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We introduce a three-parameter random walk with reinforcement, called
the (θ,α,β) scheme, which generalizes the linearly edge reinforced random
walk to uncountable spaces. The parameter β smoothly tunes the (θ,α,β)

scheme between this edge reinforced random walk and the classical ex-
changeable two-parameter Hoppe urn scheme, while the parameters α and
θ modulate how many states are typically visited. Resorting to de Finetti’s
theorem for Markov chains, we use the (θ,α,β) scheme to define a nonpara-
metric prior for Bayesian analysis of reversible Markov chains. The prior is
applied in Bayesian nonparametric inference for species sampling problems
with data generated from a reversible Markov chain with an unknown tran-
sition kernel. As a real example, we analyze data from molecular dynamics
simulations of protein folding.

1. Introduction. The problem that motivated our study is the analysis of
benchtop and computer experiments that produce dynamical data associated with
the structural fluctuations of a protein in water. Frequently, the physical laws that
govern these dynamics are time-reversible. Therefore, a stochastic model for the
experiment should also be reversible. Reversible Markov models in particular have
become widespread in the field of molecular dynamics [19]. Modeling with re-
versible Markov chains is also natural in a number of other disciplines.

We consider the setting in which a scientist has a sequence of states X1, . . . ,Xn

sampled from a reversible Markov chain. We propose a Bayesian model for a re-
versible Markov chain driven by an unknown transition kernel. Problems one can
deal with using our model include (i) predicting how soon the process will return to
a specific state of interest and (ii) predicting the number of states not yet explored
by X1, . . . ,Xn that appear in the next m transitions Xn+1, . . . ,Xn+m. More gener-
ally, the model can be used to predict any characteristic of the future trajectory of
the process. Problems (i) and (ii) are of great interest in the analysis of computer
experiments on protein dynamics.

Received February 2012; revised February 2013.
1Supported by Grant NIH-R01-GM062868 and NSF Grant DMS-09-00700.
2Supported by the European Research Council (ERC) through StG “N-BNP” 306406.
MSC2010 subject classifications. Primary 62M02; secondary 62C10.
Key words and phrases. Reversibility, mixtures of Markov chains, reinforced random walks,

Bayesian nonparametrics, species sampling, two-parameter Hoppe urn, molecular dynamics.

870

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/13-AOS1102
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


BAYESIAN ANALYSIS OF REVERSIBLE MARKOV CHAINS 871

Diaconis and Rolles [9] introduced a conjugate prior for Bayesian analysis of
reversible Markov chains. This prior is defined via de Finetti’s theorem for Markov
chains [8]. The predictive distribution is that of a linearly edge-reinforced random
walk (ERRW) on an undirected graph [7]. Much is known about the asymptotic
properties of this process [15], its uniqueness [23] and its recurrence on infinite
graphs ([18], and references therein). Fortini, Petrone and Bacallado recently dis-
cussed other examples of Markov chain priors constructed through representation
theorems [1, 13].

Our construction can be viewed as an extension of the ERRW defined on an
infinite space. The prediction for the next state visited by the process is not solely
a function of the number of transitions observed in and out of the last state. In
effect, transition probabilities out of different states share statistical strength. This
will become relevant in applications where many states are observed, especially
for those states that occur rarely.

A major goal in our application is the prediction of the number of states that the
Markov chain has not yet visited that will appear in the next m transitions. More
generally, scientists are interested in predicting aspects of the protein dynamics
that may be strongly correlated with the rate of discovery of unobserved states,
for instance, the variability of the time needed to reach a conformation of inter-
est y, starting from a specific state x. Predictive distributions for such attributes
are useful in deciding whether one should continue a costly experiment to obtain
substantial additional information on a kinetic property of interest.

Estimating the probability of discovering new species is a long-standing prob-
lem in statistics [5]. Most contributions in the literature assume that observations,
for example, species of fish captured in a lake, can be modeled as independent
and identically distributed random variables with an unknown discrete distribu-
tion. In this setting, several Bayesian nonparametric models have been studied
[11, 16, 17]. Here we assume that species, in our case protein conformational
states, are sampled from a reversible Markov chain. To the best of our knowledge,
this is the first Bayesian analysis of species sampling in this setting.

We can now outline the article. Section 2 introduces the species sampling
model, which we call the (θ,α,β) scheme. The process specializes to the ERRW,
a Markov exchangeable scheme, and to the two-parameter Hoppe urn, a clas-
sical exchangeable scheme which gives rise to the Pitman–Yor process and the
two-parameter Poisson–Dirichlet distribution [20, 21]. As illustrated in Figure 1,
the parameter β smoothly tunes the model between these two special cases. Sec-
tion 3 shows that the (θ,α,β) scheme can be represented as a mixture of reversible
Markov chains. This allows us to use its de Finetti measure as a prior for Bayesian
analysis. Section 4 shows that our scheme is a projection of a conjugate prior for
a random walk on a multigraph. This representation is then used to prove that our
model has full weak support. Section 5 provides a sufficientness characterization
of the proposed scheme. This result is strictly related to the characterizations of the
ERRW and the two-parameter Hoppe urn discussed in [23] and [28], respectively.
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FIG. 1. Diagram of the (θ,α,β) scheme and special cases.

In Section 6, an expression for the law of the (θ,α,β) scheme is derived, and this
result is used in Section 7 to define algorithms for posterior simulation. Section 8
applies our model to the analysis of two molecular dynamics datasets. We evalu-
ate the predictive performance of the model by splitting the data into training and
validating datasets. Section 9 concludes with a discussion of remaining challenges.

2. The (θ,α,β) scheme. The (θ,α,β) scheme is a stochastic process
(Xi)i∈N on a Polish measurable space (X , F ) equipped with a diffuse (i.e., without
point masses) probability measure μ. We construct the law of the process using an
auxiliary random walk with reinforcement on the extended space X+ := X ∪ {ζ }.
The auxiliary process classifies each transition Xi → Xi+1 into three categories
listed in Figure 2 and defines latent variables (Ui)i∈N, taking values in {a, b, c},
that capture each transitions’ category. In this section we first provide a formal
definition of the (θ,α,β) scheme and then briefly describe the latent process.

The law of the (θ,α,β) scheme is specified by a weighted undirected graph
g with vertices in X+. This graph can be formalized as a symmetric function
g : X+ × X+ → [0,∞), where g(x, y) is the weight of an undirected edge with
vertices x and y. We require that the set S := {x ∈ X ;g(ζ, x) > 0} is countable,∑

x∈S g(ζ, x) < ∞ and that the set of edges {(x, y) ∈ X 2;g(x, y) > 0} is a finite
subset of S 2. The graph will be sequentially reinforced after each transition of
the (θ,α,β) scheme. In the following definition, we assume the initial state X1 is
deterministic and contained in S .
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FIG. 2. Three kinds of transition in the (θ,α,β) scheme. The blue arrow represents the transition
between two states in X , while the red arrows represent the path of an auxiliary random walk with
reinforcement. The edges that have positive weight g before the transition are drawn in black, and
in each case, we mark the reinforcements of g produced by the transition. Self-transitions follow a
slightly different reinforcement scheme formalized in Definition 2.1.

DEFINITION 2.1. The (θ,α,β) scheme, (Xi)i∈N, has parameters θ ≥ 0, α ∈
[0,1) and β ∈ [0,1]. The parameter θ is equal to the initial weight g(ζ, ζ ). Suppose
we have sampled X1, . . . ,Xi , where i ≥ 1. Then, given Xi and the reinforced
graph g, we sample the following:

(a) an ERRW-like transition to Xi+1 with probability

g(Xi,Xi+1)∑
x∈X+ g(Xi, x)

and make the following reinforcement:

g(Xi,Xi+1) → g(Xi,Xi+1) + 1 + 1Xi=Xi+1;
(b) a mediated transition without discovery to Xi+1 with probability

g(Xi, ζ )∑
x∈X+ g(Xi, x)

× g(ζ,Xi+1) + β × 1Xi=Xi+1

β + ∑
x∈X+ g(ζ, x)

and make the following reinforcements:

g(Xi,Xi+1) → g(Xi,Xi+1) + (1 − β) × (1 + 1Xi=Xi+1),

g(Xi, ζ ) → g(Xi, ζ ) + β,

g(Xi+1, ζ ) → g(Xi+1, ζ ) + β;
(c) a mediated transition with discovery to a new state Xi+1 ∼ μ with proba-

bility

g(Xi, ζ )∑
x∈X+ g(Xi, x)

× g(ζ, ζ )

β + ∑
x∈X+ g(ζ, x)
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and make the following reinforcements:

g(Xi,Xi+1) → g(Xi,Xi+1) + (1 − β),

g(Xi, ζ ) → g(Xi, ζ ) + β,

g(Xi+1, ζ ) → g(Xi+1, ζ ) + (1 − α)β,

g(ζ, ζ ) → g(ζ, ζ ) + αβ.

In several applications one may prefer to set the initial g to zero everywhere ex-
cept for g(ζ, ζ ) = θ and g(X1, ζ ), which can be made infinitesimally small. This
reduces difficulties associated with the model specification and does not affect the
main properties of the model discussed in this article. In some cases, we will relax
the assumption that X1 is deterministic, by specifying a distribution, say μ, for X1
and choosing a positive value for g(X1, ζ ). In any case, the conditional distribu-
tions p(Xn|X1, . . . ,Xn−1) are dictated by the reinforced scheme in Definition 2.1.

We can now describe the latent reinforced process in order to simplify the in-
terpretation of the (θ,α,β) scheme. To sample a transition Xi → Xi+1, we first
take one step in the auxiliary random walk from Xi . If we land on a state x ∈ X
[panel (a) in Figure 2], we set Xi+1 = x and Ui = a. If we land on ζ , we sample
another step of the random walk from ζ . Once more, if we land on some x′ ∈ X
[panel (b) in Figure 2], we set Xi+1 = x′ and Ui = b. Otherwise [panel (c) in
Figure 2], we sample a new state Xi+1 from μ and set Ui = c.

REMARK 2.1. Assume the initial graph g is null everywhere except for
g(ζ, ζ ) = θ and g(ζ,X1) = 1. If β = 1, α = 0 and X1 ∼ μ, then the process
(Xi)i∈N is a Blackwell–MacQueen urn [4] with base distribution μ and concentra-
tion parameter θ/2. In different words, the process is exchangeable and its direct-
ing random measure is the Dirichlet process [12].

REMARK 2.2. Under the assumptions in Remark 2.1, by setting α > 0 and
g(ζ,X1) = 1 − α, the process (Xi)i∈N is equal to an urn scheme introduced by
Engen [10], known in the species sampling context as the two-parameter Hoppe
urn; see Appendix B [2]. This exchangeable process has been studied extensively
by Pitman and Yor [20, 21]. Its directing random measure is the Pitman–Yor pro-
cess [14] with base distribution μ, concentration parameter (θ −α)/2, and discount
parameter α/2; the sorted masses of this random measure have the two-parameter
Poisson–Dirichlet distribution. Note that the discount parameter of the Pitman–
Yor process can be chosen from the unit interval [0,1), while in our construction
α/2 < 0.5.

REMARK 2.3. When β = θ = 0, edges connected to ζ cannot be reinforced,
and the (θ,α,β) scheme specializes to the ERRW on S ; see [7].
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REMARK 2.4. Definition 2.1 brings to mind the two-parameter hierarchi-
cal Dirichlet Process hidden Markov model (HDP-HMM) [25] and its associated
species sampling scheme, the two-parameter Chinese restaurant franchise. This
process has been used for Bayesian modeling of Markov chains on infinite spaces.
The predictive distribution can be viewed as a (θ,α,β) scheme in which the un-
derlying infinite graph has directed edges. However, the (θ,α,β) scheme is not
a special case of this model and has no equivalent hierarchical construction. This
connection is explained in more detail in Appendix B [2].

The influence of each parameter in the (θ,α,β) scheme can be described as
follows. The parameter β determines the Markov character of the model; as it
approaches 1, the process becomes exchangeable. The parameter θ is related to
the concentration parameter of the two-parameter Hoppe urn, which controls the
mode of the number of states visited in a given number of steps. The parameter α

is related to the discount factor in the two-parameter Hoppe urn, which controls the
distribution of frequencies of different states. It is worth noting that β also controls
the number of states visited, which increases markedly as β is made larger.

The recurrence of the ERRW on infinite graphs is far from trivial, especially for
locally connected graphs ([18], and references therein). However, it is not difficult
to prove that the (θ,α,β) scheme a.s. returns infinitely often to all visited states,
the state ζ is visited infinitely often a.s. and, if θ > 0, the edge g(ζ, ζ ) is crossed
infinitely often. This notion of recurrence is stated in the next proposition.

PROPOSITION 2.1. The (θ,α,β) scheme is recurrent, that is, the event
{∑j>i 1Xi=Xj

> 0} has probability 1 for every integer i. When θ > 0 or when
the set S is infinite, the number of states visited is infinite almost surely.

3. de Finetti representation of the (θ,α,β) scheme. Diaconis and Freed-
man defined a special notion of partial exchangeability to prove a version of de
Finetti’s theorem for Markov chains [8].

DEFINITION 3.1. A stochastic process on a countable space X is Markov
exchangeable if the probability of observing a path x1, . . . , xn is only a function
of x1 and the transition counts C(x, y) := |{xi = x, xi+1 = y;1 ≤ i < n}| for all
x, y ∈ X .

THEOREM 3.1 (Diaconis and Freedman). A process is Markov exchangeable
and returns to every state visited infinitely often, if and only if it is a mixture of
recurrent Markov chains.

The (θ,α,β) scheme takes values in an uncountable space X , which precludes
a direct application of Theorem 3.1. We will state a more general notion of Markov
exchangeability and use it to prove a de Finetti style representation for (Xi)i∈N. We
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use the notion of x-block defined in Diaconis and Freedman [8]; given a recurrent
trajectory x1, x2, . . . , the ith x-block, for any state x appearing in x1, x2, . . . , is
the finite subsequence that starts with the ith occurrence of x and ends before the
(i + 1)th occurrence.

The process (Xi)i∈N visits every state in S infinitely often; in addition, it will
discover new species in X in steps of the third kind in Figure 2. But the new
species are sampled independently from μ, which motivates expressing (Xi)i∈N

as a function of two independent processes on the same probability space: (Zi)i∈N

which represents the sequence where new species are labeled in order of appear-
ance, and (Ti)i∈N which represents the X -valued locations of each species. These
are formally defined in the sequel.

Let Z = X 
 N, and let d be a function that maps a sequence in Z ⊃ S to a
sequence in the disjoint union S 
N. Each element of the sequence in S is mapped
to itself, and those not in S are mapped to the order in which they appear in the
sequence. Hence, the range of d consists of sequences where every state j ∈ N

may only appear after all states 1,2, . . . , j − 1 have appeared at least once. For
example, if X is the unit interval and S = {0.1,0.2,0.3}, then

d : (0.1,7,4,0.3,7,6,4,4) �→ (0.1,1,2,0.3,1,3,2,2).

Define (Zi)i∈N := d((Xi)i∈N), and let (Ti)i∈N be a sequence of independent ran-
dom variables from μ, with (Ti)i∈N independent from (Zi)i∈N. Then,

(Xi)i∈N

d= (X̄i)i∈N where we define X̄i :=
{

Zi, if Zi ∈ S ,
TZi

, otherwise.

PROPOSITION 3.1. Take two sequences x1, . . . , xn and x′
1, . . . , x

′
n in S 
 N

that are fixed points of d . Suppose one can map x1, . . . , xn to x′
1, . . . , x

′
n by a

transposition of two blocks in x1, . . . , xn which both begin in x ∈ S 
 N and end in
y ∈ S 
 N, followed by an application of the mapping d . Then,

p(Z1 = x1, . . . ,Zn = xn) = p
(
Z1 = x′

1, . . . ,Zn = x′
n

)
.

EXAMPLE 3.1. Assume again S = {0.1,0.2,0.3}. If we set

(x1, . . . , xn) = (0.1,1,2,0.3,3,2,4,0.3)

and (
x′

1, . . . , x
′
n

) = (0.1,1,2,3,0.3,4,2,0.3),

then, by transposing two blocks in (x1, . . . , xn) that start from 2 and finish in 0.3,
we obtain the vector (0.1,1,2,4,0.3,3,2,0.3). Moreover,

d(0.1,1,2,4,0.3,3,2,0.3) = (0.1,1,2,3,0.3,4,2,0.3) = (
x′

1, . . . , x
′
n

)
.

Proposition 3.1 then implies that the two probabilities, p(Z1 = x1, . . . ,Zn = xn)

and p(Z1 = x′
1, . . . ,Zn = x′

n), are identical.
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REMARK 3.1. Note that if the process only visits states in S , as is the case
when θ = 0, the statement of Proposition 3.1 is equivalent to Markov exchange-
ability; cf. Proposition 27 in [8]. This fact, together with Proposition 2.1 is enough
to show by a straightforward application of Theorem 3.1 that the (θ,α,β) scheme
with θ = 0 is a mixture of recurrent Markov chains on S .

Equipped with this notion of Markov exchangeability for the species sam-
pling sequence (Zi)i∈N, we show that (Xi)i∈N can be represented as a mixture
of Markov chains.

PROPOSITION 3.2. There exists a mixture of Markov chains (Wi)i∈N, taking
values in S 
 N, such that, if we define

X̃i :=
{

Wi, if Wi ∈ S ,
TWi

, otherwise,

where (Wi)i∈N and (Ti)i∈N ∼ μN are independent, then (X̃i)i∈N

d= (Xi)i∈N. That
is, for some measure φ on (S 
N)× P , where P is the space of stochastic matrices
on S 
 N, the distribution of (Wi)i∈N, can be represented as

p(W1 = w1, . . . ,Wn = wn) =
∫

P

n−1∏
i=1

P(wi,wi+1)φ(w1, dP ).

Let Pr ⊂ P be the set of transition probability matrices for recurrent reversible
Markov chains. We can show that this set has probability 1 under the de Finetti
measure.

PROPOSITION 3.3. φ((S 
 N) × Pr ) = 1.

4. The (θ,α,β) scheme with colors. This section shows that the (θ,α,β)

scheme can be interpreted as a Bayesian conjugate model for a random walk on a
multigraph. This representation is used for showing that the (θ,α,β) scheme has
large support in a sense that will be made precise in the sequel. We also make a
connection between the de Finetti measure of the ERRW on a finite graph and our
model.

We start by defining a colored random walk on a weighted multigraph g̃. The
vertices of the graph take values in X , and we now allow there to be more than one
edge between every pair of vertices. Every edge is associated to a distinct color in a
set C . We assign a weight g̃({x, y}, c) to the edge connecting x and y with color c,
requiring that g̃(x) := ∑

y,c g({x, y}, c) < ∞ for all x ∈ X . A random walk on
this graph is a process that starts from x1 ∈ X , and after arriving at some state x,
traverses the edge ({x, z}, c) with probability g̃({x, z}, c)/g̃(x). Let pg̃ be the law
of this process.
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A Bayesian statistician observes a finite sequence of traversed colored edges and
wants to predict the future trajectory of the colored random walk. We suggest how
to use the (θ,α,β) scheme in this context. Informally, in a ERRW-like transition,
we reinforce a single edge of a specific color, while in a mediated transition, we
draw a new edge with a novel color.

The Bayesian model is a random sequence of colored edges (Ei)i∈N. We use Ci

and {Xi,Xi+1} to denote the color and vertices of Ei . Let μ and γ be nonatomic
distributions over X and C , respectively, and specify θ , α and β as in the previous
sections. Let X1 = x1, C1 ∼ γ and

X2|X1,C1 ∼ β(1 − α)

β + θ
δX1 + θ + αβ

β + θ
μ.

The distribution of (X1,X2) corresponds to an initial graph with only 2 edges,
with endpoints {x1, ζ } and {ζ, ζ }, weighted by −αβ and θ + αβ , respectively. If
the initial weighted graph g in a (θ,α,β) scheme is chosen as above, the rein-
forcement rules in Definition 2.1 produce a well-defined process even if the initial
value of g(x1, ζ ) is negative. After the first transition all edges will have nonnega-
tive weights. This choice for the initial weighted graph will be used in the present
section and Section 5.

After a path (E1, . . . ,En), the probability of recrossing an edge Ej , with j ≤ n

and Xn+1 ∈ {Xj,Xj+1}, is

p(En+1 = Ej |E1, . . . ,En) = Gn({Xj,Xj+1},Cj )

WXn+1,n

,

where

Gn

({x, y}, c) = max
(

0,−β + ∑
i≤n

1Ei=({x,y},c)
)

21x=y ,

Wx,n = −αβ + ∑
i≤n

(1x∈{Xi,Xi+1})2
1Xi=Xi+1 .

In words, the probability of recrossing an edge is linear in the number of crossings.
Let Cn be the set of distinct colors in (C1, . . . ,Cn). The conditional probability that
Cn+1 /∈ Cn,

p(Cn+1 /∈ Cn|E1, . . . ,En) = BXn+1,n

WXn+1,n

,

where

Bx,n = −αβ + β
∑
i≤n

(1x∈{Xi,Xi+1})(1Ci /∈Ci−1)2
1Xi=Xi+1

is linear in the number of distinct colored edges adjacent to Xn+1. The probability
that Xn+2 = y, for any vertex y ∈ {X1, . . . ,Xn}, conditional on Cn+1 /∈ Cn, is

p(Xn+2 = y|E1, . . . ,En,Cn+1 /∈ Cn) = β1Xn+1=y + By,n

2β × |Cn| + θ + β
,(4.1)
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which depends linearly on the number of distinct colored edges adjacent to y.
Finally,

Xn+2|Cn+1 /∈ Cn, Xn+2 /∈ {X1, . . . ,Xn+1}, E1, . . . ,En ∼ μ

and

Cn+1|Xn+2, E1, . . . ,En, Cn+1 /∈ Cn ∼ γ.

The following property is a direct consequence of this definition.

PROPOSITION 4.1. The sequence (Xi)i∈N of X -valued states visited by
(Ei)i∈N is identical in distribution to a (θ,α,β) scheme initiated at x1, with g

everywhere null except at g(x1, ζ ) = −βα and g(ζ, ζ ) = θ + αβ .

Furthermore, given a (θ,α,β) scheme with an arbitrary initial graph g, it is
possible to construct a colored (θ,α,β) scheme with a closed-form predictive dis-
tribution such that the equality stated in Proposition 4.1 holds. This would re-
quire changing the definition of (Ei)i∈N in a way that preserves the reinforcement
scheme.

PROPOSITION 4.2. Let e1, . . . , en be a colored path, with ei = ({xi, xi+1}, ci),
and let �(e1, . . . , en) be the probability of the event⋂

ei=ej

{Ei = Ej }
⋂

ei �=ej

{Ei �= Ej }
⋂

xi=xj

{Xi = Xj }
⋂

xi �=xj

{Xi �= Xj }.

Suppose eσ(1), . . . , eσ(n), for some permutation σ , is also a colored path starting
at x1. Then,

�(e1, . . . , en) = �(eσ1, . . . , eσn).(4.2)

This result, related to Proposition 3.1, establishes a probabilistic symmetry be-
tween paths that can be mapped to each other by permuting the order of edges
crossed, and applying certain automorphisms to X and C . Proposition 4.2 gives
rise to the following de Finetti representation.

PROPOSITION 4.3. There exists a mixture of colored random walks on
weighted multigraphs ({Wi,Wi+1}, Ji)i∈N, with Wi ∈ N and Ji ∈ N, and indepen-
dent processes (Ti)i∈N ∼ μN and (Vi)i∈N ∼ γ N, such that the sequence of colored
edges ({X̃i, X̃i+1}, C̃i)i∈N, defined by

(X̃i, C̃i) =
{

(x1,VJi
), if Wi = 1,

(TWi
,VJi

), if Wi > 1,

is identical in distribution to (Ei)i∈N.
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The proof of Proposition 4.3 constructs the discrete process (Wi, Ji)i∈N, which
will now be used to show that the (θ,α,β) scheme has large support. The law of
(Wi, Ji)i∈N can be mapped bijectively to the exchangeable law of the sequence
of x1-blocks in the process, which in the present section and the next are defined
as sequences of labeled edges. Therefore, the de Finetti measure of (Wi, Ji)i∈N

uniquely identifies the de Finetti measure of the x1-blocks, and vice versa. We
denote the random distribution of the x1-blocks η. Note that the space of x1-blocks
is discrete because Wi and Ji are integer-valued.

We show that the law of η has full weak support. On the basis of Proposition 4.1,
we then conclude that the x1-block de Finetti measure induced by the (θ,α,β)

scheme also has full weak support. The next proposition is proven for (Ei)i∈N

as defined in this section; the result can be extended to any analogous reinforced
process corresponding to a specific (θ,α,β) scheme.

PROPOSITION 4.4. Let ηo be the x1-block distribution induced by a colored
random walk on an arbitrary weighted multigraph with vertices and colors in N,
in which the sum of weights is finite,

∑
x∈N g̃(x) < ∞. For every ε > 0, m ≥ 1 and

any collection of bounded real functions f1, . . . , fm on the space of x1-blocks,

p
(
η ∈ Uε,f1,...,fm

(
ηo)) > 0,

where

Uε,f1,...,fm

(
ηo) =

{
η′ :

∣∣∣∣
∫

fi dηo −
∫

fi dη′
∣∣∣∣ < ε, i = 1, . . . ,m

}
.

The process (Ei)i∈N also reveals a connection between the (θ,α,β) scheme
and the ERRW. Recall that the colored x1-blocks (Hi)i∈N in the Bayesian model
are exchangeable and, by de Finetti’s theorem, conditionally independent. Con-
sider their posterior distribution given the subsequence (Ei)i≤n, and assume it has
Xn+1 = X1 and includes k colored x1-blocks. These assumptions are only made
to simplify the exposition. The limits

T({x,y},c) = lim
m→∞

( ∑n+m
i=n 1({Xi,Xi+1},Ci)=({x,y},c)√∑n+m

i=n 1Xi=x

√∑n+m
i=n 1Xi=y

)
(4.3)

for every edge ({x, y}, c) ∈ {E1, . . . ,En} are functions of the directing random
measure for the sequence of x1-blocks. From these limits, one can obtain the prob-
ability in the directing random measure of any x1-block formed with edges in
{E1, . . . ,En}. Namely, given E1, . . . ,En and the tail σ -field of (Ei)i∈N, the prob-
ability of an x1-block e1, . . . , ek is the product

∏k
i=1 Tei

. We can now state the
connection with the ERRW.

PROPOSITION 4.5. There exists an ERRW on a multigraph with a finite num-
ber of edges, such that the joint posterior distribution of the random variables
in (4.3), given E1, . . . ,En, is identical to the distribution of the same limits in the
ERRW.
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Appendix C [2] contains a constructive proof of this proposition, in which one
such ERRW, whose parameters depend on E1, . . . ,En, is defined.

5. Sufficientness characterization. This section provides a characterization
of the colored (θ,α,β) scheme in terms of certain predictive sufficiencies or suf-
ficientness conditions. The first characterization of this type, for the Pólya urn,
was proven in an influential paper by Johnson [27] and has since been extended to
other predictive schemes for discrete sequences such as the two-parameter Hoppe
urn [28] and the edge-reinforced random walk [23]. Our result is closely related
to the work of these authors and uses similar proof techniques. In addition to its
clear subjective motivation, the characterization elucidates connections between
the (θ,α,β) scheme and other popular nonparametric Markov models [13].

Consider a random sequence of colored edges (Ẽi)i∈N, where Ẽi = ({Xi,

Xi−1},Ci). Each color in (Ẽi)i∈N identifies an edge. We assume (Ẽi)i∈N is a
mixture of random walks on weighted and colored multigraphs, in the sense of
Proposition 4.3, which visits more than 2 vertices with probability 1. It will be
shown that, if the predictive distribution of (Ẽi)i∈N satisfies certain conditions,
then the process is a (θ,α,β) scheme.

Consider a path Zn = (Ẽ1, . . . , Ẽn) and define:

(i) κ(Zn) = ∣∣{0 ≤ i ≤ n;Xi = Xn}
∣∣ + 1Xn �=X0

2
,

(ii) κ(e,Zn) = ∣∣{1 ≤ i ≤ n; Ẽi = e}∣∣ and

(iii) τ(Zn) = ∑
v

η(v,Zn)/2

(iv) where η(v,Zn) = ∑
i≤n

(1v∈{Xi,Xi+1})(1Ci /∈{C1,...,Ci−1})2
1Xi=Xi+1 .

These variables describe: (i) how many times Xn has been visited and whether it
coincides with X0, (ii) how many times an edge e has been traversed, (iii) the num-
ber of observed colors and (iv) the degree of v ∈ X in the multigraph constructed
by all distinct colored edges in Zn. In summary, they are easily interpretable. We
also use ρ(Zn) to denote the number of distinct X -valued states in Zn, and the
indicator s(e), which is equal to 1 if e is a loop and 0 otherwise.

We can now define sufficientness conditions for (Ẽi)i∈N. The process satisfies
Condition 1 if there exist functions b0 and b1 such that for every e ∈ {Ẽ1, . . . , Ẽn}
incident on Xn,

p(Ẽi+1 = e|Zn) = bs(e)

(
κ(Zn), κ(e,Zn)

) ∈ (0,1).(5.1)

In words, the probability of making a transition through an edge e = ({Xn,v}, c)
in Zn depends on the number of times the edge has been crossed and the number
of visits to Xn. The process satisfies Condition 2 if there is a function g such that

p
(
Ẽn+1 /∈ {Ẽ1, . . . , Ẽn}|Zn

) = g
(
κ(Zn), η(Xn,Zn)

) ∈ (0,1).(5.2)
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That is, the probability of a transition through a new edge is a function of the num-
ber of observed edges η(Xn,Zn) incident on Xn, and the number of visits to Xn.
Condition 3 requires that some function h satisfies, for every v ∈ {X0, . . . ,Xn},

p
(
Xi+1 = v|Zn, Ẽn+1 /∈ {Ẽ1, . . . , Ẽn})

(5.3)
= h

(
τ(Zn), η(v,Zn) + 1Xn=v

) ∈ (0,1).

If a new edge will be traversed, then the conditional probability that the path will go
to an already seen vertex depends solely on the number of edges out of said vertex
and the overall number of observed edges. Finally, the process satisfies Condition 4
if there is a function q , such that

p
(
Xi+1 /∈ {X0, . . . ,Xn}|Zn, Ẽn+1 /∈ {Ẽ1, . . . , Ẽn})

(5.4)
= q

(
τ(Zn), ρ(Zn)

) ∈ (0,1);
that is, the conditional probability that the path will go to an unseen vertex is a
function of the total number of edges and vertices.

The main result of this section can be divided into two lemmas, the first of which
depends only on 3 of the conditions above.

LEMMA 5.1. If the process (Ẽi)i∈N satisfies Conditions 1, 2 and 3, there exist
β ∈ [0,1) and λ ∈ [−β,∞) such that

bs(k, j) = (1 + s)(j − β)

λ + 2k − 2
and g(k, t) = λ + βt

λ + 2k − 2
.(5.5)

LEMMA 5.2. If the process (Ẽi)i∈N satisfies Conditions 1, 2, 3 and 4, there
exist α ∈ [0,1) and λ′ ∈ [−α,∞) such that

h(n, j) = j − α

λ′ + 2n + 1 − α
and q(n, t) = λ′ + α(t − 1)

λ′ + 2n + 1 − α
(5.6)

for n = 1,2, . . . , j = 1, . . . ,2n and t = 2, . . . , n + 1.

The characterization of the (θ,α,β) scheme with colors follows from the two
previous lemmas.

THEOREM 5.1. If the process (Ẽi)i∈N satisfies Conditions 1, 2, 3 and 4, then
there exist α ∈ [0,1), β ∈ [0,1) and θ > −2αβ , such that the conditional transition
probabilities of the process (Ẽi)i∈N, given any path that visits more than 2 vertices,
are equal to those in the (θ,α,β) scheme with colors (Ei)i∈N.
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6. The law of the (θ,α,β) scheme. We provide an expression for the law
of the species sampling sequence (Zi)i∈N, defined in Section 3. Recall that the
process takes values on S 
 N, and consider a fixed path z.

Let nxy be the number of transitions in z between x and y in either direction
and nx = ∑

y∈S
N nxy . For each pair x, y ∈ S 
 N, we introduce kxy ≤ nxy for
the number of ERRW-like transitions [panel (a), Figure 2] between x and y in
either direction. Let �x := ∑

y∈S
N(nxy − kxy)21x=y be the number of times that
the latent path traverses the edge (ζ, x) in either direction, let � := ∑

x∈S
N �x/2
be the number of mediated transitions, and let �′ be the number of times that (ζ, ζ )

is traversed. Note that �, �x and �′ are functions of z and k = {kxy;x, y ∈ S 
 N}.
We will also need g(x) = ∑

y∈S g(x, y), where g is the initial weighted graph.
Given k and z, we know the number of transitions out of ζ and out of x ∈ S 
N

in the latent path. Each transition adds a factor to the denominator of the proba-
bility of a latent path, which increase by a fixed amount, 2β or 2, between occur-
rences. Similarly, given k, we know the number of times that (ζ, x) is traversed;
each transition adds a factor in the numerator, and these factors are sequentially
reinforced by a fixed amount β . Finally, (ζ, ζ ) is traversed �′ times, and this con-
tributes a factor θ(θ + αβ) · · · (θ + [�′ − 1]αβ) to the numerator of the probability
of the latent path.

We can write p(z) = ∑
k p(z,k), where p(z,k) is the total probability of all

latent paths consistent with (z,k). Taking into account that the factors listed in the
previous paragraph are common to all latent paths with a given (z,k), we obtain

p(z,k) = F(z,k)(θ)�′↑αβ

∏
x:nx>0

(
g(x, ζ ) + β(1 − α)1x∈N

)
�x−1x∈N↑β

/((
g(ζ ) + β

)
�↑2β

(
g(z1)

)
�(nz1+1)/2�↑2

× ∏
x:nx>0
x �=z1

(
g(x) + 1 − αβ1x∈N

)
�nx/2�↑2

)
,

where we use Pitman’s notation for factorial powers

(r)n↑q := r(r + q)(r + 2q) · · · (r + (n − 1)q
)
.

The function F(z,k) is a sum with as many terms as the possible latent paths con-
sistent with (z,k). The term corresponding to a specific latent path is the product
of those factors that appear in the numerator of the latent path probability and cor-
respond to ERRW-like transitions. For every pair of states x, y ∈ S 
 N, there are
kxy factors, but their sequential reinforcement depends on the order in which kxy

ERRW-like and (nxy − kxy) mediated transitions appear in a specific latent path.
Summing these factors over all possible orders, one pair of states at a time, we can
factorize F(z,k),

F(z,k) = ∏
x,y:nxy>0

2kxx1x=y fexy,β(nxy − 1g(x,y)=0, kxy),
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where

fe,β(n, k) = ∑
u∈{0,1}n,‖u‖1=k

n∏
j=1

(
e + (1 − β)(j − 1) + β

∑
�<j

u�

)uj

and

exy :=
{

g(x, y), if g(x, y) > 0,
1 − β, if g(x, y) = 0.

PROPOSITION 6.1. The function fe,β satisfies the following recursion for all
0 < k < n,

fe,β(n, k) = fe,β(n − 1, k)
(6.1)

+ fe,β(n − 1, k − 1)
[
e − 1 + βk + (1 − β)n

]
,

where we set, for all n ≥ 0,

fe,β(n,0) = 1 and fe,β(n,n) = (e)n↑1.

The recursive representation allows one to compute p(z,k) quickly. In order to
obtain the values of fe,β(n, k) for every n < ñ, where ñ is an arbitrarily selected
integer and k < n, it is sufficient to solve (6.1) fewer than ñ2 times.

In the next proposition, we provide a closed-form solution for fe,β in terms of
the generalized Lah numbers, a well-known triangular array [6].

DEFINITION 6.1. Let (t)n,V0 be the generalized factorial of t of order n and
increments V0 = (vj )j≥0, namely

(t)n,V0 = (t − v0)(t − v1) · · · (t − vn−1)

with (t)0,V0 := 1. The generalized Lah numbers C(n, k,V0,W0) (sometimes re-
ferred to as generalized Stirling numbers), are defined by

C(n, k,V0,W0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = n = 0,
(w0)n,V0, if n > 0 and k = 0,
0, if k > n,
k∑

j=0

(wj )n,V0

(wj )j,W0(wj )k−j,Wj+1

, if 0 < k ≤ n,

(6.2)

where Wi = (wj )j≥i .

PROPOSITION 6.2. For any n ≥ 1 and 0 < k < n the function fe,β coincides
with

fe,β(n, k) = (1 − β)kC
(
n,n − k,V

(e,β)
0 ,W

(β)
0

)
,
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where

V
(e,β)
0 = (vj )j≥0 :=

(
− e + j

1 − β

)
j≥0

(6.3)

and

W
(β)
0 = (wj )j≥0 :=

(
j − j

1 − β

)
j≥0

.(6.4)

7. Posterior simulations. In this section we introduce a Gibbs algorithm for
performing Bayesian inference with the (θ,α,β) scheme given the trajectory of a
reversible Markov chain X1, . . . ,Xn. On the basis of the almost conjugate struc-
ture of the prior model described in the previous sections we only need to sample
the latent variables k conditionally on the data. Recall that the latent variables k
express what fraction of the transitions in X1, . . . ,Xn are ERRW-like transitions;
cf. Figure 2.

We want to sample from p(k|X1, . . . ,Xn) or equivalently from

p(k|z) ∝ p(k, z).

Recall that � and �x are functions of (k, z) and that z = d(X1, . . . ,Xn). For sim-
plicity, and without loss of generality, we consider the case where initially g(X1, ζ )

is infinitesimal, g(ζ, ζ ) = θ , and g(·, ·) = 0 otherwise. The count �′ is a function
of z and therefore

p(k|z) ∝ F(z,k)

∏
x:nx>0(β(1 − α)1x �=X1 )�x−1↑β

(θ + β)�↑2β

= F(z,k)

∏
x:nx>0(β(1 − α)1x �=X1 )�x−1↑β

(θ + �′β)2�−�′↑β

(θ + �′β)2�−�′↑β

(θ + β)�↑2β

∝ F(z,k)

∏
x:nx>0(β(1 − α)1x �=X1 )�x−1↑β

(θ + �′β)2�−�′↑β

(θ)2�↑β

(θ + β)�↑2β

∝ F(z,k)

∏
x:nx>0(β(1 − α)1x �=X1 )�x−1↑β

(θ + �′β + β)2�−�′−1↑β

(θ)�↑2β.

If

G ∼ Gamma
(
scale = 1, shape = θ/(2β)

)

and

D := (DX1,D1,D2, . . . ,D�′+1) ∼ Dirichlet
(

1,1−α,1−α, . . . ,1−α,
θ

β
+�′α

)
,
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then we can write p(k|z) ∝ EG,D[ψ(k,G,D)], where

ψ(k,G,D)

=
(∏

x

1

Dx

)(∏
x,y

2kxy1x=y f1−β,β(nxy − 1, kxy)(DxDy2βG)nxy−kxy

)
.

In other words, if we consider the joint distribution of three variables, k∗ =
{k∗

xy;x, y ∈ S 
 N, nxy > 0}, D∗ = (D∗
X1

,D∗
1 ,D∗

2 , . . . ,D∗
�′+1) and G∗,

p
(
k∗,D∗,G∗) ∝ pG

(
G∗)

pD

(
D∗)

ψ
(
k∗,G∗,D∗)

,

where pG and pD are the distributions of G and D, then the marginal law of
k∗ coincides with p(k|z). We note that sampling from p(k∗|D∗,G∗) is simple,
because the variables k∗

xy are conditionally independent, and that sampling from
p(D∗,G∗|k∗) is straightforward. The random variables D∗ and G∗ conditionally
on k∗ are independent with Dirichlet and Gamma distributions.

Finally, we use these conditional distributions to construct a Gibbs sampler for
p(k∗,D∗,G∗). In any Markov chain Monte Carlo algorithm, it is important to en-
sure mixing. In Appendix D, we derive an exact sampler for p(k|z) which uses a
coupling of the Gibbs Markov chain just defined. The method is related to Cou-
pling From The Past [22]. We performed simulations with the exact sampler to
check the convergence of the proposed Gibbs algorithm.

8. Analysis of molecular dynamics simulations.

8.1. The species sampling problem. Species sampling problems have a long
history in ecological and biological studies. The aim is to determine the species
composition of a population containing an unknown number of species when only
a sample drawn from it is available.

A common statistical issue is how to estimate species richness, which can be
quantified in different ways. For example, given an initial sample of size n, species
richness might be quantified by the number of new species we expect to observe
in an additional sample of size m. It can be alternatively evaluated in terms of the
probability of discovering at the (n+m)th draw a new species that does not appear
across the previous (n + m − 1) observations; this yields the discovery rate as a
function of the size of an hypothetical additional sample. These estimates allow
one to infer the coverage of a sample of size n + m, in other words, the relative
abundance of distinct species observed in a sample of size n + m.

A review of the literature on this problem can be found in Bunge and Fitz-
patrick [5]. Lijoi et al. proposed a Bayesian nonparametric approach for evaluating
species richness, considering a large class of exchangeable models, which include
as special case the two-parameter Hoppe urn [16]. See also Lijoi et al. [17] and
Favaro et al. [11] for a practitioner-oriented illustration using expressed sequence
tag (EST) data obtained by sequencing cDNA libraries.

We illustrate the use of the (θ,α,β) scheme in species sampling problems. In
particular, we evaluate species richness in molecular dynamics simulations.
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8.2. Data. The data we analyze come from a series of recent studies applying
Markov models to protein molecular dynamics simulations ([19], and references
therein). These computer experiments produce time series of protein structures.
The space of structures is discretized, such that two structures in a given state
are geometrically similar; this yields a sequence of species which correspond to
conformational states that the molecule adopts in water. We apply the (θ,α,β)

scheme to perform predictive inference of this discrete time series.
We analyze two datasets. The first is a simulation of the alanine dipeptide, a very

simple molecule. The dataset consists of 25,000 transitions, sampled every 2 pi-
coseconds, in which 104 distinct states are observed. In this case the 50 most fre-
quently observed states constitute 85% of the chain and each of the 104 observed
states appears at least 12 times. The second dataset is a simulation of a more com-
plex protein, the WW domain, performed in the supercomputer Anton [24]. This
example illustrates the complexity of the technology and the large amount of re-
sources required for simulating protein dynamics in silico. It also motivates the
need for suitable statistical tools for the design and analysis of these experiments.
In this dataset 1410 distinct states are observed in 10,000 transitions, sampled ev-
ery 20 nanoseconds. Many of the states are observed only a few times; in particular
we have 991 states that have been observed fewer than 4 times and 547 states that
appear only once.

8.3. Prior specification. To apply the (θ,α,β) scheme it is necessary to tune
the three parameters. We consider the initial weights g everywhere null except for
g(ζ, ζ ) = θ and g(X1, ζ ) infinitesimal. The parameters θ and α affect the probabil-
ity of finding a novel state when the latent process reaches ζ , while the parameter
β tunes the degree of dependence between the random transition probabilities. We
recall that in the extreme case of β = 1 the sequence (Xi)i∈N is exchangeable and
the random transition probabilities out of the observed states become identical.

We proceed by approximating the marginal likelihood of the data for the
set of parameters (θ,α,β), where θ ∈ {1,5,10,25,50,100,300,400,500}, α ∈
{0.03,0.2,0.5,0.8,0.97} and β ∈ {0.03,0.2,0.5,0.8,0.97}. We iteratively drew
samples, under specific (θ,α,β) values, from the conditional distribution p(k|z)
using the Gibbs algorithm defined in the previous section. Note that

η := ∑
k

1

p(z,k)
p(k|z) = ∑

k

1

p(z,k)

p(z,k)

p(z)
=

∏
x,y∈N
S (nxy − 1)

p(z)
,

where the last equality is obtained counting the possible values of k. We com-
pare the models on the basis of approximations p̂(z) of the marginal probabilities
p(z) across prior parameterizations. The samples we drew from p(k|z) are used
to compute Monte Carlo estimates η̂ of η. Recall that the probability p(k, z) can
be computed using the analytic expressions derived in Section 6. Using η̂ we com-
pute the estimates p̂(z) := ∏

x,y∈N
S (nxy − 1)/η̂ and obtain standard errors by
Bootstrapping.
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TABLE 1
The log-likelihood of the data, logp(z), for the (θ,α,β) scheme at the optimal value of θ for a

range of values of α and β . In each table, every entry is shifted by a constant such that the largest
entry equals 0

β

α 0.03 0.2 0.5 0.8 0.97

Dataset 1: Alanine dipeptide (θ = 25)

0.03 −3212 ± 10.4 −170 ± 11.7 0 ± 5.9 −982 ± 7.4 −2828 ± 12.3
0.2 −3263 ± 4.0 −220 ± 6.6 −28 ± 8.6 −997 ± 6.0 −2809 ± 9.5
0.5 −3404 ± 2.1 −333 ± 4.1 −125 ± 15.5 −1024 ± 5.4 −2815 ± 2.3
0.8 −3621 ± 6.9 −525 ± 6.9 −232 ± 3.0 −1099 ± 4.2 −2857 ± 5.8
0.97 −3868 ± 3.1 −763 ± 4.6 −447 ± 3.4 −1280 ± 4.2 −2960 ± 11.9

Dataset 2: WW domain (θ = 500)

0.03 −14,695 ± 2.0 −5147 ± 2.2 −1701 ± 1.8 −361 ± 4.0 −234 ± 1.9
0.2 −15,167 ± 1.6 −5507 ± 1.4 −1865 ± 4.2 −329 ± 3.5 −95 ± 3.2

0.5 −16,211 ± 2.4 −6354 ± 2.4 −2365 ± 0.8 −482 ± 5.6 0 ± 1.2
0.8 −17,943 ± 1.6 −7893 ± 1.8 −3542 ± 3.0 −1120 ± 7.6 −119 ± 1.4
0.97 −20,892 ± 1.9 −10,739 ± 5.0 −6143 ± 1.5 −3194 ± 7.1 −964 ± 0.9

In Table 1, we report the logarithm of these estimates for each model, shifted
by a constant such that the largest entry for each dataset is 0. We only show, due to
limits of space, these results for the θ values associated with the maxima of p̂(z)
across the considered parameterizations. The difference between two entries cor-
responds to a logarithmic Bayes factor between two models. The values in Table 1
indicate that in each dataset there is one model for which there is strong evidence
against all others. This also holds when several values of θ are considered. For
each dataset, we have highlighted the optimal parameters. The degenerate cases
α = 0 and β = 1 were also included in the comparisons but are not shown in Ta-
ble 1. The difference in the marginal log-likelihood between models with α = 0
and α = 0.03 is negligible. On the other hand, shifting the parameter β from 0.97
to 1 in the optimal model for dataset 2 decreased the log-likelihood by 7565, as
this model is exchangeable and does not capture the Markovian nature of the data.
These observations suggest that a fully Bayesian treatment with a hyper-prior over
a grid of possible (θ,α,β) combinations would produce similar results.

Summarizing, the use of a three-dimensional grid and the computation of Monte
Carlo estimates allows one to effectively obtain a parsimonious approximation of
the likelihood function that, in our case, supported selection of single parameteri-
zations.

8.4. Posterior estimates. The main results of our analysis are summarized in
Figure 3. Conditional on each sample k ∼ p(k|z), generated under the selected
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FIG. 3. Posterior simulations for two molecular dynamics datasets. Top: histogram of the number
of new species found in 600 simulations from the predictive distribution for Xn+1, . . . ,Xn+20,000,
given the data X1, . . . ,Xn. Bottom: box plot of the fraction of time spent at each state in these
simulations. Only the twenty most populated states are shown; below the dashed line, we show the
fraction of time spent at states not observed in the dataset.

(θ,α,β) parametrization, we simulated 20,000 future transitions using our predic-
tive scheme. Once k is conditionally sampled, the predictive simulations become
straightforward with the reinforcement scheme. To provide a measure of species
richness and the associated uncertainty, we histogram the number of new states
discovered in our simulations in Figure 3. Only a few states are predicted to be
found for dataset 1, while a large number of new states are predicted for dataset 2.
This result is not surprising because the alanine dipeptide dataset has a limited
number of rarely observed states, while in the WW domain data a significant num-
ber of states are observed once. This result also seems consistent with the selected
values of θ and β in these two experiments.
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As previously mentioned the (θ,α,β) scheme is a Bayesian tool for predicting
any characteristic of the future trajectories Xn+1, . . . ,Xn+m. The bottom panels
in Figure 3 show confidence bands for the predicted fractions of time that will
be spent at the most frequently observed states in the next 20,000 transitions. Each
box in the plots refers to a single state and shows the quartiles and the 10th and 90th
percentiles of the predictive distribution; states are ordered according to their mean
observed frequency. We only show these occupancies for the 20 most populated
states, and below the dashed line, we show the total occupancy for states that do not
appear in the original data. In the WW domain example, the simulation is expected
to spend between 2.5% and 5% of the time at new states.

To assess the predictive performance of the model we split each dataset into
a training set and a validation set. The rationale of this procedure is identical to
routinely performed cross validations for i.i.d. data. In our setting, the training and
validation sets are independent portions of a homogeneous Markov chain. The first
part of the procedure, which uses only the training set, includes selection of the
(θ,α,β) parameters and posterior computations. Then, we contrast Bayesian pre-
dictions to statistics of the validation set. Overall, this approach suggests that our
model generates reliable predictions. Figure 4 shows histograms for the number of
new species found in predictive simulations of equal length as the validation set. In
each panel, the blue line is the Bayes estimate and the red line corresponds to the
number of species that was actually discovered in the validation set. This approach
also supports the inference reported with box plots in Figure 3. We repeated the
computations for deriving the results in Figure 3 using only the training data, and
considering a future trajectory equal in length to the validation data. In this case,

FIG. 4. Bayesian predictions for the number of new species in a validation set. The his-
tograms show the number of species found in 600 simulations from the predictive distribution for
Xn+1, . . . ,Xn+m, where m is the length of the validation set and X1, . . . ,Xn is the training set.
The blue line shows the mean of these samples. The red line shows the actual number of new species
found in the validation set. Note that in the right panel, the lines overlap due to the small separation
between them.
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37 out of 42 of the true state occupancies in the validation set were contained in
the 90% posterior confidence bands.

9. Discussion. We introduced a reinforced random walk with a simple pre-
dictive structure that can be represented as a mixture of reversible Markov chains.
The model generalizes exchangeable and partially exchangeable sequences that
have been extensively studied in the literature. Our nonparametric prior, the de
Finetti measure of the (θ,α,β) scheme, can be viewed as a distribution over
weighted graphs with a countable number of vertices in a possibly uncountable
space X . As is the case for other well-known Bayesian nonparametric models
such as the Dirichlet process [12], the hierarchical Dirichlet process [26] and the
infinite hidden Markov model [3], it is possible to represent our model as a func-
tion of two independent components, a species sampling sequence (Zi)i∈N and a
process (Ti)i∈N which determines the species’ locations. This property is funda-
mental in applications including Dirichlet process mixture models and the infinite
hidden Markov model.

A natural extension of our model, not tackled here, is the definition of hidden
reversible Markov models. A simple construction would consist of convolving our
vertices with suitable density functions. We hope reversibility can be an advanta-
geous assumption in relevant applications; in particular we think reversibility can
be explored as a tool for the analysis of genomic data and time series from single-
molecule biophysics experiments.

APPENDIX: PROOFS FROM SECTIONS 2 AND 3

PROOF OF PROPOSITION 2.1. Consider the latent process on X+. The tran-
sition probability from x1 ∈ X+ to x2 ∈ X+ with g(x1, x2) > 0 is of the form
g(x1, x2)/

∑
y∈X+ g(x1, y). Between successive visits to x1, the denominator∑

y∈X+ g(x1, y) is increased by at most 2, and the numerator may only increase.
Assume that almost surely, the process visits x1 infinitely often. There exist
c2 ≥ c1 > 0, such that if An,m is the event that we do not traverse (x1, x2) between
the nth and mth visits to x1,

p(An,m) ≤
m−1∏
i=n

[
1 − c1

c2 + 2(i − n)

]
,

which goes to 0 as m → ∞. Therefore the edge (x1, x2) is a.s. traversed infinitely
often. Thus, if x1 ∈ X+ is a.s. visited infinitely often, by induction the process a.s.
returns infinitely often to all visited states. Suppose a state in X is visited infinitely
often a.s., then the process visits ζ infinitely often by the previous argument. Oth-
erwise, the process must visit an infinite number of states in X , and since the set
of pairs (x, y) ∈ X 2 with a positive initial weight g(x, y) is a finite subset of S 2,
we must go through ζ an infinite number of times. We conclude that ζ is visited



892 S. BACALLADO, S. FAVARO AND L. TRIPPA

infinitely often a.s. and therefore the process returns to every state visited infinitely
often. If θ > 0, then the edge (ζ, ζ ) is crossed infinitely often, and we see an infi-
nite number of distinct states. �

PROOF OF PROPOSITION 3.1. For 1 ≤ i < n there is a latent variable Ui ∈
{a, b, c} that determines in which of the three ways outlined in Figure 2 the tran-
sition Xi → Xi+1 proceeded. The probability of Z1 = x1, . . . ,Zn = xn is the sum
of its joint probability with every latent sequence U1 = u1, . . . ,Un−1 = un−1. We
will show that there is a one-to-one map L of the latent sequences such that, letting
L(u1, . . . , un−1) = u′

1, . . . , u
′
n−1, one has

p(Z1 = x1, . . . ,Zn = xn;U1 = u1, . . . ,Un−1 = un−1)
(A.1)

= p
(
Z1 = x′

1, . . . ,Zn = x′
n;U1 = u′

1, . . . ,Un−1 = u′
n−1

)
.

The proposition follows from this claim. Let t denote the transposition such that
d(t (x1, . . . , xn)) = x′

1, . . . , x
′
n. Define x′′

1 , . . . , x′′
n = t (x1, . . . , xn). The map L is

defined so that for any u1, . . . , un−1 and j, k < n, satisfying

1(xj=x,xj+1=y) + 1(xj=y,xj+1=x) > 0,

1(x′′
k =x,x′′

k+1=y) + 1(x′′
k =y,x′′

k+1=x) > 0

for some x and y, if
j∑

i=1

1(xi=x,xi+1=y) + 1(xi=y,xi+1=x) =
k∑

i=1

1(x′′
i =x,x′′

i+1=y) + 1(x′′
i =y,x′′

i+1=x),

then uj = u′
k . Note that we can define the joint probability of (Zi)i≤n and (Ui)i<n

through a reinforcement scheme identical the one defined in Section 2. Precisely,
the probability of each transition and associated category is of the form

g(xi, xi+1)

g(xi)
1ui=a,

g(xi, ζ )g(ζ, xi+1)

g(xi)g(ζ )
1ui=b,

g(xi, ζ )g(ζ, ζ )

g(xi)g(ζ )
1ui=c,

where g(x) := ∑
y∈X+ g(x, y).

The factors g(ζ ), which appear in the denominator when Ui ∈ {b, c}, are rein-
forced by 2β between successive visits to ζ . Therefore, their product only depends
on the number of mediated transitions, which is invariant under L. Similarly, fac-
tors g(ζ, ζ ) increase by αβ between successive occurrences; their product is iden-
tical when we compute the two sides of (A.1) because the number of mediated
transitions with discovery remains identical. Also, the factors g(x) in the denom-
inators increase by 2 between successive occurrences of the same X state; their
product is identical when we compute the two sides of (A.1) because the number
of transitions out of any state x (or toward x) remains identical. Finally, we need
to prove the identity between∏

i

(
g(xi, xi+1)1ui=a + g(xi, ζ )g(xi+1, ζ )1ui=b + g(xi, ζ )1ui=c

)
(A.2)
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and ∏
i

(
g
(
x′
i , x

′
i+1

)
1u′

i=a + g
(
x′
i , ζ

)
g
(
x′
i+1, ζ

)
1u′

i=b + g
(
x′
i , ζ

)
1u′

i=c

)
.(A.3)

The identity between (A.2) and (A.3) follows by combining the definitions of d

and L with the reinforcement mechanism. Specifically, the factors g(x, ζ ) and
g(x′, ζ ) are increased by β between successive occurrences. Since g(x, ζ ) appears
as many times in the left-hand side of (A.1) as g(x′, ζ ) does in the right-hand
side of (A.1), the product of these factors is identical in each case. The remaining
factors g(x, y) may increase by different amounts between successive occurrences.
Their product is a function of the subsequence of U1, . . . ,Un−1 with indices {1 ≤
i < n : {Zi,Zi+1} = {x, y}}. By the definition of L, this subsequence is the same in
the left and right-hand sides of (A.1), which completes the proof of our claim. �

PROOF OF PROPOSITION 3.2. Let (X′′
i )i∈N be a (θ,α,β) scheme. The pro-

cess (X′′
i )i∈N returns to X′′

1 infinitely often a.s. Let hi be the ith X′′
1 -block. Define

(Xi)i∈N := (h1, h3, h5, . . .) and (X′
i )i∈N := (h2, h4, h6, . . .). Proposition 3.1 im-

plies (Xi)i∈N

d= (X′
i)i∈N

d= (X′′
i )i∈N. Let Fin(x) be the last element of a vector x.

Define

Wi := lim
m→∞ Fin

(
d
(
X′

1,X
′
2, . . . ,X

′
m,X1,X2, . . . ,Xi

))
.

This limit exists a.s. because Xi is recurrent in (X′′
j )j∈N; therefore, the sequence

of blocks that form (X′
j )j∈N is conditionally i.i.d. from a distribution which a.s.

assigns positive probability to blocks containing Xi , which implies (X′
j )j∈N visits

Xi after a finite time a.s., at which point the limit settles.
In Lemma A.1 we show that (Wi)i∈N is Markov exchangeable and recurrent.

Therefore, by de Finetti’s theorem for Markov chains (3.1), it is a mixture of
Markov chains. Finally, by Lemma A.2, we obtain the representation claimed in
the proposition. �

LEMMA A.1. Without loss of generality, let X = (0,1). The process (Wi)i∈N

is Markov exchangeable and returns to every state in S 
 N infinitely often a.s.

PROOF. The recurrence of (Zi)i∈N, which is a consequence of Proposition 2.1,
implies the recurrence of (Wi)i∈N. Thus, we have left to show Markov exchange-
ability.

The sequence W1, . . . ,Wn can be mapped through d to Z1, . . . ,Zn, which
is a species sampling sequence for the (θ,α,β) scheme. Take any sequence
w1, . . . ,wn and let z1, . . . , zn := d(w1, . . . ,wn). We have

p(W1 = w1, . . . ,Wn = wn)

= p(Z1 = z1, . . . ,Zn = zn)(A.4)

× p(W1 = w1, . . . ,Wn = wn|Z1 = z1, . . . ,Zn = zn).
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Consider any pair of sequences w1, . . . ,wn and w′
1, . . . ,w

′
n related by a trans-

position of two blocks with identical initial and final states. Proposition 3.1 implies

p
(
(Z1, . . . ,Zn) = d(w1, . . . ,wn)

) = p
(
(Z1, . . . ,Zn) = d

(
w′

1, . . . ,w
′
n

))
.

We have left to show that the second factor on the right-hand side of (A.4) is iden-
tical for w1, . . . ,wn and w′

1, . . . ,w
′
n. The identity of the conditional distribution

of (X′
i)i∈N given (Z1, . . . ,Zn) equal to d(w1, . . . ,wn) or equal to d(w′

1, . . . ,w
′
n)

proves the lemma. �

LEMMA A.2. The process (TWi
1Wi /∈S + Wi1Wi∈S )i∈N has the same distribu-

tion as (Xi)i∈N.

PROOF. By definition (Xi)i∈N

d= (TZi
1Zi /∈S +Zi1Zi∈S )i∈N. Note that (Ti)i∈N

is an i.i.d. sequence, independent from (Zi)i∈N, and d((Wi)i∈N) = (Zi)i∈N. These

facts imply that (TWi
1Wi /∈S + Wi1Wi∈S )i∈N

d= (TZi
1Zi /∈S + Zi1Zi∈S )i∈N. �

PROOF OF PROPOSITION 3.3. Let h1, h2, . . . be the X1-blocks of the (θ,α,β)

scheme. Consider a map s on the X1-blocks’ space; if a = (a1, . . . , am), then
s(a) = (a1, am, am−1, . . . , a2). We can observe, following the same arguments
used for proving Proposition 3.1, that for any X1-block a and any integer n,

p(h1 = a,h2, . . . , hn) = p
(
h1 = s(a), h2, . . . , hn

)
.

Let F be a random measure distributed according to the de Finetti measure of
the X1-blocks. The above expression and the equality

lim
n→∞p(h1 ∈ A|h2, . . . , hn)

a.s.= F(A),

where A is a generic measurable set, imply that a.s. the distance in total variation
between F and F ◦ s is null. �
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SUPPLEMENTARY MATERIAL

Appendices B, C and D (DOI: 10.1214/13-AOS1102SUPP; .pdf). Appendix B
describes the two-parameter HDP-HMM in relation to the (θ,α,β) scheme. Ap-
pendix C contains all proofs from Sections 4, 5 and 6. Appendix D contains a
derivation of the exact sampler mentioned in Section 7 using Coupling From the
Past.

http://dx.doi.org/10.1214/13-AOS1102SUPP
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