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UNIVERSALLY CONSISTENT VERTEX CLASSIFICATION FOR
LATENT POSITIONS GRAPHS1

BY MINH TANG, DANIEL L. SUSSMAN AND CAREY E. PRIEBE

Johns Hopkins University

In this work we show that, using the eigen-decomposition of the adja-
cency matrix, we can consistently estimate feature maps for latent position
graphs with positive definite link function κ , provided that the latent posi-
tions are i.i.d. from some distribution F . We then consider the exploitation
task of vertex classification where the link function κ belongs to the class of
universal kernels and class labels are observed for a number of vertices tend-
ing to infinity and that the remaining vertices are to be classified. We show
that minimization of the empirical ϕ-risk for some convex surrogate ϕ of 0–1
loss over a class of linear classifiers with increasing complexities yields a uni-
versally consistent classifier, that is, a classification rule with error converging
to Bayes optimal for any distribution F .

1. Introduction. The classical statistical pattern recognition setting involves

(X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn,Yn)
i.i.d.∼ FX ,Y ,

where the Xi ∈ X ⊂ R
d are observed feature vectors, and the Yi ∈ Y = {−1,1}

are observed class labels, for some probability distribution FX ,Y on X × Y . Let
D = {(Xi, Yi)}ni=1. A classifier h(·; D) : X �→ {−1,1} whose probability of er-
ror P[h(X; D) �= Y |D] approaches Bayes-optimal as n → ∞ for all distributions
FX ,Y is said to be universally consistent. For example, the k-NN classifier with
k → ∞, k/n → 0 is universally consistent [34].

In this paper, we consider the case wherein the feature vectors are unobserved,
and we observe instead a latent position graph G = G(X,X1, . . . ,Xn) on n + 1
vertices with positive definite link function κ : X × X �→ [0,1]. The graph G is
constructed such that there is a one-to-one relationship between the vertices of G

and the feature vectors X,X1, . . . ,Xn, and the edges of G are conditionally in-
dependent Bernoulli random variables given the latent X,X1, . . . ,Xn. We show
that there exists a universally consistent classification rule for this extension of the
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Algorithm 1 Vertex classifier on graphs

Input: A ∈ {0,1}n×n, training set T ⊂ [n] = {1,2, . . . , n} and labels YT =
{Yi : i ∈ T }.
Output: Class labels {Ŷj : j ∈ [n] \ T }.
Step 1: Compute the eigen-decomposition of A = USUT .
Step 2: Let d be the “elbow” in the scree plot of A, SA the diagonal matrix of
the top d eigenvalues of A and UA the corresponding columns of U.
Step 3: Define Z to be UAS1/2

A . Denote by Zi the ith row of Z. Define ZT the
rows of Z corresponding to the indices set T . Z is called the adjacency spectral
embedding of A.
Step 4: Find a linear classifier g̃n that minimizes the empirical ϕ-loss when
trained on (ZT ,YT ) where ϕ is a convex loss function that is a surrogate for
0–1 loss.
Step 5: Apply g̃n on the {Zj : j ∈ [n] \ T } to obtain the {Ŷj : j ∈ [n] \ T }.

classical pattern recognition setup to latent position graph models, provided that
the link function κ is an element of the class of universal kernels. In particular, we
show that a classifier similar to the one described in Algorithm 1 is universally con-
sistent. Algorithm 1 is an example of a procedure that first embeds data into some
Euclidean space and then performs inference in that space. These kind of proce-
dures are popular in analyzing graph data, as is evident from the vast literature on
multidimensional scaling, manifold learning and spectral clustering.

The above setting of classification for latent position graphs, with κ being the
inner product in R

d , was previously considered in [36]. It was shown there that the
eigen-decomposition of the adjacency matrix A yields a consistent estimator, up
to some orthogonal transformation, of the latent vectors X,X1, . . . ,Xn. Therefore,
the k-NN classifier, using the estimated vectors, with k → ∞, k/n → 0 is univer-
sally consistent. When κ is a general, possibly unknown link function, we cannot
expect to recover the latent vectors. However, we can obtain a consistent estima-
tor of some feature map � : X �→ H of κ . Classifiers that use only the feature
map � are universally consistent if the space H is isomorphic to some dense sub-
space of the space of measurable functions on X . The notion of a universal kernel
[25, 30, 31] characterizes those κ whose feature maps � induce a dense subspace
of the space of measurable functions on X .

The structure of our paper is as follows. We introduce the framework of latent
position graphs in Section 2. In Section 3, we show that the eigen-decomposition of
the adjacency matrix A yields a consistent estimator for a feature map � : X �→ l2
of κ . We discuss the notion of universal kernels and the problem of vertex clas-
sification using the estimates of the feature map � in Section 4. In particular, we
show that the classification rule obtained by minimizing a convex surrogate of the
0–1 loss over a class of linear classifiers in R

d is universally consistent, provided
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that d → ∞ in a specified manner. We conclude the paper with a discussion of
how some of the results presented herein can be extended and other implications.

We make a brief comment on the setup of the paper. The main contribution
of the paper is the derivation of the estimated feature maps and their use in con-
structing a universally consistent vertex classifier. We have thus considered a less
general setup of compact metric spaces, linear classifiers, and convex, differen-
tiable loss functions. It is possible to extends the results herein to a more general
setup where the latent positions are elements of a (non-compact) metric space, the
class of classifiers are uniformly locally-Lipschitz, and the convex loss function
satisfies the classification-calibrated property [2].

2. Framework. Let (X , d) be a compact metric space and F a probability
measure on the Borel σ -field of X . Let κ : X × X �→ [0,1] be a continuous, posi-
tive definite kernel. Let L2(X ,F ) be the space of square-integrable functions with
respect to F . We can define an integral operator K :L2(X ,F ) �→ L2(X ,F ) by

K f (x) =
∫

X
κ
(
x, x′)f (

x′)F (
dx′).

K is a compact operator and is of trace class.
Let {λj } be the set of eigenvalues of K ordered as λ1 ≥ λ2 ≥ · · · ≥ 0. Let {ψj }

be a set of orthonormal eigenfunctions of K corresponding to the {λj }, that is,

K ψj = λjψj ,∫
X

ψi(x)ψj (x) dF (x) = δij .

The following Mercer representation theorem [12, 33] provides a representation
for κ in terms of the eigenvalues and eigenfunctions of K defined above.

THEOREM 2.1. Let (X , d) be a compact metric space and κ : X × X �→ [0,1]
be a continuous positive definite kernel. Let λ1 ≥ λ2 ≥ · · · ≥ 0 be the eigenvalues
of K and ψ1,ψ2, . . . be the associated eigenvectors. Then

κ
(
x, x′) =

∞∑
j=1

λjψj (x)ψj

(
x′).(2.1)

The sum in equation (2.1) converges absolutely for each x and x′ in supp(F ) ×
supp(F ) and uniformly on supp(F ) × supp(F ). Let H denote the reproducing
kernel Hilbert space of κ . Then the elements η ∈ H are of the form

η = ∑
j

aj

√
λjψj with (aj ) ∈ l2,(2.2)

and the inner product on H is given by〈∑
j

aj

√
λjψj ,

∑
j

bj

√
λjψj

〉
H

= ∑
j

ajbj .(2.3)
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By Mercer’s representation theorem, we have κ(·, x) = ∑
j

√
λjψj (x) ×√

λjψj (·). We thus define the feature map � : X �→ l2 by

�(x) = (√
λjψj (x) : j = 1,2, . . .

)
.

Let d be an integer with d ≥ 1. We also define the following map �d : X �→ R
d

�d(x) = (√
λjψj (x) : j = 1,2, . . . , d

)
.

We will refer to �d as the truncation of � to R
d .

Now, for a given n, let X1, . . . ,Xn
i.i.d.∼ F . Define K = (κ(Xi,Xj ))

n
i,j=1. Let A

be a symmetric random hollow matrix where the entries {Aij }i<j are conditionally
independent Bernoulli random variables given the {Xi}ni=1 with P[Aij = 1] = Kij

for all i, j ∈ [n], i < j . A is the adjacency matrix corresponding to a graph with
vertex set {1,2, . . . , n}. A graph G whose adjacency matrix A is constructed as
above is an instance of a latent position graph [19] where the latent positions are
sampled according to F , and the link function is κ .

2.1. Related work. The latent position graph model and the related latent
space approach [19] is widely used in network analysis. It is a generalization of
the stochastic block model (SBM) [20] and variants such as the degree-corrected
SBM [21] or the mixed-membership SBM [1] or the random dot product graph
model [39]. It is also closely related to the inhomogeneous random graph model
[8] or the exchangeable graph model [15].

There are two main sources of randomness in latent position graphs. The first
source of randomness is due to the sampling procedure, and the second source of
randomness is due to the conditionally independent Bernoulli trials that gave rise
to the edges of the graphs. The randomness in the sampling procedure and its ef-
fects on spectral clustering and/or kernel PCA have been widely studied. In the
manifold learning literature, the latent positions are sampled from some manifold
in Euclidean space and [3, 17, 18] among others studied the convergence of the var-
ious graph Laplacian matrices to their corresponding Laplace–Beltrami operators
on the manifold. The authors of [28, 38] studied the convergence of the eigenval-
ues and eigenvectors of the graph Laplacian to the eigenvalues and eigenfunctions
of the corresponding operators in the spectral clustering setting.

The matrix K/n can be considered as an approximation of K for large n; that
is, we expect the eigenvalues and eigenvectors of K/n to converge to the eigen-
values and eigenfunctions of K in some sense. This convergence is important in
understanding the theoretical properties of kernel PCA; see, for example, [4, 9, 23,
28, 29, 41]. We summarized some of the results from the literature that directly
pertain to the current paper in Appendix B.

The Bernoulli trials at each edge and their effects had also been studied. For
example, a result in [10] on matrix estimation for noise-pertubed and subsampled
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matrices showed that by thresholding the dimensions in the singular value de-
composition of the adjacency matrix, one can recover an estimate K̂ of the kernel
matrix K with small ‖K̂ − K‖. Oliveira [26] studied the convergence of the eigen-
values and eigenvectors of the adjacency matrix A to that of the integral operator
K for the class of inhomogeneous random graphs. The inhomogeneous random
graphs in [26] have latent positions that are uniform [0,1] random variables with
the link function κ being arbitrary symmetric functions.

As we have mentioned in Section 1, Algorithm 1 is an example of a popular
approach in multidimensional scaling, manifold learning and spectral clustering
where inference on graphs proceeds by first embedding the graph into Euclidean
space followed by inference on the resulting embedding. It is usually assumed that
the embedding is conducive to the subsequent inference tasks. Justification can
also be provided based on the theoretical results about convergence, for example,
the convergence of the eigenvalues and eigenvectors to the eigenvalues and eigen-
functions of operators, or the convergence of the estimated entries, cited above.
However, these justifications do not consider the subsequent inference problem;
that is, these convergence results do not directly imply that inference using the
embeddings are meaningful. Recently, the authors of [11, 16, 27, 35] showed that
the clustering using the embeddings are meaningful, that is, consistent, for graphs
based on the stochastic block model and the extended planted partition model.
The main impetus for this paper is to give similar theoretical justification for the
classification setting. The latent position graph model is thus a surrogate model—
a widely-used model with sufficiently simple structure that allows for clear, con-
cise theoretical results.

3. Estimation of feature maps. We assume the setting of Section 2. Let us
denote by Md(R) and Md,n(R) the set of d ×d matrices and d ×n matrices on R,
respectively. Let ŨAS̃AŨ


A be the eigen-decomposition of A. For a given d ≥ 1, let
SA ∈ Md(R) be the diagonal matrix comprised of the d largest eigenvalues of A,
and let UA ∈ Mn,d(R) be the matrix comprised of the corresponding eigenvectors.
The matrices SK are UK are defined similarly. For a matrix M, ‖M‖ refers to the
spectral norm of M while ‖M‖F refers to the Frobenius norm of M. For a vector
v ∈ R

n, ‖v‖ will denote the Euclidean norm of v.
The key result of this section is the following theorem which shows that,

given that there is a gap in the spectrum of K at λd(K ), by using the eigen-
decomposition of A we can accurately estimate the truncated map �d in Section 2
up to an orthogonal transformation. We note that the dependence on F , the distri-
bution of the {Xi}, in the following result is implicit in the definition of the spectral
gap δd of K :L2(X ,F ) �→ L2(X ,F ).

THEOREM 3.1. Let d ≥ 1 be given. Denote by δd the quantity λd(K ) −
λd+1(K ), and suppose that δd > 0. Then with probability greater than 1 − 2η,
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there exists a unitary matrix W ∈ Md(R) such that∥∥UAS1/2
A W − �d

∥∥
F ≤ 27δ−2

d

√
d log (n/η),(3.1)

where �d denotes the matrix in Mn,d(R) whose ith row is �d(Xi). Let us denote

by �̂d(Xi) the ith row of UAS1/2
A W. Then, for each i ∈ [n] and any ε > 0,

P
[∥∥�̂d(Xi) − �d(Xi)

∥∥ > ε
] ≤ 27δ−2

d ε−1

√
6d logn

n
.(3.2)

We now proceed to prove Theorem 3.1. A rough sketch of the argument goes as
follows. First we will show that the projection of A onto the subspace spanned by
UA is “close” to the projection of K onto the subspace spanned by UK. Then we
will use results on the convergence of spectra of K to the spectra of K to show
that the subspace spanned by UA is also “close” to the subspace spanned by �d .
We note that, for conciseness and simplicity in the exposition, all probability state-
ments involving the matrix A or its related quantities, for example, UA,SA, are
assumed to hold conditionally on the {X1,X2, . . . ,Xn}.

We need the following bound for the perturbation A−K from [26]. The conver-
gence of the spectra of A to that of K as given by Theorem 6.1 in [26] is similar to
that given in the proof of Theorem 3.1 in the current paper, but there are sufficient
differences between the two settings, and we do not see an obvious way to apply
the conclusions of Theorem 6.1 in [26] to the current paper.

PROPOSITION 3.2. For A and K as defined above, with probability at least
1 − η, we have

‖A − K‖ ≤ 2
√

� log (n/η) ≤ 2
√

n log (n/η),(3.3)

where � is the maximum vertex degree.

The constant in equation (3.3) was obtained by replacing a concentration in-
equality in [26] with a slightly stronger inequality from [37]. We now show that
the projection matrix for the subspace spanned by UA is close to the projection
matrix for the subspace spanned by UK.

PROPOSITION 3.3. Let PA = UAUT
A and PK = UKUT

K. Denote by δd the
quantity λd(K ) − λd+1(K ), and suppose that δd > 0. If n is such that δd ≥
8(1 + √

2)n−1/2√log (n/η). Then with probability at least 1 − 2η,

‖PA − PK‖ ≤ 4

√
log (n/η)

nδ2
d

.(3.4)
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PROOF. By equation (B.4) in Theorem B.2, we have with probability at least
1 − η,

λd(K)

n
− λd+1(K)

n
≥ δd − 4

√
2

√
log (2/η)

n
.

Now, let S1 and S2 be defined as

S1 = {
λ :λ ≥ nλd(K) − 2

√
n log (n/η)

}
,

S2 = {
λ :λ < nλd+1(K) + 2

√
n log (n/η)

}
.

Then we have, with probability at least 1 − η,

dist(S1, S2) ≥ nδd − 4
√

2
√

n log (2/η) − 4
√

n log (n/η)
(3.5)

≥ nδd − 4(1 + √
2)

√
n log (n/η).

Suppose for the moment that S1 and S2 are disjoint, that is, that dist(S1, S2) > 0.
Let PA(S1) be the matrix for the orthogonal projection onto the subspace spanned
by the eigenvectors of A whose corresponding eigenvalues lies in S1. Let PK be
defined similarly. Then by the sin� theorem [13] we have∥∥PA(S1) − PK(S1)

∥∥ ≤ ‖A − K‖
dist(S1, S2)

.

By equation (3.5) and Proposition 3.2, we have, with probability at least (1 − 2η),

∥∥PA(S1) − PK(S1)
∥∥ ≤ 2

√
n log (n/η)

nδd − 4(1 + √
2)

√
n log (n/η)

≤ 4

√
log (n/η)

nδ2
d

,

provided that 4(1 + √
2)

√
n log (n/η) ≤ nδd/2.

To complete the proof, we note that if 4(1 +√
2)

√
n log (n/η) ≤ nδd/2, then S1

and S2 are disjoint. Thus PK(S1) = UKUT
K. Finally, if ‖A − K‖ ≤ 2

√
n log (n/η),

then the eigenvalues of A that lie in S1 are exactly the d largest eigenvalues of A
and PA(S1) = UAUT

A. Equation (3.4) is thus established. �

Let H be the reproducing kernel Hilbert space for κ . We now introduce a linear
operator KH ,n on H defined as follows:

KH ,nη = 1

n

n∑
i=1

〈
η, κ(·,Xi)

〉
H κ(·,Xi).

The operator KH ,n is the extension of K as an operator on R
n to an oper-

ator on H . That is, KH ,n is a linear operator on H induced by κ and the
X1,X2, . . . ,Xn. The eigenvalues of KH ,n and K coincide, and furthermore, an



UNIVERSALLY CONSISTENT VERTEX CLASSIFICATION 1413

eigenfunction of KH ,n is a linear interpolation of the corresponding eigenvector
of K. The reader is referred to Appendix B for more details.

The next result states that the rows of UKS1/2
K correspond to projecting the

�(Xi) using P̂d , where P̂d is the projection onto the d-dimensional subspace
spanned by the eigenfunctions associated with the d largest eigenvalues of KH ,n.
We note that for large n, P̂d is close to the projection onto the d-dimensional sub-
space spanned by the eigenfunctions associated with the d largest eigenvalues of
K with high probability; see Theorem B.2.

LEMMA 3.4. Let P̂d be the projection onto the subspace spanned by the
eigenfunctions corresponding to the d largest eigenvalues of KH ,n. The rows

of UKS1/2
K then correspond, up to some orthogonal transformation, to projec-

tions of the feature map � onto R
d via P̂d , that is, there exists a unitary matrix

W ∈ Md(R) such that

UKS1/2
K W = [

ı
(

P̂d

(
�(X1)

))T | · · · |ı(P̂d

(
�(Xn)

))T ]T
,(3.6)

where ı is the isometric isomorphism of a finite-dimensional Hilbert space
onto R

d .

The proof of Lemma 3.4 is given in the Appendix.

PROOF OF THEOREM 3.1. We first note that the sum of any row of A is
bounded from above by n, thus ‖A‖ ≤ n. Similarly, ‖K‖ ≤ n. On combining equa-
tion (3.4) and equation (3.3), we have, with probability at least 1 − 2η,

‖PAA − PKK‖ ≤ ∥∥PA(A − K)
∥∥ + ∥∥(PA − PK)K

∥∥
≤ 2

√
n log (n/η) + 4δ−1

d

√
n log (n/η)

≤ 6δ−1
d

√
n log (n/η).

By Lemma A.1 in the Appendix, there exists an orthogonal W ∈ Md(R) such that

∥∥UAS1/2
A W − UKS1/2

K

∥∥ ≤ 6δ−1
d

√
n log (n/η)

√
d‖PAA‖ + √

d‖PKK‖
λd(K)

≤ 12δ−1
d

n
√

log (n/η)

λd(K)
.

We note that λd(K) ≥ nλd(K )/2 provided that n satisfies λd(K ) > 4
√

2 ×√
n−1 log (n/η). Thus, we have

∥∥UAS1/2
A W − UKS1/2

K

∥∥
F ≤ 24δ−1

d

√
d log (n/η)

λd(K )
≤ 24δ−2

d

√
d log (n/η)(3.7)
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with probability at least 1 − 2η.
Now, by Lemma 3.4, the rows of UKS1/2

K are (up to some orthogonal transfor-
mation) the projections of the feature map � onto R

d via P̂d . On the other hand,
�d(X) is the projection of κ(·,X) onto R

d via Pd . By Theorem B.2 in the Ap-
pendix, for all X, we have∥∥P̂dκ(·,X) − Pdκ(·,X)

∥∥
H ≤ ‖P̂d − Pd‖HS

∥∥κ(·,X)
∥∥
H ≤ 2

√
2

√
log(1/η)

δd

√
n

with probability at least 1 − 2η. We therefore have, for some orthogonal W̃ ∈
Md(R), ∥∥UKS1/2

K W̃ − �d

∥∥
F ≤ 2

√
2

√
log (1/η)

δd

(3.8)

with probability at least 1−2η. Equation (3.1) in the statement of the theorem then
follows from equation (3.7) and equation (3.8).

To show equation (3.2), we first note that as the {Xi}ni=1 are independent and
identically distributed, the {�̂d(Xi)}ni=1 are exchangeable and hence identically
distributed. Let η = n−2. By conditioning on the event in equation (3.1), we have

E
[∥∥�̂d(Xi) − �d(Xi)

∥∥] ≤
√

E
[∥∥�̂d(Xi) − �d(Xi)

∥∥2]
≤

√
1

n
E

[‖�̂d − �d‖2
F

]
(3.9)

≤ 1√
n

√(
1 − 2

n2

)(
27δ−2

d

√
3d logn

)2 + 2

n2 2n

≤ 27δ−2
d

√
6d logn

n
,

because the worst case bound is ‖�̂d − �d‖F ≤ 2n with probability 1. Equation
(3.2) follows from equation (3.9) and Markov’s inequality. �

4. Universally consistent vertex classification. The results in Section 3
show that by using the eigen-decomposition of A, we can consistently estimate
the truncated feature map �d for any fixed, finite d (up to an orthogonal trans-
formation). In the subsequent discussion, we will often refer to the rows of the
eigen-decomposition of A, that is, the rows of UAS1/2

A as the estimated vectors.
Sussman, Tang and Priebe [36] showed that, for the dot product kernel on a finite-
dimensional space X , the k-nearest-neighbors classifier on R

d is universally con-
sistent when we select the neighbors using the estimated vectors rather than the
true but unknown latent positions. This result can be trivially extended to the set-
ting for an arbitrary finite-rank kernel κ as long as the feature map � of κ is
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injective. It is also easy to see that if the feature map � is not injective, then any
classifier that uses only the estimated vectors (or the feature map �) is no longer
universally consistent. This section is concerned with the setting where the kernel
κ is an infinite-rank kernel with an injective feature map � onto l2. Well-known
examples of these kernels are the class of universal kernels [25, 30, 31].

DEFINITION 4.1. A continuous kernel κ on some metric space (X , d) is a
universal kernel if for some feature map � : X �→ H of κ to some Hilbert space H ,
the class of functions of the form

F� = {〈w,�〉H :w ∈ H
}

is dense in C (X ); that is, for any continuous function g : X �→ R and any ε > 0,
there exists a f ∈ F� such that ‖f − g‖∞ < ε.

We note that if F� is dense in C (X ) for some feature map � and �′ : X �→ H ′
is another feature map of κ , then F�′ is also dense in C (X ), that is, the universal-
ity of κ is independent of the choice for its feature map. Furthermore, every feature
map of a universal kernel is injective.

The following result lists several well-known universal kernels.

PROPOSITION 4.2 ([25, 31]). Let S be a compact subset of R
d . Then the fol-

lowing kernels are universal on S:

• the exponential kernel κ(x, y) = exp(〈x, y〉);
• the Gaussian kernel κ(x, y) = exp(−‖x − y‖2/σ 2) for all σ > 0;
• the binomial kernel κ(x, y) = (1 − 〈x, y〉)−α for α > 0;
• the inverse multiquadrics κ(x, y) = (c2 + ‖x − y‖2)−β with c > 0 and β > 0.

If the kernel matrix K is known, then results on the universal consistency of sup-
port vector machines with universal kernels are available; see, for example, [32].
If the feature map � is known, then Biau, Bunea and Wegkamp [5] showed that
the k-nearest-neighbors on �d are universally consistent as k → ∞ and d → ∞
where k and d are chosen using a structural risk minimization approach.

Our universally consistent classifier operates on the estimated vectors and is
based on an empirical risk minimization approach. Namely, we will show that
the classifier that minimizes a convex surrogate ϕ for 0–1 loss from a class of
linear classifiers C(dn) is universally consistent provided that the convex surrogate
ϕ satisfies some mild conditions and that the complexity of the class C(dn) grows
in a controlled manner.

First, we will expand our framework to the classification setting. Let X be as in
Section 2, and let FX ,Y be a distribution on X ×{−1,1}. Let (X1, Y1), . . . , (Xn+1,

Yn+1)
i.i.d.∼ FX ,Y , and let K and A be as in Section 2. The {Yi} are the class labels

for the vertices in the graph corresponding to the adjacency matrix A.
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We suppose that we observe only A, the adjacency matrix, and Y1, . . . , Yn, the
class labels for all but the last vertex. Our goal is to accurately classify this last
vertex, so for convenience of notation we shall define X := Xn+1 and Y := Yn+1.
Let the rows of UAS1/2

A be denoted by ζd(X1), . . . , ζd(Xn+1) (even though the
Xi are unobserved/unknown). We want to find a classifier hn such that, for any
distribution FX ,Y ,

E[Ln] := E
[
P

[
hn

(
ζdn(X)

) �= Y |(ζdn(X1), Y1
)
, . . . ,

(
ζdn(Xn), Yn

)]]
→ P

[
h∗(X) �= Y

] =: L∗,

where h∗ is the Bayes-optimal classifier, and L∗ is its associated Bayes-risk.
Let C(d) be the class of linear classifiers using the truncated feature map �d

whose linear coefficients are normalized to have norm at most d , that is, g ∈ C(d),
if and only if g is of the form

g(x) =
{

1, if
〈
w,�d(x)

〉
> 0,

−1, if
〈
w,�d(x)

〉 ≤ 0,
(4.1)

for some w ∈ R
d with ‖w‖ ≤ d . We note that the {C(d)} are increasing, that is,

C(d) ⊂ C(d ′) for d < d ′ and that
⋃

d≥1 C(d) = F� = {〈w,�〉H :w ∈ H }. Because
κ is universal, F� is dense in C(X ) and as X is compact, F� is dense in the space
of measurable functions on X . Thus limd→∞ infg∈C(d) L(g) = L∗ and so one can
show that empirical risk minimization over the class C(dn) for any increasing and
divergent sequence (dn) yields a universally consistent classifier (Theorem 18.1
in [14]). The remaining part of this section is concerned with modifying this result
so that it applies to the estimated feature map ζd instead of the true feature map �d .

We now describe a setup for empirical risk minimization over C(d) for increasing
d where we use the estimated ζd in place of the �d . Let us write L̂n(w; ζd) for the
empirical error when using the ζd , that is,

L̂n(w; ζd) = 1

n

n∑
i=1

1
{
sign

(〈
w,ζd(Xi)

〉) �= Yi

} ≤ 1

n

n∑
i=1

1
{
Yi

〈
w,ζd(Xi)

〉 ≤ 0
}
.

We want to show that minimization of L̂n(w; ζdn) over the class C(dn) for increas-
ing (dn) leads to a universally consistent classifier for our latent position graphs
setting. However, the loss function L(f ) = P(sign(f (X)) �= Y) of a classifier f as
well as its empirical version L̂n(f ) is based on the 0–1 loss, which is discontin-
uous at f = 0. Furthermore, the distribution of ζd(X) not available. This induces
complications in relating L̂n(w; ζd) to L̂n(w;�d). That is, the classifier obtained
by minimizing the 0–1 loss using ζ might be very different from the classifier
obtained by minimizing the 0–1 loss using �.

To circumvent this issue, we will work with some convex loss function ϕ that
is a surrogate of the 0–1 loss. The notion of constructing classification algorithms
that correspond to minimization of a convex surrogate for the 0–1 loss is a powerful
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one and the authors of [2, 24, 40], among others, showed that one can obtain, under
appropriate regularity conditions, Bayes-risk consistent classifiers in this manner.

Let ϕ : R �→ [0,∞). We define the ϕ-risk of f : X �→ R by

Rϕ(f ) = Eϕ
(
Yf (X)

)
.

Given some data Dn = {(Xi, Yi)}ni=1, the empirical ϕ-risk of f is defined as

R̂ϕ,n(f ) = 1

n

n∑
i=1

ϕ
(
Yif (Xi)

)
.

We will often write R̂ϕ(f ) if the number of samples (Xi, Yi) in Dn is clear
from the context. Let w ∈ R

d,‖w‖ ≤ d index a linear classifier on C(d). Denote
by Rϕ(w;�d), R̂ϕ,n(w;�d), R̂ϕ,n(w; ζd) and Rϕ,n(w; ζd) the various quantities
analogous to L(w;�d), L̂n(w;�d), L̂n(w; ζd) and Ln(w; ζd) for 0–1 loss defined
previously. Let us also define R∗

ϕ as the minimum ϕ-risk over all measurable func-
tions f : X �→ R.

In this paper, we will assume that the convex surrogate ϕ : R �→ [0,∞) is dif-
ferentiable with ϕ′(0) < 0. This implies that ϕ is classification-calibrated [2]. Ex-
amples of classification-calibrated loss functions are the exponential loss func-
tion ϕ(x) = exp(−x) in boosting, the logit function ϕ(x) = log2(1 + exp(−x)) in
logistic regression and the square error loss ϕ(x) = (1 − x)2. For classification-
calibrated loss functions, we have the following result.

THEOREM 4.3 ([2]). Let ϕ : R �→ [0,∞) be classification-calibrated. Then for
any sequence of measurable functions fi : X �→ R and every probability distribu-
tion FX ,Y , Rϕ(fi) → R∗

ϕ implies L(fi) → L∗.

We now state the main result of this section, which is that empirical ϕ-risk mini-
mization over the class C(dn) for some diverging sequence (dn) yields a universally
consistent classifier for the latent position graphs setting.

THEOREM 4.4. Let ε ∈ (0,1/4) be fixed. For a given d , let Cd = max{ϕ′(−d),

ϕ′(d)}. Suppose that dn is given by the following rule:

dn = max
{
d ≤ n :

1

n

(
λd(A) − λd+1(A)

) ≥ 32
√

dCd

(
d logn

n

)1/4−ε}
.(4.2)

Let g̃n be the classifier obtained by empirical ϕ-risk minimization over C(dn). Then
Rϕ,n(g̃n) → R∗

ϕ as n → ∞ and sign(g̃n) is universally consistent, that is,

E
[
P

(
sign

(
g̃n

(
ζdn(X)

)) �= Y |Dn

)] → L∗

as n → ∞ for any distribution FX ,Y .



1418 M. TANG, D. L. SUSSMAN AND C. E. PRIEBE

REMARK. We note that due to the use of the estimated ζ in place of the true �,
Theorem 4.4 is limited in two key aspects. The first is that we do not claim that
g̃n is universally strongly consistent for any FX ,Y and the second is that we can-
not specify dn in advance. In return, the minimization of the empirical ϕ-risk over
the class C(d) is a convex optimization problem and the solution can be obtained
more readily than the minimization of empirical 0–1 loss. For example, by using
squared error loss instead of 0–1 loss, the classifier that minimizes the empirical
ϕ-risk can be viewed as a ridge regression problem. We note also that as the only
accumulation point in the spectrum of K is at zero, the sequence (dn) as speci-
fied in equation (4.2) exists. Furthermore, such a sequence is only one possibility
among many. In particular, the conclusion in Theorem 4.4 holds for any sequence
(dn) that diverges and satisfies the condition δ2

dn
= o(n−1/2d3/2√logn). Choosing

the right (dn) requires balancing the approximation error infg∈C(dn) Rϕ(g) − R∗
ϕ

and the estimation error Rϕ(g̃n) − infw∈C(dn) Rϕ(g), and this can be done using an
approach based on structural risk minimization; see, for example, Section 18.1 of
[14] and [24].

We now proceed to prove Theorem 4.4. A rough sketch of the argument goes as
follows. First we show that any classifier g using the estimated vectors ζd induces
a classifier g′ using the true truncated feature map �d such that the empirical
ϕ-risk of g is “close” to the empirical ϕ-risk of g′. Then by applying a Vapnik–
Chervonenkis-type bound for g′, we show that the classifier g̃ (using ζd ) selected
by empirical ϕ-risk minimization induces a classifier ĝ (using �d ) with the ϕ-
risk of ĝ being “close” to the minimum ϕ-risk for the classifiers in the class C(d).
Universal consistency of ĝ and hence of g̃ follows by letting d grow in a specified
manner.

Let 1 ≤ d ≤ n. Let UAS1/2
A be the embedding of A into R

d . Let Wd ∈ Md(R)

be an orthogonal matrix given by

Wd = min
W : WT W=I

∥∥UAS1/2
A W − �d

∥∥
F .

The following result states that if there is a gap in the spectrum of K at λd(K ),
then R̂ϕ,n(w; ζd) and R̂ϕ,n(Wdw,�d) is close for all w ∈ R

d,‖w‖ ≤ d . That is,
the empirical ϕ-risk of a linear classifier using ζd is not too different from the
empirical ϕ-risk of a related classifier (the relationship is given by Wd ) using �d .

PROPOSITION 4.5. Let d ≥ 1 be such that λd(K ) > λd+1(K ), and let Cd =
max{ϕ′(d), ϕ′(−d)}. Then for any w ∈ R

d , ‖w‖ ≤ d , we have, with probability at
least 1 − 1/n2,

∣∣R̂ϕ,n(w; ζd) − R̂ϕ,n(Wdw;�d)
∣∣ ≤ 27δ−2

d dCd

√
3d logn

n
.(4.3)
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PROOF. We have

R̂ϕ,n(w; ζd) − R̂ϕ,n

(
Wdw;�d

)
= 1

n

n∑
i=1

ϕ
(
Yi

〈
w,ζd(Xi)

〉) − ϕ
(
Yi

〈
Wdw,�d(Xi)

〉)
.

Now ϕ is convex and thus locally Lipschitz-continuous. Also, |〈w,�d(X)〉| ≤ d

for all X ∈ X . Hence, there exists a constant M independent of n and FX ,Y such
that ∣∣ϕ(

Yi

〈
w,ζd(Xi)

〉) − ϕ
(
Yi

〈
Wdw,�d(Xi)

〉)∣∣
≤ M

∣∣∣∣Yi

〈
w

‖w‖ , ζd(Xi)

〉
− Yi

〈
W(d) w

‖w‖ ,�d(Xi)

〉∣∣∣∣
for all i. Thus, by Theorem 3.1, we have∣∣R̂ϕ,n(w; ζd) − R̂ϕ,n(Wdw;�d)

∣∣
≤ M

n

n∑
i=1

∣∣∣∣Yi

〈
w

‖w‖ , ζd(Xi)

〉
− Yi

〈
Wd

w

‖w‖ ,�d(Xi)

〉∣∣∣∣
≤ M

n

n∑
i=1

∥∥ζd(Xi) − (Wd)T �d(Xi)
∥∥

(4.4)

≤ M√
n

(
n∑

i=1

∥∥ζd(Xi) − (Wd)T �d(Xi)
∥∥2

)1/2

≤ M√
n

∥∥UAS1/2
A − (Wd)T �d

∥∥
F

≤ 27δ−2
d M

√
3d logn

n

with probability at least 1 − 1/n2. By the mean-value theorem, we can take M =
d max{ϕ′(d), ϕ′(−d)} to complete the proof. �

The Vapnik–Chervonenkis theory for 0–1 loss function can also be extended
to the convex surrogate setting Rϕ . In particular, the following result provides a
uniform deviation bound for |Rϕ(f ) − R̂ϕ,n(f )| for functions f in some class F
in terms of the VC-dimension of F .

LEMMA 4.6 ([24]). Let F be a class of functions with VC-dimension V < ∞.
Suppose that the range of any f ∈ F is contained in the interval [−d, d]. Let n ≥ 5.
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Then we have, with probability at least 1 − 1/n2,

sup
f ∈F

∣∣Rϕ(f ) − R̂ϕ,n(f )
∣∣ ≤ 10d max

{
ϕ′(d), ϕ′(−d)

}√3V logn

n
.(4.5)

The following result combines Proposition 4.5 and Lemma 4.6 and shows that
minimizing R̂ϕ,n(w; ζd) over w ∈ R

d,‖w‖ ≤ d leads to a classifier whose ϕ-risk
is close to optimal in the class C(d) with high probability.

LEMMA 4.7. Let d ≥ 1 be such that λd(K ) > λd+1(K ) and let Cd =
max{ϕ′(d), ϕ′(−d)}. Let w̃d minimize R̂ϕ,n(w; ζd) over R

d,‖w‖ ≤ d . Then with
probability at least 1 − 2/n2,

Rϕ(Wdw̃d;�d) − inf
w∈C(d)

Rϕ(w;�d) ≤ 74δ−2
d dCd

√
3d logn

n
.(4.6)

PROOF. For ease of notation, we let ε(n, d) be the term in the right-hand side
of equation (4.3), and let C(n, d) be the term in the right-hand side of equation
(4.5). Also let w̄(d) := arg infw∈C(d) Rϕ(w;�d). We then have

Rϕ(Wdw̃d;�d) ≤ R̂ϕ,n(Wdw̃d;�d) + C(n, d)

≤ R̂ϕ,n(w̃d; ζd) + ε(n, d) + C(n, d)

≤ R̂ϕ,n

(
(Wd)T w̄d; ζd

) + ε(n, d) + C(n, d)

≤ R̂ϕ,n(w̄d;�d) + 2ε(n, d) + C(n, d)

≤ Rϕ(w̄d;�d) + 2ε(n, d) + 2C(n, d)

with probability at least 1 − 2/n2. �

REMARK. Equation (4.6) is a VC-type bound. The term d3/2δ−2
d in equation

(4.6) can be viewed as contributing to the generalization error for the classifiers
in C(d). That is, because we are training using the estimated vectors in R

d , the
generalization error not only depends on the dimension of the embedded space,
but also depends on how accurate the estimated vectors are in that space.

We now have the necessary ingredients to prove the main result of this section.

PROOF OF THEOREM 4.4. Let (dn) be a nondecreasing sequence of positive
integers that diverges to ∞ and that

δ−2
dn

dnCdn

√
d logn

n
= o(1).(4.7)
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By Lemma 4.7 and the Borel–Cantelli lemma, we have

lim
n→∞

[
Rϕ(Wdnw̃dn;�dn) − inf

w∈C(dn)
Rϕ(w;�dn)

]
= 0

almost surely. As (dn) diverges, limn→∞ infw∈C(dn) Rϕ(w;�dn) = R∗
ϕ by Proposi-

tion A.2. We therefore have

lim
n→∞Rϕ(Wdnw̃dn;�dn) = R∗

ϕ

almost surely. Now fix a n. The empirical ϕ-risk minimization on w ∈ R
dn,‖w‖ ≤

dn using the estimated vectors ζdn gives us a classifier 〈w̃dn, ζdn〉. We now consider
the difference Rϕ,n(w̃dn; ζdn) − Rϕ(Wdnw̃dn;�dn). By a similar computation to
that used in the derivation of equation (4.4), we have

Rϕ,n(w̃dn; ζdn) − Rϕ(Wdnw̃dn;�dn)

= ∣∣E[
ϕ

(
Y

〈
w̃dn, ζdn(X)

〉)] − E
[
ϕ

(
Y

〈
Wdnw̃dn,�dn(X)

〉)]∣∣
≤ dnCdnE

[∥∥ζdn(X) − (Wdn)
T �dn(X)

∥∥]
≤ dnCdn

√
E

[∥∥ζdn(X) − (Wdn)
T �dn(X)

∥∥2]
≤ 27δ−2

dn
dnCdn

√
6d logn

n
= o(1).

We therefore have

lim
n→∞Rϕ,n(w̃dn; ζdn) = R∗

ϕ.

Thus, by Theorem 4.3, we have

lim
n→∞ E

[
Ln(w̃dn; ζdn)

] = L∗.

The only thing that remains is the use of 1
n
(λd(A)−λd+1(A)) as an estimate for δd .

By Proposition 3.2 and Theorem 3.1, we have

sup
d≥1

∣∣∣∣δd − 1

n

(
λd(A) − λd+1(A)

)∣∣∣∣ ≤ 10

√
log (2/n2)

n
(4.8)

with probability at least 1 − 2/n2. Thus, if dn satisfy equation (4.2), then equation
(4.8) implies that equation (4.7) holds for dn → ∞ with probability at least 1 −
2/n2. Finally, we note that as n → ∞, there exists a sequence (dn) that satisfies
equation (4.2) and diverges to ∞, as the only accumulation point in the spectrum
of K is at zero. �
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5. Conclusions. In this paper we investigated the problem of finding a uni-
versally consistent classifier for classifying the vertices of latent position graphs.
We showed that if the link function κ used in the construction of the graphs belong
to the class of universal kernels, then an empirical ϕ-risk minimization approach,
that is, minimizing a convex surrogate of the 0–1 loss over the class of linear clas-
sifiers in R

dn for some sequence dn → ∞, yields universally consistent vertices
classifiers.

We have presented the universally consistent classifiers in the setting where the
graphs are on n + 1 vertices, there are n labeled vertices and the task is to classify
the remaining unlabeled vertex. It is easy to see that in the case where there are
only m < n labeled vertices, the same procedure given in Theorem 4.4 with n

replaced by m still yields universally consistent classifiers, provided that m → ∞.
The bound for the generalization error of the classifiers in Section 4 is of the

form O(n−1/2δ−2
d

√
d3 logn). This bound depends on both the subspace projection

error in Section 3 as well as the generalization error of the class C(dn). It is often the
case that the bound on the generalization error of the class C(dn) can be improved,
as long as the classification problems satisfy a “low-noise” condition, that is, that
the posterior probability η(x) = P[Y = 1|X = x] is bounded away from 1/2. Re-
sults on fast convergence rates in low-noise conditions, for example, [2, 6] can
thus be used, but as the subspace projection error is independent of the low-noise
condition, there might not be much improvement in the resulting error bound.

Also related to the above issue is the choice of the sequence (dn). If more is
known about the kernel κ , then the choice for the sequence (dn) can be adjusted
accordingly. For example, good bounds for �k = ∑

j≥k λj (K ), the sum of the
tail eigenvalues of K , along with bounds for the error between the truncated fea-
ture map �d and the feature map � from [7, 9, 29] can be used to select the
sequence (dn).

The results presented in Section 3 and Section 4 implicitly assumed that the
graphs arising from the latent position model are dense. It is possible to ex-
tend these results to sparse graphs. A sketch of the ideas is as follows. Let
ρn ∈ (0,1) be a scaling parameter, and consider the latent position model with

kernel κ and distribution F for the latent features {Xi}. Given {Xi}ni=1
i.i.d.∼ F ,

let Kn = (ρnκ(Xi,Xj ))
n
i,j=1, that is, the entries of Kn are given by the kernel κ

scaled by the scaling parameter ρn. This variant of the latent position model is
also present in the notion of inhomogeneous random graphs [8, 26]. Given Kn,
An = Bernoulli(Kn) is the adjacency matrix. The factor ρn controls the sparsity
of the resulting latent position graph. For example, ρn = (logn)/n leads to sparse,
connected graphs almost surely while ρn = 1/n leads to graphs with a single giant
connected component [8]. Suppose now that ρn = �((logn)/n). The following
result is a restatement of Theorem 3.1 for the latent position model in the presence
of the scaling parameter ρn. Its proof is almost identical to that of Theorem 3.1
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provided that one uses the bound in term of the maximum degree � in Proposi-
tion 3.2. We note that δd is defined in terms of the spectrum of K which does not
depend on the scaling parameter ρn, and similarly for the feature map � and its
truncation �d .

THEOREM 5.1. Let d ≥ 1 be given. Denote by δd the quantity λd(K ) −
λd+1(K ), and suppose that δd > 0. Then with probability greater than 1 − 2η,
there exists a unitary matrix W ∈ Md(R) such that

∥∥ρ−1/2
n UAS1/2

A W − �d

∥∥
F ≤ 27δ−2

d

√
d log (n/η)

ρn

,(5.1)

where �d denotes the matrix in Mn,d(R) whose ith row is �d(Xi). Let us denote

by �̂d(Xi) the ith row of ρ
−1/2
n UAS1/2

A W. Then, for each i ∈ [n] and any ε > 0,

P
[∥∥�̂d(Xi) − �d(Xi)

∥∥ > ε
] ≤ 27δ−2

d ε−1

√
6d logn

nρn

.(5.2)

Thus, for ρn = n−1+ε for some ε > 0 [or even ρn = (logk n)/n for some suffi-
cient large k], equation (5.2) states that with high probability, the estimated feature
map is (after scaling by ρ

−1/2
n and rotation) converging to the true truncated fea-

ture map �d as n → ∞. The results from Section 4 can then be modified to show
the existence of a universally consistent linear classifier. The main difference be-
tween the sparse setting and the dense setting would be the generalization bounds
in Proposition 4.5 and Lemma 4.7. This would lead to a different selection rule
for the sequence of embedding dimensions dn → ∞ then the one in Theorem 5.1,
that is, the dn would diverge more slowly for the sparse setting compared to the
dense setting. A precise statement and formulation of the results in Section 4 for
the sparse setting might require some care, but should be for the most part straight-
forward. We also note that even though ρn is most likely unknown, one can scale
the embedding Z = UAS1/2

A by any value cn that is of the same order as ρ
−1/2
n . An

appropriate value for cn is, for example, one that makes maxi ‖cnZi‖2 = 1 where
Zi is the ith row of Z.

Finally, we note it is of potential interest to extend the results herein to graphs
with attributes on the edges, latent position graphs with nonpositive definite link
functions κ and graphs with errorfully observed edges.

APPENDIX A: ADDITIONAL PROOFS

PROOF OF LEMMA 3.4. Let �r,n ∈ R
n be the vector whose entries are√

λrψr(Xi) for i = 1,2, . . . , n with λr = λr(K ). We note that K = ∑∞
r=1 �r,n ×
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�T
r,n. Let û(1), . . . , û(d) be the eigenvectors associated with the d largest eigenval-

ues of K/n. We have

PKK =
d∑

s=1

∞∑
r=1

û(s)(û(s))T �r,n�
T
r,nû

(s)(û(s))T .

The ij th entry of PKK is then given by

d∑
s=1

∞∑
r=1

û
(s)
i

(
û(s))T �r,n�

T
r,nû

(s)û
(s)
j .

Let v̂(1), . . . , v̂(d) be the extensions of û(1), . . . , û(d) as defined by equation (B.2).
We then have, for any s = 1,2, . . . , d ,

〈
v̂(s),

√
λrψr

〉
H =

〈
1√
λ̂sn

n∑
i=1

κ(·,Xi)û
(s)
i ,

√
λrψr

〉
H

=
〈

1√
λ̂sn

n∑
i=1

∑
r ′

√
λr ′ψr ′(Xi)

√
λr ′ψr ′ û(s)

i ,
√

λrψr

〉
H

= 1√
λ̂sn

n∑
i=1

ψr(Xi)
√

λr û
(s)
i

= 1√
λ̂sn

〈
û(s),�r,n

〉
Rn.

We thus have

û
(s)
i

(
û(s))T �r,n = û

(s)
i

〈
û(s),�r,n

〉
Rn = v̂(s)(Xi)

〈
v̂(s),

√
λrψr

〉
H .(A.1)

Now let ξ (s)(X) = ∑∞
r=1〈v̂(s),ψr

√
λr〉H v̂(s)(X)

√
λrψr ∈ H . ξ (s)(X) is the em-

bedding of the sequence (〈v̂(s),
√

λrψr〉H v̂(s)(X))∞r=1 ∈ l2 into H ; see equation
(2.2). By equation (A.1) and the definition of 〈·, ·〉H [equation (2.3)], the ij th
entry of PKK can be written as

d∑
s=1

∞∑
r=1

û
(s)
i

(
û(s))T �r,n�

T
r,nû

(s)û
(s)
j =

d∑
s=1

〈
ξ (s)(Xi), ξ

(s)(Xj )
〉
H .

We note that, by the reproducing kernel property of κ(·, x),

ξ (s)(X) =
∞∑

r=1

〈
v̂(s),ψr

√
λr

〉
H v̂(s)(X)

√
λrψr

=
∞∑

r=1

〈
v̂(s),ψr

√
λr

〉
H

〈
v̂(s), κ(·,X)

〉
H

√
λrψr
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= 〈
v̂(s), κ(·,X)

〉
H

∞∑
r=1

〈
v̂(s),ψr

√
λr

〉
H

√
λrψr

= 〈
v̂(s), κ(·,X)

〉
H v̂(s).

As the v̂(s) are orthogonal with respect to 〈·, ·〉H , the ij th entry of PKK can also
be written as

d∑
s=1

〈
ξ (s)(Xi), ξ

(s)(Xj )
〉
H

=
d∑

s=1

〈
v̂(s), κ(·,Xi)

〉
H

〈
v̂(s), v̂(s)〉

H

〈
v̂(s), κ(·,Xj )

〉
H

=
d∑

s=1

d∑
s′=1

〈
v̂(s), κ(·,Xi)

〉
H

〈
v̂(s), v̂(s′)〉

H

〈
v̂(s′), κ(·,Xj )

〉
H

=
〈

d∑
s=1

〈
v̂(s), κ(·,Xi)

〉
H v̂(s),

d∑
s=1

〈
v̂(s), κ(·,Xj )

〉
H v̂(s)

〉
H

= 〈
P̂dκ(·,Xi), P̂dκ(·,Xj )

〉
H .

As the P̂dκ(·, ·) lies in a d-dimensional subspace of H , they can be isomet-
rically embedded into R

d . Thus there exists a matrix X ∈ Mn,d(R) such that
XXT = UKSKUT

K and that the rows of X correspond to the projections P̂dκ(·,Xi).

Therefore, there exists a unitary matrix W ∈ Md(R) such that X = UKS1/2
K W as

desired. �

LEMMA A.1. Let A and B be n × n positive semidefinite matrices with
rank(A) = rank(B) = d . Let X,Y ∈ Mn,d(R) be of full column rank such that
XXT = A and YYT = B. Let δ be the smallest nonzero eigenvalue of B. Then
there exists an orthogonal matrix W ∈ Md(R) such that

‖XW − Y‖F ≤ ‖A − B‖(√d‖A‖ + √
d‖B‖)

δ
.(A.2)

PROOF. Let R = A − B. As Y is of full column rank, YT Y is invertible, and
its smallest eigenvalue is δ. We then have

Y = XXT Y
(
YT Y

)−1 − RY
(
YT Y

)−1
.

Let T = XT Y(YT Y)−1. We then have

TT T − I = (
YT Y

)−1YT XXT Y
(
YT Y

)−1 − I = (
YT Y

)−1YT RY
(
YT Y

)−1
.
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Therefore,

−(
YT Y

)−1YT ‖R‖Y
(
YT Y

)−1 � TT T − I � (
YT Y

)−1YT ‖R‖Y
(
YT Y

)−1
,

where � refers to the positive semi-definite ordering for matrices. We thus have

∥∥TT T − I
∥∥
F ≤ ‖R‖ · ∥∥(

YT Y
)−1∥∥

F ≤ √
d‖R‖ · ∥∥(

YT Y
)−1∥∥ ≤ ‖R‖√d

δ
.

Now let W be the orthogonal matrix in the polar decomposition T = W(TT T)1/2.
We then have

‖XW − Y‖F ≤ ‖XW − XT‖F + ‖XT − Y‖F

≤ ‖X‖ · ∥∥(
TT T

)1/2 − I
∥∥
F + ‖R‖ · ∥∥Y

(
YT Y

)−1∥∥
F

≤ ‖X‖ · ∥∥(
TT T

)1/2 − I
∥∥
F + ‖R‖ · ‖Y‖ · ∥∥(

YT Y
)−1∥∥

F .

Now, ‖(TT T)1/2 − I‖F ≤ ‖TT T − I‖F . Indeed,

∥∥(
TT T

)1/2 − I
∥∥2
F =

d∑
i=1

(
λi

(
TT T

)1/2 − 1
)2 ≤

d∑
i=1

(
λi

(
TT T

) − 1
)2

= ∥∥TT T − I
∥∥2
F .

We thus have

‖XW − Y‖ ≤ (‖X‖ + ‖Y‖)‖R‖√d

δ
,

and equation (A.2) follows. �

PROPOSITION A.2. Let κ be a universal kernel on X , and let � : X �→ l2 be
a feature map of κ . Let C(1), C(2), . . . be the sequence of classifiers of the form in
equation (4.1). Then

lim
d→∞ inf

f ∈C(d)
Rϕ(f ) = R∗

ϕ.(A.3)

PROOF. We note that this result is a slight variation of Lemma 1 in [24]. For
completeness, we sketch its proof here. Let f ∗ be the function defined by

f ∗(x) = inf
α∈R

{
η(x)ϕ(α) + (

1 − η(x)
)
ϕ(−α)

}
,

where η(x) = P[Y = 1|X = x]. Then R∗
ϕ = E[f ∗]. Now, for a given β ∈ [0,1/2],

let Hβ = {x : |η(x)−1/2| > β}, and let H̄β be the complement of Hβ . We consider
the decomposition

R∗
ϕ = E

[
f ∗(X)1{X ∈ Hβ}] + E

[
f ∗(X)1{X ∈ H̄β}].
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The restriction of f ∗ to H̄β is measurable with range [−Cβ,Cβ] for some finite
constant Cβ > 0. The set of functions 〈w,�〉H is dense in C(X) and hence also
dense in L1(X ,FX ). Thus, for any ε > 0, there exists a w ∈ H such that

E
[
f ∗(X)1{X ∈ H̄β}] − E

[〈
w,�(X)

〉
H 1{X ∈ H̄β}] < ε.

Furthermore, E[f ∗(X)1{X ∈ Hβ}] → 0 as β → 1/2. Indeed, H1/2 = {x :η(x) ∈
{0,1}} so we can select α so that ϕ(α) = 0 if η(x) = 1 and ϕ(−α) = 0 if η(x) = 0.
To complete the proof, we note that the C(d) are nested, that is, C(d) ⊂ C(d+1).
Hence inff ∈C(d) Rϕ(f ) is a decreasing sequence that converges to R∗

ϕ as desired.
�

APPENDIX B: SPECTRA OF INTEGRAL OPERATORS AND
KERNEL MATRICES

We can tie the spectrum and eigenvectors of K to the spectrum and eigenfunc-
tions of K by constructing an extension operator KH ,n for K and relating the
spectra of K to that of Kn [28]. Let H be the reproducing kernel Hilbert space
for κ . Let KH :H �→ H and KH ,n :H �→ H be the linear operators defined
by

KH η =
∫

X

〈
η, κ(·, x)

〉
H κ(·, x) dF (x),

KH ,nη = 1

n

n∑
i=1

〈
η, κ(·,Xi)

〉
H κ(·,Xi).

The operators KH and KH ,n are defined on the same Hilbert space H , in con-
trast to K and K which are defined on the different spaces L2(X ,F ) and R

n,
respectively. Thus, we can relate the spectra of KH and KH ,n. Furthermore, we
can also relate the spectra of K and KH as well as the spectra of K and KH ,n,
therefore giving us a relationship between the spectra of K and K. A precise
statement of the relationships is contained in the following results.

PROPOSITION B.1 ([28, 38]). The operators KH and KH ,n are positive,
self-adjoint operators and are of trace class with KH ,n being of finite rank. The
spectra of K and KH are contained in [0,1] and are the same, possibly up to
the zero eigenvalues. If λ is a nonzero eigenvalue of K and u and v are associ-
ated eigenfunction of K and KH , normalized to norm 1 in L2(X ,F ) and H ,
respectively, then

u(x) = v(x)√
λ

for x ∈ supp(F );
(B.1)

v(x) = 1√
λ

∫
X

κ
(
x, x′)u(

x′)dF
(
x′).
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Similarly, the spectra of K/n and KH ,n are contained in [0,1] and are the same,
possibly up to the zero eigenvalues. If λ̂ is a nonzero eigenvalue of K and û and v̂

are the corresponding eigenvector and eigenfunction of K/n and KH ,n, normal-
ized to norm 1 in R

n and H , respectively, then

ûi = v̂(xi)√
λ̂

; v̂(·) = 1√
λ̂n

n∑
i=1

κ(·, xi)ûi .(B.2)

Equation (B.2) in Proposition B.1 states that an eigenvector û of K/n, which
is only defined for X1,X2, . . . ,Xn, can be extended to an eigenfunction v̂ ∈ H
of KH ,n defined for all x ∈ X , and furthermore, that ûi = v̂(Xi) for all i =
1,2, . . . , n.

THEOREM B.2 ([28, 41]). Let τ > 0 be arbitrary. Then with probability at
least 1 − 2e−τ ,

‖KH − KH ,n‖HS ≤ 2
√

2
√

τ

n
,(B.3)

where ‖ · ‖HS is the Hilbert–Schmidt norm. Let {λj } be a decreasing enumeration
of the eigenvalues for KH , and let {λ̂j } be an extended decreasing enumeration
of KH ,n; that is, λ̂j is either an eigenvalue of KH ,n or λ̂j = 0. Then the above
bound and a Lidskii theorem for infinite-dimensional operators [22] yields(∑

j≥1

(λj − λ̂j )
2
)1/2

≤ 2
√

2
√

τ

n
(B.4)

with probability at least 1 − 2e−τ . For a given d ≥ 1 and τ > 0, if the number n of
samples Xi ∼ F satisfies

4
√

2
√

τ

n
< λd − λd+1,

then with probability greater than 1 − 2e−τ ,

‖Pd − P̂d‖HS ≤ 2
√

2
√

τ

(λd − λd+1)
√

n
,(B.5)

where Pd is the projection onto the subspace spanned by the eigenfunctions cor-
responding to the d largest eigenvalues of K , and P̂d is the projection onto the
subspace spanned by the eigenfunctions corresponding to the d largest eigenvalues
of KH ,n.
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