative jumps in the log-returns of Microsoft (+/−), and vice
versa (−/+), and negative jumps in both components (−/−). To obtain estimates
in the latter three cases, we simply use negative log-returns in the corresponding
components in the definition of �̂n.

The results are depicted in Figure 4. In the two upper pictures, we plot the graph
of the empirical Pareto–Lévy copula on the set [0.05,1.5]2 for the dependencies
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TABLE 3
Empirical bias and (co)variances of

√
kn(Un(x) − U(x)) for various choices of kn and �−1

n . In all
cases: pure subordinator

x,y 2,2 1,1 0.5,0.5 2, 0.5 2, 1 1, 0.5

�−1
n bias var bias var bias var cov cov cov

kn = 50
50 0.0338 0.1065 0.0285 0.1425 0.0648 0.2072 0.1037 0.1017 0.1407

100 0.0010 0.0976 0.0005 0.1316 0.0354 0.1972 0.0942 0.0936 0.1336
150 0.0007 0.1058 0.0138 0.1445 0.0204 0.2038 0.1044 0.1043 0.1446
200 0.0027 0.1005 0.0059 0.1370 0.0286 0.1928 0.0991 0.0935 0.1343

kn = 100
50 0.0194 0.1032 0.0589 0.1424 0.1071 0.2052 0.1024 0.1026 0.1421

100 −0.0200 0.1007 0.0017 0.1466 0.0175 0.1981 0.1034 0.1025 0.1434
150 0.0150 0.1002 0.0175 0.1480 0.0275 0.1999 0.1021 0.0979 0.1444
200 0.0202 0.0957 0.0103 0.1326 0.0299 0.2059 0.0953 0.1017 0.1392

kn = 150
50 0.0312 0.1034 0.0659 0.1450 0.1286 0.2080 0.1037 0.1057 0.1437

100 0.0132 0.0988 0.0205 0.1369 0.0489 0.2092 0.0960 0.0984 0.1407
150 0.0037 0.1061 0.0154 0.1480 0.0470 0.2180 0.1073 0.1106 0.1531
200 −0.0098 0.0948 −0.0122 0.1315 −0.0156 0.1891 0.0923 0.0884 0.1299

kn = 200
50 0.0134 0.0990 0.0468 0.1334 0.1237 0.1947 0.0932 0.0892 0.1306

100 −0.0012 0.0995 0.0136 0.1415 0.0554 0.2092 0.0986 0.1003 0.1437
150 −0.0006 0.0966 0.0217 0.1371 0.0413 0.1966 0.0944 0.0950 0.1372
200 0.0011 0.0934 0.0292 0.1371 0.0305 0.2074 0.0942 0.0961 0.1416

(−/−) and (+/−), respectively. The corresponding graphs for (+/+) and (−/+),
respectively, look very similar and are therefore omitted. In the lower picture, we
plot the restriction of the graphs of the empirical Pareto–Lévy copula to the main
diagonal for all four kinds of dependence.

The following are the main findings:

• The dependence between positive or negative jumps in both components (+/+
and −/−) is generally much stronger than the dependence between positive and
negative jumps (+/− and −/+).

• Comparing the (+/+) and the (−/−) dependence, the latter is slightly stronger.
• Comparing the (+/−) and the (−/+) dependence, we observe that it is more

likely that positive jumps in the Apple returns occur simultaneously with neg-
ative jumps in the Microsoft returns than vice versa. Both are, however, close
to being independent; that is, the estimated Pareto–Lévy copula is close to �⊥
from Proposition 2.3.

7. Conclusions. In this paper we have investigated the problem of estimating
both the bivariate Lévy measure and the (Pareto) Lévy copula in a nonparamet-
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FIG. 4. Upper two pictures: empirical Pareto–Lévy copulas for the (−/−) and the (+/−) depen-
dence. Lower picture: empirical Pareto–Lévy copulas along the diagonal for (−/−) (black solid
line), (+/+) (black dashed), (+/−) (gray solid) and (−/+) (gray dashed) dependence.

ric way. Our estimators are based on counting joint large increments of a bivariate
Lévy process, and in both cases we were able to prove weak convergence in appro-
priate function spaces. An extension to the case of irregular and/or asynchronous
observations is provided as well. What still remains an open problem is the devel-
opment of similar methods when microstructure noise is present, as indicated in
Section 5.4.

From a statistical point of view, it might also be interesting to construct sev-
eral nonparametric tests concerning the dependence structure of a multivariate Itô
semimartingale. Using the methods from this work, one should be able to check
first whether the entire jump measure (or just the jump dependence) is indeed con-
stant over time, while under the assumption of a genuine Lévy jump part these
procedures could include estimation of certain functionals of � or U , as well as
tests for independence or tests for a parametric form of these functions. For this
reason, it would be important to establish a thorough theory concerning (Pareto)
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Lévy copulas which relates functionals of � to certain dependence properties, as
in the case of ordinary copulas for which standard measures such as Kendall’s τ

or Spearman’s ρ can be written as integrals over C and are thus accessible through
nonparametric estimation of the copula.

APPENDIX

In this section we present the proofs of the main Theorems 4.2 and 4.6. Proofs
of the additional results as well as some technical lemmas are postponed to a sup-
plementary Appendix.

A.1. Proof of Theorem 4.2. Before we begin with the proof, note that, due
to Theorem 1.6.1 in van der Vaart and Wellner (1996), weak convergence in

B∞((0,∞]2) is equivalent to weak convergence on each �∞(Tk), which is the
space of all bounded functions on Tk endowed with the uniform norm. Therefore,
it is possible to fix one such Tk throughout the rest of the proof.

Let us introduce some additional notation. We define a class of functions Fn =
{fn,x : x ∈ Tk} via

fn,x(p) = √
n/kn(1{p≥x≥(0,0)} + 1{p1≥x1,x2=−∞} + 1{p1≥x2,x1=−∞}).

Furthermore, we set

γ n(x) = √
kn

(
Un(x) − E

[
Un(x)

]) = 1√
n

n∑
j=1

(
fn,x

(
�n

j X
) − E

[
fn,x

(
�n

j X
)])

.

As a consequence of Lemma 4.3, it is sufficient to discuss weak convergence of
γ n(x) only. Indeed, let x ∈ Tk . Then by stationarity of increments of X and using
kn = n�n, we have

E
[
Un(x)

] − U(x)

= �−1
n P

(
�n

1X
(1) ≥ x1,�

n
1X

(2) ≥ x2
) − ν

([x1,∞) × [x2,∞)
)
.

This quantity is bounded by K�n due to Lemma 4.3, so the growth condition√
kn�n → 0 ensures that

√
kn(γn(x)−γ n(x)) is uniformly small on each fixed Tk .

In order to prove γ n(x)
w−→ B(x) on �∞(Tk) we will employ Theorem 11.20 in

Kosorok (2008) for which several intermediate results have to be shown. To begin
with, set Fn(p) = √

n/kn1{p∈Tk}, which is a sequence of integrable (with respect
to any probability measure) envelopes. The first two steps are related to the class
of functions Fn. We start with the proof of an entropy condition, namely

lim sup
n→∞

sup
Q

∫ 1

0

√
logN

(
ε‖Fn‖Q,2, Fn,L2(Q)

)
dε < ∞,

where N denotes the covering number of the set Fn, and the supremum
runs over all probability measures Q with finite support such that ‖Fn‖Q,2 =
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(
∫

F 2
n (p) dQ(p))1/2 > 0. Thanks to the special form of Fn, this result is a simple

consequence of Lemma 11.21 in Kosorok (2008): it suffices to check that each Fn

is a VC-class with VC-index 5. This follows from the fact that each finite subset
of H of size 5 has either a subset of 3 elements in [0,∞]2 \ {(0,0)}, or a subset
of two elements in one of the stripes through −∞. In neither of the cases these
subsets can be shattered by the sets deduced from the indicators in the definition
of fn,x.

The second condition to check is that Fn is almost measurable Suslin, and it
follows from Lemma 11.15 and the discussion on page 224 in Kosorok (2008)
that it is sufficient to prove separability of Fn, that is, to show the existence of a
countable subset Tn,k of Tk such that

P∗(
sup
x∈Tk

inf
y∈Tn,k

∣∣fn,x
(
�n

j X
) − fn,y

(
�n

j X
)∣∣ > 0

)
= 0.

Here, P∗ denotes the outer expectation, since measurability of the event within the

brackets is not ensured. Set Tn,k = Tk ∩ Q
2
. Then, for each ω and each x ∈ Tk ,

there exists a y ∈ Tn,k such that fn,x(�
n
j X(ω)) = fn,y(�

n
j X(ω)), since the fn,x are

indicator functions. This proves separability of Fn.
The remaining steps regard the behavior of the variances and covariances of the

fn,x and their envelopes. We have

lim
n→∞ E

[
γ n(x)γ n(y)

] = lim
n→∞ E

[
fn,x

(
�n

j X
)
fn,y

(
�n

j X
)] = U(x ∨ y)(A.1)

as well as

lim
n→∞E

[
F 2

n

(
�n

j X
)] ≤ U(1/k,−∞) + U(−∞,1/k)

and

lim
n→∞ E

[
F 2

n

(
�n

j X
)
1{Fn(�n

j X)>ε
√

n}
] ≤ lim

n→∞ E
[
F 2

n

(
�n

j X
)]

(ε
√

kn)
−1 → 0.

Finally, as in (A.1) we have for x,y ∈ Tk that

ρn(x,y) = (
E

[(
fn,x

(
�n

j X
) − fn,y

(
�n

j X
))2])1/2

→ (
U(x) + U(y) − 2U(x ∨ y)

)1/2 = ρ(x,y),

and due to Lemma 4.3 the convergence holds uniformly as well. This completes
the proof.

A.2. Proof of Theorem 4.6. Let B0∞((0,∞]2) ⊂ B∞((0,∞]2) and
B0∞((0,∞]) ⊂ B∞((0,∞]) denote the space of all tail integrals of bivariate
Lévy measures concentrated on the first quadrant or of univariate Lévy measures
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concentrated on (0,∞], respectively. Consider the mapping � : B0∞((0,∞]2) ×
(B0∞((0,∞]))2 → B∞((0,∞]2), defined by � = �3 ◦ �2 ◦ �1 with

�1 : B0∞
(
(0,∞]2) × (

B0∞
(
(0,∞]))2 → B0∞

(
(0,∞]2) × (

B−∞
(
(0,∞]))2

(U,U1,U2) 
→ (
U,U−

1 ,U−
2

)
,

�2 : B0∞
(
(0,∞]2) × (

B−∞
(
(0,∞]))2 → B0∞

(
(0,∞]2) × (

Bp∞
([0,∞)

))2

(U,V1,V2) 
→ (U,V1 ◦ P,V2 ◦ P),

�3 : B0∞
(
(0,∞]2) × (

Bp∞
([0,∞)

))2 → B∞
(
(0,∞]2)

(U,G1,G2) 
→ U(G1,G2),

where P(x) = 1/x and where, in the last step, Gi(∞) = ∞. Moreover,
B−∞((0,∞]) ⊂ B∞((0,∞]) and Bp∞([0,∞)) ⊂ B∞([0,∞)) are defined as the
images of the associated function spaces under the respective mappings. Set also
�̃n,1(x) = Un(U

−
1 (1/x),−∞) and �̃n,2(x) = Un(−∞,U−

2 (1/x)). The proof will
now basically consist of two steps. We start with discussing weak convergence of√

kn

(
�(�̃n, �̃n,1, �̃n,2) − �(�,P,P )

) w−→ G,(A.2)

whereas this result is transferred to the original claim later on.
Let us begin with the proof of (A.2). This assertion follows from the functional

delta method in topological vector spaces [see van der Vaart and Wellner (1996)],
if we prove first that√

kn

{
(�̃n, �̃n,1, �̃n,2) − (�,P,P )

} w−→ (
G̃, G̃(·,−∞), G̃(−∞, ·))

in B∞((0,∞]2) × (B∞((0,∞]))2 and second that � is Hadamard-differentiable
at (�,P,P ) tangentially to suitable subspaces with derivative(

�′
(�,P,P )(U,U1,U2)

)
(u) = U(u) + u2

1�̇1(u)U1(u1) + u2
2�̇2(u)U2(u2),(A.3)

where the summands involving the partial derivatives on the right-hand side are
defined as 0 if one of the coordinates of u equals ∞. The first claim follows easily
from Theorem 4.2 and the continuous mapping theorem. Regarding the second
assertion we need to clarify the metrics on the corresponding spaces. The canonical
definitions are

d(f, g) =
∞∑

k=1

2−k(‖f − g‖Tk
∧ 1

)
,

where Tk = [1/k,∞]2 in case of B∞((0,∞]2), while Tk = [1/k,∞] and Tk =
[0, k] for B∞((0,∞]) and B∞([0,∞)), respectively. Unfortunately, the mapping
�1 is not Hadamard-differentiable with respect to these metrics [see the proof of
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Lemma A.2 in the supplementary material Bücher and Vetter (2013)], whence we
need to consider the weaker modifications

d2(f, g) =
∞∑

k=1

2−k(‖f − g‖Sk
∧ 1

)
,

where Sk = ([1/k, k] ∪ {∞})2 in case of B∞((0,∞]2), while Sk = [1/k, k] ∪ {∞}
and Sk = {0} ∪ [1/k, k] for B∞((0,∞]) and B∞([0,∞)), respectively. With these
modifications, it follows from Lemma A.1 in the supplementary material Bücher
and Vetter (2013) and the chain rule that

� :
(

B0∞
(
(0,∞]2)

, d
) × (

B0∞
(
(0,∞]), d)2 → (

B0∞
(
(0,∞]2)

, d2
)

is Hadamard-differentiable at (�,P,P ) with derivative as specified in (A.3) tan-
gentially to

D0 =
{
(U,U1,U2) ∈ C

(
(0,∞]2) × (

C
(
(0,∞]))2 | Uj(∞) = 0,

(A.4)
lim
x→0

x2Uj(x) = 0
}
.

Here, C((0,∞]2) and C((0,∞]) denote the set of all functions on (0,∞]2

and (0,∞] that are continuous with respect to the pseudo metrics ρ(u,v) =
|�(u) − �(v)|1/2 and ρ(u, v) = |1/u − 1/v|1/2, respectively. Hence, observing
(G̃, G̃(·,−∞), G̃(−∞, ·)) ∈ D0, the functional delta method yields√

kn

(
�(�̃n, �̃n,1, �̃n,2) − �(�,P,P )

) w−→ G

in (B∞((0,∞]2), d2).
We will use the approximation Theorem 4.2 in Billingsley (1968), adapted to

the concept of weak convergence in the sense of Hoffmann–Jørgensen, to transfer
this result to weak convergence in (�∞([η,∞]2),‖ · ‖∞) for all η > 0 and hence
in (B∞((0,∞]2), d). To this end, define

Wn(u) = √
kn

(
�(�̃n, �̃n,1, �̃n,2) − �(�,P,P )

)
(u)

and

Wn,M(u) = √
kn

(
�(�̃n, �̃n,1, �̃n,2) − �(�,P,P )

)
(u)1{u∈[η,M]2}.

Then Wn,M(u)
w−→ GM(u) := G(u)1{u∈[η,M]2} for n → ∞ and GM(u)

w−→ G(u)

for M → ∞ in (�∞([η,∞])2,‖ · ‖∞), and it remains to prove that

lim sup
n→∞

P∗(
sup

u1>M or u2>M

∣∣√kn

(
�(�̃n, �̃n,1, �̃n,2) − �(�,P,P )

)
(u)

∣∣ > ε
)

converges to 0 for M → ∞. Noting that �(�,P,P ) = �, the probability can be
bounded by

P∗(
sup

u1≥M/2 or u2≥M/2

∣∣√kn(�̃n − �)(u)
∣∣ > ε

)

+ P∗(∃u with u1 > M or u2 > M : �̃−
ni ◦ P(ui) < M/2, i = 1,2

)
.
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The Portmanteau theorem implies that the lim sup of the first probability con-
verges to 0 for M → ∞ using Theorem 4.2. Furthermore, some thoughts reveal
that �̃−

n,i(z) = 1/(Ui(U
−
n,i(z))) for all z > 0. Due to monotonicity of �̃−

ni ◦ P , the
second probability is bounded by P(�̃−

ni ◦P(M) ≤ M/2, i = 1,2), which thus con-
verges to 0 for n → ∞ observing that �̃−

ni ◦ P(M) = M + oP (1).

In the final step we will prove
√

kn(�̂n − �)
w−→ G in each (�∞([η,∞]2),

‖ · ‖∞), for which we heavily rely on the fact that the same result holds
for the statistic discussed above. As a consequence of the identity �̃−

n,i(z) =
1/(Ui(U

−
n,i(z))), we have that �(�̃n, �̃n,1, �̃n,2)(u) and �̂n(u) coincide as long

as U−
n,i(1/ui) �= 0 for i = 1,2. By monotonicity, it is therefore sufficient to prove

that the probability of U−
n,i(1/η) = 0 becomes small, which is precisely

lim
n→∞P

(
U−

n,i(1/η) = 0
) = 0.

To this end, let Ni(n) denote the number of positive increments of X(i). By def-
inition of the generalized inverse function in (2.1) we have that U−

n,i(1/η) = 0 is
equivalent to 1/η ≥ Ni(n)/kn or Ni(n) ≤ kn/η. Furthermore, letting Mi(n) be the
number of positive increments of the process Z

(i)
t = ait + B

(i)
t , we see that it is

sufficient to prove

lim
n→∞ P

(
Mi(n) ≤ kn/η

) = 0,

since X does not admit negative jumps. Note that we have

P
(
�n

jZ
(i) > 0

) = P
(
�n

jB
(i) > −ai�n

) = P
(
N > −ai�

1/2
n

) = 1/2 + o(1),

where N is a standard Gaussian variable. Let n be large enough in order for the
probability above to be larger than 1/3. For such n, we conclude easily that

P
(
Mi(n) ≤ kn/η

) ≤ P
(
Bin(n,1/3) ≤ kn/η

) → 0,

for example, from Markov inequality and (4.1). This completes the proof.
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SUPPLEMENTARY MATERIAL

Proof of auxiliary results (DOI: 10.1214/13-AOS1116SUPP; .pdf). In this sup-
plement we present the proofs of the remaining results from the main corpus as
well as two lemmas which are used in the proof of Theorem 4.6.
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